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follow-up to the CAIMAN project-team which was stopped at the end of
June 2007. NACHOS is a joint team with CNRS and the University of
Nice-Sophia Antipolis (UNS), through the J.A. Dieudonné
Mathematics Laboratory (UMR CNRS 6621).
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Overall objectives

The research activities of the NACHOS project-team are concerned with
the formulation, analysis and evaluation of numerical methods and high
performance resolution algorithms for the computer simulation of
evolution problems in complex domains and heterogeneous media. The
team concentrates its activities on mathematical models that rely on
first order linear systems of partial differential equations (PDEs)
with variable coefficients and more particularly, PDE systems
pertaining to electrodynamics and elastodynamics with applications to
computational electromagnetics and computational geoseismics. These
applications involve the interaction of the underlying physical fields
with media exhibiting space and time heterogeneities such as when
studying the propagation of electromagnetic waves in biological
tissues or the propagation of seismic waves in complex geological
media. Moreover, in most of the situations of practical relevance, the
computational domain is irregularly shaped or/and it includes
geometrical singularities. Both the heterogeneity and the complex
geometrical features of the underlying media motivate the use of
numerical methods working on non-uniform discretizations of the
computational domain. In this context, ongoing research efforts of
the team aim at the development of unstructured (or hybrid
unstructured/structured) mesh based methods with activities ranging
from the mathematical analysis of numerical methods for the solution
of the systems of PDEs of electrodynamics and elastodynamics, to the
development of prototype 3D simulation software that efficiently
exploit the capabilities of modern high performance computing
platforms.

In the case of electrodynamics, the mathematical model of interest is
the full system of unsteady Maxwell equations [38] 
which is a first-order hyperbolic linear system of PDEs (if the
underlying propagation media is assumed to be linear). This system
can be numerically solved using so-called time domain methods among
which the Finite Difference Time Domain (FDTD) method introduced by
K.S. Yee [45]  in 1996 is the most popular and which
often serves as a reference method for the works of the team. In the
vast majority of existing time domain methods, time advancing relies
on an explicit time scheme. For certain types of problems, a time
harmonic evolution can be assumed leading to the formulation of the
frequency domain Maxwell equations whose numerical resolution requires
the solution of a linear system of equations (i.e in that case, the
numerical method is naturally implicit). Heterogeneity of the
propagation media is taken into account in the Maxwell equations
through the electrical permittivity, the magnetic permeability and the
electric conductivity coefficients. In the general case, the
electrical permittivity and the magnetic permeability are tensors
whose entries depend on space (i.e heterogeneity in space) and
frequency (i.e physical dispersion and dissipation). In the latter
case, the time domain numerical modeling of such materials requires
specific techniques in order to switch from the frequency evolution of
the electromagnetic coefficients to a time dependency. Moreover,
there exists several mathematical models for the frequency evolution
of these coefficients (Debye model, Lorentz model, etc.).

In the case of elastodynamics, the mathematical model of interest is
the system of elastodynamic equations [34]  for
which several formulations can be considered such as the
velocity-stress system. For this system, as with Yee's scheme for
time domain electromagnetics, one of the most popular numerical method
is the finite difference method proposed by J. Virieux
[44]  in 1986. Heterogeneity of the propagation media
is taken into account in the elastodynamic equations through the
Lamé and mass density coefficients. A frequency dependence of the
Lamé coefficients allows to take into account physical attenuation
of the wave fields and characterizes a viscoelastic material. Again,
several mathematical models exist for expressing the frequency
evolution of the Lamé coefficients.

The research activities of the team are currently organized along four
main directions: (a) arbitrary high order finite element type methods
on simplicial meshes for the discretization of the considered systems
of PDEs, (b) efficient time integration methods for dealing with grid
induced stiffness when using non-uniform (locally refined) meshes, (c)
domain decomposition algorithms for solving the algebraic systems
resulting from the discretization of the considered systems of PDEs
when a time harmonic regime is assumed or when time integration relies
on an implicit scheme and (d) adaptation of numerical algorithms to
modern high performance computing platforms. From the point of view
of applications, the objective of the team is to demonstrate the
capabilities of the proposed numerical methodologies for the
simulation of realistic wave propagation problems in complex domains
and heterogeneous media.
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High order discretization methods

The applications in computational electromagnetics and computational
geoseismics that are considered by the team lead to the numerical
simulation of wave propagation in heterogeneous media or/and involve
irregularly shaped objects or domains. The underlying wave propagation
phenomena can be purely unsteady or they can be periodic (because the
imposed source term follows a time harmonic evolution). In this
context, the overall objective of the research activities undertaken
by the team is to develop numerical methods that fulfill the following
features:



	[bookmark: uid8] Accuracy. The foreseen numerical methods should ideally rely on
discretization techniques that best fit to the geometrical
characteristics of the problems at hand. For this reason, the team
focuses on methods working on unstructured, locally refined, even
non-conforming, simplicial meshes. These methods should also be
capable to accurately describe the underlying physical phenomena
that may involve highly variable space and time scales. With
reference to this characteristic, two main strategies are possible:
adaptive local refinement/coarsening of the mesh (i.e
h-adaptivity) and adaptive local variation of the interpolation
order (i.e p-adaptivity). Ideally, these two strategies are
combined leading to the so-called hp-adaptive methods.





	[bookmark: uid9] Numerical efficiency. The simulation of unsteady problems most
often rely on explicit time integration schemes. Such schemes are
constrained by a stability criteria linking the space and time
discretization parameters that can be very restrictive when the
underlying mesh is highly non-uniform (especially for locally
refined meshes). For realistic 3D problems, this can represent a
severe limitation with regards to the overall computing time. In
order to improve this situation, one possible approach which is
considered by the team consists in resorting to an implicit time
scheme in regions of the computational domain where the underlying
mesh is refined while an explicit time scheme is applied to the
remaining part of the domain. The resulting hybrid
explicit-implicit time integration strategy raises several
challenging questions concerning both the mathematical analysis
(stability and accuracy, especially for what concern numerical
dispersion), and the computer implementation on modern high
performance systems (data structures, parallel computing aspects).
On the other hand, for implicit time integration schemes on one
hand, and for the numerical treatment of time harmonic problems on
the other hand, numerical efficiency also refers to a foreseen
property of linear system solvers.





