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Overall Objectives

The scientific objectives of ASPI are the design, analysis and
implementation of interacting Monte Carlo methods, also known as particle
methods, with focus on


	[bookmark: uid4] statistical inference in hidden Markov models
and particle filtering,



	[bookmark: uid5] risk evaluation and simulation of rare events,



	[bookmark: uid6] global optimization.




The whole problematic is multidisciplinary,
not only because of the many scientific and engineering areas
in which particle methods are used,
but also because of the diversity of the scientific communities
which have already contributed to establish the foundations
of the field

target tracking,
interacting particle systems,
empirical processes,
genetic algorithms (GA),
hidden Markov models and nonlinear filtering,
Bayesian statistics,
Markov chain Monte Carlo (MCMC) methods, etc.

Intuitively speaking, interacting Monte Carlo methods are sequential
simulation methods, in which particles


	[bookmark: uid7] explore the state space by mimicking the evolution
of an underlying random process,



	[bookmark: uid8] learn the environment by evaluating a fitness function,



	[bookmark: uid9] and interact so that only the most successful particles
(in view of the value of the fitness function) are allowed to survive
and to get offsprings at the next generation.




The effect of this mutation / selection mechanism is to automatically
concentrate particles (i.e. the available computing power) in regions of
interest of the state space. In the special case of particle filtering,
which has numerous applications under the generic heading of positioning,
navigation and tracking, in

target tracking,
computer vision,
mobile robotics,
wireless communications,
ubiquitous computing and ambient intelligence,
sensor networks, etc.,

each particle represents a possible hidden state, and is multiplied
or terminated at the next generation on the basis of its consistency with
the current observation, as quantified by the likelihood function.
With these genetic–type algorithms, it becomes easy to efficiently combine
a prior model of displacement with or without constraints, sensor–based
measurements, and a base of reference measurements, for example in the
form of a digital map (digital elevation map, attenuation map, etc.).
In the most general case, particle methods provide approximations of
Feynman–Kac distributions, a pathwise generalization of Gibbs–Boltzmann
distributions, by means of the weighted empirical probability distribution
associated with an interacting particle system,
with applications that go far beyond filtering, in

simulation of rare events,
simulation of conditioned or constrained random variables,
interacting MCMC methods,
molecular simulation, etc.

The main applications currently considered are
geolocalisation and tracking of mobile terminals,
terrain–aided navigation,
data fusion for indoor localisation,
optimization of sensors location and activation,
risk assessment in air traffic management,
protection of digital documents.
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Interacting Monte Carlo methods
and particle approximation of Feynman–Kac distributions

Monte Carlo methods are numerical methods that are widely used
in situations where
(i) a stochastic (usually Markovian) model is given for some underlying
process, and (ii) some quantity of interest should be evaluated, that
can be expressed in terms of the expected value of a functional of the
process trajectory, which includes as an important special case the
probability that a given event has occurred.
Numerous examples can be found, e.g. in financial engineering (pricing of options and derivative
securities)  [47] ,
in performance evaluation of communication networks (probability of buffer
overflow), in statistics of hidden Markov models (state estimation,
evaluation of contrast and score functions), etc.
Very often in practice, no analytical expression is available for
the quantity of interest, but it is possible to simulate trajectories
of the underlying process. The idea behind Monte Carlo methods is
to generate independent trajectories of this process
or of an alternate instrumental process,
and to build an approximation (estimator) of the quantity of interest
in terms of the weighted empirical probability distribution
associated with the resulting independent sample.
By the law of large numbers, the above estimator converges
as the size N of the sample goes to infinity, with rate [image: Im1 ${1/\sqrt N}$]
and the asymptotic variance can be estimated using an appropriate
central limit theorem.
To reduce the variance of the estimator, many variance
reduction techniques have been proposed.
Still, running independent Monte Carlo simulations can lead to
very poor results, because trajectories are generated blindly,
and only afterwards are the corresponding weights evaluated.
Some of the weights can happen to be negligible, in which case the
corresponding trajectories are not going to contribute to the estimator,
i.e. computing power has been wasted.

A recent and major breakthrough,
has been the introduction of interacting Monte Carlo methods,
also known as sequential Monte Carlo (SMC) methods,
in which a whole (possibly weighted) sample,
called system of particles, is propagated in time, where
the particles


	[bookmark: uid12] explore the state space under the effect of
a mutation mechanism which mimics the evolution of the
underlying process,



	[bookmark: uid13] and are replicated or terminated, under
the effect of a selection mechanism which automatically
concentrates the particles, i.e. the available computing power,
into regions of interest of the state space.




In full generality, the underlying process is a discrete–time Markov
chain, whose state space can be

finite,
continuous,
hybrid (continuous / discrete),
graphical,
constrained,
time varying,
pathwise, etc.,

the only condition being that it can easily be simulated.
The very important case of a sampled continuous–time Markov process,
e.g. the solution of a stochastic differential equation driven by
a Wiener process or a more general Lévy process, is also covered.

In the special case of particle filtering,
originally developed within the tracking community,
the algorithms yield a numerical approximation of the optimal Bayesian
filter, i.e. of the conditional probability distribution
of the hidden state given the past observations, as a (possibly
weighted) empirical probability distribution of the system of particles.
In its simplest version, introduced in several different scientific
communities under the name of
bootstrap filter  [49] ,
Monte Carlo filter  [54] 
or condensation (conditional density propagation)
algorithm  [51] ,
and which historically has been the first algorithm to include
a redistribution step,
the selection mechanism is governed by the likelihood function:
at each time step, a particle is more likely to survive
and to replicate at the next generation if it is consistent with
the current observation.
The algorithms also provide as a by–product a numerical approximation
of the likelihood function, and of many other contrast functions for
parameter estimation in hidden Markov models, such as the prediction
error or the conditional least–squares criterion.

