

[image: cover]

vertecs
Verification models and techniques applied to testing and control of reactive systems
2010 Research Team Activity Report
	Rennes - Bretagne-Atlantique

	 Field :
	 Algorithmics, Programming, Software and Architecture

Theme :
Embedded and Real Time Systems
Presentation of the
		Project-Team

	Members
	Overall Objectives	[bookmark: uid3]Introduction
	[bookmark: uid9]Highlights

	Scientific Foundations	[bookmark: uid11]Underlying Models.
	[bookmark: uid16]Verification
	[bookmark: uid23]Automatic Test Generation
	[bookmark: uid24]Controller Synthesis

	Application Domains	[bookmark: uid28]Panorama
	[bookmark: uid29]Telecommunication Systems
	[bookmark: uid30]Software Embedded Systems
	[bookmark: uid31]Smart-card Applications
	[bookmark: uid32]Control-command Systems

	Software	[bookmark: uid34]TGV
	[bookmark: uid35]STG
	[bookmark: uid36]SIGALI

	New Results	[bookmark: uid38]Verification
	[bookmark: uid46]Active and passive testing
	[bookmark: uid52]Controller Synthesis

	Other Grants and Activities	[bookmark: uid61]National Grants & Contracts
	[bookmark: uid66]European and International Grants
	[bookmark: uid73]Collaborations

	Dissemination	[bookmark: uid84]University courses
	[bookmark: uid88]PhD Thesis and Trainees
	[bookmark: uid92]
Scientific animation

	Bibliography
		Major publications
	Publications of the year
	References in notes

Section: Members
Research Scientists
Thierry Jéron [Team Leader, Research Director (DR),INRIA, HdR]
Nathalie Bertrand [Research Associate (CR) INRIA]
Hervé Marchand [Research Associate (CR) INRIA]
Vlad Rusu [Research Associate (CR) INRIA, until September 2010, HdR]

PhD Students
Amélie Stainer [Université de Rennes 1, since September 2010]
Sébastien Chédor [Université de Rennes 1, since September 2009]
Post-Doctoral Fellows
Yliès Falcone [Inria, since December 2009]
Puneet Bhateja [Inria, since April 2010]
Visiting Scientist
Christophe Morvan [Assistant Professor, Univ. de Marne-la-Vallée]
Administrative Assistant
Lydie Mabil [TR INRIA, (80%)]

 Overall Objectives

 	Overall Objectives	[bookmark: uid3]Introduction
	[bookmark: uid9]Highlights

 [bookmark: uid3] Section:
 Overall Objectives
Introduction

The VerTeCs team is focused on the use of formal methods
to assess the reliability, safety and security
of reactive software systems.
By reactive software system we mean a system
controlled by software which reacts
with its environment (human or other reactive software).
Among these, critical systems are of primary importance, as errors occurring
during their execution may have dramatic economical or human consequences.
Thus, it is essential to establish their correctness before they are deployed
in a real environment, or at least detect incorrectness during execution
and take appropriate action.
For this aim, the VerTeCs team promotes the use of formal methods,
i.e. formal specification of software and their required properties
and mathematically founded validation methods.
Our research covers several validation methods, all
oriented towards a better reliability of software systems:

	[bookmark: uid4] Verification, which is used during the analysis and design phases,
and whose aim is to establish the correctness of specifications
with respect to requirements, properties or higher level specifications.

	[bookmark: uid5] Control synthesis, which consists in “forcing”
(specifications of) systems to stay within desired behaviours by
coupling them with a supervisor.

	[bookmark: uid6] Conformance testing, which is used to check the correctness
of a real system with respect to its specification.
In this context, we are interested in model-based testing,
and in particular
automatic test generation of test cases from specifications.

	[bookmark: uid7] Diagnosis and monitoring, which are used during execution
to detect erroneous behaviour.

	[bookmark: uid8] Combinations of these techniques, both at the methodological
level (combining several techniques within formal validation
methodologies) and at the technical level (as the same set of formal
verification techniques - model checking, theorem proving and
abstract interpretation - are required for control synthesis, test
generation and diagnosis).

Our research is thus concerned with the development of formal models
for the description of software systems, the formalization of
relations between software artifacts (e.g. satisfaction, conformance
between properties, specifications, implementations), the interaction
between these artifacts (modelling of execution, composition, etc).
We develop methods and algorithms for verification, controller
synthesis, test generation and diagnosis that ensure desirable
properties (e.g. correctness, completeness, optimality, etc). We try
to be as generic as possible in terms of models and techniques in
order to cope with a wide range of application domains and
specification languages. Our research has been applied to
telecommunication systems, embedded systems, smart-cards application,
and control-command systems. We implement prototype tools for
distribution in the academic world, or for transfer to the industry.

Our research is based on formal models and our basic tools are verification techniques such as model checking, theorem proving,
abstract interpretation, the control theory of discrete event systems,
and their underlying models and logics. The close connection between
testing, control and verification produces a synergy between these
research topics and allows us to share theories, models, algorithms
and tools.

[bookmark: uid9] Section:
 Overall Objectives
Highlights

Yliès Falcone, Thierry Jéron and Hervé Marchand
together with Jean-Claude Fernandez and Laurent Mounier (Verimag, University of Grenoble), received the IFIP Best Paper Award at the ICTSS'2010 conference
(22nd IFIP International Conference on Testing Software and Systems),
in Natal (Brasil), in novembre 2010, for the paper More Testable Properties[18] .
ICTSS, which merges TestCom and FATES is a major conference on
testing of software and systems.

 Scientific Foundations

 	Scientific Foundations	[bookmark: uid11]Underlying Models.
	[bookmark: uid16]Verification
	[bookmark: uid23]Automatic Test Generation
	[bookmark: uid24]Controller Synthesis

 [bookmark: uid11] Section:
 Scientific Foundations
Underlying Models.

The formal models we use are mainly automata-like structures such as
labelled transition systems (LTS) and some of their extensions: an LTS
is a tuple [image: Im1 ${M=(Q,\#923 ,\#8594 ,q_o)}$] where Q is a
non-empty set of states; [image: Im2 ${q_o\#8712 Q}$] is the initial state; A is
the alphabet of actions, [image: Im3 ${\#8594 \#8838 Q×\#923 ×Q}$] is
the transition relation. These models are adapted to testing and
controller synthesis.

To model reactive systems in the testing context, we use Input/Output
labeled transition systems (IOLTS for short). In this setting, the
interactions between the system and its environment (where the tester
lies) must be partitioned into inputs (controlled by the environment),
outputs (observed by the environment), and internal (non observable)
events modeling the internal behavior of the system. The alphabet
Λ is then partitioned into [image: Im4 ${\#923 _!\#8746 \#923 _?\#8746 \#119983 }$] where Λ! is the alphabet of outputs, Λ?
the alphabet of inputs, and [image: Im5 $\#119983 $] the alphabet of internal
actions.

In the controller synthesis theory, we also distinguish between
controllable and uncontrollable events ([image: Im6 ${\#923 =\#923 _c\#8746 \#923 _{uc}}$]), observable and unobservable events ([image: Im7 ${\#923 =\#923 _O\#8746 \#119983 }$]).

In the context of verification, we also use Timed Automata. A timed
automaton is a tuple [image: Im8 ${A=(L,X,E,\#8464)}$] where L is a set of
locations, X is a set of clocks whose valuations are positive real
numbers, [image: Im9 ${E\#8838 L×\#119970 (\#119987)×}$]2 X×L is a
finite set of edges composed of a source and a target state, a guard
given by a finite conjunction of expressions of the form [image: Im10 ${x\#8764 c}$]
where x is a clock, c is a natural number and [image: Im11 ${\#8764 \#8712 {\lt ,\#8804 ,=,\#8805 ,\gt }}$], a set of resetting clocks, and [image: Im12 ${\#8464 :\#8466 \#8594 \#119970 (\#119987)}$] assigns an invariant to each location
[28] . The semantics of a timed automaton is given by a
(infinite states) labelled transition system whose states are composed
of a location and a valuation of clocks.

Also, for verification purposes, we use graph grammars that are a
general tool to define families of graphs. Such grammars are formed by a set of rules, left-hand sides being
simply hyperedges and right-hand sides hypergraphs. For finite degree,
these graph grammars characterise transition graphs of pushdown
automata (each graph generated by such a grammar correspond to the
transition graph of a pushdown automaton). They provide a simple yet
powerfull setting to define and study infinite state systems.

