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  [bookmark: uid3] Section: 
      Overall Objectives
Main themes

The aim of the Parsifal team is to develop and exploit proof
theory and type theory in the specification and
verification of computational systems.


	[bookmark: uid4] Expertise: the team conducts basic research in proof
theory and type theory. In particular, the team is developing
results that help with automated deduction and with the
manipulation and communication of formal proofs.



	[bookmark: uid5] Design: based on experience with computational systems
and theoretical results, the team develops new logical principles,
new proof systems, and new theorem proving environments.



	[bookmark: uid6] Implementation: the team builds prototype systems to
help validate basic research results.



	[bookmark: uid7] Examples: the design and implementation efforts are
guided by examples of specification and verification problems.
These examples not only test the success of the tools but also
drive investigations into new principles and new areas of proof
theory and type theory.




The foundational work of the team focuses on structural and
analytic proof theory, i.e., the study of formal
proofs as algebraic and combinatorial structures and the study of
proof systems as deductive and computational formalisms. The main
focus in recent years has been the study of the sequent
calculus and of the deep inference formalisms.

An important research question is how to reason about computational
specifications that are written in a relational style. To
this end, the team has been developing new approaches to dealing
with induction, co-induction, and generic quantification. A second
important question is of canonicity in deductive systems,
i.e., when are two derivations “essentially the same”? This
crucial question is important not only for proof search, because it
gives an insight into the structure and an ability to manipulate the
proof search space, but also for the communication of proof
objects between different reasoning agents such as automated
theorem provers and proof checkers.

Important application areas currently include:


	[bookmark: uid8] Meta-theoretic reasoning on functional programs, such as terms
in the λ-calculus



	[bookmark: uid9] Reasoning about behaviors in systems with concurrency and
communication, such as the π-calculus, game semantics,
etc.



	[bookmark: uid10] Combining interactive and automated reasoning methods for
induction and co-induction



	[bookmark: uid11] Verification of distributed, reactive, and real-time
algorithms that are often specified using modal and temporal
logics



	[bookmark: uid12] Probabilistic and stochastic reasoning systems commonly used
in security, networking, and biological domains





[bookmark: uid13] Section: 
      Overall Objectives
Highlights


	[bookmark: uid14] Vivek Nigam (PhD from Parsifal September 2009) was awarded an
Alexander von Humboldt scholarship to join Martin Hoffman's group
in LMU (Munich, Germany) for two years (2010-2012)
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  [bookmark: uid16] Section: 
      Scientific Foundations
General overview

There are two broad approaches for computational specifications. In
the computation as model approach, computations are encoded as
mathematical structures containing nodes, transitions, and state.
Logic is used to describe these structures, that is, the
computations are used as models for logical expressions. Intensional
operators, such as the modals of temporal and dynamic logics or the
triples of Hoare logic, are often employed to express propositions
about the change in state.

The computation as deduction approach, in contrast, expresses
computations logically, using formulas, terms, types, and proofs as
computational elements. Unlike the model approach, general logical
apparatus such as cut-elimination or automated deduction becomes
directly applicable as tools for defining, analyzing, and animating
computations. Indeed, we can identify two main aspects of logical
specifications that have been very fruitful:


	[bookmark: uid17] Proof normalization, which treats the state of a
computation as a proof term and computation as normalization of the
proof terms. General reduction principles such as β-reduction
or cut-elimination are merely particular forms of proof
normalization. Functional programming is based on
normalization  [49] , and normalization in different
logics can justify the design of new and different functional
programming languages  [28] .



	[bookmark: uid18] Proof search, which views the state of a computation as a
a structured collection of formulas, known as a sequent, and
proof search in a suitable sequent calculus as encoding the dynamics
of the computation. Logic programming is based on proof
search  [53] , and different proof search
strategies can be used to justify the design of new and different
logic programming languages  [52] .




While the distinction between these two aspects is somewhat informal,
it helps to identify and classify different concerns that arise in
computational semantics. For instance, confluence and termination of
reductions are crucial considerations for normalization, while
unification and strategies are important for search. A key challenge
of computational logic is to find means of uniting or reorganizing
these apparently disjoint concerns.

An important organizational principle is structural proof theory,
that is, the study of proofs as syntactic, algebraic and
combinatorial objects. Formal proofs often have equivalences in
their syntactic representations, leading to an important research
question about canonicity in proofs – when are two proofs
“essentially the same?” The syntactic equivalences can be used ro
derive normal forms for proofs that illuminate not only the proofs
of a given formula, but also its entire proof search space. The
celebrated focusing theorem of
Andreoli  [29]  identifies one such normal form
for derivations in the sequent calculus that has many important
consequences both for search and for computation. The combinatorial
structure of proofs can be further explored with the use of
deep inference; in particular, deep inference allows access
to simple and manifestly correct cut-elimination procedures with
precise complexity bounds.

Type theory is another important organizational principle, but most
popular type systems are generally designed for either search or for
normalization. To give some examples, the Coq
system  [64]  that implements the Calculus of Inductive
Constructions (CIC) is designed to facilitate the expression of
computational features of proofs directly as executable functional
programs, but general proof search techniques for Coq are rather
primitive. In contrast, the Twelf system  [57] 
that is based on the LF type theory (a subsystem of the CIC), is
based on relational specifications in canonical form (i.e.,
without redexes) for which there are sophisticated automated
reasoning systems such as meta-theoretic analysis tools, logic
programming engines, and inductive theorem provers. In recent years,
there has been a push towards combining search and normalization in
the same type-theoretic framework. The Beluga
system  [58] , for example, is an extension of
the LF type theory with a purely computational meta-framework where
operations on inductively defined LF objects can be expressed as
functional programs.