Particle methods
are currently being used in many scientific and engineering areas

positioning, navigation, and tracking  [50] , [44] ,
visual tracking  [51] ,
mobile robotics  [45] , [70] ,
ubiquitous computing and ambient intelligence,
sensor networks,
risk evaluation and simulation of rare events  [48] ,
genetics, molecular simulation  [46] , etc.

Other examples of the many applications of particle filtering can be
found in the contributed volume  [29]  and in the special
issue of IEEE Transactions on Signal Processing devoted
to Monte Carlo Methods for Statistical Signal Processing
in February 2002,
where the tutorial paper  [30]  can be found,
and in the textbook  [66]  devoted
to applications in target tracking.
Applications of sequential Monte Carlo methods to other areas,
beyond signal and image processing, e.g. to genetics,
can be found in  [65] .

Particle methods are very easy to implement, since it is sufficient
in principle to simulate independent trajectories of the underlying
process.
The whole problematic is multidisciplinary,
not only because of the already mentioned diversity of the scientific
and engineering areas in which particle methods are used,
but also because of the diversity of the scientific communities
which have contributed to establish the foundations of the field

target tracking,
interacting particle systems,
empirical processes,
genetic algorithms (GA),
hidden Markov models and nonlinear filtering,
Bayesian statistics,
Markov chain Monte Carlo (MCMC) methods.

These algorithms can be interpreted as numerical approximation schemes
for Feynman–Kac distributions, a pathwise generalization of Gibbs–Boltzmann
distributions,
in terms of the weighted empirical probability distribution
associated with a system of particles.
This abstract point of view  [37] , [35] ,
has proved to be extremely fruitful in providing a very general
framework to the design and analysis of numerical approximation schemes,
based on systems of branching and / or interacting particles,
for nonlinear dynamical systems with values in the space of probability
distributions, associated with Feynman–Kac distributions.
Many asymptotic results have been proved as the number N of
particles (sample size) goes to infinity,
using techniques coming from applied probability (interacting particle
systems, empirical processes  [72] ),
see e.g. the survey article  [37] 
or the recent textbook  [35] , and references therein

convergence in Lp,
convergence as empirical processes indexed by classes of functions,
uniform convergence in time, see also  [60] , [61] ,
central limit theorem, see also  [57] ,
propagation of chaos,
large deviations principle,
etc.

The objective here is to
systematically study the impact of the many algorithmic variants
on the convergence results.


[bookmark: uid14] Section: 
      Scientific Foundations
Statistics of HMM

Hidden Markov models (HMM) form a special case of partially
observed stochastic dynamical systems, in which the state of a Markov
process (in discrete or continuous time, with finite or continuous
state space) should be estimated from noisy observations.
The conditional probability distribution of the hidden state given
past observations is a well–known example of a normalized (nonlinear)
Feynman–Kac distribution,
see 
	3.1 .
These models are very flexible, because of the introduction of latent
variables (non observed) which allows to model complex time dependent
structures, to take constraints into account, etc.
In addition, the underlying Markovian structure makes it possible
to use numerical algorithms (particle filtering, Markov chain Monte Carlo
methods (MCMC), etc.) which are computationally intensive
but whose complexity is rather small.
Hidden Markov models are widely used in various applied areas, such as
speech recognition, alignment of biological sequences, tracking in
complex environment, modeling and control of networks, digital
communications, etc.

Beyond the recursive estimation of a hidden state from noisy
observations, the problem arises of statistical inference of HMM
with general state space  [33] ,
including estimation of model parameters,
early monitoring and diagnosis of small changes in model parameters,
etc.

Large time asymptotics   A fruitful approach is the asymptotic study, when the observation
time increases to infinity, of an extended Markov chain, whose
state includes (i) the hidden state, (ii) the observation,
(iii) the prediction filter (i.e. the conditional probability
distribution of the hidden state given observations at all previous
time instants), and possibly (iv) the derivative of the prediction
filter with respect to the parameter.
Indeed, it is easy to express the log–likelihood function,
the conditional least–squares criterion, and many other clasical
contrast processes, as well as their derivatives with respect to
the parameter, as additive functionals of the extended Markov chain.

The following general approach has been proposed


	[bookmark: uid15] first, prove an exponential stability property (i.e. an exponential forgetting property of the initial condition) of the
prediction filter and its derivative, for a misspecified model,



	[bookmark: uid16] from this, deduce a geometric ergodicity property
and the existence of a unique invariant probability distribution
for the extended Markov chain, hence a law of large numbers
and a central limit theorem for a large class of contrast processes
and their derivatives, and a local asymptotic normality property,



	[bookmark: uid17] finally, obtain the consistency (i.e. the convergence
to the set of minima of the associated contrast function), and the
asymptotic normality of a large class of minimum contrast estimators.




This programme has been completed in the case of a finite state
space [5] , and has been generalized  [38] 
under an uniform minoration assumption for the Markov transition kernel,
which typically does only hold when the state space is compact.
Clearly, the whole approach relies on the existence of an exponential
stability property of the prediction filter, and the main challenge
currently is to get rid of this uniform minoration assumption for
the Markov transition kernel  [36] , [61] ,
so as to be able to consider more interesting situations, where
the state space is noncompact.