In order to cope with more realistic models, closer to real
specification languages, we also need higher level models that
consider both control and data aspects. We defined (input-output)
symbolic transition systems ((IO)STS), which are extensions of (IO)LTS
that operate on data (i.e., program variables, communication
parameters, symbolic constants) through message passing, guards, and
assignments. Formally, an IOSTS is a tuple (V, Θ, Σ, T),
where V is a set of variables (including a counter variable encoding
the control structure), Θ is the initial condition defined by a
predicate on V, Σ is the finite alphabet of actions, where
each action has a signature (just like in IOLTS, Σ can be
partitioned as e.g. [image: Im13 ${\#931 _?\#8746 \#931 _!\#8746 \#931 _\#964 }$]),
T is a finite set of symbolic transitions of the form t = (a, p, G, A)
where a is an action (possibly with a polarity reflecting its
input/output/internal nature), p is a tuple of communication
parameters, G is a guard defined by a predicate on p and V, and
A is an assignment of variables. The semantics of IOSTS is
defined in terms of (IO)LTS where states are vectors of values of
variables, and transitions between them are labelled with instantiated
actions (action with valued communication parameter). This (IO)LTS
semantics allows us to perform syntactical transformations at the
(IO)STS level while ensuring semantical properties at the (IO)LTS
level. We also consider extensions of these models with added
features such as recursion, fifo channels, etc. An alternative to
IOSTS to specify systems with data
variables is the model of synchronous dataflow equations.

Our research is based on well established theories: conformance
testing, supervisory control, abstract interpretation, and theorem
proving. Most of the algorithms that we employ take their origins in
these theories:

	[bookmark: uid12] graph traversal algorithms (breadth first, depth first, strongly
connected components, ...). We use these algorithms for
verification as well as test generation and control synthesis.

	[bookmark: uid13] BDDs (Binary Decision Diagrams) algorithms, for manipulating
Boolean formula, and their MTBDDs (Multi-Terminal Decision Diagrams)
extension for manipulating more general functions. We use these
algorithms for verification and test generation.

	[bookmark: uid14] abstract interpretation algorithms, specifically in the abstract
domain of convex polyhedra (for example, Chernikova's algorithm for
the computation of dual forms). Such algorithms are used in
verification and test generation.

	[bookmark: uid15] logical decision algorithms, such as satisfiability of formulas
in Presburger arithmetics. We use these algorithms during generation
and execution of symbolic test cases.

[bookmark: uid16] Section:
 Scientific Foundations
Verification

Verification in its full generality consists in checking that a
system, which is specified by a formal model, satisfies a required
property. Verification takes place in our research in two ways: on
the one hand, a large part of our work, and in particular controller
synthesis and conformance testing, relies on the ability to solve
some verification problems. Many of these problems reduce to
reachability and coreachability questions on a formal model (a state
s is reachable from an initial state si if an execution
starting from si can lead to s; s is coreachable from a
final state sf if an execution starting from s can lead to
sf). These are important cases of verification problems, as they
correspond to the verification of safety properties.

On the other hand we investigate verification on its own in the
context of complex systems. For expressivity purposes, it is
necessary to be able to describe faithfully and to deal with complex
systems. Some particular aspects require the use of infinite state
models. For example asynchronous communications with unknown
transfer delay (and thus arbitrary large number of messages in
transit) are correctly modeled by unbounded FIFO queues, and real
time systems require the use of continuous variables which evolve
with time. Apart from these aspects requiring infinite state data
structure, systems often include uncertain or random behaviours
(such as failures, actions from the environment), which it make
sense to model through probabilities. To encompass these aspects, we
are interested in the verification of systems equipped with
infinite data structures and/or probabilistic features.

When the state space of the system is infinite, or when we try to
evaluate performances, standard model-checking techniques
(essentially graph algorithms) are not sufficient. For large or
infinite state spaces, symbolic model-checking or approximation
techniques are used. Symbolic verification is based on efficient
representations of set of states and permits exact model-checking of
some well-formed infinite-state systems. However, for feasibility
reasons, it is often mandatory to make the use of approximate
computations, either by computing a finite abstraction and resort to
graph algorithms, or preferably by using more sophisticated abstract
interpretation techniques. Another way to cope with large or infinite
state systems is deductive verification, which, either alone or in
combination with compositional and abstraction techniques, can deal
with complex systems that are beyond the scope of fully automatic
methods. For systems with stochastic aspects, a quantitative analysis
has to be performed, in order to evaluate the performances. Here
again, either symbolic techniques (e.g. by grouping states with
similar behaviour) or approximation techniques should be used.

We detail below four verification topics we are interested in:
abstract interpretation, theorem proving, model-checking of infinite
state and probabilistic systems and analysis of systems defined by
graph grammars.

[bookmark: uid17] Abstract interpretation and Data Handling

Most problems in test generation or controller synthesis
reduce to state reachability and state coreachability problems
which can be solved by fixpoint computations
of the form [image: Im14 ${x=F(x),x\#8712 C}$]
where C is a lattice.
In the case of reachability analysis, if we
denote by S the state space of the considered program, C is the
lattice [image: Im15 ${\#8472 (S)}$] of sets of states, ordered by inclusion, and F is
roughly the “successor states” function defined by the
program.

The big change induced by taking into account the data and not only
the (finite) control of the systems under study is that the fixpoints
become uncomputable. The undecidability is overcome by resorting to
approximations, using the theoretical framework of Abstract
Interpretation [30] .
The fundamental principles of Abstract Interpretation are:

	[bookmark: uid18] to substitute to the concrete domain C a simpler
abstract domain A (static approximation) and to transpose
the fixpoint equation into the abstract domain, so that one has to
solve an equation [image: Im16 ${y=G(y),y\#8712 A}$];

	[bookmark: uid19] to use a widening operator (dynamic approximation) to
make the iterative computation of the least fixpoint of G converge
after a finite number of steps to some upper-approximation (more
precisely, a post-fixpoint).

Approximations are conservative so that the obtained result is an
upper-approximation of the exact result.
In simple cases the state space that should be
abstracted has a simple structure, but this may be more complicated
when variables belong to different data types (Booleans, numerics,
arrays) and when it is necessary to establish relations between
the values of different types.

[bookmark: uid20] Theorem Proving

For verification we also use theorem proving and more particularly the
pvs [32] and Coq [33] proof
assistants. These are two general-purpose systems based on two
different versions of higher-order logic. A verification task in such
a proof assistant consists in encoding the system under verification
and its properties into the logic of the proof assistant, together
with verification rules that allow to prove the properties.
Using the rules usually requires input from the user; for example,
proving that a state predicate holds in every reachable state of the
system (i.e., it is an invariant) typically requires to provide
a stronger, inductive invariant, which is preserved by every
execution step of the system. Another type of verification problem is
proving simulation between a concrete and an abstract semantics
of a system. This can also be done by induction in a systematic manner,
by showing that, in each reachable state of the system, each step of
the concrete system is simulated by a corresponding step at the
abstract level.

[bookmark: uid21] Model-checking of infinite state and probabilistic systems

Model-checking techniques for finite state probabilistic systems are
now quite developed. Given a finite state Markov chain, for example,
one can check whether some property holds almost surely (i.e. the set
of executions violating the property is negligible), and one can even
compute (or at leat approximate as close as wanted) the probability
that some property holds. In general, these techniques cannot be
adapted to infinite state probabilistic systems, just as
model-checking algorithms for finite state systems do not carry over
to infinite state systems. For systems exhibiting complex data
structures (such as unbounded queues, continuous clocks) and
uncertainty modeled by probabilities, it can thus be hard to design
model-checking algorithms. However, in some cases, especially when
considering qualitative verification, symbolic methods can lead to
exact results. Qualitative questions do not aim at computing neither
approximating a probability, but are only concerned with almost-sure
or non negligible behaviours (that is events either of probability
one, or non zero). In some cases, qualitative
model-checking can be derived from a combination of techniques for
infinite state systems (such as abstractions) with methods for finite
state probabilistic systems. However, when one is interested in
computing (or rather approximating) precise probability values
(neither 0 nor 1), exact methods are scarce. To deal with these
questions, we either try to restrict to classes of systems where exact
computations can be made, or look for approximation algorithms.

[bookmark: uid22] Analysis of infinite state systems defined by graph grammars

Currently, many techniques (reachability, model checking, ...) from
finite state systems have been generalised to pushdown systems, that
can be modeled by graph grammars. Several such extensions heavily
depend on the actual definition of the pushdown automata, for example,
how many top stack symbols may be read, or whether the existence of
ε-transitions (silent transitions) is allowed. Many of
these restrictions do not affect the actual structure of the graph,
and interesting properties like reachability or satisfiability (of a
formula) only depend on the structure of a graph.

Deterministic graph grammars enable to focus on structural properties
of systems. The connexion with finite graph algorithms is often
straightforward: for example reachability is simply the finite graph
algorithm iterated on the right hand sides. On the other hand,
extending these grammars with time or probabilities is not
straightforward: qualitative values associated to each copy (in the
graph) of the same vertex (in the grammar) is different, introducing
more complex equations. Furthermore, the fact that the left-hand
sides are single hyperarcs is a very strong restriction. But removing
this restriction leads to non-recursive graphs. Identifying decidable
families of graphs defined by contextual graph grammars is also very
challenging.

