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Overall Objectives

VEGAS  is a research project of LORIA  (Lorraine Research
Laboratory in Computer Science and Applications), a laboratory
shared by INRIA  (National Institute for Research in Computer
Science and Control), CNRS  (National Center for Scientific
Research), Université Henri Poincaré
Nancy 1 , Université Nancy
2 , and INPL  (National
Engineering Institute of Lorraine).

The main scientific objective of the VEGAS  research team is to
contribute to the development of an effective geometric computing
dedicated to non-trivial geometric objects. Included among its main
tasks are the study and development of new algorithms for the manipulation
of geometric objects, the experimentation of algorithms, the production of
high-quality software, and the application of such algorithms and
implementations to research domains that deal with a large amount of
geometric data, notably solid modeling and computer graphics.

Computational geometry has traditionally treated linear objects like
line segments and polygons in the plane, and point sets and polytopes
in three-dimensional space, occasionally (and more recently) venturing
into the world of non-linear curves such as circles and ellipses. The
methodological experience and the know-how accumulated over the last
thirty years have been enormous.

For many applications, particularly in the fields of computer graphics
and solid modeling, it is necessary to manipulate more general objects
such as curves and surfaces given in either implicit or parametric
form. Typically such objects are handled by approximating them by
simple objects such as triangles. This approach is extremely important
and it has been used in almost all of the usable software existing in
industry today. It does, however, have some disadvantages. Using a
tessellated form in place of its exact geometry may introduce spurious
numerical errors (the famous gap between the wing and the body of the
aircraft), not to mention that thousands if not hundreds of thousands
of triangles could be needed to adequately represent the
object. Moreover, the curved objects that we consider are not
necessarily everyday three-dimensional objects, but also abstract
mathematical objects that are not linear, that may live in
high-dimensional space, and whose geometry we do not control. For
example, the set of lines in 3D (at the core of visibility issues)
that are tangent to three polyhedra span a piecewise ruled quadratic
surface and the lines tangent to a sphere correspond, in projective
five-dimensional space, to the intersection of two quadratic
hypersurfaces.

Effectiveness is a key word of our research project. By
requiring our algorithms to be effective, we imply that the algorithms
should be robust, efficient, and versatile. By
robust we mean algorithms that do not crash on degenerate inputs and
always output topologically consistent data. By efficient we mean
algorithms that run reasonably quickly on realistic data where
performance is ascertained both experimentally and theoretically.
Finally, by versatile we mean algorithms that work for classes of
objects that are general enough to cover realistic situations and that
account for the exact geometry of the objects, in particular
when they are curved.
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Theory and applications
of three-dimensional visibility

The notion of 3D visibility plays a fundamental role in computer
graphics. In this field, the determination of objects visible from a
given point, the extraction of shadows or of penumbra boundaries are
examples of visibility computations. In global illumination methods,
(e.g. radiosity algorithms), it is necessary to determine, in a very
repetitive manner, if two points of a scene are mutually visible. The
computations can be excessively expensive. For instance, in radiosity, it is not
unusual that 50 to 70% of the simulation time is spent answering
visibility queries.

Objects that are far apart may have very complicated and unintuitive
visual interactions, and because of this, visibility queries are
intrinsically global. This partially explains that, until now,
researchers have primarily used ad hoc structures, of limited scope, to
answer specific queries on-the-fly. Unfortunately, experience has
shown that these structures do not scale up. The lack of a
well-defined mathematical foundation and the non-exploitation of the
intrinsic properties of 3D visibility result in structures that are
not usable on models consisting of many hundreds of thousands of
primitives, both from the viewpoint of complexity and robustness
(geometric degeneracies, aligned surfaces, etc.).

We have chosen a different approach which consists of computing
ahead of time (that is, off-line) a 3D global visibility structure
for which queries can be answered very efficiently on-the-fly (on
line). The 3D visibility complex – essentially a partition of ray
space according to visibility – is such a structure, recently
introduced in computational geometry and
graphics  [42] , [49] . We approach 3D global
visibility problems from two directions: we study, on the one
hand, the theoretical foundations and, on the other hand, we work
on the practical aspects related to the development of efficient
and robust visibility algorithms.

From a theoretical point of view, we study, for example, the
problem of computing lines tangent to four among k polytopes. We
have shown much better bounds on the number of these tangents than
were previously known [2] .
These results give a measure of the complexity of the vertices
(cells of dimension 0) of the visibility complex of faceted
objects, in particular, for triangulated scenes.

