

[image: cover]

MOSCOVA
Mobility, security, concurrence, verification and analysis
2011 Research Team Activity Report
	Paris - Rocquencourt

	    Field : 
	    Algorithmics, Programming, Software and Architecture




Theme : 
Programs, Verification and Proofs
Presentation of the 
		Project-Team 

	Members
	Overall Objectives	[bookmark: uid3]Introduction
	[bookmark: uid4]Highlights of the Year


	Scientific Foundations	[bookmark: uid8]Concurrency theory
	[bookmark: uid9]Type systems
	[bookmark: uid10]Formal security


	Application Domains	[bookmark: uid12]Telecoms and Interfaces
	[bookmark: uid13]Software Engineering


	Software	[bookmark: uid15]F7: Refinement Types for F#
	[bookmark: uid16]JSTY: Logical Auditing of JavaScript Programs
	[bookmark: uid17]OTT: Tool support for the working semanticist
	[bookmark: uid22]Lem, a tool for lightweight executable mathematics
	[bookmark: uid23]Memevents-Litmus-Diy-Dont
	[bookmark: uid24]Jocaml
	[bookmark: uid27]Hevea


	New Results	[bookmark: uid29]Weak Memory Models, Litmus-PPC-WMM tools
	[bookmark: uid30]Operational semantics for the memory model of Power (IBM) machines
	[bookmark: uid31]Restoring Sequential Consistency for x86 and Power machines
	[bookmark: uid32]Relaxed-Memory Concurrency and Verified Compilation
	[bookmark: uid33]Compiling C/C++ Concurrency: from C++11 to POWER
	[bookmark: uid34]F*: Secure Distributed Programming with Value-Dependent Types
	[bookmark: uid35]Security by Typing for Cryptographic Protocol Implementations
	[bookmark: uid36]Authorization for the Social Web: from Formal Analysis to Concrete Attacks
	[bookmark: uid37]Verified Android Cryptographic Applications
	[bookmark: uid38]Logical Auditing of JavaScript Programs for Security
	[bookmark: uid39]Secure Interpreters for Sessions
	[bookmark: uid40]Models of Audit Logs


	Contracts and Grants with Industry	[bookmark: uid42]Grants with Industry


	Partnerships and Cooperations	[bookmark: uid44]European Initiatives
	[bookmark: uid53]International Initiatives


	Dissemination	[bookmark: uid55]Animation of the scientific community
	[bookmark: uid69]Teaching
	[bookmark: uid85]Participations to conferences, Seminars, Invitations


	Bibliography
		Major publications
	Publications of the year
	References in notes





Keywords: Programming Languages, Security, Formal Methods, Cryptography, Processors, Distributed SystemSection: Members
Research Scientists
Jean-Jacques Lévy [Team leader, Senior Researcher (DR) Inria] 
Luc Maranget [Research Associate (CR) Inria] 
Karthikeyan Bhargavan [Research Associate
(CR) Inria] 
James Leifer [Research Associate (CR) Inria] 
Francesco Zappa Nardelli [Research
Associate (CR) Inria] 



PhD Students
Nataliya Guts [INRIA-MSR grant, Paris 7, until 15/1/2011] 
Jérémy Planul [ENS-Lyon, Ecole Polytechnique] 
Post-Doctoral Fellow
Alfredo Pironti [Crysp] 

Administrative Assistant
Stéphanie Aubin [Assistant (TR) Inria] 





    Overall Objectives

    
      	Overall Objectives	[bookmark: uid3]Introduction
	[bookmark: uid4]Highlights of the Year



    

  [bookmark: uid3] Section: 
      Overall Objectives
Introduction

The research in Moscova which was traditionaly centered around the
theory and practice of concurrent programming in the context of
distributed and mobile systems, is now retargeted around two main
themes: weak memory models and secure distributed computations. Our
ambitious long-term goal is still to program safely concurrent
applications on top of new multi-core architectures and to program
secure global computations on top of wide-area networks.

In in the past years, we designed several concurrent programming
languages (Jocaml, Acute) together with tools to study their
semantics (OTT). Our languages are not as used as the known Java or
C# which allow downloading of programs, but our languages
also allow migrations of active programs. Moreover the join
primitives of Jocaml have been implemented inside polyphonic
C#, in F# and Visual Basic. These studies and
implementations demonstrated that there is still a need for a deep
understanding of the underlying hardware and for an
intensive use of programming primitives for security.

