

[image: cover]

Alchemy
Architectures, Languages and Compilers to
Harness the End of Moore Years
2010 Research Team Activity Report
	Saclay - Île-de-France

	 Field :
	 Algorithmics, Programming, Software and Architecture

Theme :
Architecture and Compiling
Presentation of the
		Project-Team

	Members
	[bookmark: uid3]Overall Objectives
	[bookmark: uid5]Scientific Foundations
	Software	[bookmark: uid26]Main software developments

	New Results	[bookmark: uid38]Program optimizations
	[bookmark: uid44]Joint architecture/programming approaches
	[bookmark: uid47]Alternative computing models

	Contracts and Grants with Industry	[bookmark: uid57]Collaborations involving industry
	[bookmark: uid61]National and international collaborative
grants

	Other Grants and Activities	[bookmark: uid78]Informal collaborations

	Dissemination	[bookmark: uid111]Leadership within scientific community
	[bookmark: uid150]Teaching at university
	[bookmark: uid153]Workshops, seminars, invitations

	Bibliography
		Major publications
	Publications of the year
	References in notes

Section: Members
Research Scientists
Olivier Temam [Research Director (DR) Inria,
Team Leader, HdR]
Albert Cohen [Research Director (DR) Inria, HdR]
Christine Eisenbeis [Research Director (DR) Inria]
Grigori Fursin [Research Associate (CR) Inria]
Faculty Members
Sid-Ahmed-Ali Touati [Assistant professor,
 University of Versailles-Saint-Quentin, delegation INRIA, since September, 2009]
Cédric Bastoul [Assistant Professor]
Frédéric Gruau [Assistant Professor]
Jean-Luc Gaudiot [professeur invité
Digiteo, April-May, 2010]
External Collaborators
Pierre Amiranoff [PRAG, IUT d'Orsay, University of Paris-Sud 11]
Nathalie Drach [Professor, University Pierre et Marie Curie]

PhD Students
Frédéric Brault [Engineer at Kalray]
Ramakrishna Upadrasta [MENRT scholarship, University of Paris-Sud 11, and STMicroelectronics contract]
Feng Li [INRIA scholarship, University Pierre et Marie Curie, since September 2010]
Walid Benabderrhamane [MENRT scholarship, University of Paris-Sud 11, until May 2010]
Mouad Bahi [Inria scholarship, University of Paris-Sud 11]
Cupertino Miranda [Portugese grant, University of Paris-Sud 11]
Konrad Trifunovic [Inria scholarship, University of Paris-Sud 11]
Boubacar Diouf [MENRT scholarship then ATER (half), University of Paris-Sud 11]
Mounira Bachir [ATER, University of Versailles-Saint-Quentin, until september, 2010]
Olivier Certner [STMicroelectronics fellowship
(CIFRE), University of Paris-Sud 11]
Mohammed Fellahi [ATER (half), University of Paris-Sud 11, until August, 2010]
Anne-Sophie Coquel [Large Scale Initiative ColAge]
Michael Kruse [contrat doctoral de l'University of Paris-Sud 11, from
september 2010]
Taj Muhammad Khan [Inria scholarship, University of Paris-Sud 11]
Zheng Li [Inria scholarship, University of Paris-Sud 11]
Luidnel Maignan [MENRT scholarship, University of Paris-Sud 11, until
september, 2010, then ATER, University of Paris-Sud 11]
Louis-Noël Pouchet [MENRT scholarship, University of Paris-Sud 11]
Sean Halle [Inria expert engineer, U. of
California Santa Cruz]
Marouane Belaoucha [MESR scolarship, co-supervised
by S. Touati, University of Versailles-Saint-Quentin]
Post-Doctoral Fellows
Sven Verdoolaege [Expert engineer, Systematic competitivity cluster]
Anna Beletksa [Inria postdoc, Systematic competitivity cluster, until August, 2010]
Philippe Dumont [Inria postdoc, FP7 IST grant, until August 2010]
Armin Größlinger [Inria postdoc, Systematic competitivity cluster, until April 2010]
Visiting Scientist
Joern Rennecke [November to December, 2010]
Administrative Assistant
Valérie Berthou [TR Inria]
Others
Riyad Baghdadi [Internship, until August, 2010]
Soufiane Baghdadi [Internship, until August, 2010]
Nicolas Zermati [Master 2 intern, from March, 2009 until September, 2010]
Howard Wong [Internship, from
April, 2010 until
September, 2010, collaboration with UCI,
Los Angeles]
Abdelfetteh Louati [ADT expert engineer, until April 2010]

 Overall Objectives

 	
 [bookmark: uid3]Overall Objectives

 [bookmark: uid3] Section:
 Overall Objectives
Overall Objectives

Alchemy is a joint Inria/University of Paris Sud research group.

The general research topics of the Alchemy group are architectures,
languages and compilers for high-performance embedded and
general-purpose processors. Alchemy investigates scalable
architecture and compiler/programming solutions for high-performance
general-purpose and embedded processors. Alchemy stands for
Architectures, Languages and Compilers to Harness the End of Moore
Years, referring to both the traditional processor architectures
implemented using the current photo-lithographic processes, and novel
architecture/language paradigms compatible with future and alternative
technologies. The current emphasis of Alchemy is on the former part,
and we are progressively increasing our efforts on the latter part.

The research goals of Alchemy span from short term to long term. The
short-term goals target existing complex processor architectures, and
thus focus on improving program performance on these architectures
(software-only techniques). The medium-term goals target the upcoming
CMPs (Chip Multi-Processors) with a large number of cores, which will
result from the now slower progression of core clock frequency due to
technological limitations. The main challenge is to take advantage of
the large number of cores for a wide range of applications,
considering that automatic parallelization techniques have not yet
proved an adequate solution. In Alchemy, we explore joint
architecture/programming paradigms as a pragmatic alternative
solution. Finally, even longer term research is conducted with the
goal of harnessing the properties of future and alternative
technologies for processing purposes.

Most of the research in Alchemy attempts to jointly consider the
hardware and software aspects, based on the premise that many of the
limitations of existing architecture and compiler techniques stem from
the lack of cooperation between architects and compiler
designers. However, Alchemy addresses the aforementioned research
goals through two different, though sometimes complementary,
approaches. One approach considers that, in spite of their complexity,
architectures and programs can still be accurately and efficiently
modeled (and optimized) using analytical methods. The second
approach considers the architecture/program pair already has or will
reach a complexity level that will evade analytical methods, and
explores a complex systems approach; the principle is to accept
that the architecture/program pair is more easily understood (and thus
optimized) based on its observed behavior rather than inferred from its
known design.

 Scientific Foundations

 	
 [bookmark: uid5]Scientific Foundations

 [bookmark: uid5] Section:
 Scientific Foundations
Scientific Foundations

In the sections below, the different research activities of Alchemy are described, from short-term to long-term goals. For most of the goals,
both analytical and complex systems approaches are
conducted.

[bookmark: uid6] A practical approach to program optimizations for complex
architectures

This part of our research work is more targeted to single-core
architectures but also applies to multi-cores. The rationale for this
research activity is that compilers rely on architecture models
embedded in heuristics to drive compiler optimizations and
strategy. As architecture complexity increases, such models tend to be
too simplistic, often resulting in inefficient steering of
compiler optimizations.

[bookmark: id19606] Iterative optimization

Our general approach consists in acknowledging that architectures are
too complex to embed reliable architecture models in compilers, and to
explore the behavior of the architecture/program pair through repeated
executions. Then, using machine-learning techniques, a model of this
behavior is inferred from the observations. This approach is usually called
iterative optimization.

In the recent years, iterative optimization has emerged as a major
research trend, both in traditional compilation contexts and in
application-specific library generators (like ATLAS or SPIRAL). The
topic has matured significantly since the pioneering works of Mike
O'Boyle [105] at University of Edinburgh, UK or Keith
Cooper [60] at Rice University. While these research works
successfully demonstrated the performance potential of the
approach, they also highlighted that iterative optimization cannot
become a practical technique unless a number of issues are
resolved. Some of the key issues are: the size and structure of the
search space, the sensitivity to data sets, and the necessity to build
long transformation sequences.

Scanning a large search space. Transformation parameters, the
order in which transformations are applied, and even which
transformations must be applied and how many times, all form a huge
transformation space. One of the main challenges of iterative
optimization is to rapidly converge towards an efficient, if not
optimal, point of the transformation space. Machine-Learning
techniques can help build an empirical model of the transformation
space in a simple and systematic way, only based on the observation of
transformations behavior, and then rapidly deduce the most profitable
points of the space. We are investigating how to correlate static and
dynamic program features with transformation efficiency. This approach
can speed up the convergence of the search process by one or two
orders of magnitude compared to random search
[32] , [50] [71] [29] .

We have also shown that by representing the impact of loop
transformations using structured encoding derived from polyhedral
program representation, it is possible to reduce the complexity of the
search by several orders of magnitude
[113] , [112] . This encoding is further described
in Section
	3.1.1 .

Finally we have found that it is possible to further speed up
transformation space exploration by exploring several transformations
during a single run [72] . Currently, one program
transformation is explored for each loop nest, while performance often
reaches a stable state soon after the start of the execution. We have
shown that, assuming we properly identify the phase behavior of
programs, it is possible to explore multiple transformations in each
run.

Data set sensitivity. Iterative optimization is based on the
notion that the compiler will discover the best way to optimize a
program through repeatedly running the same program on the same data
set, trying one or a few different optimizations upon each
run. However, in reality, a user rarely needs to execute the same data set
twice. Therefore, iterative optimization is based on the implicit
assumption that the best optimization configuration found will work
well for all data sets of a program. To the best of our
knowledge, this assumption has never been thoroughly
investigated. Most studies on iterative optimization repeatedly
execute the same program/data set
pair [59] , [74] , [70] , [94] , [33] , only
recently, some studies have focused on the impact of data sets on
iterative optimizations [87] , [46] .

In order to explore the issue of data set sensitivity, we have
assembled a data set suite, of 20 data sets per benchmark, for most of
the MiBench [84] embedded benchmarks. We have found that,
though a majority of programs exhibit stable performance across data
sets, the variability can significantly increase with many
optimizations. However, for the best optimization configurations, we
find that this variability is in fact small. Furthermore, we show that
it is possible to find a compromise configuration across data sets
which is often within 5% of the best possible optimization
configuration for most data sets, and that the iterative process can
converge in less than 20 iterations (for a population of 200
optimization configurations). Overall, the preliminary conclusion, at
least for the MiBench benchmarks, is that iterative optimization is a
fairly robust technique across data sets, which brings it one step
closer to practical usage.

Compositions of program transformations. Compilers impose a
certain set of program transformations, an ordering of application and
how many times each transformation is applied. In order to explore
what are the possible gains beyond these strict constraints, we have
manually optimized kernels and benchmarks, trying to achieve the best
possible performance assuming no constraint on transformation order,
count or selection [108] , [107] . The study helped us
clarify which transformations bring the best performance improvements
in general. But the main conclusion of that study is that
surprisingly long compositions of transformations are sometimes needed
(in one case, up to 26 composed loop transformations) in order to
achieve good performance. Either because multiple issues must be
tackled simultaneously or because some transformations act as enabling
operations for other transformations.

As a result, we have started developing a framework facilitating the
composition of long transformations. This framework is based on the
polyhedral representation of program
transformations [4] [78] . This
framework also enables a more analytical approach to program
optimization and parallelization, beyond the simple composition of
transformations. This latter part is further developed in
Section
	3.1.1 .

Putting it all together: continuous optimization. Increasingly,
we are now moving toward automatizing the whole iterative optimization
process. Our goal is to bring together, within a single software
environment, the different aforementioned observations and techniques
(search space techniques, data set sensitivity properties, long
compositions of transformations,...). We are currently in the
process of plugging these different techniques within GCC in order to
create a tool capable of doing continuous, whole-program optimization,
and even collaborative optimization across different users.

Hardware-Oriented applications of iterative optimization.
Because iterative optimization can successfully capture complex
dynamic/run-time phenomena, we have shown that the approach can act as
a replacement for costly hardware structures designed to improve the
run-time behavior of programs, such as out-of-order execution in
superscalar processors. An iterative optimization-like strategy
applied to an embedded VLIW processor [63] was shown to
achieve almost the same performance as if the processor was fitted
with dynamic instruction reordering support. We are also
investigating applications of this approach to the
specialization/idiomization of general-purpose and embedded
processors [132] . Currently, we are exploring similar
approaches for providing thread scheduling and placement information
for CMPs without requiring costly run-time environment overhead or
hardware support. This latter study is related to the work presented
in Section
	3.1.2 .

[bookmark: id20101] Polyhedral program representation: facilitating the
analysis and transformation of programs

As loop transformations are utterly important — performance-wise —
and among the hardest to predictably drive through static cost models,
their current support in compilers is disappointing. After decades of
experience and theoretical advances, the best compilers can miss some
of the most important loop transformations in simple numerical codes
from linear algebra or signal processing codes. Performance hits of
more than an order of magnitude are not uncommon on single-threaded
code, and the situation worsens when automatically parallelizing or
optimizing parallel code.

Our previous work on sequences of loop transformations
[4] has led to the design of a theoretical framework,
based on the polyhedral model
[67] , [68] , [69] , [114] , [102] , [130] , and a set of tools
based on the advanced Open64 compiler. We have shown that this
framework does simplify the problem of building complex transformation
sequences, but also that it scales to real-world benchmarks
[57] , [125] , [126] , [78] , and allows to
significantly reduce the size of the search space and better
understand its structure [113] , [112] , [111] . The
latter work, for example, is the first attempt at directly
characterizing all legal and distinct ways to reschedule a loop
nest.

After two decades of academic research, the polyhedral model is
finally evolving into a mature, production-ready approach to solve the
challenges of maximizing the scalability and efficiency of
statically-controlled, loop-based computations on a variety of high
performance and embedded targets. After Open64, we are now porting these
techniques to the GCC compiler [110] , applying
them to several multi-level parallelization and optimization problems,
including vectorization, extraction and exploitation of thread-level
parallelism on distributed memory CMPs like the Cell broadband engine
from IBM, NXP's CAT-DI scalable signal-processing accelerator and
novel STMicroelectronics emerging xStream architecture.

[bookmark: uid7] Project-team positioning

Note: The goal of this section and others alike is to not to act
as a traditional and exhaustive “related work” section as found in
research articles, but rather to provide references to a few research
works which are the closest to our own.

While iterative optimization is based on simple principles which have
been proposed a long time ago, this approach has been significantly
developed by Mike O'Boyle at University of Edinburgh since
1997 [105] , and more recently by Keith Cooper at Rice
University [60] . Since then, many research groups have shown
example cases where an iterative approach might be profitable (various
application targets, various steps of the compilation process, various
architecture
components) [128] , [119] , [89] , [127] . These
researchers have shown that iterative optimization has a significant
potential. Since then, other research groups (Polaris group at
University of Illinois, CAPS at INRIA) have successfully demonstrated
that iterative optimization can be used in practice for the design of
libraries [98] , [104] , or even that it can be integrated in
production compilers to assist existing
optimizations [123] . As mentioned before, Alchemy is now
focusing on the issues which hinder its practical application.

[bookmark: uid8] Joint architecture/programming approaches

While Section
	3.1.1 is only concerned with
transforming programs for a more efficient exploitation of existing
architectures, in the longer term, researchers can assume
modifications of architectures and/or programs are possible. These
relaxed constraints allow to target the root causes of poor
architecture/program performance.

The current architecture/program model partly fails because the burden
is either excessively on the architecture (superscalar processors), or
the compiler (VLIW and now CMPs). And both compiler and architecture
optimizations often aim at program reverse-engineering:
compilers attempt to dig up program properties (locality, parallelism)
from the static program, while architectures attempt to retrieve them
from program run-time behavior. Now, in many cases, the user is not
only aware of these properties but may pass them effortlessly to the
architecture and the compiler provided she had the appropriate
programming support, provided the compiler would pass this information
to the architecture, and the architecture would be fitted with the
appropriate support to take advantage of them. For instance, simply
knowing that a C structure denotes a tree rather than a graph can
provide significant information for parallel execution. Such
approaches, while not fully automatic, are practical and would relieve
the complexity burden of the architecture and the compiler, while
extracting significant amounts of task-level parallelism.