The Parsifal team investigates both the search and the normalization
aspects of computational specifications using the concepts, results,
and insights from proof theory and type theory.


[bookmark: uid19] Section: 
      Scientific Foundations
Focused proof systems

Focusing  [29]  is a general observation
that proofs in sequent calculi can be organized into an alternating
pair of dual phases – negative (sometimes called
asynchronous) and positive (sometimes called
synchronous). Each phase consists of a maximal chain of
inferences of the the same polarity, i.e., the phases
represent synthetic, macro, or “big step”
inference rules for clumps of connectives of the same polarity. For
example, focusing tells us that the top level connective in the
formula [image: Im1 ${A\#8855 (B\#8853 C)}$], assuming A, B and C are
negative, is the ternary connective [image: Im2 ${-\#8855 (-\#8853 -)}$] instead
of the composition of two binary connectives; in particular, [image: Im3 ${B\#8853 C}$] need not even be considered as a subformula. Indeed,
focusing has proven to be crucial in controlling the search behavior
of automated theorem provers [1] ,
[51] .

Focusing is very important for logical specifications of
computations because synthetic inference rules have a direct
correspondence with computational steps. When a system is encoded
logically, we can identify at least three levels of adequacy
of the encoding:


	[bookmark: uid20] Global adequacy, wherein the encoding does not
necessarily respect the structure of the computation, but where
soundness is ensured globally. For instance, an encoding of one
proof system in another is globally adequate if it preserves truth
and provability.



	[bookmark: uid21] Full adequacy, where the structure of the entire
computation is preserved. For encodings of proof systems, full
adequacy corresponds to a one-to-one correspondence between full
proofs in the source and the target of the encoding.



	[bookmark: uid22] Local adequacy, where the structure of individual steps
of a computation is preserved, i.e., the encoding is a
bi-simulation. An encoding of a proof system is locally adequate
if the encoding preserves the individual inference rules of the
proof system.




Locally adequate encodings give the best indication of the strength
and generality of proof systems, but in all but the most trivial
cases such encodings only exist if the target of the encoding is a
focused proof system. The members of the Parsifal team have
identified and proved a number of adequacy results in recent
years  [54] , [48] , [56] ,
[18] .

Focusing is therefore an important tool in the study of
universality of proof systems. We already know that linear
logic can serve as a uniform meta-language for a number of proof
systems, both classical and intuitionistic, but these encoded
systems generally are not able to communicate with each other. Liang
and Miller have been building proof systems for combinations of
classical, intuitionistic, and linear logics that allows proofs in
these different systems to communicate via carefully chosen cuts.


[bookmark: uid23] Section: 
      Scientific Foundations
Reasoning about logic specifications

A long term project of members of the Parsifal team has been the
design of a powerful logic to reason about computational
specifications written in logic. Coming up with the design of a logic
that allows reasoning richly over relational specifications involving
bindings in syntax has been a long standing problem, dating from at
least the early papers by McDowell and Miller
[50]  [7] . In 2010, Gacek,
Miller, and Nadathur (a colleague from the University of Minnesota)
have completed the design the the logic [image: Im4 $\#119970 $]
[39]  that extends earlier work on this topic by
including a novel generalization to syntactic identity. This
extensions involved adding the “nominal abstraction” operator. With
the addition of this predicate the resulting logic [image: Im4 $\#119970 $] gained
enough expressive power to allow for natural and declarative
descriptions of invariants over logic-based context.

The presence of nominal abstraction in [image: Im4 $\#119970 $] makes it possible for
that logic to express predicates that strongly resemble those found in
Pitt's “nominal logic” [59] . While [image: Im4 $\#119970 $] and nominal logic different in several ways, it is possible to find
an interesting subset of both logics that do, in fact, correspond
directly. In particular, Gacek showed [21]  that
αProlog [37]  (a subset of nominal logic) can be
directly translated into subset of [image: Im4 $\#119970 $].

The [image: Im4 $\#119970 $] logic is the logic that is implemented by the Abella
prover of Andrew Gacek. This implementation has permitted a large
number of example theorems and proofs to be done completely formally
within [image: Im4 $\#119970 $]. As a result, we have gained a great deal of
confidence in the expressive strengths of his logic.


[bookmark: uid24] Section: 
      Scientific Foundations
Deep inference and categorical axiomatizations

Deep inference [42] , [43] 
is a novel methodology for presenting deductive
systems. Unlike traditional formalisms like the sequent calculus, it
allows rewriting of formulas deep inside arbitrary contexts. The new
freedom for designing inference rules creates a richer proof
theory. For example, for systems using deep inference, we have a
greater variety of normal forms for proofs than in sequent calculus or
natural deduction systems. Another advantage of deep inference systems
is the close relationship to categorical proof theory. Due to the deep
inference design one can directly read off the morphism from the
derivations. There is no need for a counter-intuitive translation.

One reason for using categories in proof theory is to give a precise
algebraic meaning to the identity of proofs: two proofs are the same
if and only if they give rise to the same morphism in the category.
Finding the right axioms for the identity of proofs for classical
propositional logic has for long been thought to be impossible, due
to “Joyal's Paradox”. For the same reasons, it was believed for a
long time that it it not possible to have proof nets for classical
logic. Nonetheless, Lutz Strassburger and François Lamarche
provided proof nets for classical logic in
[3] , and analyzed the category theory behind
them in [45] . In [10] 
and [62] , one can find a deeper analysis of
the category theoretical axioms for proof identification in
classical logic. Particular focus is on the so-called medial
rule which plays a central role in the deep inference deductive
system for classical logic.