On the concurrency side, our implementations relied on locks and
sequential consistency. This means that the semantics of our
concurrent languages were defined in terms of interleaving of
sequential instruction steps in each thread of programs. However
this is no longer correct with modern architectures which allow
delayed write operations in memory and permutation of reads and
writes not related to the same memory location (TSO, PSO, RMO
architectures). Therefore the semantics of concurrent languages need
be revisited to take into account these new features. In this area,
we have pursued our productive cooperation with U. of Cambridge
(Peter Sewell) and with J. Alglave (now at Oxford).

For security, we already looked at programming primitives to define
contracts for multiparty secure sessions or for logs auditing which
could resist to malicious participants in strongly typed programming
languages (Ocaml or F#). Thus the use of these high-level
primitives inside programming languages lighten the burden of close
inspection for complex security protocols. All the effort is now
carried by the correctness proof of the compiling phase from the
source text of programs to low-level exchanges of messages using
cryptographic operations. These correctness proofs are incredibly
complex, and therefore one needs tools to help them. This is a
great part of the work done in 2011 in our project-team. We
developed several versions of the F7 language on top of F#, a
Caml-like language with types annotated by logical formulas. We used
F7 to develop the work on secure audits of logs and to prove the
correctness of implementations of SSL/TLS.

On the software side, we pursue the maintenance for the development
of Jocaml with additional constructs for object-oriented
programming, and for Hevea (a fast LaTeX to HTML translator). We
also continue the development of OTT – one tool for the working
semanticist – which has a growing set of users. More innovative are
the softwares developed along the two main themes of our present
research: the Memevents-Litmus-Diy-Dont suite of tools for
efficient analyses of weak memory models, the F7 typechecker, and
the secure multi-party sessions packages.

In 2011, the ERC Starting Grant (CRYSP) of Karthikeyan Bhargavan
started with visit of Sergio Maffeis (6 months) and arrival of
Alfredo Pironti (as postdoc). Nataliya Guts defended her PhD on 11
January 2011 and then started a postdoc at U. of Maryland with Mike
Hicks. Jérémy Planul (ENS-Lyon and MPRI) will defend his PhD on 8
February 2012.

Since August 2006, J.-J. Lévy is also director of the Microsoft
Research-INRIA Joint Centre, in Orsay. K. Bhargavan, N. Guts,
J. Leifer, J. Planul, A. Pironti and F. Zappa Nardelli are also
active in this centre, as members of the Secure Distributed
Computations and their Proofs, headed by C. Fournet (Many members
of the Joint Centre are former members of project-team Moscova).

Finally, we are in a phase of remodelling our project-team, since
Moscova is 12-year old and J.-J. Lévy will retire on February 2012.
A proposal for a new project (Prosecco) about Security headed by
K. Bhargavan is under discussions.


[bookmark: uid4] Section: 
      Overall Objectives
Highlights of the Year

Moscova is proud of producing the following important results in 2011:


	[bookmark: uid5] 1 PhD was defended, another one will be defended on February 8, 2012.



	[bookmark: uid6] 1 paper accepted at POPL 2012 (1 paper was accepted at POPL 2011).






    Scientific Foundations

    
      	Scientific Foundations	[bookmark: uid8]Concurrency theory
	[bookmark: uid9]Type systems
	[bookmark: uid10]Formal security



    

  [bookmark: uid8] Section: 
      Scientific Foundations
Concurrency theory

Milner started the theory of concurrency in 1980 at Edinburgh. He
proposed the calculus of communicating systems (CCS) as an algebra
modeling interaction [36] . This theory was amongst the
most important to present a compositional process
language. Furthermore, it included a novel definition of operational
equivalence, which has been the source of many articles, most of them
quite subtle. In 1989, R. Milner, J. Parrow and
D. Walker [37]  introduced a new
calculus, the pi-calculus, capable of handling reconfigurable
systems. This theory has been refined by D. Sangiorgi (Edinburgh/INRIA
Sophia/Bologna) and others. Many variants of the pi-calculus have been
developed since 1989.

We developed a variant, called the
Join-calculus [11] , [12] ,
a variant easier to implement in a distributed environment. Its
purpose is to avoid the use of atomic broadcast to implement fair
scheduling of processes. The Join-calculus allows concurrent and
distributed programming, and simple communication between remote
processes. It was designed with locations of processes and channels.
It leads smoothly to the design and implementation of high-level
languages which take into account low-level features such as the
locations of objects.