In the paragraphs below we apply this approach of passing more program
semantic to the compiler and the architecture, first for
domain-specific stream-oriented programs, and then for the
parallelization of more general programs.

[bookmark: id20570] A targeted domain: Passing program semantics using a
synchronous language for high-performance video processing

While we are currently investigating the aforementioned approach for
general-purpose applications, we have started with the investigation
of the specific domain of high-end video
processing. In this domain, assessing that real-time properties will
be satisfied is as important as reaching uncommon levels of compute
density on a chip. 150 giga-operations per second per Watt (on pixel
components) is the norm for current high-definition TVs, and cannot be
achieved with programmable cores at present. The future standards will
need an 8-fold increase (e.g., for 3D displays or
super-high-definition). Predictability and efficiency are the keywords
in this domain, in terms of both architecture and compiler behavior.

Our approach combines the aforementioned iterative optimization and
polyhedral modeling research with a predictability- and
efficiency-oriented parallel programming language. We focus on
warrantable (as opposed to best-effort) usage of hardware resources
with respect to real-time constraints. Therefore, this parallel
programming language must allow overhead-free generation of
tightly coupled parallel threads, interacting through dedicated
registers rather than caches, streaming data through high-bandwidth,
statically managed interconnect structures, with frequent
synchronizations (once every few cycles), and very limited memory
resources immediately available. This language also needs to support
advanced loop transformations, and its representation of concurrency
compatible with the expression of multi-level partitioning and mapping
decisions. All these conditions tend to consider a language closer to
hardware synthesis languages than general-purpose, von Neumann
oriented imperative ones [51] , [56] .

The synchronous data-flow paradigm is a natural candidate, because of
its ability to combine high-productivity in programming complex
concurrent applications (due to the determinism and compositionality
of the underlying model, a rare feature of a concurrent semantics),
direct modeling of computation/communication time, and static checking
of non-functional properties (time and resource constraints). Yet
generating low-level, tightly fused loops with maximal exposition of
fine-grain parallelism from such languages is a difficult problem, as
soon as the target processor is not the one being described by the
synchronous data-flow program, but a pre-existing target on which we
are folding an application program. The two tasks are totally
different: although the most difficult decisions are pushed back to
the programmer in the hardware synthesis case, application programmers
usually rely on the compiler to abstract away the folding of their
code in a reasonably portable fashion across a variety of targets.
This aspect of synchronous language compilation has largely been
overlooked and constitutes the main direction of our work. Another
direction lies in the description of hardware resources, at the same
level as the application being mapped and scheduled onto them; this
unified representation would allow the expression of the search space
of program transformations, and would be a necessary step to apply
incremental refinement methods (expert-driven, very popular in this
domain).

Technically, we extend the classical clock calculus (a type system) of
the Lucid Synchrone language, expliciting significantly more
information about the program behavior, especially when tasks must be
started and will be completed, how information flow among tasks, etc.
Our main contribution is the integration of relaxed synchronous
operators like jittering and bursty streams within synchronous bounds
[54] , [55] . This research consists in revisiting the
semantics of synchronous Kahn networks in the domain of media
streaming applications and reconfigurable parallel architectures, in
collaboration with Marc Duranton from Philips Research Eindhoven (now
NXP Semiconductors) and with Marc Pouzet from LRI and the Proval INRIA
project team.

[bookmark: uid9] A more general approach: Passing program semantic using
software components

Beyond domain-specific and regular applications (loops and arrays),
automatic compiler-based parallelization has achieved only mixed
results on programs with complex control and data
structures [85] . Writing, and especially debugging,
large parallel programs is a notoriously difficult
task [90] , and one may wonder whether the vast
majority of programmers will be able to cope with it. Currently,
transactional memory is a popular
approach [86] for reducing the programmer
burden using intuitive transaction declarations instead of more
complex concurrency control constructs. However, it does not depart
from the classic approach of parallelizing standard C/C++/Fortran
programs, where parallelism can be difficult to extract or
manipulate. Parallel languages, such as HPF [99] , require
more ambitious evolutions of programming habits, but they also let
programmers pass more semantic about the control and data
characteristics of programs to the compiler for easier and more
efficient parallelization. However, one can only observe that, for the
moment, few such languages have become popular in practice.

A solution would have a better chance to be adopted by the community
of programmers at large if it integrates well with popular practices
in software engineering, and this aspect of the parallelization
problem may have been overlooked. Interestingly, software engineering
has recently evolved towards programming models that can blend well
with multi-core architectures and parallelization. Programming has
consistently evolved towards more encapsulation: procedures, then
objects, then components [120] . Essentially for two
reasons, because programmers have difficulties grasping large programs
and need to think locally, and because encapsulation enables
reuse of programming efforts. Component-based programming, as
proposed in Java Beans, .Net or more ad-hoc component
frameworks, is the step beyond C++ or Java objects:
programs are decomposed into modules which fully encapsulate code and
data (no global variable) and which communicate among themselves
through explicit interfaces/links.

Components have many assets for the task of developing parallel
programs. (1) Components provide a pragmatic approach for bringing
parallelization to the community at large thanks to component reuse.
(2) Components provide
an implicit and intuitive programming model: the programmer views
the program as a "virtual space" (rather than a sequence of tasks)
where components reside; two components residing together in the
space and not linked or not communicating through an existing link
implicitly operate in parallel; this virtual space can be mapped to
the physical space of a multi-threaded/multi-core architecture. (3)
Provided the architecture is somehow aware of the program
decomposition into components, and can manipulate individual
components, the compiler (and the user) would be also relieved of
the issue of mapping programs to architectures.

In order to use software components for large-scale and fine-grain
parallelization, the key notion is to augment them with the ability to
split or replicate. For instance, a component walking a binary tree
could spawn two components to scan two child nodes and the
corresponding sub-trees in parallel.

We are investigating a low-overhead component-based approach for
fine-grain parallelism, called CAPSULE, where components have the
ability to replicate [96] , [106] . We investigate both
a hardware-supported and software-only approach to component division.
We show that a low-overhead component framework, possibly paired with
component hardware support, can provide both an intuitive programming
model for writing fine-grain parallel programs with complex control
flow and data structures, and an efficient platform for parallel
components execution.

[bookmark: uid10] Personnel

[bookmark: uid11] Project-team positioning

As explained before, both approaches pursued rely on the same
philosophy, pass more program semantic to the compiler and the
architecture, though the techniques differ significantly. Naturally,
there is a huge body of literature on parallelization, and here, we
can only hint at some of the main research directions. Current
approaches either rely on automatic parallelization [34]
of standard programs, but the automatic parallelization of “complex”
applications (complex control flow and data structures) has registered
mixed results. Another approach is software/hardware thread-level
speculation, but one may question its cost and scalability
[115] . As mentioned before, transactional memory
has become a popular approach [86] for
reducing the burden of parallelizing applications. Other approaches
include parallel languages, such as HPF [99] or parallel
directives such as OpenMP [61] .

Synchronous data-flow languages. The synchronous data-flow
approach to the design and optimization of massively parallel, highly
compute-efficient and predictable systems is quite unique. It is a
long-term, largely fundamental effort motivated by well-established
practices in the industry, mostly in the domain of high-definition
language programming for hardware synthesis, and combines these
practices with the best semantic properties of high-level programming
languages. It is a holistic approach to combining productivity
and scalability and compute-efficiency in a unified
design, targeting the domain of real-time, predictable,
stream-oriented parallel systems.

The closest work is the StreamIt language and compiler from MIT
[122] , and to a lesser extent, the Sequoia project
from Stanford [65] ; these two mature projects achieved
important contributions in the exposition and exploitation of
thread-level parallelism on a coarse grain distributed-memory,
stream-oriented architecture. StreamIt is also much more limited in
expressiveness, and Sequoia is more an incremental progress on how to
compile and optimize a parallel program than a productivity-oriented
design of a new concurrent programming paradigm. We are currently
working on a shorter term, intermediate milestone much closer to these
two projects, but allowing to expose and exploit multi-level
parallelism, at all stages of the design-space exploration and in all
passes of the compiler.

Software components. Software components, as provided in the
.Net or Java Beans frameworks, have little support for
parallelism. Several years ago, a few frameworks proposed a
component-like approach for parallelizing complex applications on
large-scale multiprocessors, especially the Cilk [48]
and Charm++ [92] frameworks. However Cilk does not
promote encapsulation, essentially a mechanism for spawning C
functions. Charm++ provides both encapsulation and spawning, but it
targets large-scale multiprocessors, even grid
computing [93] , and its overhead is rather large
for fine-grain parallelism as required by multi-threaded/multi-core
architectures.

Probably the closest work to our hardware support for components is
the Network-Driven Processor proposed by Chen et al. [53]
which aims at implementing CMP hardware support for Cilk
programs. Thread creation decisions are not taken directly by the
architecture, they enact any thread spawning decision taken by the
Cilk environment, but they provide a sophisticated support for
communications and work stealing between processors.

[bookmark: uid12] Alternative computing models/Spatial computing

The last research direction stems from possible evolutions of
technology. While this research direction may seem very long term,
processor manufacturers cannot always afford to investigate many risky
alternatives way ahead in time. At the same time, for them to accept
and adopt radical changes, they have to be anticipated long in
advance. Thus, we believe prospective research is a core role for
academic researchers, which may be less immediately useful to
companies, but which can bring a real addition to their internal
research activities, and which also carries the potential of bringing
disruptive technology.

Prospective information on the future of CMOS technology suggests
that, though the density of transistors will keep increasing, the
commuting speed of transistors will not increase as fast, and
transistors may be more faulty (either fabrication defects or
execution faults). Possible replacement/alternative technologies, such
as nanotubes [79] which have received a lot of
attention lately, share many of these properties: high density, but
slow components (possibly even slower than current components), a
large rate of defects/faults, and more difficulty to place them except
than in fairly regular structures.

In short, several potential upcoming technologies seem to bring a very
large number of possibly faulty and not so fast components with layout
issues. For architectures to take advantage of such technology, they
would have to rely on space much more than time/speed to
achieve high performance. Large spatial architectures bring a set of
new architecture issues, such as controlling the execution of a program
in a totally decentralized way, efficiently managing the placement of
program tasks on the space, and managing the relative movement of
these different tasks so as to minimize communications. Furthermore,
beyond a certain number of processing elements, it is not even clear
whether many applications will embed enough traditional task-level
parallelism to take advantage of such large spaces, so applications
may have to be expressed (programmed) differently in order to leverage
that space. These two research issues are addressed in the two
research activities described below.

Blob computing. Blob computing [83] is
both a spatial programming and architecture model which aims at
investigating the utilization of a vast amount of processing
elements. The key originality of the model is to acknowledge that the
chip space becomes too large for anything else than purely local
actions. As a result, all architecture control becomes
local. Similarly, the program itself is decomposed into a set of
purely local actions/tasks, called Blobs, connected together through
links; the program can create/destroy these links during its lifetime.

With respect to architecture control, for instance, the local method
for expressing that two tasks frequently communicating through a link
must get close together in space so that their communication latency
is low is expressed through a simply physical law, emulating spring
tension; the more communications, the higher the tension. Similarly,
expressing that tasks should move away because too many tasks are
grouped in the same physical spot is achieved through a law similar to
pressure: as the number of tasks increases, the local pressure on
neighbor tasks increases, inducing them to move away. Overall many of
these local control rules derive from physical or biological laws
which achieve the same goals: controlling a large space through simple
local interactions.

With respect to programming, the user essentially has to decompose the
program into a set of nodes and links. The program can create a static
node/link topology that is later used for computations, or it can
dynamically change that topology during execution. But the key concept
is that the user is not in charge of placing tasks on the physical
space, only to express the potential parallelism through task
division. As can be observed, several of the intuitions of the CAPSULE
environment of Section
	3.1.2.2 stems from this Blob model.

Bio-Inspired computing. As mentioned above, beyond a certain
number of individual components, it is not even clear whether it will
be possible to decompose tasks in such a way they can take advantage
of a large space. Searching for pieces of solution to this problem
has progressively lead us to biological neural networks. Indeed,
biological neural networks (as opposed to artificial neural networks,
ANNs) are well-known examples of systems capable of complex
information processing tasks using a large number of self-organized,
but slow and unreliable components. And the
complexity of the tasks typically processed by biological neurons is
well beyond what is classically implemented with ANNs.

Emulating the workings of biological neural networks may at first seem
far-fetched. However, the SIA (Semiconductor Industry Association) in its 2005
roadmap addresses for the first time “biologically inspired
architecture implementations” [116] as emerging research
architectures, and focuses on biological neural networks as interesting
scalable designs for information processing.
More importantly, the computer science community is beginning to
realize that biologists have made tremendous progress in the
understanding of how certain complex information processing tasks are
implemented using biological neural networks.

One of the key emerging features of biological neural networks is that
they process information by abstracting it, and then only
manipulate such higher abstractions. As a result, each new input (e.g., for
image processing) can be analyzed using these learned
abstractions directly, thus avoiding to rerun a lengthy set of
elementary computations. More precisely,
Poggio et al. [109] at MIT have shown how
combinations of neurons implementing simple operations such as MAX or
SUM, can automatically create such abstractions for image processing,
and some computer science researchers in the image processing domain
have started to take advantage of these findings.

We are starting to
investigate the information processing capabilities of this
abstraction programming
method [118] , [117] , [44] [45] . While image
processing is also our first application, we plan to later look at a
more diverse set of example applications.

A complex systems approach to computing systems. More generally,
the increased complexity of computing systems at stake, whether due to
a large number of individual components, a large number of cores or
simply complex architecture program/pairs, suggest that novel design
and evaluation methodologies should be investigated that rely less on
known design information than on observed behavior of the global
resulting system. The main problem here is to be able to extract
general characteristics of the architecture on the basis of
measurements of its global behavior. For that purpose, we are using
tools provided by the physics of complex systems (nonlinear time
series analysis, phase transitions, multi-fractal analysis...).

We have already applied such tools to better understand the
performance behavior of complex but traditional computing systems such
as superscalar processors [42] , [43] . And we are
starting to apply them to sampling techniques for performance
evaluation [80] , [81] . We
will be progressively expanding the reach of these techniques in our
research studies in the future.

[bookmark: uid13] Project-team positioning

While spatial computing is an expression used for many purposes
[79] , the Blob computing work in our research
group refers more to unconventional spatial programming paradigms such
as MGS [76] and Gamma [38] .

There has recently been a surge of research works targeting
novel technologies in computer architecture,but they have mostly
focused on quantum computing, and, to our knowledge, few have focused
on bio-inspired computing.

Furthermore, several researchers in the computer science community
have recently started applying ideas from complex systems
approaches. But their focus are usually on the software or algorithm
part. Our utilization of complex systems approaches in the field of
architecture is thus less investigated, although other groups have very
recently expressed similar interests [95] , [121] .

[bookmark: uid14] Transversal research activities: simulation and compilation

Since our research group has been involved in both compiler and
architecture research for several years, we have progressively given
increased attention to tools, partly because we found a lot of
productivity was lost in inefficient or hard to reuse tools. Since
then, both simulation and compilation platforms have morphed into
research activities of their own. Our group is now coordinating the
development of the simulation platform of the European HiPEAC network,
and it is co-coordinating the development of the compiler research
platform of HiPEAC together with University of Edinburgh.

[bookmark: id21493] Simulation platform

As processor architecture and program complexity increase, so does the
development and execution time of simulators. Therefore, we have
investigated simulation methodologies capable of increasing our
research productivity. The key point is to improve the reuse, sharing,
comparison and speed capabilities of simulators. For the first three
properties, we are investigating the development of a modular
simulation platform, and for the latter fourth property, we are
investigating sampling techniques and more abstract modeling
techniques. Our simulation platform is called UNISIM [31] .