	[bookmark: uid10] Computational efficiency. Despite the ever increasing
performances of microprocessors, the numerical simulation of
realistic 3D problems is hardly performed on a high-end workstation
and parallel computing is a mandatory path. Realistic 3D wave
propagation problems lead to the processing of very large volumes of
data. The latter results from two combined parameters: the size of
the mesh i.e the number of mesh elements, and the number of
degrees of freedom per mesh element which is itself linked to the
degree of interpolation and to the number of physical variables (for
systems of partial differential equations). Hence, numerical
methods must be adapted to the characteristics of modern parallel
computing platforms taking into account their hierarchical nature
(e.g multiple processors and multiple core systems with complex
cache and memory hierarchies). Appropriate parallelization
strategies need to be designed that combine distributed memory and
shared memory programming paradigms. Moreover, maximizing the
effective floating point performances will require the design of
numerical algorithms that can benefit from the optimized BLAS linear
algebra kernels.




The discontinuous Galerkin method (DG) was introduced in 1973 by Reed
and Hill to solve the neutron transport equation. From this time to
the 90's a review on the DG methods would likely fit into one page.
In the meantime, the finite volume approach has been widely adopted by
computational fluid dynamics scientists and has now nearly supplanted
classical finite difference and finite element methods in solving
problems of non-linear convection. The success of the finite volume
method is due to its ability to capture discontinuous solutions which
may occur when solving non-linear equations or more simply, when
convecting discontinuous initial data in the linear case. Let us first
remark that DG methods share with finite volumes this property since a
first order finite volume scheme can be viewed as a 0th order DG
scheme. However a DG method may be also considered as a finite element
one where the continuity constraint at an element interface is
released. While it keeps almost all the advantages of the finite
element method (large spectrum of applications, complex geometries,
etc.), the DG method has other nice properties which explain the
renewed interest it gains in various domains in scientific computing
as witnessed by books or special issues of journals dedicated to this
method [31] - [32] - [33] - [37] :



	[bookmark: uid11] it is naturally adapted to a high order approximation of the
unknown field. Moreover, one may increase the degree of the
approximation in the whole mesh as easily as for spectral methods
but, with a DG method, this can also be done very locally. In most
cases, the approximation relies on a polynomial interpolation method
but the DG method also offers the flexibility of applying local
approximation strategies that best fit to the intrinsic features of
the modeled physical phenomena.





	[bookmark: uid12] When the discretization in space is coupled to an explicit time
integration method, the DG method leads to a block diagonal mass
matrix independently of the form of the local approximation (e.g the
type of polynomial interpolation). This is a striking difference
with classical, continuous finite element formulations. Moreover,
the mass matrix is diagonal if an orthogonal basis is chosen.





	[bookmark: uid13] It easy handles complex meshes. The grid may be a classical
conforming finite element mesh, a non-conforming one or even a
hybrid mesh made of various elements (tetrahedra, prisms, hexahedra,
etc.). The DG method has been proved to work well with highly
locally refined meshes. This property makes the DG method more
suitable to the design of a hp-adaptive solution strategy (i.e
where the characteristic mesh size h and the interpolation degree
p changes locally wherever it is needed).





	[bookmark: uid14] It is flexible with regards to the choice of the time stepping
scheme. One may combine the DG spatial discretization with any
global or local explicit time integration scheme, or even implicit,
provided the resulting scheme is stable,





	[bookmark: uid15] it is naturally adapted to parallel computing. As long as an
explicit time integration scheme is used, the DG method is easily
parallelized. Moreover, the compact nature of DG discretization
schemes is in favor of high computation to communication ratio
especially when the interpolation order is increased.




As with standard finite element methods, a DG method relies on a
variational formulation of the continuous problem at hand. However,
due to the discontinuity of the global approximation, this variational
formulation has to be defined at the element level. Then, a degree of
freedom in the design of a DG method stems from the approximation of
the boundary integral term resulting from the application of an
integration by parts to the element-wise variational form. In the
spirit of finite volume methods, the approximation of this boundary
integral term calls for a numerical flux function which can be based
on either a centered scheme or an upwind scheme, or a blending between
these two schemes.

For the numerical solution of the time domain Maxwell equations, we
have first proposed a non-dissipative high order DG method working on
unstructured conforming simplicial meshes
[11] -[3] . This DG
method combines a central numerical flux function for the
approximation of the integral term at an interface between two
neighboring elements with a second order leap-frog time integration
scheme. Moreover, the local approximation of the electromagnetic
field relies on a nodal (Lagrange type) polynomial interpolation
method. Recent achievements in the framework of the team deal with the
extension of these methods towards non-conforming meshes and
hp-adaptivity [9] -[10] , their
coupling with hybrid explicit/implicit time integration schemes in
order to improve their efficiency in the context of locally refined
meshes [14] , and their extension to the numerical
resolution of the elastodynamic equations modeling the propagation of
seismic waves [4] .


[bookmark: uid16] Section: 
      Scientific Foundations
Domain decomposition methods

Domain Decomposition (DD) methods are flexible and powerful techniques
for the parallel numerical solution of systems of PDEs. As clearly
described in [41] , they can be used as a process
of distributing a computational domain among a set of interconnected
processors or, for the coupling of different physical models applied
in different regions of a computational domain (together with the
numerical methods best adapted to each model) and, finally as a
process of subdividing the solution of a large linear system resulting
from the discretization of a system of PDEs into smaller problems
whose solutions can be used to devise a parallel preconditioner or a
parallel solver. In all cases, DD methods (1) rely on a partitioning
of the computational domain into subdomains, (2) solve in parallel the
local problems using a direct or iterative solver and, (3) call for an
iterative procedure to collect the local solutions in order to get the
global solution of the original problem. Subdomain solutions are
connected by means of suitable transmission conditions at the
artificial interfaces between the subdomains. The choice of these
transmission conditions greatly influences the convergence rate of the
DD method. One generally distinguish three kinds of DD methods:



	[bookmark: uid17] overlapping methods use a decomposition of the computational
domain in overlapping pieces. The so-called Schwarz method belongs
to this class. Schwarz initially introduced this method for proving
the existence of a solution to a Poisson problem. In the Schwarz
method applied to the numerical resolution of elliptic PDEs, the
transmission conditions at artificial subdomain boundaries are
simple Dirichlet conditions. Depending on the way the solution
procedure is performed, the iterative process is called a Schwarz
multiplicative method (the subdomains are treated sequently) or an
additive method (the subdomains are treated in parallel).