The Join-calculus has higher-order channels as in the pi-calculus;
channels names can be passed as values. However there are several
restrictions: a channel name passed as argument cannot become a
receiver; a receiver is permanent and has a single location, which
allows one to identify channel names with their receivers. The loss of
expressibility induced by these restrictions is compensated by joined
receivers. A guard may wait on several receivers before triggering a
new action. This is the way to achieve rendez-vous between
processes. In fact, the notation of the Join-calculus is very near the
natural description of distributed algorithms.

The second important feature of the Join-calculus is the concept of
location. A location is a set of channels co-residing at the same
place. The unit of migration is the location. Locations are structured
as trees. When a location migrates, all of its sub-locations move too.

The Join-calculus, renamed Jocaml, has been fully integrated into
Ocaml. Locations and channels are new features; they may be
manipulated by or can handle any Ocaml values. Unfortunately the newer
versions of Ocaml do not support them. We are still planning for both
systems to converge.


[bookmark: uid9] Section: 
      Scientific Foundations
Type systems

Types  [38]  are used in the theory of programming
languages to guarantee (usually static) integrity of
computations. Types are also used for static analysis of programs. The
theory of types is used in Moscova to ensure safety properties about
abstract values exchanged by two run-time environments; to define
inheritance on concurrent objects in current extensions of Jocaml; to
guarantee access control policies in Java- or C#-like libraries.


[bookmark: uid10] Section: 
      Scientific Foundations
Formal security

Formal properties for security in distributed systems started in the
90's with the BAN (Burrows, Abadi, Needham) logic paper. It became
since a very active theory dealing with usual properties such as
privacy, integrity, authentication, anonymity, repudiation,
deniability, etc. This theory, which is not far from Concurrency
theory, is relevant with the new activity of Moscova in the
Microsoft Research-INRIA Joint Centre.



    Application Domains

    
      	Application Domains	[bookmark: uid12]Telecoms and Interfaces
	[bookmark: uid13]Software Engineering



    

  [bookmark: uid12] Section: 
      Application Domains
Telecoms and Interfaces


Distributed programming with mobility appears in the programming of
the web and in autonomous mobile systems. It can be used for
customization of user interfaces and for communications between
several clients. Telecommunications is an other example application,
with active networks, hot reconfigurations, and intelligent
systems. For instance, France Telecom (Lannion) designs a system
programmed in mobile Erlang.


[bookmark: uid13] Section: 
      Application Domains
Software Engineering

Security and Concurrency are two critical issues in software
engineering. Any methodology based on formal verification of secure
operations is fundamental in the ease of development of applications
based on multi-tasking and networking. For instance, Microsoft is much
interested by these topics.



    Software

    
      	Software	[bookmark: uid15]F7: Refinement Types for F#
	[bookmark: uid16]JSTY: Logical Auditing of JavaScript Programs
	[bookmark: uid17]OTT: Tool support for the working semanticist
	[bookmark: uid22]Lem, a tool for lightweight executable mathematics
	[bookmark: uid23]Memevents-Litmus-Diy-Dont
	[bookmark: uid24]Jocaml
	[bookmark: uid27]Hevea



    

  [bookmark: uid15] Section: 
      Software
F7: Refinement Types for F#
Participants :
      Karthikeyan Bhargavan [correspondant] , Cédric Fournet [MSR Cambridge] , Andrew D. Gordon [MSR Cambridge] .


F7 is an enhanced typechecker for the F# programming language that
enables static checking of properties expressed as reﬁnement types.

A reﬁnement type is a base type qualiﬁed with a logical formula; the
formula can express invariants, preconditions, and postconditions. F7
relies on type annotations, including reﬁnements, provided in speciﬁc
interface ﬁles. While checking code, F7 generates many logical
problems which it solves by submitting to Z3, an external theorem
prover for ﬁrst-order logic (de Moura and Bjørner 2008). Finally, F7
erases all reﬁnements and yields ordinary F# modules and interfaces.

Our main aim is to use F7 for the veriﬁcation of security-critical
programs. We have used it to verify implementations of access control
mechanisms, multi-party secure sessions, cryptographic protocols for
web services security and federated authentication, and secure audit
logs.