What is UNISIM? UNISIM is a structural simulation environment
which provides an intuitive mapping from the hardware block diagram to
the simulator; each hardware block corresponds to a simulation module.
UNISIM is also a library of modules where researchers will be able to
download and upload (contribute) modules.

What are the assets of UNISIM over other simulation platforms?
UNISIM allows to reuse, exchange and compare simulator parts (and
architecture ideas), something that is badly needed in academic
research, and between academia and industry. Recently, we did a
comparison of 10 different cache mechanisms proposed over the course
of 15 years [82] , and suggested the progress of research
has been all but regular because of the lack of a common ground for
comparison, and because simulation results are easily skewed by small
differences in the simulator setup.

Also, other simulation environments or simulators advocate modular
simulation for sharing and comparison, such as the SystemC
environment [30] , or the M5
simulator [47] . While they do improve the modularity of
simulators, in practice, reuse is still quite difficult because most
simulation environments overlook the difficulty and importance of
reusing control. For instance, SystemC focuses on reusing
hardware blocks such as ALUs, caches, and so on. However, while
hardware blocks correspond to the greatest share of transistors in the
actual design, they often correspond to the least share of simulator
lines. For instance, the cache data and instruction banks often
correspond to a sizable amount of transistors, but they merely
correspond to array declarations in the simulator; conversely, cache
control corresponds to few transistors but most of the source lines of
any cache simulator function/module. As a result, it is difficult to
achieve reuse in practice, because control code is often not
implemented in such a way that it can lend well to reuse.

On the contrary, UNISIM is focused on reuse of control code, provides
a standardized module communication protocol and a control abstraction
for that purpose. Moreover, UNISIM will later on come with an open
library in order to better structure the set of available simulators
and simulator components.

Taking a realistic approach at simulator usage. Obviously, many
research groups will not accept easily to drop years of investment in
their simulation platforms and to switch to a new environment. We take
a pragmatic approach and UNISIM is designed from the ground up to be
interoperable with existing simulators, from industry and academia. We
achieve interoperability by wrapping full simulators or simulator
parts within UNISIM modules. We have an example full SimpleScalar
simulator stripped of its memory, wrapped into a UNISIM module, and
plugged into a UNISIM SDRAM module.

Moreover, we are in the process of developing a number of APIs (for
power, GUI, functional simulators, sampling,...) which will allow
third-party tools to be plugged into the UNISIM engine. We call these
APIs simulator capabilities or services.

With CMPs, communications become more important than cores
cycle-level behavior. While the current version of UNISIM is focused
on cycle-level simulators, we are developing a more abstract view of
simulators called Transaction-Level Models (TLM). Later on, we will
also allow hybrid simulators, using TLM for prototyping, and then
zooming on some components of a complex system.

Because CMPs also require operating system support for a large part,
and because existing alternatives such as SIMICS [100] are not
open enough, we are also developing full-system support in our new
simulators jointly with CEA. Currently, UNISIM has a functional
simulator of a PowerPC750 capable of booting Linux.

[bookmark: id21669] Compilation platform

The free GNU Compiler Collection (GCC) is the leading tool
suite for portable developments on open platforms. It supports more
than 6 input languages and 30 target processor architectures and
instruction sets, with state-of-the-art support for debugging,
profiling and cross-compilation. It has long been supported by the
general-purpose and high-performance hardware vendors. The last couple
of years have seen GCC taking momentum in the embedded system
industry, and also as a platform for advanced research in program
analysis, transformation and optimization.

GCC 4.4 features about 200 compilation passes, two thirds of them
playing a direct role in program optimization. These passes are
selected, scheduled, and parametrized through a versatile pass
manager. The main families of passes can be classified as:

	[bookmark: uid15] inter-procedural analyzes and optimizations;

	[bookmark: uid16] profiling, coverage analysis and instrumentation;

	[bookmark: uid17] induction variable analysis, canonicalization and strength-reduction;

	[bookmark: uid18] loop optimization, automatic vectorization and parallelization;

	[bookmark: uid19] data layout optimization.

More advanced developments involving GCC are in progress in the
Alchemy group:

	[bookmark: uid20] global, whole program optimization (towards link-time and
just-in-time compilation), with emphasis on scalability;

	[bookmark: uid21] transactional memory extensions independent from yet compatible with
OpenMP, and a recent intrusion into data-flow synchronous programming;

	[bookmark: uid22] polyhedral loop nest optimization, with support for automatic
vectorization in the Graphite branch of GCC; this branch has merged
with GCC 4.4; it was initiated by the Alchemy group and a former
student now at AMD (Sebastian Pop);

	[bookmark: uid23] automatic parallelization, including the extraction and
adaptation of loop and pipeline parallelism, with extensions towards
speculative forms of parallelism.

The HiPEAC network supports GCC as a platform for research and
development in compilation for high-performance and embedded systems.
The network's activities on the compiler platform are coordinated by
Albert Cohen.

[bookmark: uid24] Project-team positioning

Simulation (UNISIM). The rationale for the simulation effort,
and the current situation in the community (dominance of monolithic
simulators like SimpleScalar [49]) has been described as part
of the presentation of this research activity in
Section
	3.1.4 . While several companies have internal modular
simulation environments (ASIM at Intel [64] , TSS at Philips,
MaxSim at ARM,...), they are not standard nor disseminated. Only
SystemC [30] is gaining wide acceptance as a modular
simulation environment with companies, less so with high-performance
academic research groups. The academic research group which has the
most similar approach is the Liberty group at Princeton
University. They have been similarly advocating modular simulation in
the past few years [124] . Due to the growing importance of
CMP architectures, several research groups have since then proposed
CMP simulation platforms, some of them with modularity properties,
such as M5 [47] , Flexus [28] , GEMS [101] or
Vasa [129] .

Finally, UNISIM is also participating to a French simulation platform
called SoCLib through a recent contract (SoCLib). The
technical goals of UNISIM are rather different as we initially
targeted processor decomposition into modules while SoCLib targeted
systems-on-chip. As architectures are moving to multi-cores, the
collaboration could become fruitful. UNISIM is also more focused on
trying to gather, from the start, groups from different countries in
order to increase the chances of adoption.

Compilation (GCC). We are also deeply committed to the
enhancement and popularization of GCC as a common compilation research
platform. The details of this investment are listed in
Section
	3.1.4 . GCC is of course an interesting option for the
industry, as development costs surge and returns in performance gains
quickly diminish with the complexity of the modern architectures. But
GCC is also, and for the first time, a serious candidate to help
researchers mutualize development efforts, to experiment their
contributions in a complete tool chain with production codes, to
enable the sharing and comparison of these contributions in an open
licensing model (a necessary condition for assessing the quality of
experimental results), and to facilitate the transfer of these
contributions to production environments (with an immediate impact on
billions of embedded devices, general-purpose computers and
servers). Learning from the failures of a well known attempt at
building a common compiler infrastructure (SUIF-NCI in the late 90s),
we follow a pragmatic approach based on joint industry-academia
research projects
	7.1), training
(tutorials, courses, see Section
	3.1.4), and direct contributions
to the enhancement of the platform (e.g., for iterative optimization
research and automatic parallelization).

 Software

 	Software	[bookmark: uid26]Main software developments

 [bookmark: uid26] Section:
 Software
Main software developments

[bookmark: cid1] Main software developments
Participants :
 Veerle Desmet, Sylvain Girbal, Zheng Li, Olivier Temam.

Compilers & program optimization:

	Polyhedral transformations in Open64

	The WRaP-IT tool (WHIRL
Represented as Polyhedra – Interface Tool) is a program analysis
and transformation tool implemented on top of the Open64 compiler
[40] and of the CLooG code generator
[39] . The formal basis of this tool is the polyhedral model
for reasoning about loop nests. We introduced a specific polyhedral
representation that guarantees strong transformation
compositionality properties [58] . This new
representation is used to generalize classical loop transformations,
to lift the constraints of classical compiler frameworks and enable
more advanced iterative optimization and machine learning schemes.
WRaP-IT — and its loop nest transformation kernel called URUK
(Unified Representation Universal Kernel) — is designed to support
a wide range of transformations on industrial codes, starting from
the SPEC CPU2000 benchmarks, and recently considering a variety of
media and signal processing codes (vision, radar, software radio,
video encoding, and DNA-mining in particular, as part of the IST
STREP ACOTES, ANR CIGC PARA, and a collaboration with Thales).

Based on this framework, we are also planning an
extension of the polyhedral model to handle speculative code
generation and transformation of programs with data-dependent
control, and a direct search and transformation algorithm based on
the Farkas lemma. These developments will take place in the GRAPHITE
project: a migration/rewrite of our Open64-based software to the GCC
suite. This project is motivated by the maturity — performancewise
and infrastructurewise — of GCC 4.x, and on the massive industrial
investment taking off on GCC in the recent years, especially in the
embedded world. We are heavily involved in fostering research
projects around GCC as a common compilation platform, and GRAPHITE
is one of those projects.

Grigori Fursin developed the first prototype of an iterative
optimization API for GCC, and started using this infrastructure for
continuous and adaptive optimization research, in collaboration with
the University of Edinburgh.

	Candl

	
Participants :
 Cédric Bastoul, Louis-Noël Pouchet.

Candl is a free software and a library devoted to data dependences
computation. It has been developed to be a basic bloc of our
optimizing compilation tool chain in the polyhedral model. From a
polyhedral representation of a static control part of a program, it is
able to compute exactly the set of statement instances in dependence
relation. Hence, its output is useful to build program transformations
respecting the original program semantics. This tool has been designed
to be robust and precise. It implements some usual techniques for
data dependence removal, as array privatization or array expansion.

	Clan

	
Participants :
 Cédric Bastoul, Louis-Noël Pouchet, Walid Benabderrahmane.

Clan is a free software and library that translates some particular parts of
high level programs written in C, C++, C# or Java into a polyhedral
representation (strict or extended to irregular control flow).
This representation
may be manipulated by other tools to, e.g., achieve complex program
restructurations (for optimization, parallelization or any other kind of
manipulation). It has been created to avoid tedious and error-prone input
file writing for polyhedral tools (such as CLooG, LeTSeE, Candl etc.).
Using Clan, the user has to deal with source codes based on C grammar only
(as C, C++, C# or Java).

	CLooG

	
Participants :
 Cédric Bastoul, Walid Benabderrahmane, Louis-Noël Pouchet, Sven Verdoolaege.

CLooG is a free software and library to generate code for scanning
Z-polyhedra. That is, it finds a code (e.g. in C, FORTRAN...) that
reaches each integral point of one or more parameterized polyhedra.
CLooG has been originally written to solve the code generation problem
for optimizing compilers based on the polytope model. Nevertheless it
is used now in various area e.g. to build control automata for high-level
synthesis or to find the best polynomial approximation of a function.
CLooG may help in any situation where scanning polyhedra matters.
While the user has full control on generated code quality, CLooG is
designed to avoid control overhead and to produce a very effective code.
Irregular extentions have been integrated during 2009 in the irCLooG
prototype.

	OpenScop

	
Participants :
 Cédric Bastoul, Louis-Noël Pouchet.

OpenScop is an open specification that defines a file format and a set of
data structures to represent a static control part (SCoP for short),
i.e., a program part that can be represented in the polyhedral model.
The goal of OpenScop is to provide a common interface to the different
polyhedral compilation tools in order to simplify their interaction.
To help the tool developpers to adopt this specification, OpenScop
comes with an example library (under 3-clause BSD license) that provides
an implementation of the most important functionalities necessary to
work with OpenScop.

	FADAlib

	(http://www.prism.uvsq.fr/users/bem/fadalib/home.html). Dataflow
dependence for irregular programs (not static control programs). The
library is developped by M. Belaoucha, funded by projects Teraops
(pole de competitivite systematic) and PARMA (ITEA2).

	MAQAO

	(modular assembly quality analyzer and optimizer,
http://maqao.prism.uvsq.fr/). MAQAO analyzes static assembly codes
and dynamic application performance. The objective of MAQAO is to
help developpers to focus on code fragments that require performance
tuning, analyzes compiler optimizations and proposes tuning
hints. MAQAO works on Itanium, Pentium architectures.

	CAPSULE.

	
Participants :
 Olivier Certner, Yves Lhuillier, Zheng Li, Pierre Palatin, Olivier Temam.

CAPSULE is our component-like parallelization
environment. It consists of a run-time system which enacts tasks
divisions. The environment is publicly disseminated at
alchemy.futurs.inria.fr/capsule , along with several
CAPSULE-parallelized benchmarks. CAPSULE was developed through several

Processor simulation:

	archexplorer.org

	The project can be summarized as an open and
continuous exploration of the architecture design space, and takes
the form of a service and web site we have just opened,
www.archexplorer.org , hosting the software at the server
side.

The goal of this project is twofold: to enable a more rigorous
methodology approach in our domain by enabling the comparison of
architecture ideas, and to propose a novel architecture design
approach which relies on automatic design-space exploration, as an
alternative, or at least a complement, to the current design process
essentially driven by intuition and experience.

The server-side software is mostly based on UNISIM
(www.unisim.org), one of our large developments in
software simulation: it corresponds to an environment on top of
SystemC for truly enabling sharing, reuse and comparison, by offering
a rigorous communication protocol between modules, architecture
interfaces, and a set of simulators.

The archexplorer.org project is a joint project with Ghent University,
Belgium (Veerle Desmet), and Thales TRT (Sylvain Girbal). I have
started the project and I am coordinating the research, though Veerle
and Sylvain are doing most of the implementation work; Veerle also has taken
an active role in the project and can be considered as co-leading it.

	UNISIM

	The UNISIM platform has been described in
Section
	3.1.4 . As of now, besides the simulation engine, the
developments include a shared-memory CMP based on the PowerPC 405,
functional simulators for the PowerPC 405 (and cycle-level),
PowerPC 750, a functional system simulator of the PowerPC 750 capable
of booting Linux, 10 different cache modules corresponding to various
research works. The following simulators or tools are currently under
development: a functional and cycle-level version of the ARM 9 with
full-system capability, a distributed-memory CMP based on the
Power 405 core, an ST231 VLIW functional and later on cycle-level
simulator. During his internship, Taj Khan integrated the CACTI (http://www.hpl.hp.com/personal/Norman_Jouppi/cacti4.html) Power Estimation
Model developed at HP Labs in UniSim.

 New Results

 	New Results	[bookmark: uid38]Program optimizations
	[bookmark: uid44]Joint architecture/programming approaches
	[bookmark: uid47]Alternative computing models

 [bookmark: uid38] Section:
 New Results
Program optimizations

[bookmark: uid39] Practical Approach
Participants :
 Cédric Bastoul, Walid Benabderrahmane, Albert Cohen, Grigori Fursin, Louis-Noël Pouchet, Olivier Temam.

Here are the most recent key scientific achievements.

	[bookmark: uid40] It was empirically demonstrated that iterative optimization is not data set sensitive, and as a result,
the best compiler optimizations can be learned across data sets
[52] .

	[bookmark: uid41] The notion of automatically exploring compiler optimizations has been
extended to the joint exploration of both hardware and software
optimizations, with the set up of an automatic architecture/software
exploration facility (archexplorer.org) [62] .

[bookmark: uid42] Collective Tuning Center
Participants :
 Grigori Fursin, Olivier Temam.

We created an open community-driven collaborative wiki-based portal
http://cTuning.org that brings together academia, industry and
end-users to develop intelligent collective tuning technology that
automates and simplifies compiler, program and architecture design and
optimization. This technology minimizes repetitive time consuming
tasks and human intervention using collective optimization, run-time
adaptation, statistical and machine learning techniques. It can
already help end users and researchers to improve execution time, code
size, power consumption, reliability and other important
characteristics of the available computing systems automatically
(ranging from supercomputers to embedded systems) and should
eventually enable development of the emerging intelligent self-tuning
adaptive computing systems. Collective Optimization Database is
intended to improve the quality of academic research by avoiding
costly duplicate experiments and providing reproducible results.