From a practical point of view, we have, for example, studied the
problem of the complexity for these 3D global visibility
structures, considered by many to be prohibitive. The size of
these structures in the worst case is O(n4), where n is the
number of objects in the scene. But we have, in fact, shown that
when the objects are uniformly distributed, the complexity is
linear in the size of the
input [6] . This probabilistic result
does not prejudice the complexity observed in real scenes where
the objects are not uniformly distributed. However, initial
empirical studies show that, even for real scenes, the observed
complexity is largely inferior to the theoretical worst-case
complexity, as our probabilistic result appears to indicate.

We are currently working on translating these positive signs into
efficient algorithms. We are studying new algorithms for the
construction of the visibility complex, putting the accent on the
complexity and the robustness.
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Reliable geometric computations on curves and surfaces

Simple algebraic surfaces cover a variety of forms sufficient for
representing the majority of objects encountered in the fields of
design, architecture and industrial manufacturing. For instance, it
has been estimated that 95% of all mechanical pieces can be well
modeled by quadric patches (degree 2 surfaces, including planes,
spheres, cylinders and cones) and torii  [50] . It is
important, then, to be able to process these surfaces in a robust and
efficient manner.

In comparison with polygonal representations, modeling and
manipulating scenes made of curved objects pose a large variety of new
issues and require entirely different tools. It is for instance no
longer realistic to assume that simple operations like intersecting
two primitives take constant time. The usual notion of complexity has
to be revised and needs to incorporate the arithmetic complexity of
operations.

Geometric computing with curved objects is plagued with robustness
issues. The numerical instability of geometric algorithms is
intimately linked to the double nature of geometric objects. Indeed, a
geometric object is two things: a combinatorial structure which
encodes the incidence properties between the elements constituting the
object and numerical quantities (coordinates, equations) describing
the embedding of the object in space. Manipulating geometric data,
without breaking the consistency constraints that govern the
relation between combinatorial and numerical quantities, is usually
hard and has led to the unfolding of the exact geometric
computing paradigm.

The dependence of combinatorial decisions on numerical computations is
encapsulated in the notion of geometric predicates. When
working with algebraic objects, evaluating a geometric predicate often
means determining the sign of a polynomial expression in the
coefficients of the input. This sign encodes the answer to simple
geometric queries like “are three given points aligned?” or “is a
given line tangent to a given surface?”. The paradigm of exact
geometric computing requires the predicates to be evaluated exactly,
ensuring that the branching of the algorithm are correct, that the
software will not crash, loop indefinitely or output a wrong answer,
and thus that the topological structure of the output is correct.

In the context of exact geometric computing, we work on key problems
involving curved objects, mainly two-dimensional curves, and low-degree three-dimensional surfaces
such as quadrics. For instance,
we study intersections of quadrics both from an algorithmic and an
algebraic-geometric point of view. On the algorithmic side, we work on
finding simple and usable parameterizations of the intersection of two
arbitrary quadrics. On the algebraic side, we deal with finding simple
(and ideally optimal) geometric predicates for classifying the
intersection pattern and the positional relationship of two quadrics.

We also work on computing arrangements of curved objects, i.e. the partitioning of space induced by the objects, such as arrangements of curves on a
surface, or arrangements of quadrics in 3D
space. Note
that intersections of 2 and 3 quadrics are building blocks for the constructions of quadric
arrangements. We work on constructing simpler
sub-arrangements, like the BRep (Boundary Representation) of a solid
model (CSG). Exact CSG-to-BRep conversion is a key and long-standing
problem in CAGD, where many conventional modelers work with volumes
and rendering software based on the global illumination approach need
surface patches.

Finally, we deal with geometric problems where low-degree surfaces
appear indirectly, not in the input but as intermediate structures. A
major problem in this category is the computation of the Voronoi
diagram, or medial axis, of polyhedra in 3D.
In particular, we work on the simpler instance where only lines and line
segments in 3D are considered, the bisectors of pairs of
lines being quadric surfaces.
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Computer graphics

Our main application domain is photorealistic rendering in computer
graphics. We are especially interested in the application of our work to
virtual prototyping, which refers to the many steps required for the
creation of a realistic virtual representation from a CAD/CAM model.