The following research problems are investigated by members of the
Parsifal team:


	[bookmark: uid25] Find deep inference system for richer logics. This is necessary
for making the proof theoretic results of deep inference accessible
to applications as they are described in the previous sections of
this report.



	[bookmark: uid26] Investigate the possibility of focusing proofs in deep
inference. As described before, focusing is a way to reduce the
non-determinism in proof search. However, it is well investigated
only for the sequent calculus. In order to apply deep inference in
proof search, we need to develop a theory of focusing for deep
inference.



	[bookmark: uid27] Use the results on deep inference to find new axiomatic
description of categories of proofs for various logics. So far, this
is well understood only for linear and intuitionistic logics. Already
for classical logic there is no common accepted notion of proof
category. How logics like LINC can be given a categorical
axiomatisation is completely open.





[bookmark: uid28] Section: 
      Scientific Foundations
Proof nets and atomic flows

Proof nets and atomic flows are abstract (graph-like) presentations
of proofs such that all "trivial rule permutations" are quotiented
away. Ideally the notion of proof net should be independent from any
syntactic formalism. But due to the almost absolute monopoly of the
sequent calculus, most notions of proof nets proposed in the past
were formulated in terms of their relation to the sequent calculus.
Consequently we could observe features like “boxes” and explicit
“contraction links”. The latter appeared not only in Girard's
proof nets [40]  for linear logic but also in
Robinson's proof nets [60]  for classical
logic. In this kind of proof nets every link in the net corresponds
to a rule application in the sequent calculus.

The concept of deep inference allows to design entirely new kinds of
proof nets. The work by Lamarche and Strassburger
[61] , [46]  have extended the theory
of proof nets for multiplicative linear logic to multiplicative
linear logic with units. This seemingly small step—just adding the
units—had for long been an open problem, and the solution was
found only by consequently exploiting the new insights coming from
deep inference. A proof net no longer just mimics the sequent
calculus proof tree, but rather an additional graph structure that
is put on top of the formula tree (or sequent forest) of the
conclusion. The work on proof nets within the team is focused on the
following two directions:


	[bookmark: uid29] Extend the work of Lamarche and Strassburger to larger
fragments of linear logic, containing the additives, the
exponentials, and the quantifiers, as started in
[63] .



	[bookmark: uid30] Finding (for classical logic) a notion of proof nets that is
deductive, i.e., can effectively be used for doing proof search.
An important property of deductive proof nets must be that the
correctness can be checked in linear time. For the classical logic
proof nets by Lamarche and
Strassburger [3]  this takes exponential
time (in the size of the net). We hope that eventually deductive
proof nets will provide a “bureaucracy-free” formalism for proof
search.



	[bookmark: uid31] Studying the normalization of proofs in classical logic using
atomic flows. Although there is no correctness criterion they
allow to simplify the normalization procedure for proofs in deep
inference, and additionally allow to get new insights in the
complexity of the normalization.





[bookmark: uid32] Section: 
      Scientific Foundations
A systematic approach to cut-elimination

One of the main problems of proof theory is to prove cut elimination
for new logics. Usually, a cut elimination proof is a tedious case
analysis, and, in general, it is very fragile and not
modular [41] . That means that a minor change in
the deductive system makes the cut elimination proof break down, and
for every new system one has to start from scratch.

It is therefore an important research task, to find a more systematic
approach to cut elimination proofs. That is to say, to find general
guidelines that ensure the cut elimination property for large classes
of systems, in a similar way as it has been done for display
logics [32] .


[bookmark: uid33] Section: 
      Scientific Foundations
Proof search in type theory

Cross-fertilizing ideas between the proof search approach and the
proof normalization approach, Lengrand has interacted with the
TypiCal (INRIA Saclay) and the πr2 (INRIA Rocquencourt)
project-teams.

In proof assistants based on the proof normalization approach, or
Type Theory, it is a hard challenge to design and understand their
proof search mechanisms. Based on ideas
from  [47] , a major effort has been spent on
using concepts from the proof search approach, like focused
proof systems, in order to rationalize the implemented
mechanisms.

By doing so, we have helped improve the Coq system, by impacting the
design of the new version of the tool's proof engine. One of these
proof search mechanisms, known as pattern unification, has
again become a hot topic of Coq's design, after Lengrand's use of
Coq to specify a particular algorithm has revealed a drastic need
for this missing feature.

It also emerged from Lengrand's interaction with these
project-teams, that bridging Type Theory with the proof theory
developed at Parsifal confirms the need for more extensionality on
the functions programmed in Coq. Efforts to add such extensionality
are ongoing.
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  [bookmark: uid35] Section: 
      Application Domains
Automated theorem proving

Automated theorem proving has traditionally focused on classical
first-order logic, but non-classical logics are increasingly
becoming important in the specification and analysis of software.
Most type systems are based on (possibly second-order) propositional
intuitionistic logic, for example, while resource-sensitive and
concurrent systems are most naturally expressed in linear logic.

The members of the Parsifal team have a strong expertise in the
design and implementation of performant automated reasoning systems
for such non-classical logics. In particular, the Linprover suite of
provers  [35]  continue to be the fastest
automated theorem provers for propositional and first-order linear
logic.

Any non-trivial specification, of course, will involve theorems that
are simply too complicated to prove automatically. It is therefore
important to design semi-automated systems that allow the user to
give high level guidance, while at the same time not having to write
every detail of the formal proofs. High level proof languages in
fact serve a dual function – they are more readily comprehended by
human readers, and they tend to be more robust with respect to
maintenance and continued evolution of the systems. Members of the
Parsifal team, in association with other INRIA teams and Microsoft
Research, have been building a heterogeneous semi-automatic proof
system for verifying distributed algorithms (see
Section. 
	5.3 ).