A ﬁrst version of F7 was released in 2008. In 2011, we revised the F7
libraries and typechecker and ported it to the released version of F#
for .NET 4.0. The second version of F7 was released in December 2011.

The typechecker is written in 16000 lines of F#, with an additional
cryptographic library of 9000 lines, and sample code of more than
12000 lines.


[bookmark: uid16] Section: 
      Software
JSTY: Logical Auditing of JavaScript Programs
Participants :
      Karthikeyan Bhargavan [correspondant] , Sergio Maffeis [Imperial College] , Ravinder Shankesi [U. of Illinois at Urbana Champain] .


JSTY is a runtime monitoring and logical auditing framework for
JavaScript web applications. It has three components: (1) a contract
language for JavaScript that enables programmers to annotate their
scripts with assumptions and goals written as first-order logic pre-
and post-conditions; (2) a runtime monitor implemented as a browser
extension in the web browser Chrome that interprets these contracts at
runtime and generates proof obligations for an SMT solver; (3) a
logical auditor that checks proof obligations and maps counterexamples
to violations of program correctness goals.

The target applications for JSTY include browser extensions as well as
website scripts. In the case of browser extensions, our goal is to
help extension writers to test their code by annotating it with
logical contracts and auditing the code with JSTY. For website
scripts, our goal is to check whether a website script obeys a generic
security policy expressed as pre-conditions on functions in the
browser or DOM API. We have used JSTY to analyze a variety of
security-critical browser extensions and website scripts and found
several vulnerabilities. We are currently incorpotating static
checking into JSTY.

JSTY is written in about 1000 lines of JavaScript and we plan a public release in 2012.


[bookmark: uid17] Section: 
      Software
OTT: Tool support for the working semanticist
Participants :
      Peter Sewell [U. of Cambridge] , Francesco Zappa Nardelli [correspondant] .


Ott is a tool for writing definitions of programming languages and
calculi. It takes as input a definition of a language syntax and semantics, in
a concise and readable ASCII notation that is close to what one would
write in informal mathematics. It generates output:


	[bookmark: uid18] a LaTeX source file that defines commands to build a typeset
version of the definition;



	[bookmark: uid19] a Coq version of the definition;



	[bookmark: uid20] an Isabelle version of the definition; and



	[bookmark: uid21] a HOL version of the definition.




Additionally, it can be run as a filter, taking a
LaTeX/Coq/Isabelle/HOL source file with embedded (symbolic) terms
of the defined language, parsing them and replacing them by typeset
terms.

The main goal of the Ott tool is to support work on large programming
language definitions, where the scale makes it hard to keep a
definition internally consistent, and to keep a tight correspondence
between a definition and implementations. We also wish to ease rapid
prototyping work with smaller calculi, and to make it easier to
exchange definitions and definition fragments between groups. The
theorem-prover backends should enable a smooth transition between use
of informal and formal mathematics.

In collaboration with Peter Sewell (Cambridge University).

The current version of Ott is about 30000 lines of OCaml. The tool is
available from http://moscova.inria.fr/~zappa/software/ott 
(BSD licence).

Since its release in December 2007, the tool has been used in several
projects, including a large proof of type preservation for the OCaml
language (without modules) done by Scott Owens.

In 2011, apart from minor bug-fixes and features added, we implemented
several performance improvements which result in a up-to 6x speed-up,
and kept the Isabelle and Coq backend up-to date with the theorem
prover evolution.

The currently released version is 0.21.1.


[bookmark: uid22] Section: 
      Software
Lem, a tool for lightweight executable mathematics
Participants :
      Scott Owens [U. of Cambridge] , Peter Sewell [U. of Cambridge] , Francesco Zappa Nardelli [correspondant] .


Lem is a lightweight tool for writing, managing, and publishing large
scale semantic definitions. It is also intended as an intermediate
language for generating definitions from domain-specific tools, and
for porting definitions between interactive theorem proving systems
(such as Coq, HOL4, and Isabelle). As such it is a complementary tool
to Ott.

Lem resembles a pure subset of Objective Caml, supporting typical
functional programming constructs, including top-level parametric
polymorphism, datatypes, records, higher-order functions, and pattern
matching. It also supports common logical mechanisms including list
and set comprehensions, universal and existential quantifiers, and
inductively defined relations. From this, Lem generates OCaml, HOL4
and Isabelle code; the OCaml backend uses a finite set library (and
does not yet support inductive relations). A Coq backend is in
development.