[bookmark: uid23] Section:
 Scientific Foundations
Automatic Test Generation

We are mainly interested in conformance testing
which consists in checking whether a black box
implementation under test (the real system that is only known by its
interface) behaves correctly with respect to its specification (the
reference which specifies the intended behavior of the system). In
the line of model-based testing, we use formal specifications and
their underlying models to unambiguously define the intended behavior
of the system, to formally define conformance and to design test case
generation algorithms. The difficult problems are to generate test
cases that correctly identify faults (the oracle problem) and, as
exhaustiveness is impossible to reach in practice, to select an
adequate subset of test cases that are likely to detect faults.
Hereafter we detail some elements of the models, theories and
algorithms we use.

We use IOLTS (or IOSTS) as formal models for
specifications, implementations, test purposes, and test cases.
We adapt a well established theory
of conformance testing [36] , which formally defines
conformance as a relation between formal models of specifications and
implementations.
This conformance relation, called ioco compares
the visible behaviors (called suspension traces)
of the implementation I (denoted by STraces(I)) with those of the
specification S (STraces(S)). Suspension traces are
sequence of inputs, outputs or quiescence (absence of action denoted
by δ), thus abstract away internal behaviors that cannot be
observed by testers.
Intuitively, I ioco S if after a suspension
trace of the specification, the implementation I can only show
outputs and quiescences of the specification S.
We re-formulated ioco as a partial inclusion of visible behaviors as follows:

[image: Im17 ${I~ioco~S\#8660 STraces{(I)}\#8745 [STraces{(S)}.\#923 _!^\#948 \#8726 STraces{(S)}]=\#8709 .}$]

In other words, suspension traces of I which are
suspension traces of S prolongated by an output or quiescence,
should still be suspension traces of S.

Interestingly, this characterization presents conformance with respect
to S as a safety property of suspension traces of I.
The negation of this property is charaterized by a canonical tester
Can(S) which recognizes exactly [image: Im18 ${[STraces{(S)}.\#923 _!^\#948 \#8726 STraces{(S)}]}$], the set of non-conformant suspension traces.
This canonical tester also serves as a basis for test selection.

Test cases are processes executed against implementations in order
to detect non-conformance. They are also formalized by IOLTS (or
IOSTS) with special states indicating verdicts. The execution
of test cases against implementations is formalized by a parallel
composition with synchronization on common actions.
A Fail verdict means that the IUT is rejected and should correspond
to non-conformance, a Pass verdict means that the IUT
exhibited a correct behavior and some specific targeted behaviour
has been observed, while an Inconclusive verdict is given to a
correct behavior that is not targeted.

Test suites (sets of test cases) are required to exhibit some properties
relating the verdict they produce to the conformance relation.
Soundness means that only non conformant
implementations should be rejected by a test suite and
exhaustiveness means that every non conformant implementation may be rejected
by the test suite. Soundness is not difficult to obtain, but
exhaustiveness is not possible in practice and one
has to select test cases.

Test selection is often based on the coverage of some criteria
(state coverage, transition coverage, etc). But test
cases are often associated with test purposes describing some
abstract behaviors targeted by a test case.
In our framework, test purposes are specified as
IOLTS (or IOSTS) associated with marked states or dedicated variables,
giving them the
status of automata or observers accepting runs
(or sequences of actions or suspension traces).
Selection of test cases amounts to selecting traces
of the canonical tester accepted by the test purpose.
The resulting test case is then both an observer of
the negation of a safety property (non-conformance wrt. S), and an
observer of a reachability property (acceptance by the test
purpose).
Selection can be reduced to a model-checking
problem where one wants to identify states (and transitions between
them) which are both reachable from the initial state and co-reachable
from the accepting states. We have proved that these algorithms
ensure soundness. Moreover the (infinite) set of all possibly
generated test cases is also exhaustive. Apart from these
theoretical results, our algorithms are designed to be as efficient
as possible in order to be able to scale up to real applications.

Our first test generation algorithms are based on enumerative
techniques, thus adapted to IOLTS models, and optimized to fight the
state-space explosion problem. On-the-fly
algorithms where designed and implemented in the TGV tool (see
	5.1),
which consist in computing co-reachable states from a target state
during a lazy exploration of the
set of reachable states in a product of the specification and the
test purpose [4] .
However, this enumerative technique suffers
from some limitations when specification models contain data.

More recently, we have explored symbolic test generation techniques
for IOSTS specifications [35] .
The objective is to avoid the state space explosion problem induced by
the enumeration of values of variables and communication parameters.
The idea consists in computing a test case under the form of an IOSTS, i.e., a reactive program in which the operations on data
are kept in a symbolic form. Test selection is still based on test
purposes (also described as IOSTS) and involves syntactical
transformations of IOSTS models that should ensure properties of
their IOLTS semantics. However, most of the operations involved in
test generation (determinisation, reachability, and coreachability)
become undecidable. For determinisation we employ heuristics that
allow us to solve the so-called bounded observable non-determinism
(i.e., the result of an internal choice can be detected after
finitely many observable actions). The product is defined
syntactically. Finally test selection is performed as a syntactical
transformation of transitions which is based on a semantical
reachability and co-reachability analysis. As both problems are
undecidable for IOSTS, syntactical transformations are guided by
over-approximations using abstract interpretation techniques.
Nevertheless, these over-approximations still ensure soundness of
test cases [5] .
These techniques are implemented in the STG tool
(see
	5.2), with an interface with NBAC used for
abstract interpretation.

[bookmark: uid24] Section:
 Scientific Foundations
Controller Synthesis

The Supervisory Control Problem is concerned with ensuring
(not only checking) that a computer-operated system works correctly.
More precisely, given a specification model and a required property,
the problem is to control the specification's behavior, by coupling
it to a supervisor, such that the controlled specification satisfies
the property [34] . The models used are LTSs and the
associated languages, which make a distinction between controllable and non-controllable actions and between observable and non-observable actions. Typically, the
controlled system is constrained by the supervisor, which acts on
the system's controllable actions and forces it to behave as
specified by the property. The control synthesis problem can be
seen as a constructive verification problem: building a supervisor
that prevents the system from violating a property. Several kinds
of properties can be ensured such as reachability, invariance (i.e.
safety), attractivity, etc. Techniques adapted from model checking
are then used to compute the supervisor w.r.t. the objectives.
Optimality must be taken into account as one often wants to obtain a
supervisor
that constrains the system as few as possible.

The Supervisory Control Theory overview. Supervisory control
theory deals with control of Discrete Event Systems. In this
theory, the behavior of the system S is assumed not to be fully
satisfactory. Hence, it has to be reduced by means of a feedback
control (named Supervisor or Controller) in order to achieve a given
set of requirements [34] . Namely, if S denotes
the specification of the system and Φ is a safety property that
has to be ensured on S (i.e. [image: Im19 ${S¬\#8871 \#934 }$]), the problem
consists in computing a supervisor [image: Im20 $\#119966 $], such that

[bookmark: uid25] 	[image: Im21 $\mtable{...}$]	(1)

where [image: Im22 $\#8741 $] is the classical parallel composition between two
LTSs. Given S, some events of S are said to be uncontrollable
(Σuc), i.e. the occurrence of these events cannot be
prevented by a supervisor, while the others are controllable
(Σc). It means that all the supervisors satisfying
(1) are not good candidates. In fact, the behavior of the
controlled system must respect an additional condition that happens to
be similar to the ioco conformance relation that we previously
defined in
	3.3 . This condition is called the controllability condition and is defined as follows.

[bookmark: uid26] 	[image: Im23 $\mtable{...}$]	(2)

Namely, when acting on S, a supervisor is not allowed to disable
uncontrollable events. Given a safety property Φ, that can be
modeled by an LTS AΦ, there actually exist many different
supervisors satisyfing both (1) and (2). Among all
the valid supervisors, we are interested in computing the supremal
one, ie the one that restricts the system as few as possible. It has
been shown in [34] that such a supervisor always
exists and is unique. It gives access to a behavior of the controlled
system that is called the supremal controllable sub-language of
AΦ w.r.t. S and Σuc. In some situations, it may
also be interesting to force the controlled system to be non-blocking
(See [34] for details).

The underlying techniques are similar to the ones used for Automatic
Test Generation. It consists in computing a product between the
specification and AΦ and to remove the states of the obtained
LTS that may lead to states that violate the property by triggering
only uncontrollable events.