[bookmark: uid43] Simulation of the Lattice QCD and Technological Trends
in Computation
Participants :
 Mouad Bahi, Cédric Bastoul, Walid Benabderrhamane, Christine Eisenbeis, Jean-Luc Gaudiot, Julien Jaeger, Michael Kruse, Louis-Noël Pouchet, Howard Wong.

This is a joint ANR project “PetaQCD” with Lal (Orsay), Irisa Rennes
(Caps/Alf), IRFU (CEA Saclay), LPT (Orsay), Caps Entreprise (Rennes),
Kerlabs (Rennes), LPSC (Grenoble).

Simulation of the Lattice QCD is a challenging computational
problem. Currently, technological trends in computation show multiple
divergent models of computation. We are witnessing homogeneous
multicore architectures, the use of accelerator on-chip or off-chip,
in addition to the traditional architectural models.

On the verge of this technological abundance, assessing the
performance tradeoffs of computing nodes based on these technologies
is of crucial importance to many scientific computing applications.

In this study [91] , we focus on assessing the
efficiency and the performance expected for the Lattice QCD problem on
representative architectures and we project the expected improvement
on these architectures and their impact on performance for the Lattice
QCD. We additionally try to pinpoint the limiting factors for
performance on these architectures. This work takes place in ANR PARA
and ANR QCDNEXT (both 2005-2008) and has led to the project ANR
PetaQCD (2009-2011)[6] .

[bookmark: uid44] Section:
 New Results
Joint architecture/programming approaches

Here are the most recent key scientific achievements.

	[bookmark: uid45] A joint programming/architecture approach for streaming
applications which is successfully used at NXP (formerly Philips
Semiconductors). An extension of the synchronous Kahn process
networks using a relaxed notion of synchrony, called N-synchrony,
applied to the efficient and scalable parallelization of media
streaming applications.

[bookmark: uid46] CAPSULE: division-based parallelization
Participants :
 Olivier Certner, Zheng Li, Olivier Temam.

We have decided to ride a popular trend in software
engineering, software components, which blends well with
multi-cores: it proposes to decompose a large program into smaller
fully independent parts, just like multi-cores consist in decomposing
large monolithic architectures into a set of smaller cores. In itself,
componentization does not yield much parallelism, our contribution is
to augment components with the ability to divide, yielding as
much parallelism as resources allow. The programmer is only exposed to
this very simple notion of parallelization, and the role of the
architecture and/or the run-time system is to manage parallel tasks.
We have shown that this approach performs well on programs with
irregular control flow behavior and complex data structures, which are
typically difficult to efficiently parallelize.
We have developed a hardware support for making this parallelization approach
efficient in distributed-memory multicores [97] .

[bookmark: uid47] Section:
 New Results
Alternative computing models

[bookmark: uid48] Compound circuits
Participants :
 Hugues Berry, Sylvain Girbal, Olivier Temam, Sami Yehia.

Besides parallelization, the other "spatial" scalability path is customization.
Customization, which is very popular in embedded systems, has many assets:
custom circuits are cheaper, faster and more power efficient than processors.
They can also speed up tasks which are by nature sequential (not parallel),
so that they are complementary, not an alternative, to parallelism.
Their main limitation is flexibility. As a result, we have
investigated techniques which can improve the flexibility of custom
circuits while achieving the best possible performance, area and power
properties. We have
developed a novel bottom-up approach where we
show how to efficiently combine any number of custom circuits to create a
far more flexible compound circuit [131] , without sacrificing the
performance, area and power benefits of custom circuits. That approach
was recently patented jointly with Thales. More recently, we have
developed a memory interface for efficiently feeding data to these
compound circuits [77] , [35] .

[bookmark: uid49] ANNs as accelerators
Participant :
 Olivier Temam.

We make the case for considering a hardware ANN as a
flexible yet energy efficient, high-performance and defect-resilient
accelerator, ideally positioned to tackle upcoming technology,
applications and programming challenges. For now, we focus this study
on one type of algorithms, classifiers, but which are commonly used
in many RM applications. We present a hardware accelerator
design for ANNs, geared towards robustness and high-performance. We
show that transistor density has reached a level where it is now
possible to spatially expand in hardware an ANN capable of handling
medium-sized applications. Spatial expansion has multiple benefits in
terms of robustness, energy efficiency, performance and scalability, over
previous time-multiplexed designs.

We synthesized our design at 90nm and showed that such a spatially
expanded ANN accelerator achieves orders of magnitude reductions in
energy, and similar improvements in performance with respect to the
same task executed on a modern processor at the same technology node,
at a fraction of the on-chip area, justifying scaling down just one
core in order to rip the energy and performance benefits.

[bookmark: uid50] Bio-Inspired Computing

[bookmark: uid51] AMYBIA : Aggregating MYriads of Bio-Inspired Agents
Participants :
 Hugues Berry, Nazim Fates, Bernard Girau.

In the framework of the ARC Amybia, we are searching for innovative schemes of decentralised and massively distributed computing. We mainly aim at contributing to this at three levels. At the modelling level, we think that biology provides us with complex and efficient models of such massively distributed behaviours. We start our study by addressing the decentralised gathering problem with the help of an original model of aggregation based on the behaviour of social amoebae. At the simulation level, our research mainly relies on achieving large scale simulations and on obtaining large statistical samples. Mastering these simulations is a major scientific issue, especially considering the imposed constraints: distributed computations, parsimonious computing time and memory requirements. Furthermore its raises further problems, such as: how to handle asynchronism, randomness and statistical analysis? At the hardware level, the challenge is to constantly confront our models with the actual constraints of a true practise of distributed computing. The main idea is to consider the hardware as a kind of sanity check. Hence, we intend to implement and validate our distributed models on massively parallel computing devices. In return, we expect that the analysis of the scientific issues raised by these implementations will influence the definition of the models themselves.//
As a first step, we have recently proposed a bio-inspired system based on the so-called Greenberg-Hastings cellular automaton (GHCA), to achieve decentralized and robust gathering of mobile agents scattered on a surface or computing tasks scattered on a massively-distributed computing medium. As usual with such models, GHCA has mainly been studied using an homogeneous and regular lattice. However, in the context of massively distributed computing, one also needs to consider unreliable elements and defect-based noise. A first analysis showed that in this case, phase transitions could govern the behaviour of the system. Our next goal was to broaden the knowledge on stochastic reaction-diffusion media by investigating how such systems behave when various types of noise are introduced. Hence, in [66] , we study GHCA where noise and topological irregularities of the grid are taken into account. The decrease of the probability of excitation changes qualitatively the behaviour of the system from an active to an extinct steady state. Simulations show that this change occurs near a critical threshold; it is identified as a nonequilibrium phase transition which belongs to the directed percolation universality class. We test the robustness of the phenomenon by introducing persistent defects in the topology : directed percolation behaviour is conserved. Using experimental and analytical tools, we suggest that the critical threshold varies as the inverse of the average number of neighbours per cell. The inverse proportionality law we presented paves the way for obtaining generic laws (even approximate ones) to predict the position of the critical threshold in various simulation conditions.

[bookmark: uid52] Cortical Microarchitecture: Computing by Abstractions
Participants :
 Hugues Berry, Olivier Temam.

Recent advances in the neuroscientific understanding of the brain are bringing about a tantalizing opportunity for building synthetic machines that perform computation in ways that differ radically from traditional Von Neumann machines. These brain-like architectures, which are premised on our understanding of how the human neocortex computes, are highly fault-tolerant, averaging results over large numbers of potentially faulty components, yet manage to solve very difficult problems more reliably than traditional algorithms. A key principle of operation for these architectures is that of automatic abstraction: independent features are extracted from highly disordered inputs and are used to create abstract invariant representations for external entities expressed in the inputs. This feature extraction is applied hierarchically, leading to increasing levels of abstraction at higher layers in the hierarchy.//
In collaboration with Mikko Lipasti, University of Wisconsin at Madison, WI, USA, we introduce in [88] a behavioral model for this process, using biologically-plausible neuron-level behavior and structure, and illustrates it with an image recognition task. We also introduce a computationally-effective higher-order modelÅ one that representsthe behavior of hundreds of neurons in a cortical column using just two perceptronsÅ is shown to be capable of this same task. These models are a first step towards developing a comprehensive and biologically-plausible understanding of the computational algorithms and microarchitecture of computing systems that mimic the human neocortex.

[bookmark: uid53] Spatial complexity of reversible computing
Participants :
 Mouad Bahi, Christine Eisenbeis.

Especially since the work of Bennett about reversibility of computation and how to make a computation reversible, the relationship between reversibility, energy, computation and space complexity has gained interest in a lot of domains in computer science. This direction could help us understanding physical limitations of processors performance.
We have chosen to start by studying the space complexity of a DAG
computation, defined as the maximum number of registers needed for
performing the computation in both directions. This criteria is
closely related to our more classical criterion of “register
saturation”. We have defined heuristics for computing this number and
have performed systematic experiments on all possible graphs of given
size. The first experiments tend to show that for a graph of size n,
no more that n/2 registers are needed to perform the computations in
both directions compared to the forward direction. This latter number
can be considered as the “garbage” of the computation. More work is
needed to prove/disprove this result more formally and understand the
hypothesis in which it is valid [37] . In this work, all
operations in the DAG are assumed to be reversible. See also [36] .

[bookmark: uid54] Rematerialization-based register allocation through reverse computing
Participants :
 Mouad Bahi, Christine Eisenbeis.

Reversible computing aims at keeping all information on input and intermediate values available at any step of the computation. Rematerialization in register allocation is an alternate solution to spilling where values are recomputed from available data instead of held in registers. In this paper we analyze how register pressure is impacted by rematerialization through reverse operations. We propose an algorithm for rematerialization with reverse computing and we use the memory demanding LQCD (Lattice Quantum ChromoDynamics) application to demonstrate that important gains of up to 33% on register pressure can be obtained. This in turn enables an increase in Instruction-Level Parallelism or in Thread-Level Parallelism. We demonstrate a 30% (statically timed) gain on a basic LQCD computation [22] .

[bookmark: uid55] Self Developing System for Programming Computing Media
Participants :
 Frédéric Gruau, Luidnel Maignan, Christine Eisenbeis.

We are targeting high performance, general purpose programming of uniform spatial
computing media. Such a medium is a homogeneous assembly of computing units with
local neighbour-to-neighbour communication. On one hand, spatial locality enables
to consider very large media, on the other hand, it turns the programming into a
more difficult task. We are proposing Self Developing Systems (SDS) as new solution
for this programming problem: An SDS is programmed by a Finite State Automaton
(FSA) with specific output actions acting on the automata itself, that let an
initial automaton duplicate and create links, thus developing a network of automata.
When implemented in a distributed manner, self development behaves as a distributed
operating system, managing the placement of light threads (FSA) and communication
links, as they duplicate or as they are deleted. Thus, the SDS transforms the
spatial computing medium into a higher level, virtual machine, which is easier to
program because placement is handled at the hardware level. The difficult task in
this scenario, is the distributed implementation of self-development, which is the
focus or our research. We consider cellular automata as a first step, while keeping
in mind other less regular spatial media, such as amorphous computers. The
implementation involves several new distributed algorithms.
In particular, we developed a distributed algorithm to homogeneize the placement
of a cloud of particles, which is both a new problem for cellular automata, and a
key ingredient for self-placement. In the context of his Phd Thesis [12] , Luidnel Maignan
has worked out a distributed algorithms constructing a minimal connected proximity
graph establishing connection between nearest particles. His work approach is to
consider the metric space underlying the cellular automata topology and construct
generic mathematical object based solely on this metric. As a result, the algorithm
derived from the properties of those objects, generalize over arbitrary regular
grid, including hexagonal, 4 neighbors, and 8 neighbor square grid.

 Contracts and Grants with Industry

 	Contracts and Grants with Industry	[bookmark: uid57]Collaborations involving industry
	[bookmark: uid61]National and international collaborative
grants

 [bookmark: uid57] Section:
 Contracts and Grants with Industry
Collaborations involving industry

	Thales TRT

	Collaboration with Thales TRT, and the CNRS-Thales lab on several topics:
customization, simulation, design-space exploration, heterogeneous
systems programming, memristors. As mentioned before, the research
work on customization recently led to a joint patent application. Main
contact: Sami Yehia.

	STMicroelectronics

	Collaboration with STMicroelectronics on program
parallelization and architecture support for parallelization.

	Philips Semiconductors, now NXP

	We have had regular collaborations with Philips for almost 10 years now,
including direct contracts. Currently, we are involved in several
grants with Philips (IP SARC, Marie-Curie fellowships, ACOTES). Philips
Semiconductors has recently become NXP.

[bookmark: uid61] Section:
 Contracts and Grants with Industry
National and international collaborative
grants

	“PAGDEG” (Causes and consequences of protein aggregation in cellular degeneration): an ANR-funded project (call Piribio) on modeling and simulation of cellular degeneration in bacteria (2010-2012). Supervisor: A. Lindner. Total amount funded: 450 keuros.

	Large-Scale initiative “ColAge” (Natural and engineering solutions to the control of bacterial growth and aging: A systems and synthetic biology approach): an INRIA-INSERM joint grant on modeling and simulation of systems biology (2008-2011). Supervisor: H. Berry. Total amount funded: 430 keuros.

	Arch 2Neu

	(150kEuros) This project
aims at designing a novel type of hardware for digital signal
processing (sounds, images,...) based on analog neural networks.
This design shall be significantly more defect and fault tolerant than
previous designs, while achieving very low power. This
project is a joint INRIA Alchemy/CEA LETI ANR project as part of the
“Return of PostDoc”: we have attracted a young French postdoc at
University of California, originally from Supelec, to come back to
France and set up this new project (2009-2012).

	ARC MACACC

	(20 keuros): “Modeling Cortical Activity and Analysing the Brain Neural Code”, Supervision: B. Cessac (Institut Non Linéaire de Nice). Other partners: Cortex (INRIA Nancy), Institut des Neurosciences cognitives de la Méditerannée (Marseille), Lab. Jean-Alexandre Dieudonné (Nice), Odyssee (INRIA Sophia).

	ARC AMYBIA

	(20 keuros): “Aggregating MYriads of Biologically-Inspired Agents”, Supervision: N. Fates (Maia, INRIA NAncy). Other Participants: B. Girau (Cortex, INRIA Nancy).

	PEPS-STI CNRS MARTINE

	(5 Keuros): “Multifractal Analysis to Resolve information Transfer In NEural networks”, Supervision: M. Quoy (ETIS, ENSEA, U. Cergy-Pontoise). Other Participants: F. Germinet (AGP, U. Cergy-Pontoise).

	Appel à Idées 2008 de l'ISC-PIF

	(4 keuros): “Organization of a conference on spatial/amorphous computing”, Supervision: H. Berry, Other Participants: F. Gruau (Alchemy), O. Michel, J.L. Giavitto (Ibisc, U. Evry).

	“Action d'Envergure” ColAge

	: an INRIA-INSERM joint grant (3 years) on modeling and simulation of systems biology (official start Feb. 2009). Supervisor: H. Berry. Total amount funded (for 2008): 41 keuros.

	GGCC: EU, MEDEA+ program

	ITEA Call 8 project on global analysis
and optimization in GCC. Our involvment lie in the compiler
infrastructure, static analysis in the polyhedral model, and feature
extraction for global and contiunous optimization. With CEA (dpt. of
energy), UPM (Spain), SICS (Sweden), major industrial partners
(Airbus, Telefonica, Bertin) and SMEs (Mandriva, MySQL, and others).
04/2006–04/2009.

	PetaQCD:

	ANR project on the design of architecture, software
tools and algorithms for Lattice Quantum Chromodynamics. With Lal (Orsay), Irisa Rennes
(Caps/Alf), IRFU (CEA Saclay), LPT (Orsay), Caps Entreprise (Rennes),
Kerlabs (Rennes), LPSC (Grenoble).

	PARA: French Ministry of Research

	ANR CIGC project on
multi-level parallel programming and automatic parallelization. We are
involved in automatic code generation approaches for domain-specific
and target-specific optimizations; iterative and polyhedral
compilation methods are explored in an application-specific context.
With Bull, University of Versailles, LaBRI (University of Bordeaux),
INT (Evry), CAPS Entreprise (Rennes). 01/2006–01/2009.