	[bookmark: uid18] non-overlapping methods are variants of the original Schwarz DD
methods with no overlap between neighboring subdomains. In order to
ensure convergence of the iterative process in this case, the
transmission conditions are not trivial and are generally obtained
through a detailed inspection of the mathematical properties of the
underlying PDE or system of PDEs.





	[bookmark: uid19] substructuring methods rely on a non-overlapping partition of
the computational domain. They assume a separation of the problem
unknowns in purely internal unknowns and interface ones. Then, the
internal unknowns are eliminated thanks to a Schur complement
technique yielding to the formulation of a problem of smaller size
whose iterative resolution is generally easier. Nevertheless, each
iteration of the interface solver requires the realization of a
matrix/vector product with the Schur complement operator which in
turn amounts to the concurrent solution of local subproblems.




Schwarz algorithms have enjoyed a second youth over the last decades,
as parallel computers became more and more powerful and available.
Fundamental convergence results for the classical Schwarz methods were
derived for many partial differential equations, and can now be found
in several books [41] - [40] - [43] .

The research activities of the team on this topic aim at the
formulation, analysis and evaluation of Schwarz type domain
decomposition methods in conjunction with discontinuous Galerkin
approximation methods on unstructured simplicial meshes for the
solution of time domain and time harmonic wave propagation problems.
Ongoing works in this direction are concerned with the design of
non-overlapping Schwarz algorithms for the solution of the time
harmonic Maxwell equations. A first achievement has been a Schwarz
algorithm for the time harmonic Maxwell equations, where a first order
absorbing condition is imposed at the interfaces between neighboring
subdomains [7] . This interface condition is
equivalent to a Dirichlet condition for characteristic variables
associated to incoming waves. For this reason, it is often referred
as a natural interface condition. Beside Schwarz algorithms based on
natural interface conditions, the team also investigates algorithms
that make use of more effective transmission conditions
[8] . From the theoretical point of view, this
represents a much more challenging goal since most of the existing
results on optimized Schwarz algorithms have been obtained for scalar
partial differential equations. For the considered systems of PDEs,
the team plan to extend the techniques for obtaining optimized Schwarz
methods previously developed for the scalar PDEs to systems of PDEs.
This can be done by using appropriate relationships between systems
and equivalent scalar problems [6] .


[bookmark: uid20] Section: 
      Scientific Foundations
High performance numerical computing

Beside basic research activities related to the design of numerical
methods and resolution algorithms for the wave propagation models at
hand, the team is also committed to demonstrate the benefits of the
proposed numerical methodologies in the simulation of challenging
three-dimensional problems pertaining to computational
electromagnetics and computation geoseismics. For such applications,
parallel computing is a mandatory path. Nowadays, modern parallel
computers most often take the form of clusters of heterogeneous
multiprocessor systems, combining multiple core CPUs with accelerator
cards (e.g Graphical Processing Units - GPUs), with complex
hierarchical distributed-shared memory systems. Developing numerical
algorithms that efficiently exploit such high performance computing
architectures raises several challenges, especially in the context of a
massive parallelism. In this context, current efforts of the team are
towards the exploitation of multiple levels of parallelism (computing
systems combining CPUs and GPUs) through the study of hierarchical SPMD
(Single Program Multiple Data) strategies for the parallelization of
unstructured mesh based solvers.
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Computational electromagnetics and bioelectromagnetics

Electromagnetic devices are ubiquitous in present day technology.
Indeed, electromagnetism has found and continues to find applications
in a wide array of areas, encompassing both industrial and societal
purposes. Applications of current interest include (among others)
those related to communications (e.g transmission through optical
fiber lines), to biomedical devices and health (e.g tomography,
power-line safety, etc.), to circuit or magnetic storage design
(electromagnetic compatibility, hard disc operation), to geophysical
prospecting, and to non-destructive evaluation (e.g crack detection),
to name but just a few. Equally notable and motivating are
applications in defense which include the design of military hardware
with decreased signatures, automatic target recognition (e.g bunkers,
mines and buried ordnance, etc.) propagation effects on communication
and radar systems, etc. Although the principles of electromagnetics
are well understood, their application to practical configurations of
current interest, such as those that arise in connection with the
examples above, is significantly complicated and far beyond manual
calculation in all but the simplest cases. These complications
typically arise from the geometrical characteristics of the
propagation medium (irregular shapes, geometrical singularities), the
physical characteristics of the propagation medium (heterogeneity,
physical dispersion and dissipation) and the characteristics of the
sources (wires, etc.).

The significant advances in computer modeling of electromagnetic
interactions that have taken place over the last two decades have been
such that nowadays the design of electromagnetic devices heavily
relies on computer simulation. Computational electromagnetics has
thus taken on great technological importance and, largely due to this,
it has become a central discipline in present-day computational
science. The team currently considers two applications dealing with
electromagnetic wave propagation that are particularly challenging for
the proposed numerical methodologies.

Interaction of electromagnetic waves with biological
tissues. Electromagnetic waves are increasingly present in our
daily environment, finding their sources in domestic appliances and
technological devices as well. With the multiplication of these
sources, the question of potential adverse effects of the interaction
of electromagnetic waves with humans has been raised in a number of
concrete situations quite recently. It is clear that this question
will be a major concern for our citizens in a near future, especially
in view of the ever-rising adoption of wireless communication systems.
Beside, electromagnetic waves also find applications in the medical
domain for therapeutic and diagnostic purposes. Two main reasons
motivate our commitment to consider this type of problem for the
application of the numerical methodologies developed in the NACHOS
project-team:



	[bookmark: uid23] first, from the numerical modeling point of view, the
interaction between electromagnetic waves and biological tissues
exhibit the three sources of complexity listed above and are thus
particularly challenging for pushing one step forward the
state-of-the art of numerical methods for computational
electromagnetics. The propagation media is strongly heterogeneous
and the electromagnetic characteristics of the tissues are frequency
dependent. Interfaces between tissues have rather complicated
shapes that cannot be accurately discretized using Cartesian meshes.
Finally, the source of the signal often takes the form of a
complicated device (e.g a mobile phone or an antenna array).





	[bookmark: uid24] second, the study of the interaction between electromagnetic
waves and living tissues finds applications of societal relevance
such as the assessment of potential adverse effects of
electromagnetic fields or the utilization of electromagnetic waves
for therapeutic or diagnostic purposes. It is widely recognized
nowadays that numerical modeling and computer simulation of
electromagnetic wave propagation in biological tissues is a
mandatory path for improving the scientific knowledge of the complex
physical mechanisms that characterize these applications.