 Application Domains

 	Application Domains	[bookmark: uid28]Panorama
	[bookmark: uid29]Telecommunication Systems
	[bookmark: uid30]Software Embedded Systems
	[bookmark: uid31]Smart-card Applications
	[bookmark: uid32]Control-command Systems

 [bookmark: uid28] Section:
 Application Domains
Panorama

The methods and tools developed by the VerTeCs project-team for
test generation and control synthesis of reactive systems are intended
to be as generic as possible. This allows us to apply them in many
application domains where the presence of software is predominant and
its correctness is essential. In particular, we apply our research in
the context of telecommunication systems, for embedded systems, for
smart-cards application, and control-command systems.

[bookmark: uid29] Section:
 Application Domains
Telecommunication Systems

Our research on test generation was initially proposed for
conformance testing of telecommunication protocols. In this domain,
testing is a normalized process [31] , and formal
specification languages are widely used (SDL in particular). Our
test generation techniques have already proved useful in this
context, going up to industrial transfer. New standardized
component-based design methodologies such as UML and OMG's MDE
increase the need for formal techniques in order to ensure the
compositionality of components, by verification and testing. Our
techniques, by their genericity and adaptativity, have also proved
useful at different levels of these methodologies, from component
testing to system testing. The telecommunication industry now also
tries to provide more and more services to the users. These services
must be validated. We are involved with France Telecom R & D in a
project on the validation of vocal services. Very recently, we also
started to study the impact of our test generation techniques in the
domain of network security. More specifically, we believe that
testing that a network or information system meets its security
policy is a major concern, and complements other design and
verification techniques.

[bookmark: uid30] Section:
 Application Domains
Software Embedded Systems

In the context of transport, software embedded systems are
increasingly predominant. This is particularly important in
automotive systems, where software replaces electronics for power
train, chassis (e.g. engine control, steering, brakes) and cabin
(e.g. wiper, windows, air conditioning) or new services to
passengers are increasing (e.g. telematics, entertainment). Car
manufacturers have to integrate software components provided by many
different suppliers, according to specifications. One of the
problems is that testing is done late in the life cycle, when the
complete system is available. Faced with these problems, but also
complexity of systems, compositionality of components, distribution,
etc, car manufacturers now try to promote standardized interfaces
and component-based design methodologies. They also develop virtual
platforms which allow for testing components before the system is
complete. It is clear that software quality and trust are one of
the problems that have to be tackled in this context. This is why
we believe that our techniques (testing and control) can be useful
in such a context.

[bookmark: uid31] Section:
 Application Domains
Smart-card Applications

We have also applied our test generation techniques in the context
of smart-card applications. Such applications are typically
reactive as they describe interactions between a user, a terminal
and a card. The number and complexity of such applications is
increasing, with more and more services offered to users. The
security of such applications is of primary interest for both users
and providers and testing is one of the means to improve it.

[bookmark: uid32] Section:
 Application Domains
Control-command Systems

The main application domain for controller synthesis is
control-command systems. In general, such systems control costly
machines (see e.g. robotic systems, flexible manufacturing
systems), that are connected to an environment (e.g. a human
operator). Such systems are often critical systems and errors
occurring during their execution may have dramatic economical or
human consequences. In this field, the controller synthesis
methodology (CSM) is useful to ensure by construction the
interaction between 1) the different components, and 2) the
environment and the system itself. For the first point, the CSM is
often used as a safe scheduler, whereas for the second one, the
supervisor can be interpreted as a safe discrete tele-operation
system.

 Software

 	Software	[bookmark: uid34]TGV
	[bookmark: uid35]STG
	[bookmark: uid36]SIGALI

 [bookmark: uid34] Section:
 Software
TGV
Participant :
 Thierry Jéron [contact] .

TGV (Test Generation with Verification technology) is a tool for test
generation of conformance test suites from specifications of reactive
systems [4] . It is based on the IOLTS model, a well
defined theory of testing, and on-the-fly test generation algorithms
coming from verification technology. Originally, TGV allows test
generation focused on well defined behaviors formalized by test
purposes. The main operations of TGV are (1) a synchronous product
which identifies sequences of the specification accepted by a test
purpose, (2) abstraction and determinisation for the computation of
next visible actions, (3) selection of test cases by the computation
of reachable states from the initial states and co-reachable states
from accepting states. TGV has been developed in collaboration with
Vérimag Grenoble and uses libraries of the CADP toolbox (VERIMAG and
VASY). TGV can be seen as a library that can be linked to different
simulation tools through well defined APIs. An academic version of
TGV is distributed in the CADP toolbox and allows test generation from
Lotos specifications by a connection to its simulator API.
The first
version of TGV is protected by APP (Agence de Protection des
Programmes) Number IDDN.FR.001.310012.00.R.P.1997.000.2090.

[bookmark: uid35] Section:
 Software
STG
Participants :
 Vlad Rusu [contact] , Thierry Jéron.

Stg (Symbolic Test Generation) is a prototype tool for the generation and execution of test cases
using symbolic techniques. It takes as input a specification and a
test purpose described as IOSTS, and generates a test case program
also in the form of IOSTS. Test generation in STG is based on a
syntactic product of the specification and test purpose IOSTS, an
extraction of the subgraph corresponding to the test purpose,
elimination of internal actions, determinisation, and simplification.
The simplification phase now relies on NBAC, which approximates
reachable and coreachable states using abstract interpretation. It is
used to eliminate unreachable states, and to strengthen the guards of
system inputs in order to eliminate some Inconclusive verdicts.
After a translation into C++ or Java, test cases can be executed on an
implementation in the corresponding language. Constraints on system
input parameters are solved on-the-fly (i.e. during execution) using a
constraint solver. The first version of STG was developed in C++,
using Omega as constraint solver during execution. This version has
been deposit at APP (IDDN.FR.001.510006.000.S.P.2004.000.10600).

A new version in OCaml has been developed in the last two years. This
version is more generic and will serve as a library for symbolic
operations on IOSTS. Most functionalities of the C++ version have
been re-implemented. Also a new translation of abstract test cases
into Java executable tests has been developed, in which the constraint
solver is LuckyDraw (VERIMAG). This version has also
been deposit at APP and is available for download on the web as well
as its documentation and some examples.

Finally, in collaboration with ULB, we implemented a prototype SMACS, derived from STG, that is devoted to the control of
infinite system modeled by STS.

[bookmark: uid36] Section:
 Software
SIGALI
Participant :
 Hervé Marchand [contact] .

Sigali is a model-checking tool that operates on ILTS (Implicit
Labeled Transition Systems, an equational representation of an
automaton), an intermediate model for discrete event systems. It
offers functionalities for verification of reactive systems and
discrete controller synthesis. It is developed jointly by the ESPRESSO and VerTeCs teams. The techniques used consist in
manipulating the system of equations instead of the set of solutions,
which avoids the enumeration of the state space. Each set of states
is uniquely characterized by a predicate and the operations on sets
can be equivalently performed on the associated predicates.
Therefore, a wide spectrum of properties, such as liveness,
invariance, reachability and attractivity, can be checked. Algorithms
for the computation of predicates on states are also
available [6] , [29] . Sigali is connected with the Polychrony environment (ESPRESSO
project-team) as well as the Matou environment (VERIMAG), thus
allowing the modeling of reactive systems by means of Signal
Specification or Mode Automata and the visualization of the
synthesized controller by an interactive simulation of the controlled
system. Sigali is protected by APP (Agence de Protection des
Programmes).

 New Results

 	New Results	[bookmark: uid38]Verification
	[bookmark: uid46]Active and passive testing
	[bookmark: uid52]Controller Synthesis

 [bookmark: uid38] Section:
 New Results
Verification

[bookmark: uid39] Characterization and Analysis of infinite systems

[bookmark: uid40] A game approach to determinize timed automata
Participants :
 Nathalie Bertrand, Thierry Jéron, Amélie Stainer.

Timed automata are frequently used to model real-time systems. Their
determinization is a key issue for several validation
problems. However, not all timed automata can be determinized, and
determinizability itself is undecidable. In [24] , [13] , we propose
a game-based algorithm which, given a timed automaton, tries to
produce a language-equivalent deterministic timed automaton, otherwise
a deterministic over-approximation. Our method subsumes two recent
contributions: it is at once more general than an existing (non terminating)
determinization procedure by Baier et al. (2009)
and more precise than the approximation algorithm of Krichen and Tripakis (2009).
Moreover, an extension of the method allows to deal with
invariants and ϵ-transitions, and to consider other useful
approximations: underapproximation, and combination of under- and
over-approximations.

[bookmark: uid41] Probabilistic Regular Graphs
Participants :
 Nathalie Bertrand, Christophe Morvan.

Deterministic graph grammars generate regular graphs, that form a
structural extension of configuration graphs of pushdown
systems. In [12] , we study a probabilistic extension of
regular graphs obtained by labelling the terminal arcs of the graph
grammars by probabilities. Stochastic properties of these graphs are
expressed using PCTL, a probabilistic extension of computation tree
logic. We present here an algorithm to perform approximate
verification of PCTL formulae. Moreover, we prove that the exact
model-checking problem for PCTL on probabilistic regular graphs is
undecidable, unless restricting to qualitative properties. Our results
generalise those of Esparza et al (2006), on probabilistic pushdown
automata, using similar methods combined with graph grammars
techniques.