When designing an automobile, detailed physical mockups of the interior are
built to study the design and evaluate human factors and ergonomic issues.
These hand-made prototypes are costly, time consuming, and difficult to
modify. To shorten the design cycle and improve interactivity and
reliability, realistic rendering and immersive virtual reality provide an
effective alternative. A virtual prototype can replace a physical mockup
for the analysis of such design aspects as visibility of instruments and
mirrors, reachability and accessibility, and aesthetics and appeal.

Virtual prototyping encompasses most of our work on effective geometric
computing. In particular, our work on 3D visibility should
have fruitful applications in this domain. As already explained, meshing
objects of the scene along the main discontinuities of the visibility
function can have a dramatic impact on the realism of the simulations.
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Solid modeling

Solid modeling, i.e., the computer representation and manipulation of 3D
shapes, has historically developed somewhat in parallel to computational
geometry. Both communities are concerned with geometric algorithms and deal
with many of the same issues. But while the computational geometry
community has been mathematically inclined and essentially concerned with
linear objects, solid modeling has traditionally had closer ties to
industry and has been more concerned with curved surfaces.

Clearly, there is considerable potential for interaction between the two
fields. Standing somewhere in the middle, our project has a lot to offer.
Among the geometric questions related to solid modeling that are of
interest to us, let us mention: the description of geometric shapes, the
representation of solids, the conversion between different representations,
data structures for graphical rendering of models and robustness of
geometric computations.
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QI: Quadrics Intersection

QI stands for “Quadrics Intersection”. QI is the first exact,
robust, efficient and usable implementation of an algorithm for
parameterizing the intersection of two arbitrary quadrics, given in
implicit form, with integer coefficients. This implementation is based
on the parameterization method described
in [10] ,
[39] , [40] , [41] 
and represents the first complete and robust solution to what is
perhaps the most basic problem of solid modeling by implicit curved
surfaces.

QI is written in C++ and builds upon the LiDIA computational number
theory library  [33]  bundled with the GMP multi-precision
integer arithmetic  [32] . QI can routinely compute
parameterizations of quadrics having coefficients with up to 50 digits
in less than 100 milliseconds on an average PC;
see [10]  for detailed benchmarks.

Our implementation consists of roughly 18,000 lines of source code.
QI has being registered at the Agence pour la Protection des
Programmes (APP). It is distributed under the free for non-commercial
use INRIA license and will be distributed under the QPL license in the
next release. The implementation can also be queried via a web
interface  [34] .

Since its official first release in June 2004, QI has been downloaded
six times a month on average and it has been included in the geometric
library EXACUS developed at the Max-Planck-Institut für Informatik
(Saarbrücken, Germany). QI is also used in a broad range of
applications; for instance, it is used in photochemistry for studying
the interactions between potential energy surfaces, in computer vision
for computing the image of conics seen by a catadioptric camera with a
paraboloidal mirror, and in mathematics for computing flows of
hypersurfaces of revolution based on constant-volume average
curvature.
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Isotop: Topology and Geometry of
Planar Algebraic Curves

Isotop is a Maple software for computing the topology of an
algebraic plane curve, that is, for computing an arrangement of
polylines isotopic to the input curve. This problem is a necessary key
step for computing arrangements of algebraic curves and has also
applications for curve plotting. This software has been developed
since 2007 in collaboration with
F. Rouillier from INRIA Paris - Rocquencourt (SALSA). It
is based on the method described in [16] 
which incorporates several improvements over previous methods. In
particular, our approach does not require generic position (nor
shearing) and avoids the computations of sub-resultant sequences.
Our preliminary implementation is competitive with other
implementations (such as AlciX and Insulate
developed at MPII Saarbrücken, Germany and top developed at
Santander Univ., Spain). It performs similarly for small-degree curves
and performs significantly better for higher degrees, in particular
when the curves are not in generic position.
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CGAL: Computational Geometry Algorithms Library

Born as a European project, CGAL (http://www.cgal.org ) has
become the standard library for computational geometry. It offers easy
access to efficient and reliable geometric algorithms in the form of a
C++ library. CGAL is used in various areas needing geometric
computation, such as: computer graphics, scientific visualization,
computer aided design and modeling, geographic information systems,
molecular biology, medical imaging, robotics and motion planning, mesh
generation, numerical methods...