Small noise asymptotics   Another asymptotic approach can also be used, where it is rather easy
to obtain interesting explicit results, in terms close to the language
of nonlinear deterministic control theory  [56] .
Taking the simple example where the hidden state is the solution to
an ordinary differential equation, or a nonlinear state model, and
where the observations are subject to additive Gaussian white noise,
this approach consists in assuming that covariances matrices
of the state noise and of the observation noise go simultaneously
to zero. If it is reasonable in many applications to consider that
noise covariances are small, this asymptotic approach is less natural
than the large time asymptotics, where it is enough (provided a
suitable ergodicity assumption holds) to accumulate observations
and to see the expected limit laws (law of large numbers, central
limit theorem, etc.). In opposition, the expressions obtained in the
limit (Kullback–Leibler divergence, Fisher information matrix, asymptotic
covariance matrix, etc.) take here a much more explicit form than in the
large time asymptotics.

The following results have been obtained using this approach


	[bookmark: uid18] the consistency of the maximum likelihood estimator (i.e. the convergence to the set M of global minima of the Kullback–Leibler
divergence), has been obtained using large deviations techniques,
with an analytical approach  [52] ,



	[bookmark: uid19] if the abovementioned set M does not reduce to the true
parameter value, i.e. if the model is not identifiable, it is still
possible to describe precisely the asymptotic behavior of the
estimators  [53] : in the simple case where the state
equation is a noise–free ordinary differential equation and using
a Bayesian framework,
it has been shown that (i) if the rank r of the Fisher
information matrix I is constant in a neighborhood of the
set M, then this set is a differentiable submanifold of
codimension r, (ii) the posterior probability distribution of the
parameter converges to a random probability distribution in the limit,
supported by the manifold M, absolutely continuous w.r.t. the Lebesgue measure on M, with an explicit expression for the density,
and (iii) the posterior probability distribution of the suitably
normalized difference between the parameter and its projection on
the manifold M, converges to a mixture of Gaussian probability
distributions on the normal spaces to the manifold M, which
generalized the usual asymptotic normality property,



	[bookmark: uid20] it has been shown  [62] 
that (i) the parameter dependent
probability distributions of the observations are locally asymptotically
normal (LAN)  [59] , from which the asymptotic
normality of the maximum likelihood estimator follows, with an explicit
expression for the asymptotic covariance matrix, i.e. for the Fisher
information matrix I, in terms of the Kalman filter
associated with the linear tangent linear Gaussian model,
and (ii) the score function (i.e. the derivative of the log–likelihood
function w.r.t. the parameter), evaluated at the true value of the
parameter and suitably normalized, converges to a Gaussian r.v. with
zero mean and covariance matrix I.





[bookmark: uid21] Section: 
      Scientific Foundations
Multilevel splitting for rare event simulation
See 
	4.2 ,

	6.1 ,

	6.2 ,

	6.3 ,

	7.1 ,

	7.3 
and 
	7.6 .




The estimation of the small probability of a rare but critical event,
is a crucial issue in industrial areas such as

nuclear power plants,
food industry,
telecommunication networks,
finance and insurance industry,
air traffic management, etc.

In such complex systems, analytical methods cannot be used, and
naive Monte Carlo methods are clearly unefficient to estimate accurately
very small probabilities.
Besides importance sampling, an alternate widespread technique
consists in multilevel splitting  [58] ,
where trajectories going towards the
critical set are given offsprings, thus increasing the number of
trajectories that eventually reach the critical set.
As shown in [3] , the Feynman–Kac formalism
of 
	3.1  is well suited for the design
and analysis of splitting algorithms for rare event simulation.

Propagation of uncertainty   Multilevel splitting can be used in static situations. Here, the
objective is to learn the probability distribution of an output random
variable Y = F(X), where the function F is only defined pointwise
for instance by a computer programme, and where the probability distribution
of the input random variable X is known and easy to simulate from.
More specifically, the objective
could be to compute the probability of the output random variable
exceeding a threshold, or more generally to evaluate the
cumulative distribution function of the output random variable for
different output values.
This problem is characterized by
the lack of an analytical expression for the function, the
computational cost of a single pointwise evaluation of the function,
which means that the number of calls to the function should be limited as
much as possible, and finally the complexity and / or unavailability of the
source code of the computer programme, which makes any modification
very difficult or even impossible, for instance to change the model as in
importance sampling methods.

The key issue is to learn as fast as possible regions of the input space
which contribute most to the computation of the target quantity. The
proposed splitting methods consists in (i) introducing a sequence of
intermediate regions in the input space, implicitly defined by exceeding
an increasing sequence of thresholds or levels, (ii) counting the fraction
of samples that reach a level given that the previous level has been
reached already, and (iii) improving the diversity of the selected
samples, usually using an artificial Markovian dynamics.
In this way, the algorithm learns


	[bookmark: uid22] the transition probability between successive levels, hence
the probability of reaching each intermediate level,



	[bookmark: uid23] and the probability distribution of the input random variable,
conditionned on the output variable reaching each intermediate level.




A further remark, is that this conditional probability distribution is
precisely the optimal (zero variance) importance distribution needed to
compute the probability of reaching the considered intermediate level.

Rare event simulation   To be specific, consider a complex dynamical system modelled as a Markov
process, whose state can possibly contain continuous components and
finite components (mode, regime, etc.), and the objective is to
compute the probability, hopefully very small, that a critical region
of the state space is reached by the Markov process before a final
time T, which can be deterministic and fixed, or random (for instance
the time of return to a recurrent set, corresponding to a nominal
behaviour).