[bookmark: uid42] Contextual graph grammars characterising Rational Graphs
Participant :
 Christophe Morvan.

Deterministic graph grammars generate a family of infinite graphs
which characterise context-free (word) languages. The present work
introduces a context-sensitive extension of these grammars. We prove
that this extension characterises rational graphs (whose traces are
context-sensitive languages). We illustrate that this extension is not
straightforward: the most obvious context-sensitive graph rewriting
systems generate non recursive infinite graphs [22] .

[bookmark: uid43] Theorem Proving

[bookmark: uid44] Combining narrowing and theorem proving for rewriting-logic specifications
Participant :
 Vlad Rusu.

We present an approach for verifying dynamic systems specified in
rewriting logic, a formal specification language implemented in the
Maude system. Our approach is tailored for invariants, i.e.,
properties that hold on all states reachable from a given class of
initial states. The approach consists in encoding invariance
properties into inductive properties written in membership equational
logic, a sublogic of rewriting logic also implemented in Maude. The
invariants can then be verified using an inductive theorem prover
available for membership equational logic, possibly in interaction
with narrowing-based symbolic analysis tools for rewriting-logic
specifications also available in the Maude environment.We show that it
is possible, and useful, to automatically test invariants by symbolic
analysis before interactively proving them [23] .

[bookmark: uid45] Equational approximations for tree automata completion
Participant :
 Vlad Rusu.

In [10] , we deal with the verification of safety properties of
infinite-state systems modeled by term rewriting systems. An
over-approximation of the set of reachable terms of a term rewriting
system image is obtained by automatically constructing a finite tree
automaton. The construction is parameterized by a set E of equations
on terms, and we also show that the approximating automata recognize
at most the set of image-reachable terms. Finally, we present some
experiments carried out with the implementation of our algorithm. In
particular, we show how some approximations from the literature can be
defined using equational approximations.

[bookmark: uid46] Section:
 New Results
Active and passive testing

[bookmark: uid47] Off-line Test Selection with Test Purposes for Non-Deterministic Timed Automata
Participants :
 Nathalie Bertrand, Thierry Jéron, Amélie Stainer.

In [11] , we propose novel off-line test generation techniques
for non-deterministic timed automata with inputs and outputs (TAIOs)
in the formal framework of the tioco conformance theory. In this
context, a first problem is the determinization of TAIOs, which is
necessary to foresee next enabled actions, but is in general
impossible. The determinization problem is solved in [13]
thanks to an approximate determinization using a game approach. We
adapt this procedure here to over- and under-approximation, in order
to preserve tioco and guarantee the soundness of generated test cases.
A second problem is test selection for which a precise description of
timed behaviors to be tested is carried out by expressive test
purposes modeled by a generalization of TAIOs. Finally, using a
symbolic co-reachability analysis guided by the test purpose, test
cases are generated in the form of TAIOs equipped with verdicts.

[bookmark: uid48] More Testable Properties
Participants :
 Yliès Falcone, Thierry Jéron, Hervé Marchand.

We explore the set of testable properties within the Safety-Progress classification where testability means
to establish by testing that a relation, between the tested system and the property under scrutiny, holds.
We characterize testable properties wrt. several relations of interest. For each relation, we give a sufficient
condition for a property to be testable. Then, we study and delineate, for each Safety-Progress class, the subset
of testable properties and their corresponding test oracle producing verdicts for the possible test executions.
Furthermore, we address automatic test generation for the proposed framework. Finally, a tool implementing
the results has been developped [18] , [26] .

[bookmark: uid49] Automatic Test Generation for Data-Flow Reactive Systems with time constraints
Participant :
 Hervé Marchand.

In [21] , we handle the problem of conformance testing for data-flow critical
systems with time constraints.We present a formal model (Variable
Driven Timed automata) adapted for such systems inspired from timed
automata using variables as inputs and outputs, and clocks. In this
model, we consider urgency and the possibility to fire several
transitions instantaneously. We present a conformance relation for
this model and we propose a test generation method using a test
purpose approach, based on a region graph transformation of the
specification.

[bookmark: uid50] Analysis of partially observed recursive discrete-event systems
Participants :
 Sébastien Chédor, Hervé Marchand, Christophe Morvan.

Monitoring of recursive discrete-event systems under partial
observation is an important issue with major applications such as the
diagnosability of faulty behaviors and the detection of information
flow. We consider regular discrete-event systems, that is recursive
discrete-event systems definable by deterministic graph grammars. This
setting is expressive enough to capture classical models of recursive
systems such as the pushdown systems. Hence they are infinite-state in
general and standard powerset constructions for monitoring do not
apply anymore. We exhibit computable conditions on these grammars
together with non-trivial transformations of graph grammars that
enable us to construct a monitor. This construction is applied to
diagnose faulty behaviors and to detect information flow in regular
discrete-event systems.

[bookmark: uid51] Test Case Selection in Asynchronous Testing
Participants :
 Puneet Bhateja, Thierry Jéron.

Conformance testing has a rich underlying formal
theory called IOLTS-based conformance testing. Depending
upon whether the implementation-under-test (IUT) interacts
with its environment directly, or indirectly through a medium,
IOLTS-based conformance testing can be classified as synchronous
testing or asynchronous testing, respectively.
So far the problem of test case selection has been addressed mostly
in the context of synchronous testing.
In this work we contribute by
addressing this problem in the context of asynchronous testing.
Though an asynchronously communicating
process can be simulated by a synchronously communicating
process, the fact that the simulating process is infinite state
even if the simulated process is finite state made the problem
challenging.

[bookmark: uid52] Section:
 New Results
Controller Synthesis

[bookmark: uid53] Ensuring Security Properties

[bookmark: uid54] Supervisory Control for Opacity
Participant :
 Hervé Marchand.

In the field of computer security, a problem that received little attention
so far is the enforcement of confidentiality properties by supervisory control.
Given a critical system G that may leak confidential information, the
problem consists in designing a controller C, possibly disabling occurrences
of a fixed subset of events of G, so that the closed-loop system G/C does
not leak confidential information. We consider this problem in the case where
G is a finite transition system with set of events Σ and an
inquisitive user, called the adversary, observes a subset Σa of
Σ. The confidential information is the fact (when it is true) that the
trace of the execution of G on Σ* belongs to a regular set
[image: Im24 ${S\#8838 \#931 ^*}$], called the secret. The secret S is said to be opaque
w.r.t. G (resp. G/C) and Σa if the adversary cannot safely infer
this fact from the trace of the execution of G (resp. G/C) on
Σa*. In the converse case, the secret can be disclosed. We present an
effective algorithm for computing the most permissive controller C such that
S is opaque w.r.t. G/C and Σa. This algorithm subsumes two earlier
algorithms working under the strong assumption that the alphabet Σa of
the adversary and the set of events that the controller can disable are
comparable [8] .

[bookmark: uid55] Various Notions of Opacity Verified and Enforced at Runtime
Participants :
 Yliès Falcone, Hervé Marchand.

In [27] , we are interested in the validation of opacity where
opacity means the impossibility for an attacker to retrieve the value
of a secret in a system of interest. Roughly speaking, ensuring
opacity provides confidentiality of a secret on the system that must
not leak to an attacker. More specifically, we study how we can verify
and enforce, at system runtime, several levels of opacity. Besides
already considered notions of opacity, we also introduce a new one
that provides a stronger level of confidentiality.

[bookmark: uid56] Supervisory Control for Modal Specifications of Services
Participant :
 Hervé Marchand.

In the service oriented architecture framework, a modal specification, as defined by Larsen et al, formalises
how a service should interact with its environment. More precisely, a modal specification determines the events
that the server may or must allow at each stage in an interactive session. Therefore, techniques to enforce a
modal specification on a system would be useful for practical applications. In this work, we investigate the
adaptation of the supervisory control theory of Ramadge and Wonham to enforce a modal specification (with
final states marking the ends of the sessions) on a system modelled by a finite LTS. We prove that there exists
at most one most permissive solution to this control problem. We also prove that this solution is regular and
we present an algorithm for the effective computation of the corresponding controller [14] .

[bookmark: uid57] Supervisory control for synchronous systems

[bookmark: uid58] Multicriteria optimal discrete controller synthesis for fault-tolerant real-time tasks
Participant :
 Hervé Marchand.

We propose a technique for discrete controller synthesis, with optimal
synthesis on bounded paths, in order to model, design, and optimize
fault-tolerant distributed systems, taking into account several
criteria (e.g., the execution costs of the tasks and their quality of
service). Different combinations are explored for multi-criteria
optimization [16] .