In computational geometry, many problems lead to standard, though
difficult, algebraic questions such as computing the real roots of a
system of equations, computing the sign of a polynomial at the roots
of a system, or determining the dimension of a set of solutions. we
want to make state-of-the-art algebraic software more accessible to
the computational geometry community, in particular, through the
computational geometric library CGAL.
On this line, S. Lazard and L. Peñaranda proposed an extension to the
already existing Number Types package.
They contributed two new number types Gmpfr and Gmpfi to the CGAL library (see Sections
5.4, 5.7, and 5.9 of  [46] );
these new types interface the multiple-precision floating-point arithmetic library MPFR, and
corresponding interval arithmetic library MPFI.
They also contributed a model of the Univariate Algebraic Kernel
concept for algebraic computations [30]  (see
Sections 8.2.2 and 8.4). This CGAL package improves, for instance, the efficiency of the
computation of arrangements of polynomial functions in CGAL  [48] . This implementation uses the RS
library developed by F. Rouillier at INRIA Paris - Rocquencourt
(SALSA) for isolating real roots of polynomials. All these packages
have been reviewed and accepted accepted by the editorial board of CGAL and
have been released this year.
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3D visibility, theory and applications

In recent years, our activity in the area of 3D visibility focused on
three main directions: (i) the computation and complexity analysis of
the 3D visibility complex or skeleton, (ii) the computation and complexity
analysis of the boundary of shadows cast by area light sources, and
(iii) the study of some fundamental questions in geometric transversal
theory.

[bookmark: uid16] Complexity of sets of free lines and line segments among balls in three dimensions

We presented in [26]  two new fundamental lower bounds on the worst-case
combinatorial complexity of sets of free lines and sets of
maximal free line segments in the presence of balls in three
dimensions.

We first proved that the visibility complex of n disjoint unit balls, or equivalently the set of maximal non-occluded line segments among
n disjoint unit balls, has complexity Ω(n4), which
matches the trivial O(n4) upper bound. This improves the trivial
Ω(n2) bound and also the Ω(n3) lower bound for the
restricted setting of arbitrary-size balls, proved by Devillers and Ramos in 2001.
This result settles, negatively, the natural conjecture that this set of
line segments, or, equivalently, the visibility complex, has smaller
worst-case complexity for disjoint fat objects than for skinny triangles.

We also proved an Ω(n3) lower bound on the complexity of the set
of non-occluded lines among n balls of arbitrary radii, improving on
the trivial Ω(n2) bound. This new bound almost matches the recent O(n3 + ϵ) upper
bound [51] .

We submitted the final version of this paper to the journal Discrete and
Computational Geometry in a special issue dedicated to the best papers from the 2010 Symposium on
Computational Geometry.


[bookmark: uid17] Succinct 3D visibility skeleton

The 3D visibility skeleton is a data structure that encodes the global visibility information of a
set of 3D objects. While it is useful in answering global visibility queries, its large size often
limits its practical use. We addressed this issue in
[24] , [27]  by proposing a subset of the
visibility skeleton, which is about 25% to 50% of the whole set. We showed that the rest of the
data structure can be recovered from the subset as needed, partially or completely. Our recovery
method is efficient in the sense that it is output-dependent. We also proved that this subset is
minimal for the complexity of our recovery method.


[bookmark: uid18] Shadow boundary computation

Computing a geometric description (as opposed to, say, a bitmap
rendering) of the boundaries of the shadow regions in a 3D scene with
extended light-sources is a difficult problem. Typical solutions are
based on visual event surfaces, certain patches of ruled
surfaces that partition the 3D spaces in regions from which the view
of the scene is invariant. The number of visual event surfaces can be
prohibitive, but only a few of them contribute to defining the shadow
boundaries. In his PhD thesis in 2008, Julien Demouth, a former
student of the group, identified a small superset of visual event
surfaces that are relevant for this problem and developped a prototype
code that compute the boundaries of shadows cast by extended convex
polyhedra. This year, from January to July, JeongHwan Jang, a master
student from KAIST worked on improving the prototype of Julien
Demouth. Specifically, the prototype could only trace the shadows on
the “ground” of the 3D world due to certain simplifying assumptions;
JeongHwan lifted these assumptions by, in particular, making a
detailed analysis of the predicates for the intersection of a plane
and a visual event suface. The prototype can now trace the shadow
boundaries on the objects themselves. This work is the basis for
JeongHwan's master thesis, to be defended in December in KAIST.