Despite the high complexity in terms of both heterogeneity and
geometrical features of tissues, the great majority of numerical
studies have been conducted using the widely known FDTD method. In
this method, the whole computational domain is discretized using a
structured (Cartesian) grid. Due to the possible straightforward
implementation of the algorithm and the availability of computational
power, FDTD is currently the leading method for numerical assessment
of human exposure to electromagnetic waves. However, limitations are
still seen, due to the rather difficult departure from the commonly
used rectilinear grid and cell size limitations regarding very
detailed structures of human tissues. In this context, the general
objective of the works of the NACHOS project-team is to demonstrate
the benefits of high order unstructured mesh based Maxwell solvers for
a realistic numerical modeling of the interaction of electromagnetic
waves and living tissues.

[bookmark: uid25]Figure
	1. Exposure of head tissues to an electromagnetic wave emitted
by a localized source
Top figures: surface triangulations of the skin and the skull.
Bottom figures: contour lines of the amplitude of the electric field.	
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Interaction of electromagnetic waves with charged
particle beams. Physical phenomena involving charged particles
take place in various physical and technological situations such as in
plasmas, semiconductor devices, hyper-frequency devices, charged
particle beams and more generally, in electromagnetic wave propagation
problems including the interaction with charged particles by taking
into account self consistent fields. The numerical simulation of the
evolution of charged particles under their self-consistent or applied
electromagnetic fields can be modeled by the three dimensional
Vlasov-Maxwell equations. The Vlasov equation describes the transport
in phase space of charged particles submitted to external as well as
self-consistent electromagnetic fields. It is coupled non-linearly to
the Maxwell equations which describe the evolution of the
self-consistent electromagnetic fields. The numerical method which is
mostly used for the solution of these equations is the
Particle-In-Cell (PIC) method. Its basic idea is to discretize the
distribution function f of the particles which is the solution of
the Vlasov equation, by a particle method, which consists in
representing f by a finite number of macro-particles and advancing
those using the Lorentz equations of motion. On the other hand,
Maxwell equations are solved on a computational mesh of the physical
space. The coupling is done by gathering the charge and current
densities from the particles on the mesh to get the sources for the
Maxwell equations, and by interpolating the field data on the
particles when advancing them. In summary the Particle-In-Cell
algorithm, after the initialization phase, is based on a time loop
which consists of the following steps: 1) particle advance, 2) charge
and current density deposition on the mesh, 3) field solve, 4) field
interpolation at particle positions. More physics, like particle
injection or collisions can be added to these basic steps.

PIC codes have become a major research tool in different areas of
physics involving self-consistent interaction of charged particles, in
particular in plasma and beam physics. Two-dimensional simulations
have now become very reliable and can be used as well for qualitative
as for quantitative results that can be compared to experiments with
good accuracy. As the power of supercomputers was increasing three
dimensional codes have been developed in the recent years. However,
even in order to just make qualitative 3D simulations, an enormous
computing power is required. Today's and future massively parallel
supercomputers allow to envision the simulation of realistic problems
involving complex geometries and multiple scales. In order to achieve
this efficiently, new numerical methods need to be designed. This
includes the investigation of high order Maxwell solvers, the use of
hybrid grids with several homogeneous zones having their own
structured or unstructured mesh type and size, and a fine analysis of
load balancing issues. These issues are studied in details in the team
in the context of discontinuous Galerkin discretization methods on
simplicial meshes. Indeed, the team is one of the few groups
worldwide [39]  considering the development
of parallel unstructured mesh PIC solvers for the three-dimensional
Vlasov-Maxwell equations.


[bookmark: uid26] Section: 
      Application Domains
Computational geoseismics

Computational challenges in geoseismics span a wide range of
disciplines and have significant scientific and societal implications.
Two important topics are mitigation of seismic hazards and discovery
of economically recoverable petroleum resources. In the realm of
seismic hazard mitigation alone, it is worthwhile to recall that
despite continuous progress in building numerical modeling
methodologies, one critical remaining step is the ability to forecast
the earthquake ground motion to which a structure will be exposed
during its lifetime. Until such forecasting can be done reliably,
complete success in the design process will not be fulfilled. Our
involvement in this scientific thematic is rather recent and mainly
result from the setup of an active collaboration with geophysicians
from the Géosciences Azur Laboratory in Sophia Antipolis. In the
framework of this collaboration, our objective is to develop high
order unstructured mesh based methods for the numerical solution of
the time domain elastodynamic equations modeling the propagation of
seismic waves in heterogeneous media on one hand, and the design of
associated numerical methodologies for modeling the dynamic formation
of a fault resulting from an earthquake.

To understand the basic science of earthquakes and to help engineers
better prepare for such an event, scientists want to identify which
regions are likely to experience the most intense shaking,
particularly in populated sediment-filled basins. This understanding
can be used to improve building codes in high risk areas and to help
engineers design safer structures, potentially saving lives and
property. In the absence of deterministic earthquake prediction,
forecasting of earthquake ground motion based on simulation of
scenarios is one of the most promising tools to mitigate earthquake
related hazard. This requires intense modeling that meets the spatial
and temporal resolution scales of the continuously increasing density
and resolution of the seismic instrumentation, which record dynamic
shaking at the surface, as well as of the basin models. Another
important issue is to improve our physical understanding of the
earthquake rupture processes and seismicity. Large scale simulations
of earthquake rupture dynamics, and of fault interactions, are
currently the only means to investigate these multi-scale physics
together with data assimilation and inversion. High resolution models
are also required to develop and assess fast operational analysis
tools for real time seismology and early warning systems. Modeling and
forecasting earthquake ground motion in large basins is a challenging
and complex task. The complexity arises from several sources. First,
multiple scales characterize the earthquake source and basin response:
the shortest wavelengths are measured in tens of meters, whereas the
longest measure in kilometers; basin dimensions are on the order of
tens of kilometers, and earthquake sources up to hundreds of
kilometers. Second, temporal scales vary from the hundredth of a
second necessary to resolve the highest frequencies of the earthquake
source up to as much as several minutes of shaking within the basin.
Third, many basins have a highly irregular geometry. Fourth, the
soil's material properties are highly heterogeneous. And fifth,
geology and source parameters are observable only indirectly and thus
introduce uncertainty in the modeling process. Because of its
modeling and computational complexity and its importance to hazard
mitigation, earthquake simulation is currently recognized as a grand
challenge problem.

