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Presentation

Algorithmic number theory dates back to the dawn of mathematics
itself, cf. Eratosthenes's sieve to enumerate consecutive prime numbers.
With the
arrival of computers, previously unsolvable problems have come into reach,
which has boosted the development of more or less practical algorithms
for essentially all number theoretic problems. The field is now mature
enough for a more computer science driven approach, taking into account
the theoretical complexities and practical running times of the algorithms.

Concerning the lower level
multiprecision arithmetic, folklore has asserted for a long time that
asymptotically fast algorithms such as Schönhage–Strassen multiplication are
impractical; nowadays, however, they are used routinely. On a higher level,
symbolic computation provides numerous asymptotically fast algorithms (such
as for the simultaneous evaluation of a polynomial in many arguments or
linear algebra on sparse matrices), which have only partially been exploited
in computational number theory. Moreover, precise complexity analyses do not
always exist, nor do sound studies to choose between different algorithms (an
exponential algorithm may be preferable to a polynomial one for a large range
of inputs); folklore cannot be trusted in a fast moving area such as
computer science.

Another problem is the reliability of the computations; many number
theoretic algorithms err with a
small probability, depend on unknown constants or rely on a Riemann
hypothesis. The correctness of their output can either be ensured by a
special design of the algorithm itself (slowing it down) or by an a
posteriori verification. Ideally, the algorithm outputs a certificate,
providing an independent fast correctness proof. An example is integer
factorisation, where factors are hard to obtain but trivial to
check; primality proofs have initiated sophisticated generalisations.

One of the long term goals of the Lfant project team is to make an
inventory of the major number theoretic algorithms, with an emphasis on
algebraic number theory and arithmetic geometry, and to carry out
complexity analyses. So far, most of these algorithms have been designed
and tested over number fields of small degree and scale badly. A complexity
analysis should naturally lead to improvements by identifying bottlenecks,
systematically redesigning and incorporating modern
asymptotically fast methods.

Reliability of the developed algorithms is a second long term goal of our
project team. Short of proving the Riemann hypothesis, this could be
achieved through the design of specialised, slower algorithms not
relying on any unproven assumptions. We would prefer, however, to augment
the fastest unproven algorithms with the creation of independently
verifiable certificates. Ideally, it should not take longer to check the
certificate than to generate it.

All theoretical results are complemented by concrete reference
implementations in Pari/Gp, which allow to determine and tune
the thresholds where the asymptotic complexity kicks in and help
to evaluate practical performances on problem instances
provided by the research community.
Another important source for algorithmic problems treated
by the Lfant project team is modern
cryptology. Indeed, the security of all practically relevant public key
cryptosystems relies on the difficulty of some number theoretic problem;
on the other hand, implementing the systems and finding secure parameters
require efficient algorithmic solutions to number theoretic problems.


[bookmark: uid4] Section: 
      Overall Objectives
Highlights

P. Molin has defended his PhD thesis on “Intégration numérique et calculs de fonctions L”
[12] .
J.-F. Biasse has defended his PhD thesis on “Subexponential algorithms for number fields”
[11] .
In May, A. Enge has given the science talk at the ceremony awarding the
Abel Prize to John Tate in Oslo. The talk, entitled “The queen of mathematics
in communication security”, presented links between Tate's work and
cryptologic applications.
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Number fields, class groups and other invariants
Participants :
      Bill Allombert, Karim Belabas, Jean-François Biasse, Jean-Paul Cerri, Henri Cohen, Jean-Marc Couveignes, Andreas Enge, Pierre Lezowski, Pascal Molin, Anna Morra.


Modern number theory has been introduced in the second half of the 19th
century by Dedekind, Kummer, Kronecker, Weber and others, motivated by
Fermat's conjecture: There is no non-trivial solution in integers to the
equation xn + yn = zn for [image: Im1 ${n\#10878 3}$].
For recent textbooks, see [6] .
Kummer's idea for solving Fermat's problem was to rewrite the equation as
[image: Im2 ${{(x+y)}{(x+\#950 y)}{(x+\#950 ^2y)}\#8943 {(x+\#950 ^{n-1}y)}=z^n}$]
for a primitive n-th root of unity ζ, which seems to imply that
each factor on the left hand side is an n-th power, from which a
contradiction can be derived.

The solution requires to augment the integers by algebraic
numbers, that are roots of polynomials in [image: Im3 ${\#8484 [X]}$]. For instance,
ζ is a root of Xn-1, [image: Im4 $\mroot 23$] is a root of X3-2
and [image: Im5 $\mfrac \sqrt 35$] is a root of 25X2-3. A number
field consists of the rationals to which have been added finitely
many algebraic numbers together with their sums, differences, products
and quotients. It turns out that actually one generator suffices, and
any number field K is isomorphic to [image: Im6 ${\#8474 [X]/(f(X))}$], where f(X)
is the minimal polynomial of the generator. Of special interest
are algebraic integers, “numbers without denominators”,
that are roots of a monic polynomial. For instance, ζ and
[image: Im4 $\mroot 23$] are integers, while [image: Im5 $\mfrac \sqrt 35$] is not. The
ring of integers of K is denoted by [image: Im7 $\#119978 _K$]; it plays
the same role in K as [image: Im8 $\#8484 $] in [image: Im9 $\#8474 $].