[bookmark: uid59] Contracts for Modular Discrete Controller Synthesis
Participant :
 Hervé Marchand.

We describe the extension of a reactive programming language with a
behavioral contract construct. It is dedicated to the programming of
reactive control of applications in embedded systems, and involves
principles of the supervisory control of discrete event systems. Our
contribution is in a language approach where modular discrete
controller synthesis (DCS) is integrated, and it is concretized in the
encapsulation of DCS into a compilation process. From transition
system specifications of possible behaviors, DCS automatically
produces controllers that make the controlled system satisfy the
property given as objective. Our language features and compiling
technique provide correctness-by-construction in that sense, and
enhance reliability and verifiability. Our application domain is
adaptive and reconfigurable systems: closed-loop adaptation mechanisms
enable flexible execution of functionalities w.r.t. changing resource
and environment conditions. Our language can serve programming such
adaption controllers. This work particularly describes the compilation
of the language. We present a method for the modular application of
discrete controller synthesis on synchronous programs, and its
integration in the BZR language. We consider structured programs, as a
composition of nodes, and first apply DCS on particular nodes of the
program, in order to reduce the complexity of the controller
computation; then, we allow the abstraction of parts of the program
for this computation; and finally, we show how to recompose the
different controllers computed from different abstractions for their
correct coexecution with the initial program. Our work is illustrated
with examples, and we present quantitative results about its
implementation [15] .

 Other Grants and Activities

 	Other Grants and Activities	[bookmark: uid61]National Grants & Contracts
	[bookmark: uid66]European and International Grants
	[bookmark: uid73]Collaborations

 [bookmark: uid61] Section:
 Other Grants and Activities
National Grants & Contracts

[bookmark: uid62] RNTL TesTec: Test of Real-time and critical embedded System
Participants :
 Nathalie Bertrand, Thierry Jéron, Hervé Marchand.

The TesTec project is a three years [2008-2010]
industrial research project that gathers two
companies: an end-user (EDF R&D) and one software editor for
embedded real-time systems and automation systems (Geensys), and
four laboratories from automation engineering and computer science
(I3S, INRIA Rennes, LaBRI, LURPA). This project focuses on automatic
generation and execution of tests for the class of embedded real-time
systems. They are highly critical. Such systems can be found in many
industrial domains, such as energy, transport systems. More precisely
the project TesTec will address two crucial technological issues:

	[bookmark: uid63] optimisation of test generation techniques for large size systems,
in particular by an explicit modelling of time and by simultaneous
management of continuous and discrete variables in hybrid
applications;

	[bookmark: uid64] reduction of the size of the tests derived from
specification models by using the results of formal verification of
implementation models.

The overall aim of this project is to propose a software tool for
generation and execution of tests; this tool will be based on an
existing environment for embedded systems design and will implement
the scientific results of the project.

This year our contributions to this project were our works on test generation
from timed models, as well as approximate determinization of timed automata.

In 2010, the post-doc position of Puneet Bhateja
and the internship of Amélie Stainer were funded by TestTec.

[bookmark: uid65] Action Incitative GIPSy: Games of Imperfect information for Privacy and Security.
Participant :
 Nathalie Bertrand.

The GIPSy "Action Incitative" is a one-year [2010] project funded by Rennes 1 University to develop emerging research themes. The goal of the project is to start studying games of imperfect information and logics for privacy and security in protocols. The participants are Sophie Pinchinat (leader, S4), Sébastien Gambs (ADEPT), Loïc Hélouët and Blaise Genest (DistribCom), and Nathalie Bertrand (Vertecs). To gather researchers interested in the topic, a workshop on Games, Logics and Security has been organized in November 2010.

[bookmark: uid66] Section:
 Other Grants and Activities
European and International Grants

[bookmark: uid67] Artist Design Network of Excellence
Participants :
 Nathalie Bertrand, Thierry Jéron, Hervé Marchand, Vlad Rusu.

The central objective for ArtistDesign
http://www.artist-embedded.org/artist/-ArtistDesign-Participants-.html
is to build on existing structures and links forged in Artist2, to
become a virtual Center of Excellence in Embedded Systems Design. This
will be mainly achieved through tight integration between the central
players of the European research community. Also, the consortium is
smaller, and integrates several new partners. These teams have
already established a long-term vision for embedded systems in Europe,
which advances the emergence of Embedded Systems as a mature
discipline.

The research effort aims at integrating topics, teams, and
competencies, grouped into 4 Thematic Clusters: “Modelling and
Validation”, “Software Synthesis, Code Generation, and Timing
Analysis”, “Operating Systems and Networks”, “Platforms and
MPSoC”. “Transversal Integration” covering both industrial
applications and design issues aims for integration between clusters.

The Vertecs EPI is a partner of the “Validation” activity of the
“Modeling and Validation” cluster. The objective is to address the
growth in complexity of future embedded products while reducing time
and cost to market. This requires methods allowing for early
exploration and assessment of alternative design solutions as well as
efficient methods for verifying final implementations. This calls for
a range of model-based validation techniques ranging from simulation,
testing, model-checking, compositional techniques, refinement as well
as abstract interpretation. The challenge will be in designing
scalable techniques allowing for efficient and accurate analysis of
performance and dependability issues with respect to the various types
of (quantitative) models considered. The activity brings together the
leading teams in Europe in the area of model-based validation.

[bookmark: uid68] Combest. European Strep Project
Participant :
 Nathalie Bertrand.

We are partners of the Combest European Strep Project
http://www.combest.eu/home/ . The
aim of this project is to provide a theoretical framework as well as
implemented methods and tools for the component-based design of
embedded systems. Our role in Combest is to work on timed components,
and more precisely develop a theory around timed modal specifications.

[bookmark: uid69] PHC Procope PIPS: Partial Information Probabilistic Systems
Participant :
 Nathalie Bertrand.

The objective of this bilateral collaboration [2009-2010] with the
group of Prof. Christel Baier in TU Dresden (Germany) is to study
partially observable probabilistic systems. This year, Christel Baier
and Clemens Dubslaff visited Rennes for 1 week and Nathalie Bertrand
went to Dresden for 2 weeks.

[bookmark: uid70] PHC Tournesol STP : verification of timed and probabilistic systems.
Participants :
 Nathalie Bertrand, Amélie Stainer.

A two-year contract with the group of Thomas Brihaye (Université Mons)
started in 2010. Its objective is to study timed and probabilistic
systems. This year, Thomas Brihaye together with Patricia Bouyer made
a 1 week visit in Rennes and Nathalie Betrand visited Mons for 1
week. Moreover, Amélie Stainer, Nathalie Bertrand, Thomas Brihaye and
Patricia Bouyer met for 3 days in Cachan.

[bookmark: uid71] DGRST-INRIA grant
Participants :
 Nathalie Bertrand, Thierry Jéron, Hervé Marchand.

This two years collaboration [2009-2010] with ENIS Sfax Tunisia (Maher
Ben Jemaa and Moez Krichen) is targetted on testing embedded systems
and adaptability (with the Paris project team). It is funded by an
DGRST - INRIA grant which involves visits on both sides and
scholarships for Tunisian students. M. Krichen visited Vertecs during
one month in summer 2010, working on test generation from timed automata.

[bookmark: uid72] Associated team (Equipe Associée) TReaTiES
Participants :
 Nathalie Bertrand, Thierry Jéron, Hervé Marchand.

This associated team
http://www.irisa.fr/vertecs/EA-Brazil09.html
with the Federal University of Campina Grande
(Prof. Patrícia D. L. Machado) and University Pernambuco
(Prof. Augusto Sampaio) in Brazil started in 2009. The objective is to
work on test case generation, selection and abstraction for embedded
real-time systems.
In 2010 we had the visit of Wilkerson Andrade in december,
and Y. Falcone, T. Jéron and H. Marchand visited the Brazilian team
in Natal with a defense of Sidney Nogueira's thesis proposal
and in Campina Grande where a workshop took place.

[bookmark: uid73] Section:
 Other Grants and Activities
Collaborations

[bookmark: uid74] Collaborations with other INRIA Project-teams

We collaborate with several Inria project-teams. We collaborate with
the ESPRESSO EPI for the development of the Sigali tool
inside the Polychrony environment. With the Pop Art and Sarde EPI on the use of the controller synthesis methodology for
the control of control-command systems (e.g. robotic systems). With
Distribcom on stochastic games with partial observation.
With the S4 EPI on the use of control, game theory and diagnosis for test
generation as well as on the study of timed modal specifications, in
the context of the Combest grant and with the Triskell EPI (Benoit
Combemale) on analysis of domain-specific modelling languages. With
the VASY EPI on the use of CADP libraries in TGV and the
distribution of TGV in the CADP toolbox.