[bookmark: uid19] Lower bounds to Helly numbers of line transversals to disjoint congruent balls

A line [image: Im1 $\#8467 $] is a transversal to a family F of convex objects in
[image: Im2 $\#8477 ^d$] if it intersects every member of F. We showed that
for every integer d>2 there exists a family of 2d-1 pairwise
disjoint unit balls in [image: Im2 $\#8477 ^d$] with the property that every
subfamily of size 2d-2 admits a transversal, yet any line misses at
least one member of the family. This answers a question of Danzer from
1957. This work was accepted for publication in the Israel
Journal of Mathematics [18] .


[bookmark: uid20] Lines pinning lines

A line g is a transversal to a family F of convex polytopes in
3-dimensional space if it intersects every member of F. If, in
addition, g is an isolated point of the space of line transversals
to F, we say that F is a pinning of g. We showed that any
minimal pinning of a line by convex polytopes such that no face of a
polytope is coplanar with the line has size at most eight. If, in
addition, the polytopes are disjoint, then it has size at most six. We
completely characterize configurations of disjoint polytopes that form
minimal pinnings of a line. This work was accepted for publication in
a special issue of the journal Discrete & Computational
Geometry [14]  devoted to the
workshop on Transversal and Helly-type Theorems in Geometry,
Combinatorics and Topology, Banff, 2009.


[bookmark: uid21] Pinning a line by balls or ovaloids in [image: Im3 $\#8477 ^3$]

We show that if a line [image: Im1 $\#8467 $] is an isolated line transversal to a
finite family F of (possibly intersecting) balls in [image: Im3 $\#8477 ^3$]
and no two balls are externally tangent on [image: Im1 $\#8467 $] , then there is a
subfamily [image: Im4 ${G\#8838 F}$] of size at most 12 such that [image: Im1 $\#8467 $] is an
isolated line transversal to G. We generalize this result to
families of semialgebraic ovaloids. This work was accepted for
publication in a special issue of the journal Discrete &
Computational Geometry [20]  devoted
to the workshop on Transversal and Helly-type Theorems in
Geometry, Combinatorics and Topology, Banff, 2009.
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Certified geometric computing for curves and surfaces

[bookmark: uid23] Topology of real algebraic plane curves

We revisited in the problem of computing the topology and geometry of a real
algebraic plane curve. The topology is of prime interest but geometric
information, such as the position of singular and critical points, is
also relevant. A challenge is to compute efficiently this information for
the given coordinate system even if the curve is not in generic position.

Previous methods based on the cylindrical algebraic decomposition use
sub-resultant sequences and computations with polynomials with algebraic
coefficients. A novelty of our approach is to replace these tools by
Gröbner basis computations and isolation with rational univariate
representations. This has the advantage of avoiding computations with
polynomials with algebraic coefficients, even in non-generic positions.
Our algorithm isolates critical points in boxes and computes a
decomposition of the plane by rectangular boxes. This decomposition also
induces a new approach for computing an arrangement of polylines isotopic
to the input curve. We also present an analysis of the complexity of our
algorithm. An implementation of our algorithm demonstrates its
efficiency, in particular on high-degree non-generic curves; see Section Software.
These results were presented in Luis Peñaranda's Ph.D. thesis [13]  and published in [16] .


[bookmark: uid24] Algebraic tools for geometric computing

In computational geometry, many problems lead to standard, though
difficult, algebraic questions such as computing the real roots of a
system of equations, computing the sign of a polynomial at the roots
of a system, or determining the dimension of a set of solutions.
We want to make state-of-the-art algebraic
software more accessible to the computational geometry community, in
particular, through the computational geometric library CGAL.
We have contributed to the CGAL library a model of the Univariate Algebraic Kernel
concept for algebraic computations [30]  (see
Sections 8.2.2 and 8.4). This CGAL package improves, for instance, the efficiency of the
computation of arrangements of polynomial functions in CGAL
[48] . This implementation uses the RS
library developed by F. Rouillier at INRIA Paris - Rocquencourt
(SALSA) for isolating real roots of polynomials. We have also contributed an extension to the
already existing CGAL Number Types package. We proposed
two new number types Gmpfr and Gmpfi to the CGAL library (see Sections
5.4, 5.7, and 5.9 in [46] );
these new types interface the multiple-precision floating-point arithmetic library MPFR, and
corresponding interval arithmetic library MPFI.
All these packages
have been reviewed and accepted by the editorial board of CGAL have been released this year.
This work was also presented in Luis Peñaranda's Ph.D. thesis [13] .