Lem is already in use at Cambridge and INRIA for research on
relaxed-memory concurrency. We are currently preparing a
feature-complete release with back-ends for HOL4, Isabelle/HOL, Coq,
OCaml, and LaTeX. The project web-page is
http://www.cl.cam.ac.uk/~so294/lem/ . A paper on a Lem prototype
appeared in ITP 2011, in the “rough diamond” category [25] .


[bookmark: uid23] Section: 
      Software
Memevents-Litmus-Diy-Dont
Participants :
      Jade Alglave, Luc Maranget [correspondant] , Susmit Sarkar [U. of Cambridge, UK] , Peter Sewell [U. of Cambridge, UK] .


Luc Maranget is the main developer of the tools suite of project
“Weak Memory Models” (cf. the relevant section).

This suite features three subtools memevents (model checker),
litmus (runs tests on actual machines) and diy
(generate tests from concise specifications). This year saw a new
tool and one official releases (with documentation) [33]  — see
also http://diy.inria.fr . The releases feature all tools except
memevents, which we wish to keep for ourselves.

This year main extensions are the handling of the ARM architecture and
more collaboration between tools. For the latter, the test generator
diy enrichs tests with meta-data that are exploited by
litmus, so as to perform binding of test threads to machine
processors, intelligent prefetch of data etc. We plan a new release of
the tool suiteearly next year.

A new, independant, “proof of concept” tool, offence was
written by J. Alglave and L. Maranget, as a support of our
publication [30] .

This software is available at http://diy.inria.fr/offence .


[bookmark: uid24] Section: 
      Software
Jocaml
Participants :
      Luc Maranget, Xavier Clerc [correspondant] .


Jocaml is an implementation of the join-calculus integrated into
Ocaml. With respect to previous join-language prototypes, the most
salient feature of the new prototype is a better integration into
Ocaml. We achieve binary compatibility with Ocaml, moreover Jocaml
releases now follow Ocaml releases. See previous year reports for
details on Jocaml. The current version is 3.12.1
(released in September [34] ) is available at http://jocaml.inria.fr/ .

This new release features an extended Jocaml specific library that
provide programmers with an easier access to concurrency and
distribution:


	[bookmark: uid25] Some utilities to parse command line, organize client-server
connection, etc. This code was written partly by Xavier Clerc,
engineer at INRIA SED department.



	[bookmark: uid26] Some new abstractions of text channels help for writing text
oriented applications.





[bookmark: uid27] Section: 
      Software
Hevea
Participant :
      Luc Maranget [correspondant] .


Hevea is a fast translator from full LaTeX to HTML, written in
Ocaml. Hevea is highly configurable with commands written in
LaTeX. Mathematics are rendered with UNICODE characters
for symbols and HTML tables for formatting. Hevea produces HTML 4.0,
enriched by css files. Hevea comes with Hacha companion, which
produces a set of HTML pages (for instance, one page per
chapter). Since it is very efficient and configurable, Hevea is adequate
for on-line manuals or teaching courses.

This year saw a few developpements around Hevea, mostly for
maintenance. Hevea is available at http://hevea.inria.fr/ .



    New Results

    
      	New Results	[bookmark: uid29]Weak Memory Models, Litmus-PPC-WMM tools
	[bookmark: uid30]Operational semantics for the memory model of Power (IBM) machines
	[bookmark: uid31]Restoring Sequential Consistency for x86 and Power machines
	[bookmark: uid32]Relaxed-Memory Concurrency and Verified Compilation
	[bookmark: uid33]Compiling C/C++ Concurrency: from C++11 to POWER
	[bookmark: uid34]F*: Secure Distributed Programming with Value-Dependent Types
	[bookmark: uid35]Security by Typing for Cryptographic Protocol Implementations
	[bookmark: uid36]Authorization for the Social Web: from Formal Analysis to Concrete Attacks
	[bookmark: uid37]Verified Android Cryptographic Applications
	[bookmark: uid38]Logical Auditing of JavaScript Programs for Security
	[bookmark: uid39]Secure Interpreters for Sessions
	[bookmark: uid40]Models of Audit Logs



    

  [bookmark: uid29] Section: 
      New Results
Weak Memory Models, Litmus-PPC-WMM tools
Participants :
      Jade Alglave, Luc Maranget, Pankaj Pawan, Susmit Sarkar [U. of Cambridge] , Peter Sewell [U. of Cambridge] , Francesco Zappa Nardelli.