The proposed splitting method consists in (i) introducing a decreasing
sequence of intermediate, more and more critical, regions in the state
space, (ii) counting the fraction of trajectories that reach an
intermediate region before time T, given that the previous intermediate
region has been reached before time T, and (iii) regenerating the
population at each stage, through redistribution. In addition to the
non–intrusive behaviour of the method, the splitting methods make it
possible to learn the probability distribution of typical critical
trajectories, which reach the critical region before final time T,
an important feature that methods based on importance sampling usually
miss.
Many variants have been proposed, whether


	[bookmark: uid24] the branching rate (number of offsprings allocated to a
successful trajectory) is fixed, which allows for depth–first exploration
of the branching tree, but raises the issue of controlling the population
size,



	[bookmark: uid25] the population size is fixed, which requires a breadth–first
exploration of the branching tree, with random (multinomial) or deterministic
allocation of offsprings, etc.




Just as in the static case, the algorithm learns


	[bookmark: uid26] the transition probability between successive levels, hence
the probability of reaching each intermediate level,



	[bookmark: uid27] and the entrance probability distribution of the Markov process
in each intermediate region.




Contributions have been given to


	[bookmark: uid28] minimizing the asymptotic variance, obtained through a
central limit theorem, with respect to the shape of the intermediate
regions (selection of the importance function), to the thresholds (levels),
to the population size, etc.



	[bookmark: uid29] controlling the probability of extinction (when not even one
trajectory reaches the next intermediate level),



	[bookmark: uid30] designing and studying variants suited for hybrid state space
(resampling per mode, marginalization, mode aggregation),




and in the static case, to


	[bookmark: uid31] minimizing the asymptotic variance, obtained through a central
limit theorem, with respect to intermediate levels, to the Metropolis
kernel introduced in the mutation step, etc.




A related issue is global optimization. Indeed, the difficult problem
of finding the set M of global minima of a real–valued function V
can be replaced by the apparently simpler problem of sampling a population
from a probability distribution depending on a small parameter,
and asymptotically supported by the set M as the small parameter goes
to zero. The usual approach here is to use the cross–entropy
method  [67] , [34] , which relies on learning
the optimal importance distribution within a prescribed parametric
family. On the other hand, multilevel splitting methods could provide
an alternate nonparametric approach to this problem.


[bookmark: uid32] Section: 
      Scientific Foundations
Nearest neighbor estimates



This additional topic was not present in the initial list of objectives,
and has emerged only recently.

In pattern recognition and statistical learning, also known as macvhine
learning, nearest neighbor (NN) algorithms are amongst the simplest but
also very powerful algorithms available.
Basically, given a training set of data, i.e. an N–sample of i.i.d. object–feature pairs, with real–valued features,
the question is how to generalize,
that is how to guess the feature associated with any new object.
To achieve this, one chooses some integer k smaller than N, and
takes the mean–value of the k features associated with the k objects
that are nearest to the new object, for some given metric.

In general, there is no way to guess exactly the value of the feature
associated with the new object, and the minimal error that can be done
is that of the Bayes estimator, which cannot be computed by lack of knowledge
of the distribution of the object–feature pair, but the Bayes estimator
can be useful to characterize the strength of the method.
So the best that can be expected is that the NN estimator converges, say
when the sample size N grows, to the Bayes estimator. This is what has been
proved in great generality by Stone  [69]  for the mean square
convergence, provided that the object is a finite–dimensional random
variable, the feature is a square–integrable random variable,
and the ratio k/N goes to 0.
Nearest neighbor estimator is not the only local averaging estimator with
this property, but it is arguably the simplest.

The asymptotic behavior when the sample size grows is well understood in
finite dimension, but the situation is radically different in
general infinite dimensional spaces, when the objects to be classified
are functions, images, etc.

Nearest neighbor classification in infinite dimension   In finite dimension, the k–nearest neighbor classifier
is universally consistent, i.e. its probability of error converges to
the Bayes risk as N goes to infinity, whatever the joint probability
distribution of the pair, provided that the ratio k/N goes to zero.
Unfortunately, this result is no longer valid in general metric spaces,
and the objective is to find out reasonable sufficient conditions for
the weak consistency to hold. Even in finite dimension, there are exotic
distances such that the nearest neighbor does not even get closer (in the
sense of the distance) to the point of interest, and the state space
needs to be complete for the metric, which is the first condition.
Some regularity on the regression function is required next. Clearly,
continuity is too strong because it is not required in finite dimension,
and a weaker form of regularity is assumed. The following consistency
result has been obtained: if the metric space is separable and
if some Besicovich condition holds, then the nearest neighbor classifier
is weakly consistent.
Note that the Besicovich condition is always fulfilled in finite dimensional
vector spaces (this result is called the Besicovich theorem), and that
a counterexample [1]  can be given in an infinite
dimensional space with
a Gaussian measure (in this case, the nearest neighbor classifier is clearly
nonconsistent). Finally, a simple example has been found which verifies
the Besicovich condition with a noncontinuous regression function.

Rates of convergence of the functional k–nearest neighbor
estimator   Motivated by a broad range of potential applications, such as regression
on curves, rates of convergence of the k–nearest neighbor estimator
of the regression function, based on N independent copies of the
object–feature pair, have been investigated
when the object is in a suitable ball in some functional space.
Using compact embedding theory, explicit and general finite sample bounds
can be obtained for the expected squared difference between the k–nearest
neighbor estimator and the Bayes regression function, in a very general
setting. The results have also been
particularized to classical function spaces such as Sobolev spaces,
Besov spaces and reproducing kernel Hilbert spaces.
The rates obtained are genuine nonparametric convergence rates,
and up to our knowledge the first of their kind for k–nearest neighbor
regression.