On a more foundational level, the team has been developing many new
insights into the structure of proofs and the proof searh spaces.
Two directions, in particular, present tantalizing possibilities:


	[bookmark: uid36] The concept of multi-focusing  [36] 
can be used to expose concurrency in computational behavior, which
can in turn be exploited to prune areas of the proof search space
that explore irrelevant interleavings of concurrent actions.



	[bookmark: uid37] The use of bounded search, where the bounds can be
shown to be complete by meta-theoretic analysis, can be used to
circumvent much of the non-determinism inherent in
resource-sensitive logics such as linear logic. The lack of proofs
of a certain bound can then be used to justify the presence or
absence of properties of the encoded computations.




Much of the theoretical work on automated reasoning has been
motivated by examples and implementations, and the Parsifal team
intends to continue to devote significant effort in these
directions.


[bookmark: uid38] Section: 
      Application Domains
Mechanized metatheory

There has been increasing interest in the use of formal methods to
provide proofs of properties of programs and programming languages.
Tony Hoare's Grand Challenge titled “Verified Software: Theories,
Tools, Experiments” has as a goal the construction of “verifying
compilers” for a world where programs would only be produced with
machine-verified guarantees of adherence to specified behavior.
Guarantees could be given in a number of ways: proof certificates
being one possibility.

The POPLMark challenge [30]  envisions “a
world in which mechanically verified software is commonplace: a
world in which theorem proving technology is used routinely by both
software developers and programming language researchers alike.”
The proposers of this challenge go on to say that a “crucial step
towards achieving these goals is mechanized reasoning about language
metatheory.”

The Parsifal team has developed several tools and techniques for
reasoning about the meta-theory of programming languages. One of the
most important requirements for progamming languages is the ability
to reason about data structures with binding constructs upto
α-equivalence. The use of higher-order syntax and nominal
techniques for such data structures was pioneered by Miller,
Nadathur and Tiu. The Abella system (see
Section. 
	3.3 ) implements a refinement of a number
of these ideas and has been used to give full solutions to sections
of the POPLMark challenge in addition to fully formal proofs of a
number of other theorems in the meta-theory of the
λ-calculus.

Another important feature for the meta-theory of progamming
languages is the ability to reason about inductive and co-inductive
data structures and algorithms. While systems such as
Coq  [64]  can represent such inductive proofs as
fixpoints, there is only very primitive support for general
automated reasoning over inductive definitions. The Tac system built
in the Parsifal team [16]  has been used to
investigate automated inductive theorem proving from a more
foundational perspective. Tac can already perform a number of
sophisticated inductive proofs automatically.

Modern programming languages are increasingly incorporating
distributed, concurrent, reactive, and real-time elements. In such
languages, it is often necessary to reason not about executions but
about behaviors, that is, it is necessary to compare the
behavior of two different programs instead of characterizing all
executions of a single program. The Bedwyr
tool  [31]  built at Parsifal is a symbolic model
checker that can automatically prove behavioral equivalence between
π-calculus processes. It is a prototype of the kind of formal
tools that will be necessary for the programming languages of the
future.


[bookmark: uid39] Section: 
      Application Domains
Malleable proof languages

One of the benefits of focused proof systems (see
Section.
	3.2 ) is the ability to treat computational steps
as single synthetic rules. If the computational steps belong to a
particular proof search strategy, then it becomes possible to
represent, precisely, the traces of that strategy as synthetic
proofs.

Recently, members of the Parsifal team have shown how to specify a
large variety of proof systems—including natural deduction, the
sequent calculus, and various tableau and free deduction
systems—uniformly using either focused linear
logic  [55] , [54]  or focused
intuitionistic logic  [44]  as the meta-language.
In the presence of induction and co-induction, arbitrary finite
computations can be embedded into single synthetic
steps [16] .

It seems clear that a suitably general focused proof system can
serve as a universal proof language for a large variety of proof
systems. We can identify at least the following major challenges:


	[bookmark: uid40] Can focused proof systems serve as a framework for broad
spectrum proof certificates for such domains as proof-carrying
code or proof-carrying authorization?



	[bookmark: uid41] Can one design a proof language based on focused proofs that
allows for a variable amount of verbosity in terms of a tunable
trade off between simplicity of the proof checker (or,
equivalently, the amount of search that the proof checker is
allowed to perform) and the size of proof certificates?



	[bookmark: uid42] Can one design a generic universal proof checker for a large
variety of proof systems?



	[bookmark: uid43] How does (co)induction in a focused proof system compare to
type systems such as Deduction Modulo  [38]  or
Superdeduction  [34]  that are parameterized on
rewrite systems?
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  [bookmark: uid45] Section: 
      Software
Abella
Participants :
      Andrew Gacek, Dale Miller.


The earliest versions of the Abella theorem prover was written while
Gacek was a PhD student at the University of Minnesota. During Gacek's
post doc in the Parsifal team, he and Miller have designed and
implemented more features into this prover. One such feature involves
simplifying dependences among variables. More explicitly, for Abella
to correctly capture the relationship between “meta-variables” and
binding, the prover takes several raising steps that are
responsible for explicitly accounting for the dependence between these
two kinds of variables. Given the typing discipline of Abella it is
possible to statically determine that certain possible dependences
are, in fact, vacuous. Abella is now able to remove these vacuous
dependences: such a simplification makes it possible to make simplify
many Abella proofs. Gacek, Miller, and Nadathur have also published
two papers describing the underlying theory of Abella.

For more information, see the
Abella home page .


[bookmark: uid46] Section: 
      Software
Tac
Participants :
      David Baelde, Dale Miller, Zachary Snow, Alexandre Viel.