[bookmark: uid25] Boundary evaluation of quadric-based solids

Few
approaches have been proposed for computing exactly and efficiently a
representation of the boundary (BRep)
of a solid defined as unions and intersections of elementary solids delimited by quadrics.
All of them assume, in particular, that the objects considered are in “generic position”,
therefore bypassing the all-important issue of degeneracies. Using our algorithm
for parameterizing the intersections of two projective quadrics [7]  as a building
block, we have presented an algorithm for exactly and robustly extracting the
surface patches appearing on the BRep and giving an explicit representation of
their borders. This algorithm was presented this year in M. Pentcheva's Ph.D. thesis [12] .

It should be stressed that this project, which consists in computing a part of
an arrangement of quadrics, has many applications other than the boundary
evaluation of quadric-based solids. For instance, problems such as computing the
convex hull of a set of quadric patches or computing one cell of the Voronoi
diagram of polyhedra can be solved by computing the
boundary of a quadric-based solid.


[bookmark: uid26] Computing the edge-adjacency graph of an arrangement of quadrics

In [22] , we presented a complete, exact and efficient implementation to compute the edge-adjacency graph of an arrangement of quadrics, i.e. surfaces of
algebraic degree 2. This is a major step towards the computation of the full 3D arrangement.
We enhanced an implementation for an exact parameterization of
the intersection curves of two quadrics [7] , such that we can compute
the exact parameter value for intersection points
and from that the edge-adjacency graph of the arrangement.
Our implementation is complete in the sense that it can handle all
kinds of inputs including all degenerate ones, i.e. singularities or tangential intersection points.
It is exact in that it always computes the mathematically correct result. It is efficient measured in running
times, i.e. it compares favorably to the only previous implementation.


[bookmark: uid27] Characterizing the intersection pattern of two projective conics

We showed how to efficiently detect the type of the intersection of two arbitrary plane projective
conics. The characterization uses geometric predicates of bidegree (6, 6) in the two input conics,
which is optimal. While we already proved similar results recently (cf. [11] ), the approach spelled out here attaches geometric meaning to the predicates and overall brings substantial geometric insight to the characterization problem, which was previously treated purely algebraically. The idea is as follows: we first consider a special conic pencil to which can be attached in a simple way a quartic binary form. We show that the root pattern of the quartic is in one-to-one correspondence with the intersection pattern of the two conics. Then, following old ideas of Lindemann, we relate invariants/covariants of any two conics in the special pencil to invariants/covariants of the quartic, using the symbolic approach to classical invariant theory. We compute the Bezoutian of the quartic and show that its inertia (as a quadratic form) characterizes the intersection pattern of the two conics. We finally express it in terms of covariants of the two conics and show that its expression and the properties attached to it extend to the case of a general conic pencil.


[bookmark: uid28] Geometric predicates as arrangements of hypersurfaces

Geometric predicates can be formulated as an arrangement of hypersurfaces (usually algebraic
varieties) in a high-dimensional space, where each cell of the arrangement corresponds to an outcome
of the predicate, and an evaluation of the predicate maps to point-location queries in this
arrangement. To do this successfully, the arrangement has to be decomposed by the aid of subsidiary
hypersurfaces, the degree of which plays a fundamental role in the algebraic complexity of the
predicate, with respect to the input coefficients. We show in [29] 
that the widely used predicate of root comparison of quadratic polynomials can be mapped to an
arrangement of lines and a parabola. For cubics, it becomes an arrangement of planes and a quartic
surface, when a monic polynomial of degree d is represented as a point in [image: Im2 $\#8477 ^d$].
Minimizing the degree of the subsidiary equations is an outstanding open problem.


[bookmark: uid29] Bounded-curvature shortest paths

We considered the problem of computing shortest paths having
curvature at most one almost everywhere and visiting a sequence of
n points in the plane in a given order. This problem arises
naturally in path planning for point car-like robots in the presence
of polygonal obstacles, and is also a sub-problem of the Dubins
Traveling Salesman Problem.

We showed in [31]  that a shortest bounded-curvature path through a sequence of
points p1, ..., pn such that consecutive points are distance at least
4
apart can be computed by minimizing a function from
[image: Im5 $\#8477 ^n$] to [image: Im6 $\#8477 $] which is strictly convex over at most 2k convex
polyhedra, and realizes its minimum over these polyhedra; each
polyhedron is defined by 4n-1 inequalities, and k denotes the
number of sharp turns, that is, informally, the number of
points pi such that [image: Im7 ${\#8736 (p_{i-1},p_i,p_{i+1})}$] is small. The
function to be optimized maps [image: Im8 ${{(\#952 _1,...,\#952 _n)}\#8712 \#8477 ^n}$] to
the length of a shortest curvature-constrained path that visits the
points p1, ..., pn in order and whose tangent in pi makes an
angle θi with the x-axis.