Numerical methods for the propagation of seismic waves have been
studied for many years. Most of existing numerical software rely on
finite element or finite difference methods. Among the most popular
schemes, one can cite the staggered grid finite difference scheme
proposed by Virieux [44]  and based on the first order
velocity-stress hyperbolic system of elastic waves equations, which is
an extension of the scheme derived by K.S. Yee [45]  for
the solution of the Maxwell equations. The use of cartesian meshes is
a limitation for such codes especially when it is necessary to
incorporate surface topography or curved interface. In this context,
our objective is to solve these equations by finite volume or
discontinuous Galerkin methods on unstructured triangular (2D case) or
tetrahedral (3D case) meshes. Our first achievement in this domain
has been a centered finite volume method on unstructured simplicial
meshes [2] -[1]  for
the simulation of dynamic fault rupture, which has been validated and
evaluated on various problems, ranging from academic test cases to
realistic situations. More recently, a high order discontinuous
Galerkin method has been proposed for the resolution of the systems of
2D and 3D elastodynamic equations[4] .
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  [bookmark: uid28] Section: 
      Software
MAXW-DGTD
Participants :
      Stéphane Lanteri [correspondant] , Loula Fezoui.


MAXW-DGTD is a software suite for the solution of the 2D and 3D
Maxwell equations in the time domain, modeling electromagnetic wave
propagation in heterogeneous, possibly lossy media. MAXW-DGTD
implements a high order discontinuous Galerkin method on unstructured
triangular (2D case) or tetrahedral (3D case) meshes based on nodal
polynomial interpolation. This discontinuous Galerkin method combines
a centered scheme for the evaluation of numerical fluxes at a face
common to neighboring elements, with an explicit Leap-Frog time
scheme. The 3D software and the underlying algorithms are adapted to
distributed memory parallel computing platforms.
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discontinuous Galerkin, tetrahedral mesh.
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[bookmark: uid34] Section: 
      Software
MAXW-DGFD
Participants :
      Mohamed El Bouajaji, Stéphane Lanteri [correspondant] .


MAXW-DGFD is software suite for the solution of the 2D and 3D Maxwell
equations in the frequency domain. This software currently implements
a high order discontinuous Galerkin method on unstructured triangular
(2D case) or tetrahedral (3D case) meshes. The local approximation of
the electromagnetic field currently relies on a nodal (Lagrange type)
polynomial interpolation method. The underlying algorithms are
adapted to distributed memory parallel computing platforms. In
particular, the resolution of the sparse, complex coefficients, linear
systems resulting from the discontinuous Galerkin formulation is
performed by a hybrid iterative/direct solver whose design is based on
domain decomposition principles.
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MAXWPIC-DGTD
Participants :
      Loula Fezoui [correspondant] , Stéphane Lanteri.


MAXWPIC-DGTD is a software for for the solution of the 2D and 3D
systems of coupled Maxwell-Vlasov equations in the time domain. This
software is based on the MAXW-DGTD software and a Particle-In-Cell
(PIC) method for the solution of the Valsov equation. The underlying
algorithms are adapted to distributed memory parallel computing
platforms.
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SISMO-DGTD
Participants :
      Loula Fezoui, Nathalie Glinsky [correspondant] , Stéphane Lanteri.


SISMO-DGTD is a software for the solution of the 2D and 3D
velocity-stress equations in the time domain. This software
implements a high order discontinuous Galerkin method on unstructured
triangular (2D case) or tetrahedral (3D case) meshes. The local
approximation of the velocity and stress components currently relies
on a nodal (Lagrange type) polynomial interpolation method. The
underlying algorithms are adapted to distributed memory parallel
computing platforms.
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  [bookmark: uid53] Section: 
      New Results
Discontinuous Galerkin methods for the Maxwell equations

[bookmark: uid54] DGTD-[image: Im1 $\#8473 _p$] method based on
hierarchical polynomial interpolation
Participants :
      Loula Fezoui, Joseph Charles, Stéphane Lanteri.


The goal of this study is to design a high order DGTD-[image: Im1 $\#8473 _p$]
method based on hierarchical polynomial basis expansions on simplicial
elements in view of the development of a p-adaptive solution
strategy. As a first step, we consider using the conforming
hierarchical polynomial basis expansions described in
[42] .


[bookmark: uid55] DGTD-[image: Im2 ${\#8473 _p\#8474 _k}$] method
on multi-element meshes
Participants :
      Clément Durochat, Stéphane Lanteri, Mark Loriot [Distene, Pôle Teratec, Bruyères-le-Chatel] .


In this work we have designed a DGTD-[image: Im2 ${\#8473 _p\#8474 _k}$] method
formulated on conforming hybrid quadrangular/triangular meshes
[29] -[23] . This is
part of an ongoing effort which aims at developing a flexible
DGTD-[image: Im2 ${\#8473 _p\#8474 _k}$] method on non-conforming hybrid
hexahedral/tetrahedral meshes for the numerical simulation of 3D time
domain electromagnetic wave propagation problems.


[bookmark: uid56] DGTD-[image: Im1 $\#8473 _p$] method for dispersive materials
Participants :
      Claire Scheid, Maciej Klemm [Electromagnetics Group,
University of Bristol, UK] , Stéphane Lanteri.


We have started the development of a numerical methodology combining a
high order DGTD-[image: Im1 $\#8473 _p$] method on triangular meshes with an
auxiliary differential equation modeling the time evolution of the
electric polarization for a dispersive medium of Debye type. This
work comprises both theoretical aspects (stability and convergence
analysis) of the resulting DGTD-[image: Im1 $\#8473 _p$] method for the time
domain Maxwell equations for dispersive media, and application
aspects.


[bookmark: uid57] DGFD-[image: Im1 $\#8473 _p$] method for the frequency
domain Maxwell equations
Participants :
      Victorita Dolean, Mohamed El Bouajaji, Stéphane Lanteri, Ronan Perrussel [Ampère Laboratory, Ecole Centrale de Lyon] .


This study is concerned with the development of an arbitrary high
order discontinuous Galerkin frequency domain DGFD-[image: Im1 $\#8473 _p$]
method on triangular or tetrahedral meshes for solving the 2D and 3D
time harmonic Maxwell equations. Moreover, as a first step towards
the development of a p-adaptive DGFD-[image: Im1 $\#8473 _p$] method, the
approximation order is allowed to be defined at the element level
based on a local geometrical criterion.