[bookmark: uid75] Collaborations with French Research Groups outside INRIA

We collaborate with Verimag in Grenoble on automatic test generation.
We also work in collaboration with the LSV Cachan on topological and
probabilistic semantics for timed automata. With LURPA Cachan, LaBRI
Bordeaux and I3S Nice we collaborate on testing control-command
systems in the context of the RNTL TesTec grant.

[bookmark: uid76] International Collaborations

	Université Libre Bruxelles

	in Belgium (Prof. Thierry Massart)
on testing and control of symbolic transitions systems. Gabriel
Kalyon visited us for 1 week in september and Hervé Marchand visited
ULB for 3 weeks.

	University of Oxford

	(Matthew Hague) on Probabilistic Higher order pushdown automata.

	University of Kaiserslautern

	(Roland Meyer) on Petri nets.

	Univ. Illinois

	at Urbana Champaign, USA (Prof. Grigore Rosu)
and Univ. Iasi, Romania (Prof. Dorel Lucanu) on formally defining
and veryfying domain-specific languages by means of rewriting
techniques.

	ETH Zurich

	(Marina Egea) on formal semantics conformance in
model-driven engineering

	University of Michigan

	in USA (Prof. Stéphane Lafortune) on
control and diagnosis of discrete event systems.

 Dissemination

 	Dissemination	[bookmark: uid84]University courses
	[bookmark: uid88]PhD Thesis and Trainees
	[bookmark: uid92]
Scientific animation

 [bookmark: uid84] Section:
 Dissemination
University courses

	Nathalie Bertrand

	gave a course on Advanced
model-cheching in the VTS module of the Master 2 Recherche at
Université Rennes 1 in Fall 2010. She taught Finite Automata and
regular languages to students of ENS Ker Lann preparing the
Agrégation de Mathématiques.

	Christophe Morvan

	is teaching at the University of Marne
La Vallée (192h/year).

	Amélie Stainer

	taught 8h to students of ENS Ker Lann
preparing the Agrégation de Mathématiques.

[bookmark: uid88] Section:
 Dissemination
PhD Thesis and Trainees

Current PhD. thesis:

	Sébastien Chédor:

	“Verification and Test of systems modeled by regular graphs”, second year.

	Amélie Stainer:

	“Quantitative verification of timed automata”, first year.

Trainees 2009-2010:

	Amélie Stainer:

	“Test of timed automata”

[bookmark: uid92] Section:
 Dissemination

Scientific animation

	Nathalie Bertrand

	was PC member of QAPL'10, EXPRESS'10
and WODES'10 worshops, and QEST'10 conference
and SC member of the GIPSy Workshop.
She was invited at
Schloss Dagstuhl for the seminar on Quantitative models in January
2010.

	Yliès Falcone

	was an editor of the Proceedings of the 1st
International Conference on Runtime Verification. He was a reviewer
for several conferences (HSCC'11, FASE'11, WODES'10, VECOS',
TASE'10). He gave an invited talk "What can You Verify and Enforce
at Runtime ?" at INRIA Grenoble and during the GDR GPL day. He also
gave a tutorial "You should Better Enforce than Verify" during the
RV'10 conference. Finally, he visited NASA JPL for one week.

	Thierry Jéron

	was PC member of ICTSS'2010,
ICFEM'10, a thematic track of QUATIC'2010
and SC member of Movep 2010.
He was reviewer of the PhD defense of Marius Mikucionis
(University of Aalborg, Denmark, June 2010)
and of the thesis proposal of Sidney Nogueira (University of Pernambuco, Brazil, November 2010).
He is member of the IFIP Working Group 10.2 on Embedded Systems.

	Hervé Marchand

	is Associate Editor of the IEEE
Transactions on Automatic Control journal and
member of the IFAC Technical Committees (TC 1.3 on Discrete Event
and Hybrid Systems). He was PC member of the ICINCO'10,
Wodes'10 Conferences and IFAC Worl Congress 2011. He visited ULB
(Bruxelles) for three weeks in April and November 2010. He was
member of the PhD commitee of Gabriel Kalyon ULB, Bruxelles,
November 2010) and co-advisor of this thesis.

	Christophe Morvan

	was invited to give a seminar “On
probabilistic regular graphs” at LSV, Cachan.

	Vlad Rusu

	organized the EJCP (Ecole Jeunes Chercheurs en
Programmation) in June 2010. He was on the committee of the PhD
thesis of Jose Escobedo (University Evry Val d'Essonne) on Symbolic
Test Case Generation for Testing Orchestrators in Context (November
2010). He gave an invited talk entitled "Embedding domain-specific
languages in Maude specifications" at the Univ. Iasi, (Romania) in
January 2010, at the 1st International Workshop on the K Framework
(Nags Head, North Carolina, USA) in August 2010 and at CWI
(Amsterdam) in October 2010. He is "Foreign Advisor" for PhD
students at the University of Iasi (Romania).

 Bibliography
[bookmark: Major]Major publications by the team in recent years
	[1][bookmark: vertecs-2010-bid32]
	C. Baier, N. Bertrand, Ph. Schnoebelen.
Verifying nondeterministic probabilistic channel systems against ω-regular linear-time properties, in: ACM Transactions on Computational Logic, 2007, vol. 9, no 1.

 	[2][bookmark: vertecs-2010-bid35]
	C. Constant, T. Jéron, H. Marchand, V. Rusu.
Integrating formal verification and conformance testing for reactive systems, in: IEEE Transactions on Software Engineering, August 2007, vol. 33, no 8, p. 558-574.

 	[3][bookmark: vertecs-2010-bid33]
	B. Gaudin, H. Marchand.
An Efficient Modular Method for the Control of Concurrent Discrete Event Systems: A Language-Based Approach, in: Discrete Event Dynamic System, 2007, vol. 17, no 2, p. 179-209.

 	[4][bookmark: vertecs-2010-bid6]
	C. Jard, T. Jéron.
TGV: theory, principles and algorithms, A tool for the automatic synthesis of conformance test cases for non-deterministic reactive systems, in: Software Tools for Technology Transfer (STTT), October 2004, vol. 6.

 	[5][bookmark: vertecs-2010-bid8]
	B. Jeannet, T. Jéron, V. Rusu, E. Zinovieva.
Symbolic Test Selection based on Approximate Analysis, in: 11th Int. Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'05), Volume 3440 of LNCS, Edinburgh (Scottland), April 2005, p. 349-364.
http://www.irisa.fr/vertecs/Publis/Ps/tacas05.pdf

 	[6][bookmark: vertecs-2010-bid11]
	H. Marchand, P. Bournai, M. Le Borgne, P. Le Guernic.
Synthesis of Discrete-Event Controllers based on the Signal Environment, in: Discrete Event Dynamic System : Theory and Applications, Octobre 2000, vol. 10, no 4, p. 347-368.
http://www.irisa.fr/vertecs/Publis/Ps/2000-J-DEDS.pdf

 	[7][bookmark: vertecs-2010-bid34]
	V. Rusu.
Verifying an ATM Protocol Using a Combination of Formal Techniques, in: Computer Journal, November 2006, vol. 49, no 6, p. 710–730.

[bookmark: year]Publications of the year
Articles in International Peer-Reviewed Journal
	[8][bookmark: vertecs-2010-bid22]
	J. Dubreil, P. Darondeau, H. Marchand.
Supervisory Control for Opacity, in: IEEE Transactions on Automatic Control, May 2010, vol. 55, no 5, p. 1089-1100. [
DOI : 10.1109/TAC.2010.2042008]
http://hal.inria.fr/inria-00483891

 	[9][bookmark: vertecs-2010-bid29]
	M. Egea, V. Rusu.
Formal Executable Semantics for Conformance in the MDE Framework, in: Innovations in Systems and Software Engineering, 2010, vol. 6, p. 73-81. [
DOI : 10.1007/s11334-009-0108-1]
http://hal.inria.fr/inria-00527502

 	[10][bookmark: vertecs-2010-bid18]
	T. Genet, V. Rusu.
Equational Approximations for Tree Automata Completion, in: Journal of Symbolic Computation, May 2010, vol. 45, no 5, p. 574-597. [
DOI : 10.1016/j.jsc.2010.01.009]
http://hal.inria.fr/inria-00495405

International Peer-Reviewed Conference/Proceedings
	[11][bookmark: vertecs-2010-bid19]
	N. Bertrand, T. Jéron, A. Stainer, M. Krichen.
Off-line Test Selection with Test Purposes for Non-Deterministic Timed Automata, in: 17th International Conference on Tools and Algorithms for the Construction And Analysis of Systems (TACAS), March 2011.

 	[12][bookmark: vertecs-2010-bid15]
	N. Bertrand, C. Morvan.
Probabilistic Regular Graphs, in: Infinity (International Workshop on Verification of Infinite-State Systems), Singapore, EPTCS, September 2010, vol. 39, p. 77-90.
http://hal.inria.fr/inria-00525388

 	[13][bookmark: vertecs-2010-bid14]
	N. Bertrand, A. Stainer, T. Jéron, M. Krichen.
A game approach to determinize timed automata, in: 14th International Conference on Foundations of Software Science and Computation Structures (FOSSACS), March 2011.