Unfortunately, elements in [image: Im7 $\#119978 _K$] may factor in different ways, which
invalidates Kummer's argumentation. Unique factorisation may be
recovered by switching to ideals, subsets of [image: Im7 $\#119978 _K$] that
are closed under addition and under multiplication by elements of [image: Im7 $\#119978 _K$].
In [image: Im8 $\#8484 $], for instance, any ideal is principal, that is,
generated by one element, so that ideals and numbers are essentially
the same. In particular, the unique factorisation of ideals then
implies the unique factorisation of numbers. In general, this is not
the case, and the class group ClK of ideals of [image: Im7 $\#119978 _K$]
modulo principal ideals and its class number hK = |ClK|
measure how far [image: Im7 $\#119978 _K$] is from behaving like [image: Im8 $\#8484 $].

Using ideals introduces the additional difficulty of having to deal
with [image: Im10 $\#119906 \#119899 \#119894 \#119905 \#119904 $], the invertible elements of [image: Im7 $\#119978 _K$]: Even when
hK = 1, a factorisation of ideals does not immediately yield a
factorisation of numbers, since ideal generators are only defined
up to units. For instance, the ideal factorisation
(6) = (2)·(3) corresponds to the two factorisations
6 = 2·3 and 6 = (-2)·(-3). While in [image: Im8 $\#8484 $], the only
units are 1 and -1, the unit structure in general is that of
a finitely generated [image: Im8 $\#8484 $]-module, whose generators are the
fundamental units. The regulator RK measures
the “size” of the fundamental units as the volume of an associated
lattice.

One of the main concerns of algorithmic algebraic number theory is to
explicitly compute these invariants (ClK and hK, fundamental
units and RK), as well as to provide the data allowing to efficiently
compute with numbers and ideals of [image: Im7 $\#119978 _K$]; see [31] 
for a recent account.

The analytic class number formula links the invariants
hK and RK (unfortunately, only their product) to the
ζ-function of K,
[image: Im11 ${\#950 _K{(s)}:=\#8719 _{\#120109 ~\mtext prime~\mtext ideal~\mtext of~\#119978 _K}\mfenced o=( c=) 1-N\#120109 ^{-s}^{-1}}$], which is meaningful when
[image: Im12 ${\#8476 (s)\gt 1}$], but which may be extended to arbitrary complex [image: Im13 ${s\#8800 1}$].
Introducing characters on the class group yields a generalisation of
ζ- to L-functions. The generalised Riemann hypothesis
(GRH), which remains unproved even over the rationals, states that
any such L-function does not vanish in the right half-plane [image: Im14 ${\#8476 (s)\gt 1/2}$].
The validity of
the GRH has a dramatic impact on the performance of number theoretic
algorithms. For instance, under GRH, the class group admits a system of
generators of polynomial size; without GRH, only exponential
bounds are known. Consequently, an algorithm to compute ClK
via generators and relations (currently the only viable practical approach)
either has to assume that GRH is true or immediately becomes exponential.

When hK = 1 the number field K may be norm-Euclidean, endowing
[image: Im7 $\#119978 _K$] with a Euclidean division algorithm. This question leads to the
notions of the Euclidean minimum and spectrum of K, and another task in
algorithmic number theory is to compute explicitly this minimum and the upper
part of this spectrum, yielding for instance generalised Euclidean gcd
algorithms.


[bookmark: uid7] Section: 
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Function fields, algebraic curves and cryptology
Participants :
      Karim Belabas, Jean-François Biasse, Jean-Marc Couveignes, Andreas Enge, Jérôme Milan, Pascal Molin, Damien Robert, Pieter Rozenhart, Vincent Verneuil.


Algebraic curves over finite fields are used to build the currently
most competitive public key cryptosystems. Such a curve is given by
a bivariate equation [image: Im15 ${\#119966 (X,Y)=0}$] with coefficients in a finite
field [image: Im16 $\#120125 _q$]. The main classes of curves that are interesting from a
cryptographic perspective are elliptic curves of equation
[image: Im17 ${\#119966 =Y^2-{(X^3+aX+b)}}$] and hyperelliptic curves of
equation [image: Im18 ${\#119966 =Y^2-{(X^{2g+1}+\#8943 )}}$] with [image: Im19 ${g\#10878 2}$].

The cryptosystem is implemented in an associated finite
abelian group, the Jacobian [image: Im20 $Jac_\#119966 $]. Using the language
of function fields exhibits a close analogy to the number fields
discussed in the previous section. Let [image: Im21 ${\#120125 _q{(X)}}$] (the analogue of [image: Im9 $\#8474 $])
be the rational function field with subring [image: Im22 ${\#120125 _q{[X]}}$] (which
is principal just as [image: Im8 $\#8484 $]). The function field of [image: Im23 $\#119966 $] is
[image: Im24 ${K_\#119966 =\#120125 _q{(X)}{[Y]}/{(\#119966 )}}$]; it contains the coordinate ring
[image: Im25 ${\#119978 _\#119966 =\#120125 _q{[X,Y]}/{(\#119966 )}}$]. Definitions and properties carry over from
the number field case [image: Im26 ${K/\#8474 }$] to the function field extension [image: Im27 ${K_\#119966 /\#120125 _q{(X)}}$]. The Jacobian [image: Im20 $Jac_\#119966 $] is the divisor class group of [image: Im28 $K_\#119966 $], which is
an extension of (and for the curves used in cryptography usually equals) the
ideal class group of [image: Im29 $\#119978 _\#119966 $].