[bookmark: uid58] Hybridizable DGTD-[image: Im1 $\#8473 _p$] and
DGFD-[image: Im1 $\#8473 _p$] methods
Participants :
      Stéphane Lanteri, Liang Li, Ronan Perrussel [Ampère Laboratory, Ecole Centrale de Lyon] .


One major drawback of DG methods is their intrinsic cost due to the
very large number of globally coupled degrees of freedom as compared
to classical high order conforming finite element methods. Different
attempts have been made in the recent past to improve this situation
and one promising strategy has been recently proposed by Cockburn et al. [35]  in the form of so-called
hybridizable DG formulations. The distinctive feature of these
methods is that the only globally coupled degrees of freedom are those
of an approximation of the solution defined only on the boundaries of
the elements. The present work is concerned with the study of such
hybridizable DG methods for the solution of the system of Maxwell
equations in the time domain when the time integration relies on an
implicit scheme, or in the frequency domain. Preliminary results have
been presented in [27] .


[bookmark: uid59] Section: 
      New Results
Discontinuous Galerkin methods for the
elastodynamic equations

[bookmark: uid60] DGTD-[image: Im1 $\#8473 _p$] method for the elastodynamic equations
Participants :
      Nathalie Glinsky, Fabien Peyrusse.


We continue developing high order non-dissipative discontinuous
Galerkin methods on simplicial meshes (triangles in the 2D case and
tetrahedra in the 3D case) for the numerical solution of the first
order hyperbolic linear system of elastodynamic equations. These
methods share some ingredients of the DGTD-[image: Im1 $\#8473 _p$] methods
developed by the team for the time domain Maxwell equations among
which, the use of nodal polynomial (Lagrange type) basis functions, a
second order leap-frog time integration scheme and a centered scheme
for the evaluation of the numerical flux at the interface between
neighboring elements. The resulting DGTD-[image: Im1 $\#8473 _p$] methods have
been validated and evaluated in detail in the context of propagation
problems in both homogeneous and heterogeneous media including
problems for which analytical solutions can be computed. Particular
attention was given to the study of the mathematical properties of
these schemes such as stability, convergence and dispersion. Recent
results concern the numerical assessment of site effects especially
topographic effects. The study of measurements and experimental
records proved that seismic waves can be amplified at some particular
locations of a topography. Numerical simulations are exploited here to
understand further and explain this phenomenon. The
DGTD-[image: Im1 $\#8473 _p$] method has been applied to a realistic topography
of Rognes area (where the Provence earthquake occured in 1909) to
model the observed amplification and the associated frequency
[26] .


[bookmark: uid61] Section: 
      New Results
Time integration strategies and resolution algorithms

[bookmark: uid62] Hybrid explicit-implicit DGTD-[image: Im1 $\#8473 _p$] method
Participants :
      Stéphane Descombes, Stéphane Lanteri, Ludovic Moya, Jan Verwer [Modeling, Analysis and Simulation Department, CWI,
Amsterdam] .


Existing numerical methods for the solution of the time domain Maxwell
equations often rely on explicit time integration schemes and are
therefore constrained by a stability condition that can be very
restrictive on highly refined meshes. An implicit time integration
scheme is a natural way to obtain a time domain method which is
unconditionally stable. Starting from the explicit, non-dissipative,
DGTD-[image: Im1 $\#8473 _p$] method introduced in [11] ,
we have proposed to use of Crank-Nicolson scheme in place of the
explicit leap-frog scheme adopted in this
method[13] . As a result, we obtain an
unconditionally stable, non-dissipative, implicit DGTD-[image: Im1 $\#8473 _p$]
method, but at the expense of the inversion of a global linear system
at each time step, thus obliterating one of the attractive features of
discontinuous Galerkin formulations. A more viable approach for 3D
simulations consists in applying an implicit time integration scheme
locally i.e in the refined regions of the mesh, while preserving an
explicit time scheme in the complementary part, resulting in an hybrid
explicit-implicit (or locally implicit) time integration strategy. We
have recently started a study in this direction and preliminar results
are presented in [14]  for a second order hybrid
explicit-implicit DGTD-[image: Im1 $\#8473 _p$] method.


[bookmark: uid63] Explicit local time stepping DGTD-[image: Im1 $\#8473 _p$] method
Participants :
      Joseph Charles, Julien Diaz [MAGIQUE-3D project-team, INRIA Bordeaux - Sud-Ouest] , Stéphane Descombes, Stéphane Lanteri.


We have initiated this year a collaboration with the MAGIQUE-3D
project-team aiming at the design of local time stepping strategies
inspired from [36]  for the time integration of
the system of ordinary differential equations resulting from the
discretization of the time domain Maxwell equations in first order
form by a DGTD-[image: Im1 $\#8473 _p$] method. A numerical study in one- and
two-space dimensions is underway.


[bookmark: uid64] Optimized Schwarz algorithms for the frequency domain
Maxwell equations
Participants :
      Victorita Dolean, Mohamed El Bouajaji, Martin Gander [Mathematics Section, University of Geneva] , Stéphane Lanteri, Ronan Perrussel [Ampère Laboratory, Ecole Centrale de Lyon] .


Even if they have been introduced for the first time two centuries
ago, over the last two decades, classical Schwarz methods have
regained a lot of popularity with the developement of parallel
computers. First developed for the elliptic problems, they have been
recently extended to systems of hyperbolic partial differential
equations, and it was observed that the classical Schwartz method can
be convergent even without overlap in certain cases. This is in strong
contrast to the behavior of classical Schwarz methods applied to
elliptic problems, for which overlap is essential for convergence.
Over the last decade, optimized versions of Schwarz methods have been
developed for elliptic partial differential equations. These methods
use more effective transmission conditions between subdomains, and are
also convergent without overlap for elliptic problems. The extension
of such methods to systems of equations and more precisely to
Maxwell's system (time harmonic and time discretized equations) has
been done recently in [6] . The optimized
interface conditions proposed in [6]  were
devised for the case of non-conducting propagation media. We are now
studying the formulation of such conditions for conducting media
[21] .