We also reveal a connection between the above problem and the question
of finding a shortest path of bounded curvature between two given
points in the presence of polygonal obstacles. As a consequence, we
obtain that if the sequence of points where a shortest path touches
the obstacles is known then “connecting the dots” reduces, under
certain conditions, to a family of convex optimization problems.
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[bookmark: uid31] Rigid graph

Given an abstract graph and its edge lengths, we considered the
problem of counting its embeddings in the plane. This problem is
important in computational geometry [36] , [35]  and
has applications in robot kinematics
[52] , [38] , [44]  and structural biology
[47] , [45] , [43] . We focused on graphs with 11
edges and 7 vertices, that is the smallest case for which the
maximal number of embeddings was unknown. We proved that they can
have at most 56 embeddings and showed an example of such a graph.

The rigidity of these graphs was captured by a polynomial system
derived from Cayley-Menger matrices. The upper bound were obtained
using the theory of mixed-volume for sparse systems. And for the
lower bound, we used stochastic optimisation methods.

Moreover, this result allowed us to slightly improve the lower
bound for any n on the number of embeddings of a n-vertices
graph, raising the record obtained by Borcea and Streinu from
Ω(2.289n) to Ω(2.300n).

This work has been submitted to IFToMM 2011, one of the major
conferences in mechanical design.


[bookmark: uid32] Homotopic Fréchet distance between curves

The Fréchet distance between two curves in the plane is the minimum
length of a leash that allows a dog and its owner to walk along their
respective curves, from one end to the other, without backtracking.
We proposed in [15]  a natural extension of Fréchet distance to more general
metric spaces, which requires the leash itself to move continuously
over time. For example, for curves in the punctured plane, the leash
cannot pass through or jump over the obstacles (“trees”). We
describe a polynomial-time algorithm to compute the homotopic
Fréchet distance between two given polygonal curves in the plane
minus a given set of polygonal obstacles.


[bookmark: uid33] Universal sets of n points for one-bend drawings of planar graphs with n
vertices

We showed in [19]  that any planar graph with n vertices can be
point-set embedded with at most one bend per edge on a universal
set of n points in the plane. An implication of this result is
that any number of planar graphs admit a simultaneous embedding
without mapping with at most one bend per edge.


[bookmark: uid34] Farthest-polygon Voronoi diagrams

Given a family of k disjoint connected polygonal sites in general
position and of total complexity n, we consider the farthest-site Voronoi
diagram of these sites, where the distance to a site is the distance to a
closest point on it. We showed in [17]  that the complexity of this diagram is O(n),
and give an O(nlog3n) time algorithm to compute it. We also prove a
number of structural properties of this diagram. In particular, a Voronoi
region may consist of k-1 connected components, but if one component is
bounded, then it is equal to the entire region.
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[bookmark: id21600] Associated Teams and Other International Projects


	KAIST-INRIA associated team. This INRIA program is a joint
project between VEGAS and the Theory of Computation Laboratory of
the KAIST University of Daejeon, in Korea, more particularly the
group of Otfried Cheong. It started in 2008, following a 2-years PHC
grant. The research theme is Discrete and Computational Geometry, in
general, with a particular emphasis on questions where both
continuous and discrete aspects come into play and interact. In
2010, this collaboration continued through mutual visits (see below)
and a research workshop that we organized in September 2010 to
discuss problems on interactions between discrete and
algebraic geometry. The projects on which we collaborate include
line
geometry [14] , [18] , combinatorial geometry  [37] 
bounded curvature path planning [31]  and geometric
data structures [17] .

In 2010, this cooperation was supported for 13 kE by INRIA and for
4 kE by our partners.





	Sylvain Petitjean started a collaboration with Pr. Gert Vegter
of the University of Groningen on “Certified Geometric
Approximation”. This collaboration is funded by the Netherlands
Organization for Scientific Research (NWO) - 2008–2012.
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Visitors:


	[bookmark: uid39] JeongHwan Jang, KAIST, January-July, 6 months.



	[bookmark: uid40] Otfried Cheong, KAIST, June, 1 week.



	[bookmark: uid41] Hyo-Sil Kim, KAIST, June, 2 weeks.



	[bookmark: uid42] Mira Lee, KAIST, July, 10 days.