	SARC: EU, IST program

	FP6 FET Proactive IP on advanced
computer architecture. The goal is to address all the aspects
of a scalable processor architecture based on multi-cores.
It includes programming paradigms, compiler optimization,
hardware support and simulation issues. CAPSULE is being
used as component-based programming approach, and UNISIM
for the simulation platform. 01/2006–01/2010.

	Embedded TeraOps

	A SYSTEMATIC “Pôle de Competitivité” regional
funding for the development of a large-scale embedded multi-core
architectures, coordinated by Thales. It will initially focus on
streaming applications but it will later target programs with more
complex control flow. Thales, Dassault, Thomson, CEA,
INRIA. 01/2006–01/2010.

	NoE HiPEAC and HiPEAC2

	HiPEAC is a network of excellence on High-Performance Embedded
Architectures and Compilers. It involves more than 70 European
researchers from 10 countries and 6 companies, including ST,
Infineon and ARM. The goal of HiPEAC is to steer European research
on future processor architectures and compilers to key issues,
relevant to the European embedded industry.

The HiPEAC consortium has submitted a second edition of the network,
which has started officially since November 2007 and for four years
again. Olivier Temam is a member of the steering committee.
09/2004–11/2011.

	Arch2Neu

	The goal of this project is the design of a hybrid analog/digital chip
for the energy efficient and defect-tolerant implementation of signal
processing tasks, using analog spiking neurons. The chip will be
effectively implemented by the end of the project.
2010–2012.

 Other Grants and Activities

 	Other Grants and Activities	[bookmark: uid78]Informal collaborations

 [bookmark: uid78] Section:
 Other Grants and Activities
Informal collaborations

Cédric Bastoul collaborates with Sébastien Salva from Clermont 1
University and Clément Delamare from Direction Générale des
Impôts on web service client parallelization. He collaborates with
various people at Reservoir Labs Inc. (New York) on high-level
compilation for multicore architectures [41] , [103] .

Denis Barthou collaborates with these people.

	[bookmark: uid79] W. Jalby, Univ. of Versailles St Quentin, PRISM lab.

	[bookmark: uid80] S. Louise, CEA/Lastre.

	[bookmark: uid81] S. Rajopadhye, U. of Colorado, Etat-Unis.

Grigori Fursin collaborates with the following reseachers:

	[bookmark: uid82] Michael O'Boyle, University of Edinburgh, UK

	[bookmark: uid83] Chengyong Wu, ICT, China

	[bookmark: uid84] Nacho Navarro and Marisa Gil, UPC, Spain

	[bookmark: uid85] Mircea Namolaru, Ayal Zaks, Bilha Mendelson, IBM Haifa, Israel

	[bookmark: uid86] Francois Bodin, CAPS Entreprise/IRISA, France

Olivier Temam collaborates with these people.

	[bookmark: uid87] Mikko Lipasti (University of Wisconsin).

	[bookmark: uid88] Kathryn McKinley (University of Texas).

	[bookmark: uid89] Veerle Desmet, Lieven Eeckhout (Ghent University).

	[bookmark: uid90] Chengyong Wu (ICT, Beijing, China)

	[bookmark: uid91] Daniel Gracia-Perez, Gilles Mouchard (CEA LIST).

	[bookmark: uid92] Sylvain Girbal, Sami Yehia (Thales TRT).

	[bookmark: uid93] Bruno Jego (ST).

	ICT

	Collaboration with Prof. Chengyong Wu at ICT, China,
on machine-learning techniques for compilers and data centers.

	University of Wisconsin

	Collaboration with Mikko Lipasti, University of Wisconsin, on bio-inspired
architectures.

	University of Texas

	Collaboration with Kathryn McKinley at University of Texas, Austin,
on a novel component-based programming approaches for heterogeneous and homogeneous
computing systems.

	Ghent University and Thales

	Collaboration with Veerle Desmet at Ghent
University, Belgium, on design-space exploration. As part of this
collaboration, we recently set up the www.archexplorer.org
web site and related project.

	University of California Santa Cruz

	Thanks to a
France-Berkeley travel grant, We are starting a collaboration with the
group of Jose Renau, thanks to a 2006-2007 France-Berkeley grant. The
topics are close to the infrastructure work of Alchemy: fast and
accurate simulation of multi-core processors, and support for a modern
parallelisation infrastructure in GCC. Jose Renau is a member of the
OpenSparc consortium and contributed to major advances in architecture
and compiler support for thread-level speculation.

	University of Edinburgh

	For the past 3 years, we had a very active
cooperation with University of Edinburgh on iterative optimization;
Grigori Fursin, got his PhD from University Edinburgh.
This collaboration has resulted in a series of joint articles
[72] , [50] , [73] .

	University of Illinois

	We have a regular collaboration with the
group of David Padua, Urbana-Champaign, Illinois, which started 6
years ago, with multiple joint publications and travel grants
(CNRS-UIUC). Research focused on high-performance Java, dependence
and alias analysis, processors in memory, and currently on adaptive
program generation and machine learning compilers.

	Texas A&M University

	We started a regular exchange of ideas
and personnel with the Parasol laboratory, led by Lawrence
Rauchwerger, a reference in parallel language compilation and
architecture support. ProfṘauchwerger visited Alchemy for a total
of 5 months in the last 3 years, and many of us visited TAMU for
shorter periods. The collaboration led to numerous advances in the
understanding of the main challenges and pitfals in scalable parallel
processing, and also facilites the organization of multiple academic
events (e.g., the upcoming PACT'07)

	Ohio State University

	We have a regular collaboration with the
group of Prof. Sadayappan, Columbus, Ohio. Recently, we also started
to publish together. We invited Uday Bondhugula, PhD student from
Ohio for two months, and a Louis-Noël Pouchet will start a postdoc
in Ohio in January 2010. The collaboration focuses on polyhedral
compilation and new approaches to loop tiling for automatic
parallelization.

	Louisiana State University

	We have a regular collaboration with
the group of Prof. Ramanujam, Baton Rouge, Louisiana. Recently, we
also started to publish together. Mohammed Fellahi was scheduled to
spend a 3 month internship in Baton Rouge in 2009, but our plans
were cancelled because of difficulties to get a US visa. The
collaboration focuses on code generation for polyhedral
transformations, and automatic parallelization for GPUs.

	UPC

	We have a regular collaboration with UPC, Barcelona, which
started 7 years ago, with several groups on topics ranging from
program optimization to micro-architecture, resulting in several
publications, joint contracts.

	University of Passau

	We have a regular collaboration with the
group of Christian Lengauer and Martin Griebl, Passau, Germany,
which started 10 years ago, with multiple joint publications and
travel grants (Procope, Ministry of Foreign Affairs). Our
collaboration focused on polyhedral compilation techniques and
recently headed towards domain-specific program generation and
metaprogramming.

	Lal-LPT, University of Paris Sud

	We have started a collaboration
with physicists working on LQCD (Lattice Quantic Chromo
Dynamics). We focus on the next generation of computer that would
gain an order of magnitude speedup over their current APE-next
processor (sustained 300 GFlops).

	Paris 6 University

	The properties of biological neural networks that are of direct interest to architecture research are in part due to the intrinsic properties of the individual neurons. We are collaborating with the neuroscience research lab ANIM (INSERM U742) to develop simulation and modelling studies of specific properties of individual biological neurons such as time handling or plasticity and memory properties [75] .

	CEA List

	For the past 6 years, we had a regular collaboration
with the Laboratoire SÃ»reté du Logiciel (Software Safety
Lab) at CEA LIST on two topics: processor simulation and program
optimization. Simulation of complex processor architectures is
necessary for the development of software test of complex systems
investigated at CEA. Program optimization is more a way to factor
in the CEA expertise in static analysis and develop new
applications. CEA has funded two scholarships in our group until 2004 and 2005
respectively.

	Others

	We also have regular contacts with several foreign research groups:
the CAPSL group at University of
Delaware; and the PASCAL group at University of California Irvine
(NSF-INRIA grant).

 Dissemination

 	Dissemination	[bookmark: uid111]Leadership within scientific community
	[bookmark: uid150]Teaching at university
	[bookmark: uid153]Workshops, seminars, invitations

 [bookmark: uid111] Section:
 Dissemination
Leadership within scientific community

	Cédric Bastoul

	

	[bookmark: uid113] Member of the Conseil Consultatif des Spécialistes
de l'université Paris-Sud 11 since 2010.

	[bookmark: uid114] Member of the Commission Mixte des Spécialistes pour
l'IUT d'Orsay from 2006 to 2009.

	[bookmark: uid115] Member of the Conseil de laboratoire LRI since 2006.

	Albert Cohen

	

	Christine Eisenbeis

	

	[bookmark: uid118] Member of IFIP WG 10.3.

	[bookmark: uid119] Member of the “comité de programmes” of Digiteo.

	[bookmark: uid120] Member of the “conseil de gouvernance” of Polytech Paris
Sud (école d'ingénieurs de l'University of Paris-Sud 11).

	[bookmark: uid121] Elected member of the “conseil d'administration”' of Inria [2006-2010].

	[bookmark: uid122] Elected member of the “conseil scientifique” of University of Paris-Sud 11 [2008-].

	[bookmark: uid123] Chair [2008-] of the “commission des utilisateurs des moyens
informatiques - recherche” of the Saclay Inria Research Center.

	Olivier Temam

	

	[bookmark: uid125] HiPEAC2 Steering Committee, Research workpackage leader,
leader of the Research Cluster on simulation.

	[bookmark: uid126] Program Co-Chair of the 2011 International Conference on
High-Performance and Embedded Systems (HiPEAC).

	[bookmark: uid127] General Chair of the 2011 ACM/IEEE International Symposium on
Code Generation and Optimization (CGO), to be organized in
Chamonix, France. It is the first time that CGO will be held
outside the US.

	[bookmark: uid128] Leader of the INRIA Alchemy group.

Program Committees:

	Denis Barthou

	

	Cédric Bastoul

	

	[bookmark: uid131] General co-chair of the International Workshop on Polyhedral Compilation Techniques (IMPACT).

	[bookmark: uid132] Program Committee member of the International Conference on Computing Frontiers (CF).

	[bookmark: uid133] Program Committee member of the International Symposium on Stabilization, Safety and Security (SSS).

	[bookmark: uid134] Program Committee member of the International Conference on Design Automation and Test (DATE).

	Albert Cohen

	
	Grigori Fursin

	
	Olivier Temam

	

	[bookmark: uid138] Program Committee member of the International Symposium on Computer Architecture (ISCA)

	[bookmark: uid139] General Chair of the International Symposium on Code Generation and Optimization (CGO)

	[bookmark: uid140] Program Chair of the International Conference on High Performance Embedded Architectures and Compilers (HiPEAC)

	[bookmark: uid141] Member of the "Bureau du Comite des Projets", INRIA Saclay

	[bookmark: uid142] Member of the Scientific Advisory Board of Thales

	[bookmark: uid143] Program Committee member of the International Symposium on Microarchitecture (MICRO)

	[bookmark: uid144] Program Committee member of the International Conference on Architecture of Computing Systems (ARCS)

	[bookmark: uid145] Member of the ACM SIGARCH Nominating Committee

	[bookmark: uid146] Program Committee member of the International Symposium on Computer Architecture (ISCA)

	[bookmark: uid147] Member of the advisory panel of UK project "Biologically-Inspired Massively Parallel Architectures - computing beyond a million processors", coordinated by Steve Furber, University of Manchester, 5-million Euros grant

	[bookmark: uid148] Organizer of the HiPEAC cluster on New Technologies and New Architecture Paradigms

	[bookmark: uid149] Program Committee member of the International Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools (RAPIDO)

[bookmark: uid150] Section:
 Dissemination
Teaching at university

Denis Barthou gave these courses:

	[bookmark: uid151] 15h in Master2, UVSQ on vectorization/parallelization,

	[bookmark: uid152] Summer School INRIA/CEA/EDF on High Performance Computing (june
2008).

Cédric Bastoul gives Java, System, Network and Security lectures and
labs at the Orsay Institute of Technology to first, second and third year
students (L1 to L3). He also teaches a Object Oriented Programming
course at Paris-Sud University to second year students (L2). Lastly,
he is teaching computer architecture at École Polytechnique, for third
year students (M1).

Anna Beletska gave 9 hours of lectures in the Master 2 “Recherche” of Computer Science of
University of Paris-Sud 11.

Mohamed-Walid Benabderrahmane: Monitorat at IFIPS -
University Paris-sud 11, Courses: C/C++/C# , Web Services, Security,
Level: 5 year engineer.

Philippe Dumont: Components of a Computing System,
Introduction to Computer Architecture and Operating Systems,
École Polytechnique - Licence 3 - 36h

Christine Eisenbeis gave a 3 hours lecture about “Reversible computing” in the Master 2 “Recherche” of Computer Science of University of Paris-Sud 11.

Olivier Temam teaches a computer architecture course at École
Polytechnique to 3rd-year students on computer architectures (appr. 35
hours). He also co-teaches a course on novel processor architectures
at University of Paris Sud to Master's students.

Albert Cohen teaches an introductory computing systems (computer
architecture, operating systems, distributed systems) at École
Polytechnique to 2nd-year students (appr 35 hours, 120 students); it
was the first course using the Google Android development kit as a
virtual platform for lab sessions; an e-book published with Eyrolles
came out of this first experiment in 2009. He also teaches an advanced
operating systems course to 3rd-year students at École
Polytechnique. He also co-chairs the Electrical Engineering curriculum
at École Polytechnique.

[bookmark: uid153] Section:
 Dissemination
Workshops, seminars, invitations

The project-team members have given the following talks and attended
the following conferences:

	Mounira Bachir

	

	[bookmark: uid155] LCPC 09, University of Delaware, USA, October 8-10, 2009, “Using The Meeting Graph Framework
to Minimise Kernel Loop Unrolling for Scheduled Loops”

	Cédric Bastoul

	

	[bookmark: uid157] Participation to the International Conference on Supercomputing (SC'10),
New Orleans, USA, November 2010.

	[bookmark: uid158] Invited presentation at the Computer Science Colloquium of the
University of Innsbruck, Austria, September 2010.

	[bookmark: uid159] Paper presentation at PMEA 2009 (September, Raleigh, North
Carolina) Workshop on Programming Models for Emerging Architectures
in conjunction with PACT 2009.

	[bookmark: uid160] Poster presentation at PACT 2009 (September, Raleigh, North
Carolina) Intl. Conf. on Parallel Architectures and Compilation
Techniques.

	[bookmark: uid161] Participation to SPC 2009 Fault-Tolerant Spaceborne Computing
Employing New Technologies Workshop (May 26-29, Albuquerque, New
Mexico).

	Anna Beletska

	
	[bookmark: uid163] Cocoa' 2009, talk “Computing the transitive closure of a union
of affine integer tuple relations”

	[bookmark: uid164] ISPDC 2009, talk “Coarse-Grained Loop Parallelization: Iteration Space Slicing vs Affine Transformations”

	Mohamed-Walid Benabderrahmane

	
	[bookmark: uid166] Poster Pact 2009, “A Conservative Approach to Manipulate
Data-Dependent Control Flow in the Polyhedral Model”, with
Louis-Noël Pouchet

	[bookmark: uid167] Summer school : Acaces 2009,
Fifth International Summer School on Advanced Computer Architecture and Compilation for Embedded Systems
July 12 to July 18, 2009 Terrassa (near Barcelona), Spain

	Hugues Berry

	

	[bookmark: uid169] “The Effects of Hebbian Learning on the Structure and Dynamics of Chaotic Neural Networks”, given at the Dept. Electrical and Computer Enginerring, Univ. Wisconsin at Madison, WI, USA, Jan. 13, 2009 (invited by M. Lipasti).