This emerging topic has produced several theoretical advances
in collaboration with Gérard Biau (université Pierre et Marie Curie,
ENS Paris and EPI CLASSIC, INRIA Paris—Rocquencourt),
and a possible target application domain has been identified
in the statistical analysis of recommendation systems, that would
be a source of interesting problems.
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Localisation, navigation and tracking
See 
	7.2 ,

	7.3 ,
and 
	7.4 .




Among the many application domains of particle methods, or interacting
Monte Carlo methods, ASPI has decided to focus on applications
in localisation (or positioning), navigation and
tracking  [50] , [44] , which already covers a very broad
spectrum of application domains. The objective here is to estimate
the position (and also velocity, attitude, etc.) of a mobile object,
from the combination of different sources of information, including


	[bookmark: uid35] a prior dynamical model of typical evolutions of the mobile,
such as inertial estimates and prior model for inertial errors,



	[bookmark: uid36] measurements provided by sensors,



	[bookmark: uid37] and possibly a digital map providing some useful feature
(terrain altitude, power attenuation, etc.) at each possible position.




In some applications, another useful source of information is provided by


	[bookmark: uid38] a map of constrained admissible displacements, for instance in
the form of an indoor building map,




which particle methods can easily handle (map-matching).
This Bayesian dynamical estimation problem is also called filtering,
and its numerical implementation using particle methods, known as
particle filtering, has been introduced by the target tracking
community  [49] , [66] , which has already contributed
to many of the most interesting algorithmic improvements and is still
very active, and has found applications in

target tracking,
integrated navigation,
points and / or objects tracking in video sequences,
mobile robotics,
wireless communications,
ubiquitous computing and ambient intelligence,
sensor networks, etc.

ASPI is contributing to several applications of particle filtering in
positioning, navigation and tracking, such as
geolocalisation and tracking in a wireless network,
terrain–aided navigation, see 
	7.2 ,
and data fusion for indoor localisation,
see 
	7.4 .


[bookmark: uid39] Section: 
      Application Domains
Rare event simulation
See 
	3.3 ,

	6.1 ,

	6.2 ,

	6.3 ,

	7.1 ,

	7.3 
and 
	7.6 .




Another application domain of particle methods, or interacting Monte Carlo
methods, that ASPI has decided to focus on is the estimation of the small
probability of a rare but critical event, in complex dynamical systems.
This is a crucial issue in industrial areas such as

nuclear power plants,
food industry,
telecommunication networks,
finance and insurance industry,
air traffic management, etc.

In such complex systems, analytical methods cannot be used, and naive
Monte Carlo methods are clearly unefficient to estimate accurately
very small probabilities.
Besides importance sampling, an alternate widespread technique
consists in multilevel splitting  [58] ,
where trajectories going towards the
critical set are given offsprings, thus increasing the number of
trajectories that eventually reach the critical set.
This approach not only makes it possible to estimate the probability of
the rare event, but also provides realizations of the random trajectory,
given that it reaches the critical set, i.e. provides realizations of typical
critical trajectories, an important feature that methods based on importance
sampling usually miss.

ASPI is contributing to several applications of multilevel splitting for
rare event simulation, such as risk assessment in air traffic management,
see 
	7.1 ,
detection in sensor networks,
see 
	7.3 ,
and protection of digital documents,
see 
	7.6 .
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This is a collaboration with Tony Lelièvre
and David Pommier (CERMICS, Ecole des Ponts ParisTech).

The numerical simulation of molecular dynamics is very important to
predict the behavior of complex molecules. It is usually modeled by
(overdamped) Langevin dynamics, which is a stochastic Markovian model
(either a diffusion process or its integral in time). Within this
framework, it is mandatory to speed up the simulation between two
metastable regions (i.e. two local minima of the potential associated
with the molecule). These pieces of trajectories are called reactive
trajectories, and are particularly difficult to simulate at lower
temperatures.

A method to generate reactive trajectories, namely equilibrium
trajectories leaving a metastable state and ending in another one,
is proposed [17] , [24] .
The algorithm is based on simulating in parallel many
copies of the system, and selecting the replicas which have
reached the highest values along a chosen one-dimensional
reaction coordinate. This reaction coordinate does not need to
precisely describe all the metastabilities of the system for the
method to give reliable results. An extension of the algorithm to
compute transition times from one metastable state to another one is
also being studied. We have demonstrated the interest of the method on
two simple cases: A one-dimensional two-well potential and a
two-dimensional potential exhibiting two channels to pass from one
metastable state to another one.
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This is a collaboration with Reuven Rubinstein
and Radislav Vaisman (Technion, Israel Institute of Technology).

We have developed an enhanced version of the splitting method, called the
smoothed splitting method (SSM), for counting problems associated
with complex sets, in particular for counting the number of
satisfiability assignments. A satisfiability problem consists in several
logical clauses involving several Boolean variables (typically several
hundreds or thousands each). The goal is to find (if any) all the
instances of the variables (0 or 1) which make all the clauses
true. This is well known as a NP–hard problem if we want to solve it
exactly. We propose a new stochastic, thus approximate, solver
based on rare event simulation techniques [25] .