Shared memory multiprocessors typically expose subtle, poorly
understood and poorly specified relaxed-memory semantics to
programmers. To understand them, and to develop formal models to use
in program verification, we find it essential to take an empirical
approach, testing what results parallel programs can actually produce
when executed on the hardware. We describe a key ingredient of our
approach, our litmus tool, which takes small “litmus test” programs
and runs them for many iterations to find interesting behaviour. It
embodies various techniques for making such interesting behaviour
appear more frequently. We presented a tool, litmus, to run “litmus tests”.
on real hardware at TACAS'11 [31] .

An automated exploration of machine memory models (on the
dont tool) is submitted to TACAS'12.

During a two month long intership, Pankaj Pawan (IIT Kanpur, India)
ported the PPCMEM application from OCaml to JavaScript, and developed
a suitable web-interface. This enabled a wide dissemination
(including at IBM) of the PPCMEM tool. The tool is available online
at: http://www.cl.cam.ac.uk/~pes20/ppcmem/help.html .


[bookmark: uid30] Section: 
      New Results
Operational semantics for the memory model of Power (IBM) machines
Participants :
      Jade Alglave, Luc Maranget, Susmit Sarkar [U. of Cambridge] , Peter Sewell [U. of Cambridge] , Derek Williams [IBM, Austin] .


Exploiting today's multiprocessors requires high-performance and
correct concurrent systems code (optimising compilers, language
runtimes, OS kernels, etc.), which in turn requires a good
understanding of the observable processor behaviour that can be relied
on. Unfortunately this critical hardware/software interface is not at
all clear for several current multiprocessors.

We characterise the behaviour of IBM POWER multiprocessors, which have
a subtle and highly relaxed memory model (ARM multiprocessors have a
very similar architecture in this respect). We have conducted
extensive experiments on several generations of processors: POWER G5,
5, 6, and 7. Based on these, on published details of the
microarchitectures, and on discussions with IBM staff, we give an
abstract-machine semantics that abstracts from most of the
implementation detail but explains the behaviour of a range of subtle
examples. Our semantics is explained in prose but defined in rigorous
machine-processed mathematics; we also confirm that it captures the
observable processor behaviour, or the architectural intent, for our
examples with an executable checker. While not officially sanctioned
by the vendor, we believe that this model gives a reasonable basis for
reasoning about current POWER multiprocessors. Our work should bring
new clarity to concurrent systems programming for these architectures,
and is a necessary precondition for any analysis or verification. It
should also inform the design of languages such as C and C++, where
the language memory model is constrained by what can be efficiently
compiled to such multiprocessors.

This work was presented at PLDI'11 [26] . This operational
model is now being enriched for Power machine with loads and
link/store conditionals (the Power primitives to write locks), and
connected to C++ semantics. It is submitted to PLDI'2012 with many
co-authors from Cambridge.


[bookmark: uid31] Section: 
      New Results
Restoring Sequential Consistency for x86 and Power machines
Participants :
      Jade Alglave, Luc Maranget.


Concurrent programs running on weak memory models exhibit relaxed
behaviours, making them hard to understand and to debug. To use
standard verification techniques on such programs, we can force them
to behave as if running on a Sequentially Consistent (SC) model. Thus,
we examine how to constrain the behaviour of such programs via
synchronisation to ensure what we call their stability, i.e. that they
behave as if they were running on a stronger model than the actual
one, e.g. SC. First, we define sufficient conditions ensuring
stability to a program, and show that Power's locks and
read-modify-write primitives meet them. Second, we minimise the amount
of required synchronisation by characterising which parts of a given
execution should be synchronised. Third, we characterise the programs
stable from a weak architecture to SC. Finally, we present our offence
tool which places either lock-based or lock-free synchronisation in a
x86 or Power program to ensure its stability.

This work was presented at CAV'11 [30] 


[bookmark: uid32] Section: 
      New Results
Relaxed-Memory Concurrency and Verified Compilation
Participants :
      Jaroslav Ševčík [U. of Cambridge] , Peter Sewell [U. of Cambridge] , Jagannathan Suresh [U. of Cambridge] , Viktor Vafeiadis [U. of Cambridge] , Francesco Zappa Nardelli.