	[bookmark: uid170] “Estimating the effects of intrinsic plasticity on neural network dynamics using a realistic model”, at the “Journees Mathematiques du Vivant”, Laboratory J.A. Dieudonnee, Nice, France, March 25, 2009 (invited by B. Cessac)

	[bookmark: uid171] “ColAge: A systems and synthetic biology approach to the control of bacterial growth and aging”, the 2nd NIH-INRIA workshop on Biomedical Computing, INRIA Rocquencourt, France, June 3, 2009.

	[bookmark: uid172] “Cell biochemistry in cytoplasms with large molecular crowding : anomalous diffusion and bacterial aging”, at the 2nd Paris Workshop on Multi-Agent Systems in Biology at the Meso or Macroscopic Scales, Univ. Pierre et Marie Curie, Paris, France, June 23, 2009 (invited by M. Beurton-Aimar)

	Christine Eisenbeis

	

	[bookmark: uid174] Meeting QPACE - AURORA - PetaQCD, Regensburg, April 14-15, 2010,
talk on “PetaQCD Introduction and Summary”.

	[bookmark: uid175] PetaQCD meeting, “Status of the PetaQCD project”, May
10-11, 2010.

	[bookmark: uid176] International Conference on Parallel Processing (ICPP 2010), San
Diego, September 13-16, 2010, talk on “Speculative Execution on
GPU: An Exploratory Study” and talk on “A Theoretical Framework for Value Prediction in Parallel Systems”.

	Grigori Fursin

	

	[bookmark: uid178] Participation to MICRO'09 (42nd IEEE/ACM International Symposium on Microarchitecture),
New York, USA, December 2009

	[bookmark: uid179] invited talk, "Collective Tuning Initiative", presented at the University of Versailles, France, May 2009;
presented at the HiPEAC industrial workshop and HiPEAC clusters, Infineon, Munich, Germany, June 2009;

	[bookmark: uid180] paper presentation "Collective Tuning" at the GCC Summit'09, Montreal, Canada, June 2009;

	[bookmark: uid181] invited talk, "Collective Tuning Initiative: collective optimization, run-time adaptation and machine learning",
presented at University of Illinois at Urbana Champaign, USA, April 2009

	[bookmark: uid182] paper presentation "Collective Optimization" at HiPEAC'09, Cyprus, January 2009

	[bookmark: uid183] paper presentation "Finding representative sets of optimizations for adaptive multiversioning applications" at SMART'09, Cyprus, January 2009

	[bookmark: uid184] invited talk (by EU FP7 commision), "MILEPOST project - using machine learning to automate and speed up program optimization for reconfigurable processors",
presented at the Information and Brokerage Conference on Information and Communication Technologies in the EU's 7th Framework, Moscow, Russia, October 2008

	[bookmark: uid185] invited talk, "Enabling Dynamic Optimization and Adaptation for Statically Compiled Programs Using Function Multi-Versioning", presented at ScalPerf'08 (Scalable Approaches to High Performance and High Productivity Computing), Bertinoro, Italy, September 2008

	[bookmark: uid186] invited talk, "Continuous adaptive program optimizations", presented at Reservoir Labs and IBM TJ Watson Research Center, New York, USA, August 2008;

presented at Imperial College (Software Performance Engineering Laboratory), London, UK, February 2008;

presented at the Institute of Computing Technology (Chinese Academy of Sciences), Beijing, China, January 2008;

	[bookmark: uid187] invited talk, "Program iterative continuous optimizations, run-time adaptation and machine learning", presented at IBM Toronto Lab (compiler group), Canada, July 2007;

	[bookmark: uid188] invited talk, "Machine learning techniques for iterative program optimizations and run-time adaptation", presented for the TAO group (machine learning group), LRI, Paris-Sud XI University, INRIA and CNRS,
France, June 2007;

	[bookmark: uid189] invited talk, "Overview of current activities: Interactive Compilation Interface for fine-grain program optimizations, dataset sensitivity, machine learning to speed up optimizations and DSE, run-time program adaptation, optimizations for heterogeneous computing systems, continuous collective
optimizations, HiPEAC activities", presented at Intel (compiler group), Moscow, Russia, February 2007 and at the ISP RAS (Institute for System Programming, Russian Academy of Sciences), Moscow,
Russia, February 2007

	[bookmark: uid190] "Continuous run-time adaptation and optimization of statically compiled programs", presented at the UPC, Barcelona, Spain, January 2007.

	Albert Cohen

	

	[bookmark: uid192] Seminar at the U. of Delaware, February 2009, Newark DE:
“state of the art in polyhedral compilation for production
compilers”.

	[bookmark: uid193] Visit of Reservoir Labs, February 2009, New York.

	[bookmark: uid194] Visit of the group of Markus Püschel and Franz Franchetti,
Carnegie Mellon University, February 2009, Pittsburgh,
Pennsylvania.

	[bookmark: uid195] Visit of the group of Kathryn O'Brien, of Kenneth Zadeck and
David Edelsohn at IBM Research Watson, June 2009, Yorkton Heights,
New York.

	[bookmark: uid196] Invited presentation and contribution to a planning meeting
for a future European call for research proposals on system- and
process-level virtualization, September 2009, Bruxelles.

	[bookmark: uid197] Presentation at the second STMicroelectronics-INRIA
Plateform2012 meeting, October 2009, Grenoble.

	[bookmark: uid198] Invited panelist at the LCPC'09 Panel on the future of
compilation research and technology, October 2009, Newark, Delaware.

	[bookmark: uid199] Co-organizer (with Joseph Sifakis, Ahmed Jerraya and BenoÃ®t
Dupont de Dinechin) of the ESWeek'09 Industrial Panel on compilers
for embedded multicore architectures, October 2009, Grenoble.

	[bookmark: uid200] Presentation at Dagstuhl Seminar 09481 (SYNCHRON'09), December
2009: “A data-flow synchronous perspective to performance
portability”.

	[bookmark: uid201] Seminar at U. Saarbrücken, December 2009: “Languages
and compilers for Volkscomputing”.

	[bookmark: uid202] Seminar at U. Passau, December 2009: “Language and compilers
for Volkscomputing”.

	[bookmark: uid203] Presentation at the second Bull-INRIA-CEA partnership
meeting, December 2009, Rocquencourt.

	Philippe Dumont

	
	[bookmark: uid205] Workshop on PetaScale Computing,
First workshop of INRIA-Illinois Petascale Computing Joint Lab,
June 10 to June 12, 2009,
Paris, France

	[bookmark: uid206] Acaces Summer School, July 12 to July 18, 2009, Terrassa, Spain

	[bookmark: uid207] “ERBIUM: A Deterministic, Low-Level Concurrent Representation
for Portability and Scalable Performance”, Synchronics day,
December 17 2009, Paris, France

	Sean Halle

	

	[bookmark: uid209] Poster at ACACES 2009 International Conference “Bidirectional
Libraries for Portable High Performance Parallelism

 Bibliography
[bookmark: Major]Major publications by the team in recent years
	[1][bookmark: alchemy-2010-bid123]
	F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. O'Boyle, J. Thomson, M. Toussaint, C. Williams.
Using Machine Learning to Focus Iterative Optimization, in: Proceedings of the 4th Annual International Symposium on Code Generation and Optimization (CGO), 2006.

 	[2][bookmark: alchemy-2010-bid125]
	H. Berry, D. Gracia Pérez, O. Temam.
Chaos in computer performance, in: Chaos, 2006, vol. 16, 013110 p.
http://hal.inria.fr/inria-00000109/en/

 	[3][bookmark: alchemy-2010-bid130]
	A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, M. Pouzet.
N-Sychronous Kahn Networks, in: 33th ACM Symp. on Principles of Programming Languages (PoPL'06), Charleston, South Carolina, January 2006, p. 180–193.
http://www-rocq.inria.fr/~acohen/publications/CDEPPP06.ps.gz

 	[4][bookmark: alchemy-2010-bid19]
	A. Cohen, S. Girbal, O. Temam.
A Polyhedral Approach to Ease the Composition of Program Transformations, in: Euro-Par'04, Pisa, Italy, LNCS, Springer-Verlag, August 2004, no 3149, p. 292–303.
http://www-rocq.inria.fr/~acohen/publications/CGT04.ps.gz

 	[5][bookmark: alchemy-2010-bid127]
	D. Gracia Pérez, G. Mouchard, O. Temam.
MicroLib: A Case for the Quantitative Comparison of Micro-Architecture Mechanisms, in: MICRO-37: Proceedings of the 37th International Symposium on Microarchitecture, IEEE Computer Society, Dec 2004, p. 43–54. [
DOI : 10.1109/MICRO.2004.25]

 	[6][bookmark: alchemy-2010-bid94]
	G. Grosdidier, C. Eisenbeis, F. Bodin, A. Seznec, R. Bilhaut, G. Le Meur, P. Roudeau, F. Touze, J.-C. Anglès d'Auriac, J. Carbonell, D. Becirevic, P. Boucaud, O. Brand-Foissac, O. Pene, D. Barthou, P. Guichon, P. Honore, P. Gallard, L. Rilling.
The PetaQCD project, in: 17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09), Prague Tchèque, République, 03 2009, The proceedings of the International Conference on Computing in High Energy and Nuclear Physics (CHEP 2009) will be published in the open access Journal of Physics: Conference Series (JPCS), published by IOP Publishing. All papers will be free to read and download immediately upon publication. LAL 09-58.
http://hal.in2p3.fr/in2p3-00380246/en/

 	[7][bookmark: alchemy-2010-bid126]
	F. Gruau, Y. Lhuillier, P. Reitz, O. Temam.
Blob Computing, in: Computing Frontiers 2004 ACM SIGMicro., 2004.
http://blob.lri.fr/publication/2004-model-blob-machine.pdf

 	[8][bookmark: alchemy-2010-bid124]
	P. Palatin, Y. Lhuillier, O. Temam.
Capsule : Hardware-Assisted Parallel Execution of Component-Based Programs, in: The 39th Annual IEEE/ACM International Symposium on Microarchitecture, 2006, Orlando, Florida, december 2006.

 	[9][bookmark: alchemy-2010-bid131]
	D. Parello, O. Temam, J.-M. Verdun.
On increasing architecture awareness in program optimizations to bridge the gap between peak and sustained processor performance : Matrix-Multiply revisited, in: Supercomputing, IEEE, Nov 2002.

 	[10][bookmark: alchemy-2010-bid128]
	S. Pop, A. Cohen, G.-A. Silber.
Induction Variable Analysis with Delayed Abstractions, in: Intl. Conf. on High Performance Embedded Architectures and Compilers (HiPEAC'05), Barcelona, Spain, LNCS, Springer-Verlag, November 2005, no 3793, p. 218–232.
http://www-rocq.inria.fr/~acohen/publications/PCS05.ps.gz

 	[11][bookmark: alchemy-2010-bid129]
	N. Vasilache, C. Bastoul, S. Girbal, A. Cohen.
Violated dependence analysis, in: Proceedings of the ACM International Conference on Supercomputing (ICS'06), Cairns, Australia, ACM, June 2006.

[bookmark: year]Publications of the year
Doctoral Dissertations and Habilitation Theses
	[12][bookmark: alchemy-2010-bid104]
	L. Maignan.
Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics, Université Paris-Sud 11, France, 8 décembre 2010.

Articles in International Peer-Reviewed Journal
	[13][bookmark: alchemy-2010-bid122]
	J.-C. Anglès d'Auriac, D. Barthou, D. Becirevic, R. Bilhaut, F. Bodin, P. Boucaud, O. Brand-Foissac, J. Carbonell, C. Eisenbeis, P. Gallard, G. Grosdidier, P. Guichon, P.-F. Honoré, G. L. Meur, O. Pène, L. Rilling, P. Roudeau, A. Seznec, A. Stocchi, F. Touze.
Towards the Petaflop for Lattice QCD simulations the PetaQCD project, in: Journal of Physics: Conference Series, 2010, vol. 219, no 5, 052021 p, This work was presented at the 17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09).
http://stacks.iop.org/1742-6596/219/i=5/a=052021

 	[14][bookmark: alchemy-2010-bid121]
	S. Liu, C. Eisenbeis, J.-L. Gaudiot.
Value Prediction and Speculative Execution on GPU, in: International Journal of Parallel Programming, 2010, p. 1-20, 10.1007/s10766-010-0155-0.
http://dx.doi.org/10.1007/s10766-010-0155-0

 	[15][bookmark: alchemy-2010-bid109]
	H. Munk, E. Ayguadé, C. Bastoul, P. Carpenter, Z. Chamski, A. Cohen, M. Cornero, P. Dumont, M. Duranton, M. Fellahi, R. Ferrer, R. Ladelsky, M. Lindwer, X. Martorell, C. Miranda, D. Nuzman, A. Ornstein, A. Pop, S. Pop, L.-N. Pouchet, A. Ramírez, D. Ródenas, E. Rohou, I. Rosen, U. Shvadron, K. Trifunovic, A. Zaks.
ACOTES Project: Advanced Compiler Technologies for Embedded Streaming, in: International Journal of Parallel Programming, Apr 2010, p. 1-54. [
DOI : 10.1007/s10766-010-0132-7]
http://hal.archives-ouvertes.fr/inria-00551083/en/

International Peer-Reviewed Conference/Proceedings
	[16][bookmark: alchemy-2010-bid112]
	A. Cohen, E. Rohou.
Processor Virtualization and Split Compilation for Heterogeneous Multicore Embedded Systems, in: 47th Annual Design Automation Conference, États-Unis Anaheim, CA, 2010.
http://hal.inria.fr/inria-00472274/en

 	[17][bookmark: alchemy-2010-bid110]
	N. Fatès, H. Berry.
Robustness of the critical behaviour in a discrete stochastic reaction-diffusion medium, in: IWNC'09, Japon Himeji, Y. Suzuki, M. Hagiya, H. Umeo, A. Adamatzky (editors), Proceedings in Information and Communications Technology, Springer, 2010.
http://hal.inria.fr/inria-00396473/en

 	[18][bookmark: alchemy-2010-bid111]
	Y. Huang, L. Peng, C. Wu, Y. Kashnikov, J. Rennecke, G. Fursin.
Transforming GCC into a research-friendly environment: plugins for optimization tuning and reordering, function cloning and program instrumentation, in: 2nd International Workshop on GCC Research Opportunities (GROW'10), Italie Pisa, Jan 2010.
http://hal.inria.fr/inria-00451106/en

 	[19][bookmark: alchemy-2010-bid119]
	S. Liu, C. Eisenbeis, J.-L. Gaudiot.
A Theoretical Framework for Value Prediction in Parallel Systems, in: Parallel Processing, International Conference on, Los Alamitos, CA, USA, IEEE Computer Society, 2010, vol. 0, p. 11-20. [
DOI : 10.1109/ICPP.2010.10]

 	[20][bookmark: alchemy-2010-bid120]
	S. Liu, C. Eisenbeis, J.-L. Gaudiot.
Speculative Execution on GPU: An Exploratory Study, in: Parallel Processing, International Conference on, Los Alamitos, CA, USA, IEEE Computer Society, 2010, vol. 0, p. 453-461. [
DOI : 10.1109/ICPP.2010.53]

Workshops without Proceedings
	[21][bookmark: alchemy-2010-bid113]
	R. Baghdadi, A. Cohen, C. Bastoul, L.-N. Pouchet, L. Rauchwerger.
The Potential of Synergistic Static, Dynamic and Speculative Loop Nest Optimizations for Automatic Parallelization, in: Pespma 2010 - Workshop on Parallel Execution of Sequential Programs on Multi-core Architecture, France Saint Malo, W. Liu, S. Mahlke, Tin-Fook. Ngai (editors), 2010.
http://hal.inria.fr/inria-00494305/en

Internal Reports
	[22][bookmark: alchemy-2010-bid103]
	M. Bahi, C. Eisenbeis.
Rematerialization-based register allocation through reverse computing, 2011, Soumis.