Like the conventional splitting
algorithms, ours uses a sequential sampling plan to decompose
a “difficult” problem into a sequence of “easy” ones. The
main difference between SSM and splitting is that it works with an
auxiliary sequence of continuous sets instead of the original discrete
ones. The rationale of doing so is that continuous sets are easy to
handle. We have shown on several examples that while the proposed
method and its standard
splitting counterpart are similar in their CPU time and
variability, the former is more robust and more flexible than the
latter. In particular, it makes it simpler for tuning the
parameters.
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This is a collaboration with Nicolas Hengartner (Los Alamos National
Laboratories) and Eric Matzner-Løber (université Rennes 2).

Consider the output random variable obtained under some mapping from
an input random vector with known probability distribution.
That mapping acts as a black box, e.g., the result from some computer
experiments for which no analytical expression is available. We have
designed an efficient algorithm to estimate a tail probability given
a quantile or a quantile given a tail probability [26] . Our new
algorithm improves upon existing multilevel splitting methods and can be
analyzed using Poisson process tools that lead to exact description
of the distribution of the estimated probabilities and quantiles. The
performance of the algorithm is demonstrated in a problem related to
digital watermarking.
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As explained in 
	3.3 , multilevel
splitting ideas can be useful even to solve some static problems, such as
evaluating the (small) probability that a random variable exceeds some
(extreme) threshold, at the expense of introducing an artificial Markov
dynamics between successive intermediate levels. This is always possible,
using any reasonable MCMC scheme such as Metropolis–Hastings for instance,
but raises many practical issues such as: how to choose, how much to
iterate, or how to adapt the artificial Markov dynamics.
Preliminary results based on variance estimation have been obtained,
as part of the PhD thesis of Rudy Pastel.
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This is a collaboration with Christian Musso (ONERA Palaiseau).

Particle filtering is a widely used Monte Carlo method to approximate
the posterior probability distribution in non–linear filtering, with an
error scaling as [image: Im1 ${1/\sqrt N}$] in terms of the sample size N, but
otherwise independently of the underlying state dimension.
However, it has recently been observed in practice that particle filtering
can be quite inefficient when the dimension of the system is high.
The issue here is to track the impact of the dimension on the error
variance, either non–asymptotic or asymptotic. It has been suggested
that the most important factor by which dimensionality affects the
result is the predicted likelihood, a quantitative indicator of the
consistency between the prior distribution and the likelihood function.
In a simple static linear Gaussian model, it has been possible indeed
to check that the error increases exponentially with the
dimension [20] . The challenge now is to extend these
preliminary results to a static non–linear / non–Gaussian model,
as part of the PhD thesis of Paul Bui–Quang, using the Laplace method.
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This is a collaboration with Valérie Monbet (université de Rennes 1).

Surprisingly, very little was known about the asymptotic behaviour of
the ensemble Kalman filter  [39] , [40] , [41] ,
whereas on the other hand, the asymptotic behaviour of many different
classes of particle filters is well understood, as the number of particles
goes to infinity.
Interpreting the ensemble elements as a population of particles with
mean–field interactions,
and not only as an instrumental device producing an estimation
of the hidden state as the ensemble mean value, it has been possible to
prove the convergence of the ensemble Kalman filter, with a rate of
order [image: Im1 ${1/\sqrt N}$], as the number N of ensemble elements increases to
infinity  [63] .
In addition, the limit of the empirical distribution of the
ensemble elements has been exhibited, which differs from the
usual Bayesian filter.
The next step has been to prove (by induction) the asymptotic normality
of the estimation error, i.e. to prove a central limit theorem for
the ensemble Kalman filter.
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design and validation of highly automated air traffic management (iFLY) —
FP6 Aerospace
Participant :
      François Le Gland.
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INRIA contract ALLOC 2399 — May 2007 to August 2010.





This FP6 project is coordinated
by National Aerospace Laboratory (NLR) (The Netherlands),
and ASPI is also collaborating with
University of Twente (The Netherlands)
and Direction des Services de la Navigation Aérienne (DSNA).

The objective of
iFLY 
is to develop both an advanced airborne self separation design
and a highly automated air traffic management (ATM) design
for en–route traffic,
which takes advantage of autonomous aircraft operation capabilities
and which is aimed to manage a three to six times increase in current
en–route traffic levels.
The proposed research combines expertise in air transport human
factors, safety and economics with analytical and Monte Carlo simulation
methodologies.
The contribution of ASPI to this project concerns the work package
on accident risk assessment methods and their implementation using
conditional Monte Carlo methods, especially for large scale stochastic
hybrid systems: designing and studying variants  [32] 
suited for hybrid state space (resampling per mode, marginalization) are
currently investigated [27] .
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This collaboration with Thalès Communications is supported
by DGA (Délégation Générale à l'Armement) and is related with
the supervision of the CIFRE thesis of Nordine El Baraka.

The overall objective is to study innovative algorithms for terrain–aided
navigation, and to demonstrate these algorithms on four different
situations involving different platforms, inertial navigation units,
sensors and georeferenced databases.
The thesis also considers the special use of image sensors (optical,
infra–red, radar, sonar, etc.) for navigation tasks, based on correlation
between the observed image sequence and a reference image available
on–board in the database.

Marginalized particle filters  [68] 
and regularized particle filters [7]  have been
implemented, and several propositions have been studied to adapt the sample
size, such as KLD–sampling  [43] , which could be useful in
the case of a poor initial information, or if the platform flies over a
poorly informative area.
Besides particle methods, which are proposed as the basic navigation
algorithm, simpler algorithms such as the extended Kalman filter (EKF) or
the unscented Kalman filter (UKF) have also been investigated.
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This is a collaboration with Sébastien Paris (université Paul Cézanne),
related with the supervision of the PhD thesis of Mathieu Chouchane.