Given the team's expertise with the structure of proofs and techniques
for automation, we have taken on the implementation of the TAC prover.
This prover, written in OCaml, has been used to prove a range of
inductive theorems in a completely automatic fashion. The
architecture, which is the subject of the conference paper
[16] , is based on recent work by the team on the
structure of focused proofs for induction and co-induction.
A goal of this prover is to completely automate a large number of
shallow theorems within an inductive and co-inductive setting: proofs
of more significant theorems would then be organized as being simple
lists of lemmas. While the automatic tactic of this prover will not
likely prove particularly hard and deep theorems, the evidence we have
gathered so far is that it is useful for automatically proving a great
number of routine and shallow (but possibly tedious) theorems.

For more information, see the
Tac home page .


[bookmark: uid47] Section: 
      Software
TLAPS
Participants :
      Kaustuv Chaudhuri, Denis Cousineau [INRIA-MSR] , Damien Doligez [INRIA Paris-Rocquencourt, EPI Gallium] , Leslie Lamport [Microsoft Research Silicon Valley] , Stephan Merz [INRIA Nancy Grand-Est, EPI Veridis] , Hernán Vanzetto [Masters Student, Université Henri Poincaré, Nancy] .


The TLA +  Proof System (TLAPS) [20]  is a formal
proof system for Leslie Lamport's Temporal Logic of Actions
(TLA), a specification language for distributed, concurrent,
reactive, and real time algorithms. It has been in planning and
prototype stages since 2006, and active development started in 2008.
The first public release was made in May 2010. Although the software
is still young, it already has both industrial and academic users.

The TLAPS is based on translation of a high level proof language
into proof obligations for various backend reasoning systems, which
include both off the shelf automated reasoning systems (theorem
provers, SMT solvers, etc.) and systems that have been particularly
engineered for the TLA language. The backend systems may produce
proofs that are then formally checked in Isabelle/TLA + , an
axiomatization of TLA in the Isabelle proof system. Some backend
systems, such as decision procedures for arithmetic, do not
currently produce proofs.

Also in 2010, the TLAPS was integrated into the TLA Toolbox, an
integrated development environment (IDE) for many TLA-related tools,
including the TLC model checker. The next public release will
include support for reasoning about liveness, which will involve
implementing a new temporal reasoning framework.

For more information, see the
TLAPS home page .



    New Results

    
      	New Results	[bookmark: uid49]Proof normalization via atomic flows
	[bookmark: uid50]Typing lambda-terms with deep inference
	[bookmark: uid51]Subexponential logic
	[bookmark: uid52]Dynamic polarity assignment
	[bookmark: uid53]Heterogeneous verification for distributed algorithms
	[bookmark: uid54]Complexity of λ-terms and intersection types
	[bookmark: uid55]A focused sequent calculus interacting with decision procedures
	[bookmark: uid56]Towards a stochastic linear logic for biological computation



    

  [bookmark: uid49] Section: 
      New Results
Proof normalization via atomic flows
Participants :
      Tom Gundersen, Lutz Strassburger.


In a joint work with Alessio Guglielmi (University of Bath), Tom
Gundersen and Lutz Strassburger have given a novel method for
normalizing proofs in classical logic, which is based on atomic flows.
These are purely graphical devices that abstract away from much of the
typical bureaucracy of proofs. We make crucial use of the path
breaker, an atomic-flow construction that avoids some unpleasant
termination problems, and that can be used in any proof system with
sufficient symmetry. We also give an original 2-dimensional-diagram
exposition of atomic flows, which helps us to connect atomic flows
with other known formalisms. This work has been published in
LICS 2010 [24] .


[bookmark: uid50] Section: 
      New Results
Typing lambda-terms with deep inference
Participants :
      Nicolas Guenot, Lutz Strassburger.


Nicolas Guenot and Lutz Strassburger have been working on extending the
Curry-Howard correspondence to the notion of deep inference. The
result is a deductive system for intuitionistic logic within deep
inference, together with a cut elimination procedure on one side, and
a term calculus on the other side. The terms are a variation of lambda
terms, and the normalization can simulate beta-reduction, and the
rewrite rules are in one-to-one correspondence to cut elimination
reduction rules in the deductive system.


[bookmark: uid51] Section: 
      New Results
Subexponential logic
Participants :
      Kaustuv Chaudhuri, Dale Miller.


Subexponential logics are a family of refinements of classical logic
that are each parameterized by a collection of subexponential
connectives arranged in a (pre)order. Although the concept is quite
old, Miller and Nigam have shown in 2009 that focused derivations in
subexponential logics can adequately capture computations in a
programming language consisting of loops, iteration, and loads and
stores in locations. More generally, Miller has argued that
subexponential logics have the potential to be the building blocks
of future specification languages for logical and computational
systems [25] .

Chaudhuri has shown that the classical and intuitionistic dialects of
polarized subexponential logics have the same expressive power, in the
sense that partial derivations of sequents in one dialect are in
one-to-one correspondence with the partial derivations of the encoding
of the sequents in the other dialect. This result generalizes several
known adequacy theorems between particular subexponential logics, and
gives a new adequacy result for encodings of intuitionistic logic in
classical linear logic. This result was published in CSL
2010 [18] .


[bookmark: uid52] Section: 
      New Results
Dynamic polarity assignment
Participant :
      Kaustuv Chaudhuri.