 	[23][bookmark: alchemy-2010-bid117]
	S. Briais, S.-A.-A. Touati, K. Deschinkel.
Ensuring Lexicographic-Positive Data Dependence Graphs in the SIRA Framework, Mar 2010.
http://hal.inria.fr/inria-00452695/en

 	[24][bookmark: alchemy-2010-bid118]
	A. Mazouz, S.-A.-A. Touati, D. Barthou.
Measuring and Analysing the Variations of Program Execution Times on Multicore Platforms: Case Study, Sep 2010.
http://hal.inria.fr/inria-00514548/en

 	[25][bookmark: alchemy-2010-bid116]
	S.-A.-A. Touati, J. Worms, S. Briais.
The Speedup Test, 2010.
http://hal.inria.fr/inria-00443839/en

Other Publications
	[26][bookmark: alchemy-2010-bid114]
	A. Cohen.
Automatic Parallelization in GCC: for Research and for Real (Keynote Talk), Jun 2010, Type : Short paper.
http://hal.inria.fr/inria-00494301/en

 	[27][bookmark: alchemy-2010-bid115]
	O. Temam.
The Rebirth of Neural Networks, Jun 2010, Type : Presentation.
http://hal.inria.fr/inria-00535554/en

[bookmark: References]References in notes
	[28][bookmark: alchemy-2010-bid85]
	FLEXUS.
http://www.ece.cmu.edu/~simflex/flexus.html

 	[29][bookmark: alchemy-2010-bid5]
	GCC ICI: Interactive Compilation Interface.
http://gcc-ici.sourceforge.net

 	[30][bookmark: alchemy-2010-bid79]
	SystemC v2.0.1 Language Reference Manual, 2003.
http://www.systemc.org/

 	[31][bookmark: alchemy-2010-bid77]
	UNISIM: UNIted SIMulation environment.
http://unisim.org

 	[32][bookmark: alchemy-2010-bid2]
	F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O'Boyle, J. Thomson, M. Toussaint, C. Williams.
Using Machine Learning to Focus Iterative Optimization, in: Proceedings of the 4th Annual International Symposium on Code Generation and Optimization (CGO), 2006.

 	[33][bookmark: alchemy-2010-bid13]
	F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O'Boyle, J. Thomson, M. Toussaint, C. Williams.
Using Machine Learning to Focus Iterative Optimization, in: CGO-4: The Fourth Annual International Symposium on Code Generation and Optimization, 2006.

 	[34][bookmark: alchemy-2010-bid52]
	R. Allen, D. Callahan, K. Kennedy.
Automatic decomposition of scientific programs for parallel execution, in: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, ACM Press, 1987, p. 63–76.
http://doi.acm.org/10.1145/41625.41631

 	[35][bookmark: alchemy-2010-bid98]
	D. Auras, S. Girbal, H. Berry, O. Temam, S. Yehia.
CMA: Chip Multi-Accelerator, in: IEEE, International Symposium on Application Specific Processors (SASP), Anaheim, California, US, June 2010.

 	[36][bookmark: alchemy-2010-bid102]
	M. Bahi, C. Eisenbeis.
Spatial complexity of reversibly computable DAG, in: CASES, International Conference on Compilers, Architecture, and Synthesis for embedded systems, 2009, p. 47-56.

 	[37][bookmark: alchemy-2010-bid101]
	M. Bahi, C. Eisenbeis, B. Dauvergne, A. Cohen.
Spatial complexity of reversible computing, in: Third International Summer School on Advanced Computer Architecture and Compilation for Embedded Systems (ACACES'08), L'Aquila, Italy, July 2008.

 	[38][bookmark: alchemy-2010-bid74]
	J.-P. Banâtre, D. L. Métayer.
Gamma and the Chemical Reaction Model : Ten Years After, in: Coordination Programming: Mechanisms, Models and Semantics, J.-M. Andreoli, H. Gallaire, D. L. Métayer (editors), 1996, p. 1–39.

 	[39][bookmark: alchemy-2010-bid89]
	C. Bastoul.
Code Generation in the Polyhedral Model Is Easier Than You Think, in: PACT'13 IEEE International Conference on Parallel Architecture and Compilation Techniques, Juan-les-Pins, september 2004, p. 7–16.
http://hal.ccsd.cnrs.fr/ccsd-00017260

 	[40][bookmark: alchemy-2010-bid88]
	C. Bastoul, A. Cohen, S. Girbal, S. Sharma, O. Temam.
Putting Polyhedral Loop Transformations to Work, in: Workshop on Languages and Compilers for Parallel Computing (LCPC'03), College Station, Texas, LNCS, Springer-Verlag, October 2003, p. 23–30.

 	[41][bookmark: alchemy-2010-bid105]
	C. Bastoul, N. Vasilache, A. Leung, B. Meister, D. Wohlford, R. Lethin.
Extended Static Control Programs as a Programming Model for Accelerators, A Case Study: Targetting ClearSpeed CSX700 With the R-Stream Compiler, in: PMEA'09 Workshop on Programming Models for Emerging Architectures, Raleigh, North Carolina, September 2009, p. 45-52.

 	[42][bookmark: alchemy-2010-bid69]
	H. Berry, D. Gracia Pérez, O. Temam.
Chaos in computer performance, in: Chaos, 2006, vol. 16, 013110 p.
http://hal.inria.fr/inria-00000109/en/

 	[43][bookmark: alchemy-2010-bid70]
	H. Berry, D. Gracia Pérez, O. Temam.
Complex dynamics of microprocessor performances during program execution: Regularity, chaos, and others, in: NKS2006 Wolfram Science Conference, Washington D.C., USA, June 2006.

 	[44][bookmark: alchemy-2010-bid67]
	H. Berry, M. Quoy.
Structure and dynamics of random recurrent neural networks, in: Adaptive Behavior, 2006, vol. 14, p. 129-137.

 	[45][bookmark: alchemy-2010-bid68]
	H. Berry, O. Temam.
Modeling Self-Developping Biological Neural Network, in: Neurocomputing, 2007, vol. 70, no 16-18, p. 2723–2734.

 	[46][bookmark: alchemy-2010-bid15]
	P. Berube, J. Amaral.
Aestimo: a feedback-directed optimization evaluation tool, in: Proceedings of the International Symposium on Performance Analysis of Systems and Software (ISPASS), 2006.

 	[47][bookmark: alchemy-2010-bid80]
	N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, S. K. Reinhardt.
The M5 Simulator: Modeling Networked Systems, in: IEEE Micro, 2006, vol. 26, no 4, p. 52–60.
http://dx.doi.org/10.1109/MM.2006.82

 	[48][bookmark: alchemy-2010-bid57]
	R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, Y. Zhou.
Cilk: An Efficient Multithreaded Runtime System, in: Proceedings of the 5th Symposium on Principles and Practice of Parallel Programming, 1995.
http://supertech.csail.mit.edu/papers/PPoPP95.pdf

 	[49][bookmark: alchemy-2010-bid82]
	D. Burger, T. M. Austin.
The SimpleScalar tool set, version 2.0, in: SIGARCH Comput. Archit. News, 1997, vol. 25, no 3, p. 13–25.
http://doi.acm.org/10.1145/268806.268810

 	[50][bookmark: alchemy-2010-bid3]
	J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M. F. P. O'Boyle, G. Fursin, O. Temam.
Automatic Performance Model Construction for the Fast Software Exploration of New Hardware Designs, in: International Conference on Compilers, Architecture, And Synthesis For Embedded Systems (CASES 2006), October 2006, To appear.

 	[51][bookmark: alchemy-2010-bid41]
	Z. Chamski, M. Duranton, A. Cohen, C. Eisenbeis, P. Feautrier, D. Genius.
Application Domain-Driven System Design for Pervasive Video Processing, in: Ambient Intelligence: Impact on Embedded-System Design, Kluwer Academic Press, 2003.

 	[52][bookmark: alchemy-2010-bid91]
	Y. Chen, Y. Huang, L. Eeckhout, L. Peng, G. Fursin, O. Temam, C. Wu.
Evaluating Iterative Optimization across 1000 Data Sets, in: International Conference on Programming Language Design and Implementation (PLDI), Toronto, Canada, June 2010.

 	[53][bookmark: alchemy-2010-bid60]
	J. Chen, P. Juang, K. Ko, G. Contreras, D. Penry, R. Rangan, A. Stoler, L.-S. Peh, M. Martonosi.
Hardware-modulated parallelism in chip multiprocessors, in: SIGARCH Comput. Archit. News, Special Issue: Proc. of the dasCMP'05 Workshop, 2005, vol. 33, no 4, p. 54–63.
http://doi.acm.org/10.1145/1105734.1105742

 	[54][bookmark: alchemy-2010-bid43]
	A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, M. Pouzet.
Synchronization of Periodic Clocks, in: ACM Conf. on Embedded Software (EMSOFT'05), Jersey City, New York, September 2005.
http://www-rocq.inria.fr/~acohen/publications/CDEPPP05.ps.gz

 	[55][bookmark: alchemy-2010-bid44]
	A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, M. Pouzet.
N-Sychronous Kahn Networks, in: 33th ACM Symp. on Principles of Programming Languages (PoPL'06), Charleston, South Carolina, January 2006, p. 180–193.
http://www-rocq.inria.fr/~acohen/publications/CDEPPP06.ps.gz

 	[56][bookmark: alchemy-2010-bid42]
	A. Cohen, D. Genius, A. Kortebi, Z. Chamski, M. Duranton, P. Feautrier.
Multi-Periodic Process Networks: Prototyping and Verifying Stream-Processing Systems, in: Euro-Par'02, Paderborn, Germany, LNCS, Springer-Verlag, August 2002, vol. 2400.
http://www-rocq.inria.fr/~acohen/publications/CGKCDF02.ps.gz

 	[57][bookmark: alchemy-2010-bid29]
	A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, N. Vasilache.
Facilitating the Search for Compositions of Program Transformations, in: ACM Intl. Conf. on Supercomputing (ICS'05), Boston, Massachusetts, June 2005, p. 151–160.
http://www-rocq.inria.fr/~acohen/publications/CGPSTV05.ps.gz

 	[58][bookmark: alchemy-2010-bid90]
	A. Cohen, S. Girbal, O. Temam.
A Polyhedral Approach to Ease the Composition of Program Transformations, in: Euro-Par'04, Pisa, Italy, LNCS, Springer-Verlag, August 2004, no 3149, p. 292–303.
http://www-rocq.inria.fr/~acohen/publications/CGT04.ps.gz

 	[59][bookmark: alchemy-2010-bid9]
	K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subramanian, L. Torczon, T. Waterman.
ACME: adaptive compilation made efficient, in: Proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), 2005, p. 69–77.

 	[60][bookmark: alchemy-2010-bid1]
	K. D. Cooper, D. Subramanian, L. Torczon.
Adaptive Optimizing Compilers for the 21st Century, in: J. Supercomput., 2002, vol. 23, no 1, p. 7–22.
http://dx.doi.org/10.1023/A:1015729001611

 	[61][bookmark: alchemy-2010-bid54]
	L. Dagum, R. Menon.
OpenMP: An Industry- Standard API for Shared- Memory Programming, in: IEEE COMPUTATIONAL SCIENCE & ENGINEERING, 1998, p. 46-55.

 	[62][bookmark: alchemy-2010-bid92]
	V. Desmet, S. Girbal, O. Temam.
A Methodology for Facilitating a Fair Comparison of Research Ideas, in: IEEE, International Symposium on Performance Analysis of Systems and Software (ISPASS), White Plains, NY, IEEE Computer Society Press, March 2010.

 	[63][bookmark: alchemy-2010-bid21]
	M. Dupré, N. Drach, O. Temam.
Quickly building an optimizer for complex embedded architectures, in: International Symposium on Code Generation and Optimization, ACM/IEEE, Mar 2004.

 	[64][bookmark: alchemy-2010-bid83]
	J. S. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne, S. S. Mukherjee, H. Patil, S. Wallace, N. L. Binkert, R. Espasa, T. Juan.
Asim: A Performance Model Framework., in: IEEE Computer, 2002, vol. 35, no 2, p. 68-76.

 	[65][bookmark: alchemy-2010-bid56]
	K. Fatahlian, T. J. Knight, M. Houston, M. Erez, D. R. Horn, L. Leem, J. Y. Park, M. Ren, A. Aiken, W. J. Dally, P. Hanrahan.
Sequoia: Programming the Memory Hierarchy, in: Supercomputing 2006, Tampa, Florida, November 2006.

 	[66][bookmark: alchemy-2010-bid99]
	N. Fates, H. Berry.
Critical phenomena in a discrete stochastic reaction-diffusion medium, in: Fourth International Workshop on Natural Computing, IWNC 2009, September 2009.

 	[67][bookmark: alchemy-2010-bid23]
	P. Feautrier.
Dataflow Analysis of Array and scalar references, in: Int. J. of Parallel Programming, 1991, vol. 20, no 1, p. 23-53.

 	[68][bookmark: alchemy-2010-bid24]
	P. Feautrier.
Some efficient solutions to the affine scheduling problem I. One-dimensional time, in: Int. J. of Parallel Programming, 1992, vol. 21, no 5, p. 313-347.

 	[69][bookmark: alchemy-2010-bid25]
	P. Feautrier.
Some efficient solutions to the affine scheduling problem II. Multi-dimensional time, in: Int. J. of Parallel Programming, 1992, vol. 21, no 6, p. 389-420.

 	[70][bookmark: alchemy-2010-bid11]
	B. Franke, M. F. P. O'Boyle, J. Thomson, G. Fursin.
Probabilistic Source-Level Optimisation of Embedded Programs, in: Proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), 2005.

 	[71][bookmark: alchemy-2010-bid4]
	G. Fursin, A. Cohen.
Building a Practical Iterative Interactive Compiler, in: 1st Workshop on Statistical and Machine Learning Approaches Applied to Architectures and Compilation (SMART'07), colocated with HiPEAC 2007 conference, Ghent, Belgium, January 2007.

 	[72][bookmark: alchemy-2010-bid8]
	G. Fursin, A. Cohen, M. O'Boyle, O. Temam.
A Practical Method For Quickly Evaluating Program Optimizations, in: Intl. Conf. on High Performance Embedded Architectures and Compilers (HiPEAC'05), Barcelona, Spain, LNCS, Springer-Verlag, November 2005, no 3793, p. 29–46.
http://hal.inria.fr/inria-00001054/en/

 	[73][bookmark: alchemy-2010-bid107]
	G. Fursin, A. Cohen, M. O'Boyle, O. Temam.
Quick and practical run-time evaluation of multiple program optimizations, in: Trans. on High Performance Embedded Architectures and Compilers, 2006, vol. 1, no 1, p. 13-31.

 	[74][bookmark: alchemy-2010-bid10]
	G. Fursin, M. F. P. O'Boyle, P. Knijnenburg.
Evaluating Iterative Compilation, in: Proc. Languages and Compilers for Parallel Computers (LCPC), 2002, p. 305-315.

 	[75][bookmark: alchemy-2010-bid108]
	S. Genet, B. Delord, L. Sabarly, E. Guigon, H. Berry.
On the propagation of Ca-dependent plateau and valley potentials in cerebellar Purkinje cells and how they drive the cell output, in: Proceedings of NeuroComp'06, Pont-à-Mousson, France, 23-24 October 2006, p. 167–170.

 	[76][bookmark: alchemy-2010-bid73]
	J.-L. Giavitto, O. Michel.
MGS: a Rule-Based Programming Language for Complex Objects and Collections, in: Electronic Notes in Theoretical Computer Science, 2001, vol. 59, no 4.

 	[77][bookmark: alchemy-2010-bid97]
	S. Girbal, O. Temam, S. Yehia, H. Berry, Z. Li.
A Memory Interface for Multi-Purpose Multi-Stream Accelerators, in: IEEE, International Conference on Compilers, Architecture, And Synthesis For Embedded Systems (CASES), Scottsdale, Arizona, October 2010.

 	[78][bookmark: alchemy-2010-bid20]
	S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, O. Temam.
Semi-Automatic Composition of Loop Transformations for Deep Parallelism and Memory Hierarchies, in: Intl. J. of Parallel Programming, 2006, Accepted with minor revisions.