The size of the Jacobian group, the main security parameter of the
cryptosystem, is given by an L-function. The GRH for function fields,
which has been proved by Weil, yields the Hasse–Weil bound
[image: Im30 ${{(\sqrt q-1)}^{2g}\#10877 {|Jac_\#119966 |}\#10877 {(\sqrt q+1)}^{2g},}$] or
[image: Im31 ${{|}Jac_\#119966 {|\#8776 }q^g}$],
where the genus g is an invariant of the curve that
correlates with the degree of its equation. For instance, the genus of
an elliptic curve is 1, that of a hyperelliptic one is
[image: Im32 $\mfrac {deg_X\#119966 -1}2$]. An important algorithmic
question is to compute the exact cardinality of the Jacobian.

The security of the cryptosystem requires more precisely that the
discrete logarithm problem (DLP) be difficult in the underlying
group; that is, given elements D1 and D2 = xD1 of [image: Im20 $Jac_\#119966 $],
it must be difficult to determine x. Computing x corresponds in
fact to computing [image: Im20 $Jac_\#119966 $] explicitly with an isomorphism to an
abstract product of finite cyclic groups; in this sense, the DLP amounts
to computing the class group in the function field setting.

For any integer n, the Weil pairing en on [image: Im23 $\#119966 $] is a
function that takes as input two elements of order n of [image: Im20 $Jac_\#119966 $] and
maps them into the multiplicative group of a finite field extension
[image: Im33 $\#120125 _q^k$] with k = k(n) depending on n. It is bilinear in both
its arguments, which allows to transport the DLP from a curve into
a finite field, where it is potentially easier to solve. The
Tate-Lichtenbaum pairing, that is more difficult to define,
but more efficient to implement, has similar properties. From a
constructive point of view, the last few years have seen a wealth of
cryptosystems with attractive novel properties relying on pairings.

For a random curve, the parameter k usually becomes so big that the
result of a pairing cannot even be output any more. One of the major
algorithmic problems related to pairings is thus the construction of
curves with a given, smallish k.
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Participants :
      Karim Belabas, Henri Cohen, Jean-Marc Couveignes, Andreas Enge, Damien Robert.


Complex multiplication provides a link between number fields and
algebraic curves; for a concise introduction in the elliptic curve case,
see [8] , for more background material,
[35] . In fact, for most curves [image: Im23 $\#119966 $] over a
finite field, the endomorphism ring of [image: Im20 $Jac_\#119966 $], which determines
its L-function and thus its cardinality, is an order in a special
kind of number field K, called CM field. The CM field
of an elliptic curve is an imaginary-quadratic field [image: Im34 ${\#8474 (\sqrt D)}$]
with D<0, that of a hyperelliptic curve of genus g is an
imaginary-quadratic extension of a totally real number field of
degree g. Deuring's lifting theorem ensures that [image: Im23 $\#119966 $] is the reduction
modulo some prime of a curve with the same endomorphism ring, but defined
over the Hilbert class field HK of K.

Algebraically, HK is defined as the maximal unramified abelian
extension of K; the Galois group of HK/K is then precisely the
class group ClK. A number field extension H/K is called
Galois if [image: Im35 ${H\#8771 K[X]/(f)}$] and H contains all
complex roots of f. For instance, [image: Im36 ${\#8474 (\sqrt 2)}$]
is Galois since it contains not only [image: Im37 $\sqrt 2$], but also the second
root [image: Im38 ${-\sqrt 2}$] of X2-2, whereas [image: Im39 ${\#8474 (\mroot 23)}$] is not
Galois, since it does not contain the root [image: Im40 ${e^{2\#960 i/3}\mroot 23}$]
of X3-2. The Galois group GalH/K is the group of
automorphisms of H that fix K; it permutes the roots of f. Finally,
an abelian extension is a Galois extension with abelian Galois
group.

Analytically, in the elliptic case HK may be obtained by adjoining to
K the singular value j(τ) for a complex valued, so-called
modular function j in some [image: Im41 ${\#964 \#8712 \#119978 _K}$]; the correspondence
between GalH/K and ClK allows to obtain the different roots
of the minimal polynomial f of j(τ) and finally f itself.
A similar, more involved construction can be used for hyperelliptic curves.
This direct application of complex multiplication yields algebraic
curves whose L-functions are known beforehand; in particular, it is
the only possible way of obtaining ordinary curves for pairing-based
cryptosystems.

The same theory can be used to develop algorithms that, given an
arbitrary curve over a finite field, compute its L-function.