	[bookmark: uid43] Martin Tancer, Charles University (Prague), September 1 week.



	[bookmark: uid44] Jae-Soon Ha, KAIST, September, 1 week.



	[bookmark: uid45] Christian Knauer, Bayreuth University, September, 1 week.




Visits:


	[bookmark: uid46] Xavier Goaoc, Univ. Magdeburg, Germany, 2 days; Charles
University, Czech Republic, 2x1 week; Frankfurt, Germany, 2 days;
KAIST, Korea, 2 weeks.



	[bookmark: uid47] Laurent Dupont, KAIST, Korea, 2 weeks.



	[bookmark: uid48] Sylvain Lazard, Inria Sophia Antipolis, 2 weeks.






    Dissemination

    
      	Dissemination	[bookmark: uid50]Teaching
	[bookmark: uid51]Animation of the scientific community



    

  [bookmark: uid50] Section: 
      Dissemination
Teaching

All of the teaching activities were carried out in Nancy. The
research Masters program is a joint degree with Univ. Nancy 1,
Univ. Nancy 2 and the engineering school INPL. These three
institutes are jointly known as University of Nancy.

Several members of the group, in particular the professors,
assistant professors and Ph.D. students, actively teach at
Université Nancy
2 , Université Henri Poincaré
Nancy 1 , and INPL . Members of the group also
teach in the Master of Computer Science of Nancy; namely, H. Everett
contributed to the module “Modelisation of geometric data”.
Inria researchers also intervene: X. Goaoc teaches computational geometry in the Master's program of the geology
school at INPL and an “algorithm in C” course in the “formation
continue” program at Nancy University. S. Lazard also teaches the L3 course on “Algorithms and Complexity" at Nancy University.


[bookmark: uid51] Section: 
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Animation of the scientific community

Program and Paper Committee:


	Hazel Everett:
Program committee of the ACM Symposium on Computational Geometry
2010 (SoCG'10).



	Sylvain Lazard:
Program committee of the European Symposium on Algorithms 2010 (ESA'10)




Editorial responsibilities:


	Hazel Everett: Editor of the Journal of Computational Geometry.



	Xavier Goaoc: Editor of the Journal of Computational Geometry.



	Sylvain Lazard: Guest editor (with L. Gonzalez-Vega, Santander
Univ., Spain) of Mathematics in Computer Science (special
issue on Computational Geometry and CAGD) [21] . Guest editor of
Computational Geometry: Theory
and Applications (special issue on selected
papers from EuroCG'08) [23] .



	Sylvain Petitjean: Editor of Graphical Models.




Workshop organizations:


	Hazel Everett and Sylvain Lazard co-organized with S. Whitesides
(Victoria University) the 9th Workshop on Geometry Problems in
Computer Graphics(Workshop on Problems in Computational
Geometry )
(Bellairs Research Institute of McGill University) in Feb. (1 week workshop on invitation).



	Xavier Goaoc co-organized with Otfried Cheong (KAIST, Korea) and Frank Sottile (TAMU, USA).
the Workshop on Interactions between discrete and algebraic geometry(KAIST-INRIA associated team )
(Val d'Ajol) in Sept. (1 week workshop on invitation).




Thesis and habilitation committee:


	Sylvain Lazard: member of the PhD. committee of P. Marin, INPL, Nancy.



	Sylvain Petitjean: member of the PhD. committee of D. Robert, Nancy-Université.




Other responsibilities:


	Hazel Everett:
Head of the LORIA laboratory (Jan.-Feb. 2010).



	Sylvain Lazard: Head of the INRIA Nancy-Grand Est PhD and Post-doc hiring committee
(since 2009).
Member of the Bureau du Département Informatique de Formation Doctorale of the École
Doctorale IAE+M (since 2009).



	Laurent Dupont:
Director of the departement Services et réseaux de communication of
IUT Charlemagne, University Nancy 2 (since 2008).



	Xavier Goaoc:
Member of the hiring committee for computer science, University
Paris 6.
Correspondent Europe of INRIA Nancy Grand-Est.



	Sylvain Petitjean:
Scientific delegate of INRIA Nancy Grand-Est and chairman of its
Project committee (since 2009).
Member of the Executive committee of INRIA Nancy
Grand-Est, member of its Commission des développements technologiques.
Member of INRIA's Evaluation committee.



	Marc Pouget:
Member of the CGAL Editorial Board (since 2008).
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