It is well known that the polarity of the atomic propositions
in linear logic is ambiguous – each atom may be assigned a
polarity arbitrarily without destroying the completeness of focused
derivations. If the atoms are assigned their polarity statically, that
is, before proof search, then it is possible to obtain either forward
chaining (also known as program-directed reasoning) or backward
chaining (also known as goal-directed reasoning) semantics for logic
programs based on the chosen assignments. However, it is not
apparently possible to get the intersection of these two strategies
with purely static assignments. Chaudhuri has shown that delaying the
assignment of atomic polarities until the proof search context can
justify a particular assignment can produce such a combined strategy.
This dynamic assignment strategy enjoys all the benefits of forward
chaining (locality, sharing, concurrency), but terminates and gives
the same set of answers as backward chaining on terminating programs.
Indeed, we obtain the same semantics as the so-called magic sets
transformation of logic programs that is based on rewriting the
original program and queries, but, since polarity assignment only
constrains the proofs and does not alter the programs, we avoid the
non-compositional overhead of program transformation. This work was
published in LPAR 2010 [19] .


[bookmark: uid53] Section: 
      New Results
Heterogeneous verification for distributed algorithms
Participants :
      Kaustuv Chaudhuri, Damien Doligez [INRIA Paris-Rocquencourt, EPI Gallium] , Leslie Lamport [Microsoft Research Silicon Valley] , Stephan Merz [INRIA Nancy Grand-Est, EPI Veridis] .


The TLA +  Proof System (TLAPS), developed at the INRIA-MSR joint
centre in association with a number of other INRIA teams, was
released publicly. Chaudhuri designed and implemented the
proof manager component of the tool that interprets high
level TLA +  proofs and delegates sub-problems to various backend
verifiers. The TLAPS was described in a paper published in IJCAR
2010 [20]  and its construction was elaborated and
demonstrated further in an invited talk (given by Merz) at ICTAC
2010 [14] . Merz has also demonstrated the TLAPS
at a tutorial during IFM 2010 .

One of the goals of this project was to give fully formalized
correctness proofs of well known distributed algorithms such as
Lamport's Bakery Algorithm for distributed mutual exclusion and the
Paxos algorithm for distributed consensus. In 2009, the safety part of
the correctness of the Bakery algorithm was successfully proved; this
proof, initially several thousands of lines long, has been used as a
benchmark for further development of the TLAPS and has now shrunk to
less than 100 lines after improvements to backend reasoning; in the
near future, we will be able to eliminate essentially the entire proof
by using a new SMT backend, now in development.

In 2010, significant progress has also been made in proving a number
of Paxos algorithms correct, including a novel unpublished version of
Paxos that is Byzantine fault tolerant.


[bookmark: uid54] Section: 
      New Results
Complexity of λ-terms and intersection types
Participants :
      Stéphane Lengrand, Alexis Bernadet.


New complexity results have emerged from the study, in the framework
of non-idempotent type systems, of how lambda-calculi manage
resources.

It is well-known that strongly normalising terms of the
λ-calculus can be characterized by a type system using
intersections. A term is of type [image: Im5 ${A\#8745 B}$] if it is both of type A
and type B.

Intersections are usually considered idempotent in that [image: Im6 ${A\#8745 A=A}$].
But recent studies have suggested that dropping this property would
enrich types with quantitative information.

The first result is a refinement, with quantitative information, of
the characterisation of strongly normalising terms : the relevant
complexity measure here λ-terms is the worst-case complexity
(the length of longest reduction sequences). This quantitative
information can now be read directly from typing trees. This result
is accepted for publication at the FOSSACS'2011
conference  [33] .

This unveiled a tight connection between non-idempotent
intersections and the way data are erased and duplicated in
λ-calculus, suggesting a move to the framework with explicit
substitutions. These allow a finer-grained control of erasure and
duplication in λ-calculus. The second result is a lift of
the first one to the explicit substitution framework, where our
analysis of resource management becomes finer-grained and more
interesting.

The third result is a new set of semantical tools for
λ-calculi, based on filters and orthogonality techniques.
These tools simplify previously known proofs of strong normalisation
for traditional typing systems like System F. λ-terms
typable in System F are strongly normalising and therefore typable
with intersection types. In other words, the infinite polymorphism
given by System F is in practice always reduced to the finite
polymorphism given by intersection types. Our tools explain how.


[bookmark: uid55] Section: 
      New Results
A focused sequent calculus interacting with decision procedures
Participants :
      Stéphane Lengrand, Mahfuza Farooque, Clément Houtmann.


This line of research pertains to the ANR-project PSI (described below).

Inspired by techniques from SAT-modulo-theory, we have designed a
focused sequent calculus that can interact with theory-specific
decision procedures. Such a procedure is assumed to be able to decide
the consistency, with respect to a particular theory, of conjunctions
of atomic propositions (with free variables) written in the theory's
syntax.

Our sequent calculus organises an interplay between a syntactic
equality and a semantical / theory-based equality. It is modular over
the theories considered and the decision procedures plugged-in.

We conjecture that the instance of our modular sequent calculus with
the procedure known as Congruence Closure is sound and complete with
respect to classical logic with Leibniz's equality.

We have a candidate system for making this sequent calculus suitable
for proof-search using meta-variables and syntactic unification, whose
cohabitation with theories is difficult (and is therefore absent from
SAT-modulo-theory solvers).


[bookmark: uid56] Section: 
      New Results
Towards a stochastic linear logic for biological computation
Participants :
      Kaustuv Chaudhuri, Joëlle Despeyroux.


In previous work, Joëlle Despeyroux and Kaustuv Chaudhuri have
given an encoding of the synchronous stochastic π-calculus in a
hybrid extension of intuitionistic linear logic (called HyLL).
Precisely, they have shown that focused partial sequent derivations
in the encoding are in bijection with stochastic traces. The modal
worlds are used to represent the rates of stochastic interactions,
and the connectives of hybrid logic are used to represent the
constraints in the stochastic transition rules. These results were
presented in an extended report, available from
HAL [27] .