A generalisation is provided by ray class fields; these are
still abelian, but allow for some well-controlled ramification. The tools
for explicitly constructing such class fields are similar to those used
for Hilbert class fields.
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Number theory

Being able to compute quickly and reliably algebraic invariants is an
invaluable aid to mathematicians: It fosters new conjectures, and often shoots
down the too optimistic ones. Moreover, a large body of theoretical results
in algebraic number theory has an asymptotic nature and only applies for large
enough inputs; mechanised computations (preferably producing independently
verifiable certificates) are often necessary to finish proofs.

For instance,
many Diophantine problems reduce to a set of Thue equations of the form
P(x, y) = a for an irreducible, homogeneous [image: Im42 ${P\#8712 \#8484 [x,y]}$], [image: Im43 ${a\#8712 \#8484 }$], in
unknown integers x, y. In principle, there is an algorithm to solve the
latter, provided the class group and units of a rupture field of P are
known. Since there is no other way to prove that the full set of solutions
is obtained, these algebraic invariants must be computed and certified,
preferably without using the GRH.

Deeper invariants such as the Euclidean spectrum are related to more theoretical
concerns, e.g., determining new examples of principal, but not norm-Euclidean
number
fields, but could also yield practical new algorithms: Even if a number field
has class number larger than 1 (in particular, it is not norm-Euclidean),
knowing the upper part of the spectrum should give a partial gcd
algorithm, succeeding for almost all pairs of elements of [image: Im7 $\#119978 _K$]. As a
matter of fact, every number field which is not a complex multiplication field and whose unit group has rank strictly greater
than 1 is almost norm-Euclidean  [32] , [33] .

Algorithms developed by the team are implemented in the free Pari/Gp system
for number theory maintained by K. Belabas, which is a reference and the
tool of choice for the worldwide number theory community.
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Cryptology

Public key cryptology has become a major application domain for algorithmic
number theory. This is already true for the ubiquitous RSA system, but even
more so for cryptosystems relying on the discrete logarithm problem in algebraic
curves over finite fields [7] .
For the same level of security, the latter require
smaller key lengths than RSA, which results in a gain of bandwidth and
(depending on the precise application) processing time. Especially in
environments that are constrained with respect to space and computing power
such as smart cards and embedded devices, algebraic curve cryptography has become
the technology of choice. Most of the research topics of the Lfant team
concern directly problems relevant for
curve-based cryptology: The difficulty of the discrete logarithm problem in
algebraic curves determines the security of the
corresponding cryptosystems. Complex multiplication, point counting and
isogenies provide, on one hand,
the tools needed to create secure instances of curves. On the other hand,
isogenies have been found to have direct cryptographic applications to hash
functions [34]  and encryption [38] . Pairings in
algebraic
curves have proved to be a rich source for novel
cryptographic primitives. Class groups of number fields
also enter the game as candidates for algebraic groups in which cryptosystems
can
be implemented. However, breaking these systems by computing discrete logarithms
has proved to be easier than in algebraic curves; we intend to pursue this
cryptanalytic strand of research.

Apart from solving specific problems related to cryptology,
number theoretic expertise is vital to provide cryptologic advice to industrial
partners in joint projects. It is to be expected
that continuing pervasiveness and ubiquity of very low power computing devices
will render the need for algebraic curve cryptography more pressing in
coming years.
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  [bookmark: uid13] Section: 
      Software
Pari/Gp
Participants :
      Karim Belabas [correspondant] , Bill Allombert, Henri Cohen, Andreas Enge.


http://pari.math.u-bordeaux.fr/ 

License: GPL 2+

Current stable version of Pari/Gp: 2.3.5, 2010

Current testing version of Pari/Gp: 2.4.3.alpha, 2010

Current version of gp2c : 0.0.5pl10, 2010

Pari/Gp is a widely used computer algebra system designed for fast
computations in number theory (factorisation, algebraic number theory,
elliptic curves, ...), but it also contains a large number of other
useful functions to compute with mathematical entities such as matrices,
polynomials, power series, algebraic numbers, etc., and many
transcendental functions.


	[bookmark: uid14] Pari is a C library, allowing fast computations.



	[bookmark: uid15] Gp is an easy-to-use interactive shell giving access to the Pari functions.



	[bookmark: uid16] gp2c , the GP-to-C compiler, combines the best of both worlds by compiling
Gp scripts to the C language and transparently loading the resulting
functions into Gp; scripts compiled by gp2c  will typically run three to
four times faster.
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Mpc
Participants :
      Andreas Enge [correspondant] , Philippe Théveny, Paul Zimmermann [Inria project-team Caramel] .


http://mpc.multiprecision.org/ 

License: LGPL 2.1+

Current version: 0.8.2 Dianthus deltoides, 2010

Mpc is a C library for the arithmetic of complex numbers with arbitrarily high
precision and correct rounding of the result. It is built upon and follows the
same principles as Mpfr. The Mpc library has been registered in France by the
Agence pour la Protection des Programmes on 2003-02-05 under the number IDDN FR
001 060029 000 R P 2003 000 10000.