 	[14][bookmark: vertecs-2010-bid24]
	P. Darondeau, J. Dubreil, H. Marchand.
Supervisory Control for Modal Specifications of Services, in: Workshop on Discrete Event Systems, WODES'10, Berlin, Germany, August 2010, p. 428-435.
http://hal.inria.fr/inria-00510013

 	[15][bookmark: vertecs-2010-bid26]
	G. Delaval, H. Marchand, E. Rutten.
Contracts for Modular Discrete Controller Synthesis, in: Conference on Languages, Compilers and Tools for Embedded Systems, LCTES 2010, Stockholm, Sweden, April 2010, p. 57-66. [
DOI : 10.1145/1755888.1755898]
http://hal.inria.fr/inria-00476910

 	[16][bookmark: vertecs-2010-bid25]
	E. Dumitrescu, A. Girault, H. Marchand, E. Rutten.
Multicriteria optimal discrete controller synthesis for fault-tolerant real-time tasks, in: Workshop on Discrete Event Systems, WODES'10, Berlin, Germany, August 2010, p. 366-373.
http://hal.inria.fr/inria-00510019

 	[17][bookmark: vertecs-2010-bid27]
	Y. Falcone.
You should Better Enforce than Verify (Tutorial), in: RV'10: Proceedings of the 1st International Conference on Runtime Verification, Malta, Lecture Notes in Computer Science, November 2010, vol. 6418, p. 89–105.
http://hal.inria.fr/hal-00523653

 	[18][bookmark: vertecs-2010-bid0]
	Y. Falcone, J.-C. Fernandez, T. Jéron, H. Marchand, L. Mounier.
More Testable Properties, in: 22nd IFIP International Conference on Testing Software and Systems, Natal, Brazil, Lecture Notes in Computer Science, November 2010, vol. 6435, p. 30-46.
http://hal.inria.fr/inria-00510018

 	[19][bookmark: vertecs-2010-bid28]
	Y. Falcone, M. Jaber.
Towards Automatic Integration of an Or-BAC Security Policy Using Aspects, in: World Comp 2010: Software Engineering Research and Practice (SERP'10), Las Vegas, USA, July 2010.
http://hal.inria.fr/hal-00525490

 	[20][bookmark: vertecs-2010-bid31]
	A. Gamatié, V. Rusu, E. Rutten.
Operational Semantics of the Marte Repetitive Structure Modeling Concepts for Data-Parallel Applications Design, in: 9th International Symposium on Parallel and Distributed Computing (ISPDC'10), IEEE Computer Society Press, July 2010, p. 25-32.
http://hal.inria.fr/inria-00522787

 	[21][bookmark: vertecs-2010-bid21]
	O. Landry Nguena, H. Marchand, A. Rollet.
Automatic Test Generation for Data-Flow Reactive Systems with time constraints (Short paper), in: 22nd IFIP International Conference on Testing Software and Systems, Natal, Brazil, November 2010, p. 25-30.
http://hal.inria.fr/inria-00530584

 	[22][bookmark: vertecs-2010-bid16]
	C. Morvan.
Contextual graph grammars characterising Rational Graphs, in: Non-Classical Models of Automata and Applications (NCMA), Jena, Germany, August 2010, p. 141-153.
http://hal.inria.fr/inria-00525409

 	[23][bookmark: vertecs-2010-bid17]
	V. Rusu.
Combining narrowing and theorem proving for rewriting-logic specifications, in: 4th International Conference on Tests and Proofs (Tap'10), Lecture Notes in Computer Science, July 2010, vol. 6143, p. 135-150.
http://hal.inria.fr/inria-00527864

Internal Reports
	[24][bookmark: vertecs-2010-bid13]
	N. Bertrand, A. Stainer, T. Jéron, M. Krichen.
A game approach to determinize timed automata, INRIA, October 2010, no 7381.
http://hal.inria.fr/inria-00524830

 	[25][bookmark: vertecs-2010-bid30]
	P. Darondeau, J. Dubreil, H. Marchand.
Supervisory Control for Modal Specifications of Services, INRIA, April 2010, no 7247.
http://hal.inria.fr/inria-00472736

 	[26][bookmark: vertecs-2010-bid20]
	Y. Falcone, J.-C. Fernandez, T. Jéron, H. Marchand, L. Mounier.
More Testable Properties, INRIA, April 2010, no 7279.
http://hal.inria.fr/hal-00497350

 	[27][bookmark: vertecs-2010-bid23]
	Y. Falcone, H. Marchand.
Various Notions of Opacity Verified and Enforced at Runtime, INRIA, August 2010, no 7349.
http://hal.inria.fr/inria-00507143

[bookmark: References]References in notes
	[28][bookmark: vertecs-2010-bid1]
	R. Alur, D. L. Dill.
A Theory of Timed Automata, in: Theor. Comput. Sci., 1994, vol. 126, no 2, p. 183-235.

 	[29][bookmark: vertecs-2010-bid12]
	L. Besnard, H. Marchand, E. Rutten.
The Sigali Tool Box Environment, in: Workshop on Discrete Event Systems, WODES'06 (Tool Paper), Ann-Arbor (MI, USA), July 2006, p. 465-466.

 	[30][bookmark: vertecs-2010-bid2]
	P. Cousot, R. Cousot.
Abstract intrepretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints, in: Conference Record of the 4th ACM Symposium on Principles of Programming Languages, Los Angeles (CA, USA), January 1977, p. 238-252.

 	[31][bookmark: vertecs-2010-bid10]
	 ISO/IEC 9646.
Information Technology - Open Systems Interconnection Conformance Testing Methodology and Framework - Part 1 : General Concept - Part 2 : Abstract Test Suite Specification - Part 3 : The Tree and Tabular Combined Notation (TTCN), in: International Standard ISO/IEC 9646-1/2/3, 1992.

 	[32][bookmark: vertecs-2010-bid3]
	S. Owre, J. Rushby, N. Shankar, F. von Henke.
Formal Verification for Fault-Tolerant Architectures: Prolegomena to the Design of PVS, in: IEEE Transactions on Software Engineering, feb 1995, vol. 21, no 2, p. 107-125.

 	[33][bookmark: vertecs-2010-bid4]
	C. Paulin-Mohring.
Le système Coq (Habilitation Thesis, in French), ENS Lyon, 1997.

 	[34][bookmark: vertecs-2010-bid9]
	P. J. Ramadge, W. M. Wonham.
The Control of Discrete Event Systems, in: Proceedings of the IEEE; Special issue on Dynamics of Discrete Event Systems, 1989, vol. 77, no 1, p. 81-98.

 	[35][bookmark: vertecs-2010-bid7]
	V. Rusu, L. du Bousquet, T. Jéron.
An approach to symbolic test generation, in: International Conference on Integrating Formal Methods (IFM'00), Lecture Notes in Computer Science, 2000, vol. 1945, p. 338-357.

 	[36][bookmark: vertecs-2010-bid5]
	J. Tretmans.
Test Generation with Inputs, Outputs and Repetitive Quiescence., in: Software - Concepts and Tools, 1996, vol. 17, no 3, p. 103-120.

OEBPS/IMG/math_image_22.png

OEBPS/IMG/math_image_6.png
e

OEBPS/IMG/math_image_12.png
Ji L= 5l

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/IMG/math_image_5.png

OEBPS/IMG/math_image_4.png
Ay A AT

OEBPS/IMG/math_image_1.png
M =(Q.4, =)

OEBPS/IMG/math_image_21.png
S|C @

OEBPS/IMG/math_image_10.png

OEBPS/IMG/math_image_13.png
e

OEBPS/IMG/math_image_20.png

OEBPS/IMG/math_image_7.png
A=Ao Ut

OEBPS/IMG/math_image_23.png
LISIC) e M LIS) & LISJIC)

OEBPS/IMG/math_image_19.png
SR®

OEBPS/IMG/math_image_15.png

OEBPS/IMG/math_image_17.png
Iioco S + STraces(I) N [STraces(S).Ay ~ STraces(S)]

OEBPS/IMG/math_image_11.png
~E{<,

OEBPS/IMG/math_image_24.png

OEBPS/IMG/math_image_18.png
STraces(S).AY ~ STraces(S)|

OEBPS/IMG/math_image_2.png
7. € ¢

OEBPS/IMG/math_image_16.png
y=GlylyeA

OEBPS/IMG/math_image_9.png
B S Lx3ld)X

OEBPS/IMG/math_image_14.png
Flzr)zelC

OEBPS/IMG/math_image_8.png
£,J)

OEBPS/IMG/math_image_3.png
—C @xAXE