One of the most successful applications of the stochastic
π-calculus has been in representing signal transduction networks
in cellular biology. An interesting application of this work would
therefore be the direct representations of biological processes in
HyLL, the original motivation for this line of investigation.
Furthermore, other stochastic systems can, at least in principle, be
similarly encoded in HyLL, giving us the linguistic ability to
compare and combine systems represented using different stochastic
formalisms.

This year, a new definition of the stochastic constraints part of
the logic was given. While the new definition is more general than
the previous one, it is still not yet satisfactory; More work is
needed to provide hyll with the expressiveness of the traditional
temporal logic used to reason on biological computations.
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  [bookmark: uid58] Section: 
      Other Grants and Activities
National initiatives

[bookmark: uid59] INFER: ANR on the Theory and Application of Deep Inference
Participants :
      Dale Miller, Lutz Straßburger.


The ANR-project Blanc titled “INFER: Theory and Application of Deep
Inference” that is coordinated by Lutz Straßburger has been
accepted in September 2006. Besides Parsifal, the teams associated
with this effort are represented by François Lamarche
(INRIA-Loria) and Michel Parigot (CNRS-PPS). Among the list of
theoretical problems there is the fundamental need for a theory of
correct identification of proofs, and its corollary, the development
of a really general and flexible approach to proof nets. A closely
related problem is the extension of the Curry-Howard isomorphism to
these new representations. Among the list of more practical problems
to be consider is the question of strategy and complexity in proof
search, in particular for higher order systems. These questions are
intimately related to how proofs themselves are formulated in these
systems. Given their common grounding in rewriting theory, the
proposal plans to deepen the relationship between deep inference and
well established techniques like deduction modulo and unification for
quantifiers. The proposal also plans to explore the formulation and
use of more “exotic” logical systems, for example, non-commutative
logics, that have interesting applications, such as in linguistics and
quantum computing.


[bookmark: uid60] PSI: ANR on Proof Search control in Interaction with domain-specific methods
Participant :
      Stéphane Lengrand.


Stephane Lengrand is the scientific leader of the ANR-project Jeunes
chercheurs entitled “Proof Search control in Interaction with
domain-specific methods”, which started in September 2009. Other
founding members are among the INRIA project-team “TypiCal” : G.
Faure and A. Mahboubi. Since the project started, a Ph.D. student has
joined the project's research effort, and another one (Mahfuza
Farooque) has been recruited on the project's funds for three years,
starting on 1 October 2010. A one-year post-doc position, funded by
the project, has been offered to a candidate who should be joining the
team in 2011. The project aims at organising the interaction between
generic proof-search techniques as developed at Parsifal with decision
procedures for specific theories. The project has set up a regular
workgroup with experts on SAT-modulo-theory and developers of the
Alt-Ergo solver at the INRIA project-team “Proval”. Importing
techniques from SAT-modulo-theory (or automated reasoning) to a
framework where proof objects are being dynamically constructed by
proof-search is the desired objective of this collaboration for the
PSI-project. This objective converges with theirs in their efforts to
extend the capabilities of the Alt-Ergo solver.


[bookmark: uid61] CPP: ANR on Confidence, Proofs, and Probabilities
Participants :
      Ivan Gazeau, Dale Miller.


The ANR Blanc titled “CPP: Confidence, Proofs, and Probabilities”
has started 1 October 2009. This grant brings together the following
institutions and individuals: LSV (Jean Goubault-Larrecq), CEA LIST
(Eric Goubault, Olivier Bouissou, and Sylvie Putot), INRIA Saclay
(Catuscia Palamidessi, Dale Miller, and Stephane Gaubert), Supelec L2S
(Michel Kieffer and Eric Walter), and Supelec SSE (Gilles Fleury and
Daniel Poulton). This project proposes to study the joint use of
probabilistic and formal (deterministic) semantics and analysis
methods, in a way to improve the applicability and precision of static
analysis methods on numerical programs. The specific long-term focus
is on control programs, e.g., PID (proportional-integral-derivative)
controllers or possibly more sophisticated controllers, which are
heavy users of floating-point arithmetic and present challenges of
their own. To this end, we shall benefit from case studies and counsel
from Hispano-Suiza and Dassault Aviation, who will participate in this
project, but preferred to remain formally non-members, for
administrative reasons.


[bookmark: uid62] Panda: ANR on Parallelism and Distribution Analysis
Participant :
      Dale Miller.


The ANR Blanc titled “Panda: Parallelism and Distribution Analysis”
has started 1 October 2009. This project brings together researchers
from INRIA Saclay (Comète and Parsifal), CEA LIST, MeASI as well
labs in Paris (LIPN, PPS, LSV, LIP, LAMA), and on the Mediterranean
(LIF, IML, Airbus). Scientifically, this proposal deals with the
validation of concurrent and distributed programs, which is difficult
because the number of its accessible states is too large to be
enumerated, and even the number of control points, on which any
abstract collecting semantics is based, explodes. This is due to the
great number of distinct scheduling of actions in legal
executions. This adds up to the important size of the codes, which,
because they are less critical, are more often bigger. The objective
of this project is to develop theories and tools for tackling this
combinatorial explosion, in order to validate concurrent and
distributed programs by static analysis, in an efficient manner. Our
primary interest lies in multithreaded shared memory systems. But we
want to consider a number of other paradigms of computations,
encompassing most of the classical ones (message-passing for instance
as in POSIX or VXWORKS) as well as more recent ones.


[bookmark: uid63] Section: 
      Other Grants and Activities
European initiatives

[bookmark: uid64] Structural and Computational Proof Theory
Participants :
      Kaustuv Chaudhuri, Nicolas Guenot, Dale Miller, Lutz Straßburger.