It is a prerequisite for the release 4.5 of the Gnu compiler
collection Gcc, where it is used in the C and Fortran frontends for constant
folding, the evaluation of constant mathematical expressions during the
compilation of a program.
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      Software
Mpfrcx
Participant :
      Andreas Enge.


http://mpfrcx.multiprecision.org/ 

License: LGPL 2.1+

Current version: 0.3.1 Banane, 2010

Mpfrcx is a library for the arithmetic of univariate polynomials over
arbitrary precision real (Mpfr) or complex (Mpc) numbers, without control on
the rounding. For the time being, only the few functions needed to implement the
floating point approach to complex multiplication are implemented. On the other
hand, these comprise asymptotically fast multiplication routines such as
Toom-Cook and the FFT.
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      Software
Cm
Participant :
      Andreas Enge.


http://cm.multiprecision.org/ 

License: GPL 2+

Initial public release: version 0.1 Apfelkraut, 2009

The Cm software implements the construction of ring class fields of imaginary
quadratic number fields and of elliptic curves with complex multiplication via
floating point approximations. It consists of libraries that can be called from
within a C program and of executable command line applications. For the
implemented algorithms, see [9] .


[bookmark: uid20] Section: 
      Software
Cubic
Participant :
      Karim Belabas.


http://www.math.u-bordeaux.fr/~belabas/research/software/cubic-1.0.tgz 

License: GPL 2+

Current stable version: 1.0, 2009

Cubic is a standalone program that prints out generating equations for cubic
fields of either signature and bounded discriminant. It depends on the Pari library. The algorithm has quasi-linear time complexity
in the size of the output.
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  [bookmark: uid22] Section: 
      New Results
Discrete logarithms
Participant :
      Andreas Enge.


In [36] , we presented for the first time an algorithm
for the discrete logarithm problem in certain algebraic curves that runs
in subexponential time less than L(1/2), namely, L(1/3 + ε)
for any ε>0. In [25] ,
we lower this complexity to L(1/3), showing that the corresponding
algebraic curves (essentially Cab curves of genus g growing at
least quadratically with the logarithmic size of the finite field
of definition, logq) result in cryptosystems that are as easily
attacked as RSA or tradtional cryptosystems based on discrete logarithms
in finite fields. We provide a complete classification of all the
curves to which the attack applies. The article has been accepted by
Journal of Cryptology.


[bookmark: uid23] Section: 
      New Results
Class groups and other invariants of
number fields
Participants :
      Bill Allombert, Karim Belabas, Jean-François Biasse, Jean-Paul Cerri, Pierre Lezowski.


J.-F. Biasse has made practical improvements to the sieving-based
algorithm of Jacobson [37]  for computing the group structure
of the ideal class group of an imaginary-quadratic number
field [15] .
These improvements, based on the use of large prime variations combined with
structured Gaussian elimination, have led to the computation of the
class group structure of a number field with a 110-digit discriminant
(whereas older techniques were limited to 90-digit discriminants).

He has also determined a class of number fields
for which the ideal class group, the regulator, and a system of fundamental
units of the maximal order can be computed in subexponential time L(1/3, O(1))
(whereas the best previously known algorithms have complexity L(1/2, O(1))).
This class of number fields is analogous to the class of curves
described in [25] , cf. 
	6.1 .
The article [22]  has been submitted to
Mathematics of Computation.

In collaboration with M. Jacobson, J.-F. Biasse has described
improvements to the sieving methods for ideal class group, regulator and
fundamental unit computation [16] .
These improvements lead to a significant
speed-up over the previous state of the art, and the computation of the
regulator of a number field of a 110 digit discriminant, whereas the
previous record was 100 digits.

Together with M. Jacobson and A. Silvester, J.-F. Biasse
has improved the algorithms for solving the discrete logarithm problem and the
principal ideal problem, which are involved in the design of
cryptosystems based on number fields [17] . They have assessed the impact of these
improvements on the security of theses cryptosystems and provided
estimates on the size of the keys required to ensure a level of security
equivalent to the recommendations of the NIST.

Using new theoretical ideas and his novel algorithmic approach,
J.-P. Cerri has discovered examples of generalised Euclidean number
fields and of 2-stage norm-Euclidean number fields in degree
greater than 2 [23] . These notions, extending the link
between usual
Euclideanity and principality of the ring of integers of a number
field had already received much attention before; however, examples
were only known for quadratic fields.

The algorithms developed by J.-P. Cerri for totally real fields
are currently being generalised by P. Lezowski to arbitrary number
fields.

In collaboration with L. Grenié, B. Allombert and K. Belabas have
considerably improved the practical efficiency of PARI/GP algorithms
computing class and unit groups, in particular for number fields of large
degree. They are currently working on a flexible parallelisation framework
of the PARI/GP system; a first application target is to improve the relation
finding part of the class group algorithms (affording in principle a linear
speedup).
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      New Results
Number and function field enumeration
Participants :
      Karim Belabas, Henri Cohen, Anna Morra, Pieter Rozenhart.


In joint work with É. Fouvry (Orsay), K. Belabas has proved a new case of
Malle's conjecture, a strong effective form of the inverse Galois problem [14] . They have given an asymptotic enumeration of Galois
sextic fields with group S3, ordered by discriminant, using classical
Davenport-Heilbronn theory in a novel way. The same result was independently
obtained by Bhargava and Wood using a different method.