The objective of this project is to optimize the position and activation
times of a few sensors deployed by a platform over a search zone, so as
to maximize the probability of detecting a moving target. The difficulty
here is that
the target can detect an activated sensor before it is detected itself,
and it can then modify its own trajectory to escape from the sensor.
Because of the many constraints including timing constraints involved
in this optimization problem, a stochastic algorithm is preferred here
over a deterministic algorithm. The underlying idea is to replace the
problem of maximizing a cost function (the probability of detection) over
the possible configurations (admissible position and activation times) by
the apparently simpler problem of sampling a population according to a
probability distribution depending on a small parameter, which asymptotically
concentrates on the set of global maxima of the cost function, as the small
parameter goes to zero. The usual approach here is to use the cross–entropy
method  [67] , [34] .

The contribution of ASPI has been to propose a multilevel splitting
algorithm, in order to evaluate the probability of
detection for a given configuration. When this probability is small,
these methods are known to provide a significant reduction in the variance
of the relative error.
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INRIA contract ALLOC 2856 — January 2008 to December 2010.





This ANR project is coordinated by Thalès Alenia Space.

The overall objective is to study and demonstrate
information fusion algorithms for localisation of pedestrian users
in an indoor environment, where GPS solution cannot be used.
The sought design combines


	[bookmark: uid52] a pedestrian dead–reckoning (PDR) unit, providing noisy
estimates of the linear displacement, angular turn, and possibly of the
level change through an additional pression sensor,



	[bookmark: uid53] range and / or proximity measurements provided by beacons at
fixed and known locations, and possibly indirect distance measurements
to access points, through a measure of the power signal attenuation,



	[bookmark: uid54] constraints provided by an indoor map of the building (map-matching),



	[bookmark: uid55] collaborative localisation when two users meet and exchange their
respective position estimates.




Besides particle methods, which are proposed as the basic information
fusion algorithm for the centralized server–based implementation, simpler
algorithms such as the extended Kalman filter (EKF) or the unscented Kalman
filter (UKF) have been investigated, to be used for the local PDA–based
implementation with a map of a smaller part of the building.
Constraints could be taken care of automatically with the help of a Voronoi
graph  [64] , but this approach implies heavy pre–computations.
A more direct approach, taking care of constraints on the fly, using a
simple rejection method, has been preferred.
Adapting the sample size using KLD–sampling  [43]  has also
been investigated, which could be useful in the case of a poor initial
information, or if the user walks in poorly informative area (open zone,
absence of beacons).
Collaboration between users has been implemented  [42] ,
which allows from a user with a poor localization to benefit from the more
accurate localization of another user. In this implementation, the latter
user is seen by the former user as a ranging beacon with uncertain position.
See  [31] , [55]  for a description of the overall fusion
algorithm and an illustration with simulation results.
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This ANR project is coordinated by École Normale Supérieure, Paris.
The other partner is Météo–France.
This is a collaboration with Étienne Mémin and Anne Cuzol (INRIA Rennes
Bretagne Atlantique, project–team FLUMINANCE)
and Valérie Monbet (université de Rennes 1).

The contribution of ASPI to this project is to continue the
comparison  [71] , [63] 
of sequential data assimilation methods, such as the ensemble Kalman
filter (EnKF) and the weighted ensemble Kalman filter (WEnKF), with
particle filters. This comparison will be made on the basis of asymptotic
variances, as the ensemble or sample size goes to infinity, and also on
the impact of dimension on small sample behavior.
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Arnaud Guyader is coordinator of this ANR project.
This is a collaboration with Teddy Furon (INRIA Rennes Bretagne Atlantique,
project–team TEMICS)
and Pierre Del Moral (INRIA Bordeaux Sud–Ouest, project–team ALEA).

There are mainly two strategic axes in
NEBBIANO:
watermarking and independent component analysis,
and watermarking and rare event simulations.
To protect copyright owners, user identifiers are embedded
in purchased content such as music or movie. This is basically what we
mean by watermarking. This watermarking is to be “invisible” to the
standard user, and as difficult to find as possible.
When content is found in an illegal place (e.g. a P2P network),
the right holders decode the hidden message, find
a serial number, and thus they can trace the traitor, i.e. the client
who has illegally broadcast their copy. However, the task is not that
simple as dishonest users might collude. For security reasons,
anti–collusion codes have to be employed. Yet, these solutions (also
called weak traceability codes) have a non–zero probability of
error defined as the probability of accusing an innocent. This
probability should be, of course, extremely low, but it is also a very
sensitive parameter: anti–collusion codes get longer (in terms of the
number of bits to be hidden in content) as the probability of error
decreases. Fingerprint designers have to strike a trade–off, which is
hard to conceive when only rough estimation of the probability
of error is known. The major issue for fingerprinting algorithms is
the fact that embedding large sequences implies also assessing
reliability on a huge amount of data which may be practically
unachievable without using rare event analysis. Our task within this
project is to adapt our methods for estimating rare event probabilities
to this framework, and provide watermarking designers with much more
accurate false detection probabilities than the bounds currently found
in the literature. We have already applied these ideas to some
randomized watermarking schemes and obtained much sharper estimates of
the probability of accusing an innocent.

A patent [28]  entitled “Computer Checking Tool”
has been submitted by INRIA and by université de Rennes 2.
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This ANR project is coordinated by Alcatel–Lucent.