[bookmark: uid65] Algebraic preconditioning techniques for
a high order DGFD-[image: Im1 $\#8473 _p$] method
Participants :
      Matthias Bollhoefer [Institute of Computational Mathematics, TU Braunschweig] , Luc Giraud [HiePACS project-team, INRIA Bordeaux - Sud-Ouest] , Stéphane Lanteri, Jean Roman [HiePACS project-team, INRIA Bordeaux - Sud-Ouest] .


For large 3D problems, the use of a sparse direct method for solving
the algebraic sparse system resulting from the discretization of the
frequency domain Maxwell equations by a high order DGFD-[image: Im1 $\#8473 _p$]
method is simply not feasible because of the memory overhead, even if
these systems are associated to subdomain problems in a domain
decomposition setting. A possible alternative is to replace the
sparse direct method by a preconditioned iterative method for which an
appropriate preconditioning technique has to be designed. For this
purpose, we are investigating incomplete factorization methods that
exploit the block structure of the underlying matrices which is
directly related to the approximation order of the physical quantities
within each mesh element in the DGFD-[image: Im1 $\#8473 _p$]
method[18] .


[bookmark: uid66] Section: 
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High performance computing

[bookmark: uid67] High order DGTD-[image: Im1 $\#8473 _p$] method on hybrid CPU/GPU
parallel systems
Participants :
      Tristan Cabel, Stéphane Lanteri.


Modern massively parallel computing platforms most often take the form
of hybrid shared memory/distributed memory heterogeneous systems
combining multi-core processing units with accelerator cards. In
particular, graphical processing units (GPU) are increasingly adopted
in these systems because they offer the potential for a very high
floating point performance at a low purchase cost. DG methods are
particularly appealing for exploiting the processing capabilities of a
GPU because they involve local linear algebra operations (mainly
matrix/matrix products) on relatively dense matrices whose size is
directly related to the approximation order of the physical quantities
within each mesh element. We have initiated this year a technological
development project aiming at the adaptation to hybrid CPU/GPU
parallel systems of a high order DGTD-[image: Im1 $\#8473 _p$] method for the
numerical solution of the 3D Maxwell equations.
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  [bookmark: uid69] Section: 
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High order DGTD-[image: Im1 $\#8473 _p$] Maxwell solver for electric
vulnerability studies
Participants :
      Joseph Charles, Loula Fezoui, Stéphane Lanteri, Muriel Sesques [CEA/CESTA, Bordeaux] .


The objective of this research grant with CEA/CESTA in Bordeaux is the
development of a coupled Vlasov-Maxwell solver combining the high
order DGTD-[image: Im1 $\#8473 _p$] method on tetrahedral meshes developed in
the team and a Particle-In-Cell method. The resulting
DGTD-[image: Im1 $\#8473 _p$]/PIC solver is used for electrical vulnerability
assessment of the experimental chamber of the Laser Mégajoule
system.


[bookmark: uid70] Section: 
      Contracts and Grants with Industry
High order DGTD-[image: Im1 $\#8473 _p$] Maxwell solver for
numerical dosimetry studies
Participants :
      Stéphane Lanteri, Joe Wiart [WHIST Laboratory, Orange Labs, Issy-les-Moulineaux] .


The objective of this research grant with the WHIST (Wave Human
Interactions and Telecommunications) Laboratory at Orange Labs in
Issy-les-Moulineaux is the adaptation of a high order
DGTD-[image: Im1 $\#8473 _p$] method on tetrahedral meshes developed in the team
and its application to numerical dosimetry studies in the context of
human exposure to electromagnetic waves emitted from wireless systems.
These studies involve realistic geometrical models of human tissues
built from medical images.


[bookmark: uid71] Section: 
      Contracts and Grants with Industry
Volumic, automatic, industrial and generic mesh generation
(MIEL3D-MESHER)
Participants :
      Clément Durochat, Paul-Louis Georges [GAMMA project-team,
INRIA Paris - Rocquencourt] , Stéphane Lanteri, Mark Loriot [Distene, Pôle Teratec, Bruyères-le-Chatel] , Philippe Pasquet [Samtech France] .


MIEL3D-MESHER is a national project of the SYSTEM@TIC Paris-Région
cluster which aims at the development of automatic hexahedral mesh
generation tools and their application to the finite element analysis
of some physical problems. One task of this project is concerned with
the definition of a toolbox for the construction of non-conforming,
hybrid hexahedral/tetrahedral meshes. In this context, the
contribution of the team to this project aims at the development of a
DGTD-[image: Im2 ${\#8473 _p\#8474 _k}$] method formulated on such hybrid
meshes. Here, [image: Im1 $\#8473 _p$] stands for the polynomial interpolation
method on tetrahedral elements while [image: Im3 $\#8474 _k$] denotes the
polyomial interpolation method on hexahedral elements.


[bookmark: uid72] Section: 
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Seismic risk assessment by a discontinuous Galerkin method
Participants :
      Nathalie Glinsky, Stéphane Lanteri, Fabien Peyrusse.


The objective of this research grant with LCPC and CETE
Méditerranée is concerned with the numerical modeling of
earthquake dynamics taking into account realistic physical models of
geological media relevant to this context. In particular, a
discontinuous Galerkin method will be designed for the solution of the
elastodynamic equations coupled to an appropriate model of physical
attenuation of the wave fields for the characterization of a
viscoelastic material.


[bookmark: uid73] Section: 
      Contracts and Grants with Industry
High order finite element particle-in-cell
solvers on unstructured grids (HOUPIC)
Participants :
      Loula Fezoui, Stéphane Lanteri, Muriel Sesques [CEA/CESTA, Bordeaux] , Eric Sonnendrücker [IRMA and CALVI project-team,
INRIA Nancy - Grand Est] .


The project-team is a partner of the HOUPIC project which is funded by
ANR in the framework of the Calcul Intensif et Simulations
program (this project has started in January 2007 for a duration of
3.5 years). The main objective of this project is to develop and
compare Finite Element Time Domain (FETD) solvers based on high order
Hcurl conforming elements and high order Discontinuous Galerkin (DG)
finite elements and investigate their coupling to a PIC method.


[bookmark: uid74] Section: 
      Contracts and Grants with Industry
Ultra-wideband microwave imaging and inversion (MAXWELL)
Participants :
      Victorita Dolean, Mohamed El Bouajaji, Stéphane Lanteri, Christian Pichot [LEAT, Sophia Antipolis] .