In joint work with R. Scheidler and M. Jacobson, P. Rozenhart
has generalized Belabas's algorithm for tabulating cubic
number fields to cubic function fields. This generalization required
function field analogues of the Davenport-Heilbronn Theorem and of the
reduction theory of binary cubic and quadratic forms. As an
additional application, they have modified the tabulation algorithm to compute
3-ranks of quadratic function fields by way of a generalisation of a
theorem due to Hasse. The algorithm, whose complexity is quasi-linear in the
number of reduced binary cubic forms up to some upper bound X, works
very well in practice. The article [30]  has been submitted to
Mathematics of Computation.
A follow-up article [29]  describes how to use these results
to compute 3-ranks of quadratic function fields, in particular
yielding examples of unusually high 3-rank.

H. Cohen and A. Morra have obtained an explicit expression for the Dirichlet
generating function associated to cubic extensions of an arbitrary number
field with a fixed quadratic resolvent. As a corollary, they have proved
refinements of Malle's conjecture in this context. The article [24] 
has been accepted by Journal of Algebra.


[bookmark: uid25] Section: 
      New Results
L-functions
Participants :
      Bill Allombert, Karim Belabas, Henri Cohen, Pascal Molin.


Classical theorems of Davenport and Heilbronn enumerate cubic fields and
estimate the average 3-torsion of class groups of quadratic fields. In
joint work with M. Bhargava (Princeton) and C. Pomerance (Dartmouth
College), K. Belabas has proved the first power-saving error terms for those
results, lending support to a conjecture of Roberts [13] .
As a corollary, the
generating Dirichlet series associated to cubic discriminants can be
analytically continued to the left of its simple pole at s = 1, proving a
conjecture of Cohen. Since then, in the summer of 2010,
Bhargava, Shankar and Tsimerman have proven
Roberts's full conjecture.

As for effective computations of general L-functions, methods have been designed
for ten years and programs due to T. Dokchitser and M. Rubinstein are available.
In his thesis [12] , P. Molin proved the complexity of such algorithms and designed
improvements which led to the first fast and proven calculations. He gave explicit
estimates which make it possible to experiment and investigate further on
L-functions. He is currently implementating his L-function algorithms in
the PARI/GP system with the help of B. Allombert.
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      New Results
Complex multiplication
Participant :
      Andreas Enge.


With F. Morain, A. Enge has determined exhaustively under which conditions
“generalised Weber functions”, that is, simple quotients of η functions
of not necessarily prime transformation level and not necessarily of genus 1,
yield class invariants [26] . The result is a new
infinite family of generators for ring class fields, usable to determine complex
multiplication curves. We examine in detail which lower powers of the functions
are applicable, thus saving a factor of up to 12 in the size of the class
polynomials, and describe the cases in which the polynomials have integral
rational instead of integral quadratic coefficients.

In [4] , A. Enge and his coauthors have described a
quasi-linear algorithm for computing generating polynomials of Hilbert class
fields that rely on Chinese remaindering instead of floating point
evaluations. It has been made practical and space efficient for computing
reductions of the polynomials modulo large primes by A. Sutherland
[39] ; his implementation showed that the new algorithm was
preferable for large class numbers. In [20] , A. Enge and
A. Sutherland have provided the one missing link to turn the algorithm into
the method of choice regardless of the class number, by providing a way of
applying the Chinese remainder paradigm to class invariants, smaller
generators of the ring class field.
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      New Results
Elliptic curve cryptology
Participants :
      Jérôme Milan, Vincent Verneuil.


Together with C. Giraud, V. Verneuil has addressed the problem of
protecting elliptic curve scalar
multiplication implementations against side-channel analysis by using the
atomicity principle [21] . First of all they reexamine classical
assumptions made by
scalar multiplication designers and point out that some of them are not
relevant in the context of embedded devices. They then describe the
state of the art of atomic scalar multiplication and propose an atomic
pattern improvement method. Compared to the most efficient atomic scalar
multiplication published so far, their technique shows an average speed
improvement of up to 10.6%.

In [19] , V. Verneuil and his coauthors
introduce a technique of correlation
analysis using only one execution power curve during an exponentiation to
recover the whole secret exponent manipulated by the chip. As in Walter's
Big Mac attack, longer keys facilitate this approach, and its
success depends on the characteristics of the arithmetic coprocessor.
Contrarily to the Big Mac attack, it applies even in the case of regular
implementations such as the square-and-multiply-always or the Montgomery
ladder. They also find that DSA and Diffie-Hellman exponentiations are no
longer immune against CPA.