 	[79][bookmark: alchemy-2010-bid61]
	S. C. Goldstein, M. Budiu.
NanoFabrics: spatial computing using molecular electronics, in: Proceedings of the 28th annual international symposium on Computer architecture, Göteborg, Sweden, ACM Press, 2001, p. 178–191.

 	[80][bookmark: alchemy-2010-bid71]
	D. Gracia Pérez, H. Berry, O. Temam.
IDDCA: A New Clustering Approach For Sampling, in: MoBS: Workshop on Modeling, Benchmarking, and Simulation MoBS: Workshop on Modeling, Benchmarking, and Simulation, Madison, Wisconsin, 2005.
http://hal.inria.fr/inria-00001062/en/

 	[81][bookmark: alchemy-2010-bid72]
	D. Gracia Pérez, H. Berry, O. Temam.
Budgeted Region Sampling (BeeRS): Do Not Separate Sampling From Warm-Up, And Then Spend Wisely Your Simulation Budget, in: 5th IEEE International Symposium on Signal Processing and Information Technology 5th IEEE International Symposium on Signal Processing and Information Technology, Athens, Greece, 2006.
http://hal.inria.fr/inria-00001061/en/

 	[82][bookmark: alchemy-2010-bid78]
	D. Gracia Pérez, G. Mouchard, O. Temam.
MicroLib: A Case for the Quantitative Comparison of Micro-Architecture Mechanisms, in: MICRO-37: Proceedings of the 37th International Symposium on Microarchitecture, IEEE Computer Society, Dec 2004, p. 43–54.
http://dx.doi.org/10.1109/MICRO.2004.25

 	[83][bookmark: alchemy-2010-bid62]
	F. Gruau, Y. Lhuillier, P. Reitz, O. Temam.
Blob Computing, in: Computing Frontiers 2004 ACM SIGMicro., 2004.
http://blob.lri.fr/publication/2004-model-blob-machine.pdf

 	[84][bookmark: alchemy-2010-bid16]
	M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, R. B. Brown.
MiBench: A free, commercially representative embedded benchmark suite., in: IEEE 4th Annual Workshop on Workload Characterization, Austin, TX, December 2001.

 	[85][bookmark: alchemy-2010-bid45]
	Mary H. Hall, Saman P. Amarasinghe, Brian R. Murphy, S.-W. Liao, Monica S. Lam.
Detecting coarse-grain parallelism using an interprocedural parallelizing compiler, in: Supercomputing '95: Proceedings of the 1995 ACM/IEEE conference on Supercomputing (CDROM), New York, NY, USA, ACM Press, 1995, 49 p.
http://doi.acm.org/10.1145/224170.224337

 	[86][bookmark: alchemy-2010-bid47]
	L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, K. Olukotun.
Transactional Memory Coherence and Consistency, in: Proceedings of the 31st Annual International Symposium on Computer Architecture, IEEE Computer Society, June 2004, 102 p.
http://tcc.stanford.edu/publications/tcc_isca2004.pdf

 	[87][bookmark: alchemy-2010-bid14]
	M. Haneda, P. Knijnenburg, H. Wijshoff.
On the Impact of Data Input Sets on Statistical Compiler Tuning, in: Workshop on Performance Optimization for High-Level Languages and Libraries (POHLL), 2006.

 	[88][bookmark: alchemy-2010-bid100]
	A. Hashmi, H. Berry, O. Temam, M. Lipasti.
Leveraging progress in neurobiology for computing systems, in: 1st Workshop on New Directions in Computer Architecture (NDCA-1), December 2009.

 	[89][bookmark: alchemy-2010-bid36]
	S. Hu, M. Valluri, L. K. John.
Effective Adaptive Computing Environment Management via Dynamic Optimization, in: IEEE / ACM International Symposium on Code Generation and Optimization (CGO 2005), 2005.

 	[90][bookmark: alchemy-2010-bid46]
	J. Huselius.
Debugging Parallel Systems: A State of the Art Report, Mälardalen University, Department of Computer Science and Engineering, September 2002, no 63.
http://www.mrtc.mdh.se/index.php?choice=publications&id=0434

 	[91][bookmark: alchemy-2010-bid93]
	K. Ibrahim, J. Jaeger, Z. Liu, L.-N. Pouchet, P. Lesnicki, L. Djoudi, D. Barthou, F. Bodin, C. Eisenbeis, G. Grosdidier, O. Pène, P. Roudeau.
Simulation of the Lattice QCD and Technological Trends in Computation, Aug 2008, no arXiv:0808.0391, submitted to the to the 14th International Workshop on Compilers for Parallel Computers.

 	[92][bookmark: alchemy-2010-bid58]
	L. V. Kale, S. Krishnan.
CHARM++ : A Portable Concurrent Object-Oriented System Based on C++, in: Proceedings of the Conference on Object Oriented Programming Systems, Languages and Applications (OOPSLA), A. Paepcke (editor), ACM Press, September 1993, p. 91-108.
http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=B59CA14AAAA059061638FCDC61AD6E57?doi=10.1.1.55.1941&rep=rep1&type=ps

 	[93][bookmark: alchemy-2010-bid59]
	G. A. Koenig, L. V. Kale.
Using Message-Driven Objects to Mask Latency in Grid Computing Applications, in: 19th IEEE International Parallel and Distributed Processing Symposium, April 2005.

 	[94][bookmark: alchemy-2010-bid12]
	P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, D. Jones.
Fast searches for effective optimization phase sequence, in: Proc. ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2004.

 	[95][bookmark: alchemy-2010-bid75]
	J. W. Lawson, D. H. Wolpert.
Adaptive Programming of Unconventional Nano-Architectures, in: J. Comput. Theor. Nanosci., 1986, vol. 3, p. 272-279.

 	[96][bookmark: alchemy-2010-bid50]
	Y. Lhuillier, O. Temam.
AP+SOMT: AgentProgramming SelfOrganized, in: International Workshop on Complexity-Effective Design, Munich, Germany, ISCA, May 2004.

 	[97][bookmark: alchemy-2010-bid95]
	Z. Li, O. Certner, J. Duato, O. Temam.
Scalable Hardware Support for Conditional Parallelization, in: IEEE/ACM, International Conference on Parallel Architecture and Compilation Techniques (PACT), Vienna, Austria, September 2010.

 	[98][bookmark: alchemy-2010-bid38]
	X. Li, M. Garzaran, D. Padua.
A dynamically tuned sorting library, in: In ACM Conference on Code Generation and Optimization (CGO'04), Palo Alto, California, March 2004.

 	[99][bookmark: alchemy-2010-bid48]
	D. B. Loveman.
High Performance Fortran, in: IEEE Parallel Distrib. Technol., 1993, vol. 1, no 1, p. 25–42.
http://dx.doi.org/10.1109/88.219857

 	[100][bookmark: alchemy-2010-bid81]
	P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, B. Werner.
Simics: A Full System Simulation Platform, in: Computer, 2002, vol. 35, no 2, p. 50-58.
http://doi.ieeecomputersociety.org/10.1109/2.982916

 	[101][bookmark: alchemy-2010-bid86]
	M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, D. A. Wood.
Multifacet's general execution-driven multiprocessor simulator (GEMS) toolset, in: SIGARCH Comput. Archit. News, 2005, vol. 33, no 4, p. 92–99.
http://doi.acm.org/10.1145/1105734.1105747

 	[102][bookmark: alchemy-2010-bid27]
	D. E. Maydan, J. L. Hennessy, M. S. Lam.
Efficient and Exact Data Dependency Analysis, in: Proceedings of the SIGPLAN '91 Conference on Programming Language Design and Implementation, June 1991, p. 1-14.

 	[103][bookmark: alchemy-2010-bid106]
	B. Meister, A. Leung, N. Vasilache, D. Wohlford, C. Bastoul, R. Lethin.
Productivity via Automatic Code Generation for PGAS Platforms with the R-Stream Compiler, in: APGAS'09 Workshop on Asynchrony in the PGAS Programming Model, Yorktown Heights, New York, June 2009.

 	[104][bookmark: alchemy-2010-bid39]
	A. Monsifrot, F. Bodin, R. Quiniou.
A machine learning approach to automatic production of compiler heuristics, in: Proc. AIMSA, LNCS 2443, 2002, p. 41-50.

 	[105][bookmark: alchemy-2010-bid0]
	M. O'Boyle, P. Knijnenburg, G. Fursin.
Feedback Assisted Iterative Compiplation, in: Parallel Architectures and Compilation Techniques (PACT'01), IEEE Computer Society Pres, October 2001.

 	[106][bookmark: alchemy-2010-bid51]
	P. Palatin, Y. Lhuillier, O. Temam.
Capsule : Hardware-Assisted Parallel Execution of Component-Based Programs, in: The 39th Annual IEEE/ACM International Symposium on Microarchitecture, 2006, Orlando, Florida, december 2006.

 	[107][bookmark: alchemy-2010-bid18]
	D. Parello, O. Temam, A. Cohen, J.-M. Verdun.
Towards a Systematic, Pragmatic and Architecture-Aware Program Optimization Process for Complex Processors, in: ACM Supercomputing'04, Pittsburgh, Pennsylvania, November 2004, 15 p.
http://www-rocq.inria.fr/~acohen/publications/PTCV04.ps.gz

 	[108][bookmark: alchemy-2010-bid17]
	D. Parello, O. Temam, J.-M. Verdun.
On increasing architecture awareness in program optimizations to bridge the gap between peak and sustained processor performance: matrix-multiply revisited., in: SC, 2002, p. 1-11.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.3339

 	[109][bookmark: alchemy-2010-bid64]
	T. Poggio, C. R. Shelton.
Machine Learning, Machine Vision, and the Brain, in: The AI Magazine, 1999, vol. 20, no 3, p. 37–55.
http://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1465

 	[110][bookmark: alchemy-2010-bid33]
	S. Pop, A. Cohen, C. Bastoul, S. Girbal, P. Jouvelot, G.-A. Silber, N. Vasilache.
GRAPHITE: Loop optimizations based on the polyhedral model for GCC, in: Proc. of the 4th GCC Developper's Summit, Ottawa, Canada, June 2006.

 	[111][bookmark: alchemy-2010-bid32]
	L.-N. Pouchet, C. Bastoul, J. Cavazos, A. Cohen.
A Note on the Performance Distribution of Affine Schedules, in: 2nd Workshop on Statistical and Machine learning approaches to ARchitectures and compilaTion (SMART'08), Göteborg, Sweden, January 2008.

 	[112][bookmark: alchemy-2010-bid7]
	L.-N. Pouchet, C. Bastoul, A. Cohen, J. Cavazos.
Iterative optimization in the polyhedral model: Part II, multidimensional time, in: ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'08), Tucson, Arizona, June 2008.

 	[113][bookmark: alchemy-2010-bid6]
	L.-N. Pouchet, C. Bastoul, A. Cohen, N. Vasilache.
Iterative optimization in the polyhedral model: Part I, one-dimensional time, in: ACM International Conference on Code Generation and Optimization (CGO'07), San Jose, California, March 2007, p. 144–156.

 	[114][bookmark: alchemy-2010-bid26]
	W. Pugh.
The Omega test: A fast and practical integer programming algorithm for dependence analysis, in: Comm. of the ACM, 1992, vol. 8, p. 102-114.

 	[115][bookmark: alchemy-2010-bid53]
	C. G. Quiñones, C. Madriles, J. Sánchez, P. Marcuello, A. González, D. M. Tullsen.
Mitosis Compiler: An Infrastructure for Speculative Threading Based on Pre-Computation Slices, in: PLDI '05: Proceedings of the ACM SIGPLAN 2004 conference on Programming language design and implementation, ACM Press, 2005.

 	[116][bookmark: alchemy-2010-bid63]
	 SIA.
Semiconductor Industry Association 2005 roadmap, section on Emerging Research Devices, 2005.
http://www.sia-online.org/

 	[117][bookmark: alchemy-2010-bid66]
	B. Siri, H. Berry, B. Cessac, B. Delord, M. Quoy.
Topological and dynamical structures induced by Hebbian learning in random neural networks, in: International Conference on Complex Systems, ICCS 2006, Boston, MA, USA, June 2006.

 	[118][bookmark: alchemy-2010-bid65]
	B. Siri, H. Berry, B. Cessac, B. Delord, M. Quoy, O. Temam.
Learning-induced topological effects on dynamics in neural networks, in: Proceedings of NeuroComp'06, Pont-à-Mousson, France, 23-24 October 2006, p. 206–209.

 	[119][bookmark: alchemy-2010-bid35]
	M. Smith.
Overcoming the challenges to feedback-directed optimization, in: Proc. ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation and Optimization (Dynamo'00), 2000.

 	[120][bookmark: alchemy-2010-bid49]
	C. Szyperski.
Component Software: Beyond Object-Oriented Programming, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

 	[121][bookmark: alchemy-2010-bid76]
	C. Teuscher.
Small-World Power-Law Interconnects for Nanoscale Computing Architectures, in: Proceedings of the 6th IEEE Conference on Nanotechnology, IEEE Nano 2006, July 2006.

 	[122][bookmark: alchemy-2010-bid55]
	W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong, H. Ho, M. Brown, S. Amarasinghe.
StreamIt: A Compiler for Streaming Applications, December 2001, MIT-LCS Technical Memo TM-622, Cambridge, MA.
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-622.pdf

 	[123][bookmark: alchemy-2010-bid40]
	S. Triantafyllis, M. Vachharajani, N. Vachharajani, D. I. August.
Compiler optimization-space exploration, in: Proc. International Symposium on Code Generation and Optimization, 2003, p. 204–215.

 	[124][bookmark: alchemy-2010-bid84]
	M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, D. I. August.
Microarchitectural Exploration with Liberty, in: the 34th Annual International Symposium on Microarchitecture, Austin, Texas, USA., December 2001.

 	[125][bookmark: alchemy-2010-bid30]
	N. Vasilache, C. Bastoul, A. Cohen.
Polyhedral Code Generation in the Real World, in: Proceedings of the International Conference on Compiler Construction (ETAPS CC'06), Vienna, Austria, LNCS, Springer-Verlag, March 2006, p. 185–201.
http://www-rocq.inria.fr/~acohen/publications/VBC06.ps.gz

 	[126][bookmark: alchemy-2010-bid31]
	N. Vasilache, C. Bastoul, S. Girbal, A. Cohen.
Violated dependence analysis, in: Proceedings of the ACM International Conference on Supercomputing (ICS'06), Cairns, Australia, ACM, June 2006.

 	[127][bookmark: alchemy-2010-bid37]
	M. Voss, R. Eigenmann.
ADAPT: Automated de-coupled adaptive program transformation, in: Proc. ICPP, 2000.

 	[128][bookmark: alchemy-2010-bid34]
	R. Vuduc, J. Bilmes, J. Demmel.
Statistical Modeling of Feedback Data in an Automatic Tuning System, in: Proc. 3rd ACM Workshop on Feedback-Directed and Dynamic Optimization, 2000, p. 41-50.

 	[129][bookmark: alchemy-2010-bid87]
	D. Wallin, H. Zeffer, M. Karlsson, E. Hagersten.
Vasa: A Simulator Infrastructure with Adjustable Fidelity, in: Proceedings of the 17th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS 2005), Phoenix, Arizona, USA, November 2005.

 	[130][bookmark: alchemy-2010-bid28]
	M. Wolf, M. Lam.
A loop transformation theory and an algorithm to maximize parallelism, in: IEEE Transactions on Parallel and Distributed Systems, 1991, vol. 2, no 4, p. 430-439.

 	[131][bookmark: alchemy-2010-bid96]
	S. Yehia, S. Girbal, H. Berry, O. Temam.
Reconciling Specialization and Flexibility Through Compound Circuits, in: 15th International Symposium on High-Performance Computer Architecture, HPCA, Raleigh, North Carolina, February 2009.

 	[132][bookmark: alchemy-2010-bid22]
	S. Yehia, O. Temam.
From Sequences of Dependent Instructions to Functions: An Approach for Improving Performance without ILP or Speculation, in: International Symposium on Computer Architecture, May 2004.

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