The primary goal of the TCHATER project is to demonstrate a coherent
terminal operating at 40Gb/s using real–time digital signal
processing and efficient polarization division multiplexing. The
terminal will benefit to next-generation high information-spectral
density optical networks, while offering straightforward compatibility
with current 10Gbit/s networks. It will require that advanced
high–speed electronic components, especially analog–to–digital
converters, are designed within the project. Specific algorithms for
polarisation demultiplexing and forward error correction with soft
decoding will also have to be developed.
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This ANR project is also coordinated by Alcatel–Lucent Bell Labs France.

The focus of our project is to reduce the impact of nonlinear
effect. The objective is twofold: specify, design, realize and
evaluate fibres of reduced nonlinear effects by firstly increasing the
effective area to unprecedented values and secondly, by splitting
optical power along two modes, using bimodal propagation. While the
first step is ambitious but primarily relies in the evolution of
current fibre technologies, the second is disruptive and requires not
only deep changes in fibre technologies but also new advanced
transmitter / receiver equipment, preferably based on coherent
detection. Naturally, bimodal propagation also brings another key
advantage, namely a twofold increase of system capacity.
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Jointly with the team Processus Stochastiques of IRMAR,
ASPI organizes a working group on
the Freidlin–Wentzell theory  and its applications.
One of the main goals of these talks is to study the theory of large
deviations which describe how a metastable diffusion process evolves.
Moreover, several talks are dedicated to simulation algorithms and
applications (molecular dynamics, turbulence modelling)

François Le Gland organizes at ONERA Palaiseau
a working group on particle methods and their applications
to Bayesian filtering and to rare event simulation.

François Le Gland has reported on the PhD thesis of
Anissa Rabhi (université Pierre et Marie Curie, advisor: Yury Kutoyants).
He was also a member of the committee for the PhD thesis
of Joe Youssef (université Joseph Fourier, advisor: Suzanne Lesecq).

Arnaud Guyader is a member of
the “comité de sélection” in applied mathematics (section 26)
of université d'Angers.
François Le Gland is a member of
the “comité de sélection” in mathematics (sections 25–26)
of INSA (institut national de sciences appliquées) Rennes,
and he is a member of the “conseil d'UFR” of the department of
mathematics of université de Rennes 1.
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François Le Gland gives a course on
Kalman filtering and hidden Markov
models ,
at université de Rennes 1,
within the Master SISEA (signal, image, systèmes embarqués, automatique,
école doctorale MATISSE),
a 3rd year course on
Bayesian filtering and particle
approximation ,
at ENSTA (école nationale supérieure de techniques avancées), Paris,
within the systems and control module,
a 3rd year course on
linear and nonlinear filtering,
linear and nonlinear
filtering ,
at ENSAI (école nationale de la statistique et de l'analyse de
l'information), Ker Lann, within the statistical engineering track,
and a 3rd year course on
hidden Markov models and particle
filtering ,
at Télécom Bretagne, Brest.

Arnaud Guyader is a member of the committee
of “oraux blancs d'agrégation de mathématiques” for ENS Cachan
at Ker Lann.
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In addition to presentations with a publication in the proceedings,
and which are listed at the end of the document, members of ASPI
have also given the following presentations.

Arnaud Guyader has given talks on iterative Monte Carlo
for extreme quantiles and extreme probabilities
at 42ème Journées de Statistiques in Marseille,
at RESIM 2010 in Cambridge in June 2010
and at IWAP 2010 in Madrid in July 2010 (invited).
He has been invited to give a talk in the local
seminar on statistics in Montpellier
and at the Rare Event Simulation workshop held in Bordeaux in October.
He has also been invited by Nicolas Hengartner
to visit Los Alamos National Laboratories in January 2010
and in April 2010.

Frédéric Cerou has given a talk on an adaptive replica approach to
simulate reactive trajectories at RESIM 2010 in Cambridge in June 2010,
on rare event simulation for a static distribution at IWAP 2010 (organizer
of an invited session) in Madrid in July 2010, and has been
invited to give a talk about importance splitting for rare event simulation
at the CEA–EDF–INRIA school on Simulation of Hybrid Dynamical Systems
and Applications to Molecular Dynamics held in Paris in September 2010.

François Le Gland has been invited to give
a survey lecture on nonlinear filtering
at the forum TISIC (traitement de l'information signal image et connaissance)
of INRETS held in Paris in June 2010,
a talk on asymptotic normality of the ensemble Kalman filter
at the workshop on Numerical Methods for Filtering and for Parabolic PDE's
held at Imperial College in September 2010,
and a talk on marginalization for rare event simulation in switching
diffusions at the Rare Event Simulation workshop held in Bordeaux
in October 2010.

Florient Malrieu has defended his habilitation thesis on
functional inequalities and long time behavior of some Markov processes,
in Rennes in November 2010.
He has given a talk
on ergodicity of piecewise deterministic Markov processes,
at the meeting of the MAS (modélisation aléatoire et statistique)
thematic group of SMAI (société de mathématiques appliquées et
industrielles) held in Bordeaux in September 2010.
He has been invited to give seminar talks
on long time behavior of McKean–Vlasov equations in Nice in October 2010,
on Markov switched Ornstein–Uhlenbeck processes
at INRIA Sophia–Antipolis in October 2010,
on ergodicity of modulated flows, in the working group Mathématiques
et Neurosciences, at IHP Paris,
on functional inequalities for mixtures, in Lille in December 2010,
and on a piecewise determinisitic Markov process for bacteria movements,
in Nancy in December 2010.
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