J. Milan has worked with T. Clausen and U. Herberg (Hipercom@LIX, École polytechnique)
to bring some basic authentication mechanism to the OLSRv2 routing
protocol in mobile ad-hoc networks by using digital
signatures based on elliptic curves (ECDSA) and pairings on such curves (BSL-like signature).
Such a mechanism has been developed and integrated within Hipercom@LIX's jOlsrv2 framework,
which provides a Java-based implementation of the OLSRv2 protocol and interfaces with a
network simulator (NS2) [18] .
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  [bookmark: uid29] Section: 
      Contracts and Grants with Industry
Industrial ANR PACE
Participants :
      Andreas Enge, Jérôme Milan.


https://pace.rd.francetelecom.com/ 

The Pace project unites researchers of
France Télécom, Gemalto, NXP, Cryptolog International,
the Inria project teams Cascade and Lfant and University of Caen.
It deals with electronic commerce and more precisely with electronic cash
systems. Electronic cash refers to money exchanged electronically, with the aim
of emulating paper money and its traditional properties and use
cases, such as the anonymity of users during spending. The goal of Pace is to use the
new and powerful tool of bilinear pairings on algebraic curves
to solve remaining open problems in
electronic cash, such as the strong unforgeability of money and the strong
unlinkability of transactions, which would allow users to conveniently be
anonymous and untraceable. It also studies some cryptographic tools that are
useful in the design of e-cash systems.


[bookmark: uid30] Section: 
      Contracts and Grants with Industry
Thèse cifre
Participants :
      Karim Belabas, Vincent Verneuil.


Vincent Verneuil, co-directed with B. Feix (Inside Contactless) and C. Clavier
(Université de Limoges), works at Inside Contactless on elliptic curve
cryptography, with an
emphasis on embedded systems and side-channel attacks.
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      Other Grants and Activities
National Initiatives

[bookmark: uid33] ANR AlgoL: Algorithmics of L-functions
Participants :
      Bill Allombert, Karim Belabas, Henri Cohen, Jean-Marc Couveignes, Andreas Enge, Pascal Molin.


http://www.math.u-bordeaux1.fr/~belabas/algol/index.html 

The AlgoL project comprises research teams in Bordeaux, Montpellier,
Lyon, Toulouse and Besançon.

It studies the so-called L-functions in number theory from an algorithmic and
experimental point of view. L-functions encode delicate arithmetic
information, and crucial arithmetic conjectures revolve around them: Riemann
Hypotheses, Birch and Swinnerton-Dyer conjecture, Stark conjectures, Bloch-Kato
conjectures, etc.

Most of current number theory conjectures originate from (usually mechanised)
computations, and have been thoroughly checked numerically. L-functions and
their special values are no exception, but available tools and actual
computations become increasingly scarce as one goes further away from Dirichlet
L-functions. We develop theoretical algorithms and practical tools to study
and experiment with (suitable classes of) complex or p-adic L-functions,
their coefficients, special or general values, and zeroes. For instance, it is
not known whether K-theoretic invariants conjecturally attached to special
values are computable in any reasonable complexity model. On the other hand,
special values are often readily computed and sometimes provide, albeit
conjecturally, the only concrete handle on said invariants.

New theoretical results are translated into new or more efficient functions in
the Pari/Gp system.
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European Initiatives

[bookmark: uid35] PHC Ulyses: Pairing-based cryptography –
implementation and security
Participants :
      Andreas Enge, Jérôme Milan.


The project is a collaboration with the team of Michael Scott at
Dublin City University, with an emphasis on the exchange of PhD students.

Its aim is to establish the catalogue of available pairings and determine optimal parameter choices for the underlying finite fields, extension degrees and curve parameters and representations.
Algorithmic improvements in the whole chain of pairing based cryptography between the finite field and the actual cryptographic primitive are attempted to be achieved.


[bookmark: uid36] Section: 
      Other Grants and Activities
Exterior research visitors

The following researchers have visited the Lfant team:


	[bookmark: uid37] Damien Robert, LORIA,
February 8–12



	[bookmark: uid38] Eduardo Friedman, Universidad de Chile,
February 1–20



	[bookmark: uid39] Loïc Grenié, Università di Bologna,
April 5–9 and October 15–20



	[bookmark: uid40] Manuel Charlemagne, Dublin City University,
October 11–15 and December 6–10



	[bookmark: uid41] David Lubicz, Rennes,
December 13–17
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Thesis committees

K. Belabas has been a referee for the thesis of
Alexander Kruppa (Nancy, “Speeding up Integer Multiplication and
Factorization”) and Alexander Rahm (Grenoble, “(Co)homologies and
K-theory of Bianchi groups using computational geometric models”).
He has been a committee member for the PhD defense of Tony Ezome (Toulouse,
“Courbes elliptiques, cyclotomie et primalité”).

Jean-Marc Couveignes has been a committee member for Luca De Feo's PhD defense
on “Algorithmes rapides pour les tours de corps finis et les isogénies”
at École polytechnique.

A. Enge has taken part in the committee for Thomas Icart's PhD
“Algorithms mapping into elliptic curves and applications”
at Université du Luxemburg.


[bookmark: uid44] Section: 
      Dissemination
Editorships

K. Belabas acts on the editorial board of
Journal de Théorie des Nombres de Bordeaux since 2005
and of Archiv der Mathematik since 2006.

H. Cohen is an editorial board member of
Journal de Théorie des Nombres de Bordeaux;
he is an editor for the Springer book series
Algorithms and Computations in Mathematics (ACM).