The project-team is a partner of the MAXWELL project (Novel,
ultra-wideband, bistatic, multipolarization, wide offset, microwave
data acquisition, microwave imaging, and inversion for permittivity)
which is funded by ANR under the non-thematic program (this project
has started in January 2008 for a duration of 4 years).

See also the web page http://leat.unice.fr/pages/anr-maxwell/anr-maxwell.html 


[bookmark: uid75] Section: 
      Contracts and Grants with Industry
Analysis of children exposure to electromagnetic waves
(KidPocket)
Participants :
      Stéphane Lanteri, Joe Wiart [WHIST Laboratory, Orange Labs, Issy-les-Moulineaux] .


The project-team is a partner of the KidPocket project (Analysis of RF
children exposure linked to the use of new networks or usages) which
is funded by ANR in the framework of the Réseaux du Futur et
Services program and has started in October 2009 for a duration of
3 years.

See also the ewb page http://whist.institut-telecom.fr/kidpocket 


[bookmark: uid76] Section: 
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Statistical numerical dosimetry (DONUT)
Participants :
      Amine Drissaoui [Ampère Laboratory, Ecole Centrale de Lyon] , Stéphane Lanteri, Philippe Leveque [XLIM Laboratory, Limoges] , Ronan Perrussel [Ampère Laboratory, Ecole Centrale de Lyon] , Damien Voyer [Ampère Laboratory, Ecole Centrale de Lyon] .


The objectives of the DONUT project are to develop and validate a new
numerical dosimetry approach for dealing with the variability of human
exposure to electromagnetic fields, in order do directly deduce a
statistical analysis of the effects of the exposure. The proposed
numerical methodology which is based on a stochastic finite element
method and can exploit in a non intrusive way existing Maxwell solvers
for the calculation of the Specific Absorption Rate in biological
tissues. This feature is demonstrated in the project by considering
both finite difference, finite element and discontinuous Galerkin
Maxwell solvers.
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Regional Initiatives

We have initiated this year a partnership with the
Provence-Alpes-Côte d'Azur (PACA) regional council in the framework
of our collaboration with CETE Méditerranée concerning the
numerical modeling of earthquake dynamics. The PhD thesis of Fabien
Peyrusse is co-funded by a fellowship from the PACA regional council
and a research grant with LCPC and CETE Méditerranée.


[bookmark: uid79] Section: 
      Other Grants and Activities
International Initiatives

Since 2008, the team is collaborating with the Mathematics section of
the University of Geneva (Prof. Martin Gander) on the design of domain
decomposition methods (optimized Schwarz algorithms) for the solution
of the frequency domain Maxwell equations
[22] -[21] . This collaboration
involves Victorita Dolean, Mohamed El Bouajaji (PhD Student in the
NACHOS project-team) and Stéphane Lanteri, and also Ronan Perrussel
for the Ampère Laboratory, Ecole Centrale de Lyon. This year, Martin
Gander has visited the team for one week in February and two weeks in
August.

Since 2010, the team is collaborating with the Modeling, Analysis and
Simulation Department, CWI, Amsterdam, (Prof. Jan Verwer) on the
design of hybrid explicit-implicit time integration schemes for the
the systems of ordinary differential equations resulting from the
discretization of the time domain Maxwell equations by discontinuous
Galerkin methods. This collaboration involves Stéphane Descombes,
Stéphane Lanteri and Ludovic Moya (PhD Student in the NACHOS
project-team). Jan Verwer has visited the team for three days in
January while Ludovic Moya has visited the CWI for one week in
December.

Since 2010, the team is collaborating with the Electromagnetics Group
at the University of Bristol (Dr. Maciej Klemm) on the design of a
discontinuous Galerkin time domain method for the numerical modeling
of the propagation of electromagnetic waves in biological tissues. The
resulting numerical methodology will be used in the context of a radar
based imaging system of breast tumors which is under development at
the University of Bristol. This collaboration involves Claire Scheid
and Stéphane Lanteri. This year, Maciej Klemm has visited the team
for one week in October.

Since 2009, the team is collaborating with the Institute of
Computational Mathematics at TU Braunschweig (Prof. Matthias
Bollhoefer) on the design of algebraic preconditioning techniques for
the linear systems of equations resulting from the discretization of
the frequency domain Maxwell equations by a high order discontinuous
Galerkin method[18] . This collaboration
involves Stéphane Lanteri, and also Luc Giraud and Jean Roman from
the HiePACS project-team, INRIA Bordeaux - Sud-Ouest. This year,
Matthias Bollhoefer has visited the team for two weeks in September.
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  [bookmark: uid81] Section: 
      Dissemination
Animation of the scientific community

Lecture of Stéphane Lanteri at the Médiathèque of Antibes in the
framework of the Conférence-débat Média Sciences series,
entitled Peut-on évaluer l'impact des rayonnements des
téléphones mobiles sur notre santé?


[bookmark: uid82] Section: 
      Dissemination
Ongoing PhD theses

Joseph Charles, Arbitrarily high-order discontinuous Galerkin
methods on simplicial meshes for time domain electromagnetics,
University of Nice-Sophia Antipolis.

Amine Drissaoui, Stochastic finite element methods for
uncertainty analysis in the numerical dosimetry of human exposure to
electromagnetic waves, Ecole Centrale de Lyon(Under joint
supervision between INRIA, Ampère Laboratory (in Lyon) and XLIM
Laboratory (in Limoges).).

Clément Durochat, Discontinuous Galerkin methods on hybrid
meshes for time domain electromagnetics, University of Nice-Sophia
Antipolis.

Mohamed El Bouajaji, Optimized Schwarz algorithms for the time
harmonic Maxwell equations discretized by discontinuous Galerkin
methods, University of Nice-Sophia Antipolis.

Ludovic Moya, Numerical modeling of electromagnetic wave
propagation in biological tissues, University of Nice-Sophia
Antipolis.

Fabien Peyrusse, Numerical simulation of strong earthquakes by a
discontinuous Galerkin method, University of Nice-Sophia Antipolis.
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Teaching

Claire Scheid and Stéphane Lanteri, Introduction to scientific
computing, MathMods - Erasmus Mundus MSc Course, University of
Nice-Sophia Antipolis, 50 h.

Victorita Dolean, Méthodes numériques pour les équations
evolutives paraboliques, Master 2 IMEA and Master Mathématiques,
University of Nice-Sophia Antipolis, 24 h.

Victorita Dolean, Atelier méthodes numériques pour les
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