Structural is an ANR-FWF project submitted to the “Programme Blanc
International Annexe projets franco-autrichiens.” This project,
which involves Parsifal, the University of Paris 7, and the
University of Vienna, was accepted in December 2010 and will start
in 2011.


[bookmark: uid65] Section: 
      Other Grants and Activities
International initiatives

[bookmark: uid66] REDO: Redesigning logical syntax
Participants :
      Nicolas Guenot, Dale Miller, Lutz Straßburger, François Wirion.


The REDO project is an INRIA funded ARC between INRIA Nancy Grand
Est, the University of Bath, and INRIA Saclay – Île-de-France. It
started in January 2009 and lasts 2 years. Coordinator is Lutz
Straßburger.


[bookmark: uid67] Slimmer: an INRIA and NSF funded international team
Participants :
      David Baelde, Andrew Gacek, Dale Miller.


Slimmer stands for Sophisticated logic implementations for
modeling and mechanical reasoning is an “Equipe Associée”
with seed money from INRIA. This project is initially designed to
bring together the Parsifal personnel and Gopalan Nadathur's Teyjus
team at the University of Minnesota (USA). Separate NSF funding for
this effort has also been awards to the University of Minnesota. We
are planning to expand the scope of this project to include other
French and non-French sites, in particular, Alwen Tiu (Australian
National University), Elaine Pimentel (Universidade Federal de Minas
Gerais, Brazil) and Brigitte Pientka (McGill University, Canada).
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  [bookmark: uid69] Section: 
      Dissemination
Scientific co-ordination


	[bookmark: uid70] Dale Miller has served on the following programme committees:


	[bookmark: uid71] LPAR-17: 17th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning, Yogyakarta,
Indonesia, 11–15 October



	[bookmark: uid72] IFIP-TCS 2010: International Conference on Theoretical
Computer Science, part of the World Computer Congress in
Brisbane, Australia, 20–23 September



	[bookmark: uid73] Workshop on Proof Systems for Program Logics, FLoC 2010,
Edinburgh, United Kingdom, 10 July



	[bookmark: uid74] Workshop on Logics for Agents and Mobility, FLoC 2010,
Edinburgh, United Kingdom, 15 July



	[bookmark: uid75] Workshop on Proof-Search in Type Theories, FLoC 2010,
Edinburgh, United Kingdom, 15 July



	[bookmark: uid76] Workshop on Programming Languages for Mechanized Mathematics
Systems (PLMMS), 5 July




He also serves on the editorial board of the following journals:


	[bookmark: uid77] ACM Transactions on Computational Logic (ToCL).
Editor-in-Chief since 1 June 2009; Area editor for Proof Theory
since 1999



	[bookmark: uid78] Journal of Automated Reasoning, published by Springer.
Member of Editorial Board since 2010



	[bookmark: uid79] Journal of Applied Logic, published by Elsevier. Area editor
for “Type Theory for Theorem Proving Systems” since 2003



	[bookmark: uid80] Journal of Logic and Computation, published by Oxford
University Press. Associate editor since 1989



	[bookmark: uid81] Journal of Functional and Logic Programming, published by
European Association for Programming Languages and Systems
(EAPLS). Permanent member of the Editorial Board. 1996–2010




His other professional duties include:


	[bookmark: uid82] Member of the “comité d'enseignement et recherche du
Département d'Informatique de l'École Polytechnique (DIX)”,
from October 2010



	[bookmark: uid83] Member of the “comité de sélection sur le poste
27PR90 `Logique et vérification”' at Rennes 1, May 2010.



	[bookmark: uid84] Member of the “comité de programmes”, Digiteo, during
2010






	[bookmark: uid85] Stéphane Lengrand has served on the following programme
committees:


	[bookmark: uid86] LICS-25: Twenty-Fifth Annual IEEE Symposium on Logic In
Computer Science (LICS 2010), Edinburgh, United Kingdom, 11–14
July



	[bookmark: uid87] Workshop on Proof-Search in Type Theories, FLoC 2010,
Edinburgh, United Kingdom, 15 July



	[bookmark: uid88] Workshop on Classical Logic and Computation, colocated with
MFCS'2010 and CSL'2010, Brno, Czech Republic, 21–22 August






	[bookmark: uid89] Lutz Straßburger organized the third REDO meeting in Bath,
UK, 14–16 September



	[bookmark: uid90] Kaustuv Chaudhuri serves on the “commission développement
technologique (CDT)” for INRIA Saclay – Île-de-France since
February 2010




Parsifal has also hosted the following short term scientific
visitors:


	[bookmark: uid91] Murdoch J. Gabbay, Lecturer, Heriott-Watt
University, Edinburgh, United Kingdom, 2–5 January & 4–9 October & 27-31 October & 11–18 November & 22–28 December,



	[bookmark: uid92] Dan R. Ghica, Senior Lecturer, University of Birmingham,
United Kingdom, 14–25 November



	[bookmark: uid93] Chuck Liang, Associate Professor, Hofstra University, NY, USA,
22 June – 2 July & 9–18 December



	[bookmark: uid94] Gopalan Nadathur, Professor, University of Minnesota, MN, USA,
17–30 May and 3–9 December 2010.





[bookmark: uid95] Section: 
      Dissemination
Teaching


	[bookmark: uid96] Dale Miller taught 12 hours at MPRI (Master Parisien de
Recherche en Informatique) in the Course 2-1: Logique linéaire
et paradigmes logiques du calcul.



	[bookmark: uid97] Dale Miller taught 10 hours in a graduate course at the
University of Milan for one week in March 2010.



	[bookmark: uid98] Lutz Straßburger taught a course
Introduction to Proof Theory at ESSLLI 2010 in Copenhagen in
August 2010.
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