A. Enge is an editor of Designs, Codes and Cryptography
since 2004.
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Invited talks

A. Enge has given a talk on “Class polynomials by Chinese remaindering”
at ECC 2010 – Workshop on Elliptic Curves and Computation
in Redmond.

P. Rozenhart has presented “Computing quadratic function fields with high
3-rank via cubic field tabulation” at the 11th meeting of the Canadian
Number Theory Association.
He has given an invited talk at Bates College in Lewiston,
Maine, USA, titled “Computing quadratic function fields with high
3-rank via cubic field tabulation”.


[bookmark: uid46] Section: 
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Conference organisation and programme committees

We have organised a workshop on the algorithmics of L-functions from
December 6 to 10 at Bordeaux. 18 talks were programmed during the week,
which left ample room for scientific exchange. In addition to the
Lfant team members, the workshop was attended by a dozen of researchers.
Two students from ENS Paris, who intend to pursue a PhD with the team,
took also part.

The first day was dedicated to algorithmics of number fields; the second,
to Iwasawa theory; the third, to theta functions and arithmetic groups;
the fourth, to the search for rational points on modular curves and the
algorithmics of holomorphic functions. On the last day, we have treated
complex multiplication and p-adic L-functions.

The following persons have given a presentation:
Bill Allombert (Bordeaux),
Peter Bruin (Orsay),
Julien Blondeau (Besançon),
Henri Cohen (Bordeaux),
Guillaume Perbet (Besançon),
Christophe Delaunay (Lyon),
Damien Robert (Bordeaux),
Aurel Page (ENS Paris),
Pierre Parent (Bordeaux),
Marusia Rebolledo (Clermont-Ferrand),
Jean-Marc Couveignes (Bordeaux),
Pascal Molin (Nancy),
Nicolas Mascot (ENS Paris),
Andreas Enge (Bordeaux),
Xavier Roblot (Tokyo).

H. Cohen is a member of the scientific comittee for
ANTS – Algorithmic Number Theory Symposium, the major,
biennial international conference in the field.

A. Enge acts on the scientific advisory board of the
Journées Nationales de Calcul Formel.


[bookmark: uid47] Section: 
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Seminar

The following external speakers have given a presentation at the
Lfant seminar, see

http://www.math.u-bordeaux1.fr/~enge/lfant/index.php?category=seminar 


	[bookmark: uid48] Damien Robert:
“Calcul de pairings avec les fonctions thetas”



	[bookmark: uid49] Damien Robert:
“Computing isogenies between abelian varieties”



	[bookmark: uid50] Eduardo Friedman:
“Special values of Dirichlet series and Zeta integrals associated to
polynomials”



	[bookmark: uid51] Loïc Grenié:
“Comment vérifier si deux représentations galoisiennes ont la même
semi-simplifiée”



	[bookmark: uid52] Michael Drmota:
“An asymptotic analysis of Cuckoo hashing”



	[bookmark: uid53] Paul Zimmermann:
“Peut-on calculer sur ordinateur?”



	[bookmark: uid54] Manuel Charlemagne:
“The security of the discrete logarithm problem (DLP) in the context of
pairings”



	[bookmark: uid55] Damien Bernard:
“Petits zéros de fonctions L associées à un corps quadratique
imaginaire”



	[bookmark: uid56] Peter Bruin:
“Sur le calcul des coefficients des formes modulaires”



	[bookmark: uid57] David Lubicz:
“Couplage avec les fonctions thêta”





[bookmark: uid58] Section: 
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Teaching

K. Belabas has taught a bachelor course in cryptology, and master courses on
computer algebra, elliptic curves, and the algorithmic of public key
cryptography. He has supervised master projects on cyclotomic proofs of
(cases of) Fermat's Last Theorem, optimal elliptic curve models for
cryptography, factorisation of univariate polynomials over a finite field,
asymptotically fast integer multiplication (from Karatsuba to Fürer), and
sub-quadratic integer division algorithms.

J.-F. Biasse was a teaching assistant (“moniteur”) at the Applied
Mathematics Department (CMAP) of École polytechnique. He was involved
in the following courses:
Introduction to C++, Numerical Analysis, Probability.

J.-P. Cerri has been in charge during two years of the course
“Computational Number Theory” of the international research
master programme Algant. This year, he teaches bachelor students
working towards the master programme CSI on cryptology and information
security. He is responsable for running the bachelor programmes in
mathematics and computer science.

A. Enge is a “Chargé d'enseignement” at the Department of Informatics
of École polytechnique. He has taught a master course on cryptology and
a bachelor course on web programming.
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Research administration

K. Belabas is the head of the mathematics department of University
Bordeaux 1.
He also leads the computer science support service
(“cellule informatique”) of the Institute of Mathematics of Bordeaux
and coordinates the participation of the institute in the
regional computation cluster PlaFRIM.

He is an elected member of the councils of both the math and computer science
department (UFR) and the Math Institute (IMB).

A. Enge has taken part in the hiring committees for two maîtres de
conférences in mathematics at the Universities of Bordeaux and Caen,
and for a CNRS chair in cryptology at the department of computer science
of University of Versailles.
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