We studied the semantic design and verified compilation of a C-like
programming language for concurrent shared-memory computation above
x86 multiprocessors. The design of such a language is made
surprisingly subtle by several factors: the relaxed-memory behaviour
of the hardware, the effects of compiler optimisation on concurrent
code, the need to support high-performance concurrent algorithms, and
the desire for a reasonably simple programming model. In turn, this
complexity makes verified (or verifying) compilation both essential
and challenging.

This project started in 2010, when we defined a concurrent
relaxed-memory semantics for ClightTSO, an extension of CompCert's
Clight in which the processor memory model is exposed for
high-performance code, and, building on CompCert, we implemented a
certifying compiler from ClightTSO to x86, and proved in Coq several
compilation phases. A paper describing our approach has been accepted in
POPL [29]  2011.

During 2011 we completed this project by developping correctness proofs
for all the compilation phases, and made a public distribution of the
compiler, available from
http://www.cl.cam.ac.uk/~pes20/CompCertTSO .

In 2011 Zappa Nardelli and Vafeiadis investigated the soundness of
fence elimination optimisations for x86TSO. They implemented and
proved correct two optimisations that remove redundant fence
instructions as compiler passes over RTL in CompCertTSO. Despite an
apparent simplicity, these optimisations generate almost optimal code
for several standard concurrent algorithms (CompCertTSO does not
implement escape analysis, which would enhance the effectiveness of
the optimisations), and since they only perform data-flow analysis
over the code of each thread (without analysing the full-system thread
interactions) they do not suffer form the finite-state and finite
control limitation of other approaches. The proof of correctness of
one optimisation was challenging has required some for prophecy
variable simulation. This work has been published in SAS
2011 [28]  and the code is part of CompCertTSO.

A journal version, describing the correctness proof of all the phases
of CompCertTSO (including the fence eliminations) as been submitted to
the Journal of the ACM [35] .


[bookmark: uid33] Section: 
      New Results
Compiling C/C++ Concurrency: from C++11 to POWER
Participants :
      Kayvan Memarian, Francesco Zappa Nardelli.


The upcoming C and C++ revised standards add concurrency to the
languages, for the first time, in the form of a subtle relaxed memory
model (the C++11 model). This aims to permit compiler optimisation and
to accommodate the differing relaxed-memory behaviours of mainstream
multiprocessors, combining simple semantics for most code with
high-performance low-level atomics for concurrency libraries.

We studied the the correctness of two proposed compilation schemes for
the C++11 load and store concurrency primitives to Power assembly,
having noted that an earlier proposal was flawed. (The main ideas
apply also to ARM, which has a similar relaxed memory architecture.)

This should inform the ongoing development of production compilers for
C++11 and C1x, clarifies what properties of the machine architecture
are required, and builds confidence in the C++11 and Power semantics.

A paper describing this work will appear in POPL 2012 [22] .


[bookmark: uid34] Section: 
      New Results
F*: Secure Distributed Programming with Value-Dependent Types
Participants :
      Nikhil Swamy [MSR Redmond] , Juan Chen [MSR Redmond] , Cédric Fournet [MSR Cambridge] , Pierre-Yves Strub [MSR-INRIA] , Karthikeyan Bhargavan [correspondant] , Jean Yang [MIT] .


Distributed applications are difficult to program reliably and securely.
Dependently typed functional languages promise to prevent broad
classes of errors and vulnerabilities, and to enable program
verification to proceed side-by-side with development.
However, as recursion, effects, and rich libraries are added, using
types to reason about programs, specifications, and proofs
becomes challenging.

We present F*, a full-fledged design and implementation of a new
dependently typed language for secure distributed programming. Unlike
prior languages, F* provides arbitrary recursion while maintaining a
logically consistent core; it enables modular reasoning about state
and other effects using affine types; and it supports proofs of
refinement properties using a mixture of cryptographic evidence and
logical proof terms.
The key mechanism is a new kind system that tracks several
sub-languages within F* and controls their interaction.
F* subsumes two previous languages, F7 and Fine.
We prove type soundness (with proofs mechanized in Coq)
and logical consistency for F*.

We have implemented a compiler that translates F*
to .NET bytecode, based on a prototype for Fine.
F* provides access to libraries for concurrency, networking,
cryptography, and interoperability with C#, F#, and the other .NET
languages. The compiler produces verifiable binaries with 60size overhead for proofs and types, as much as a 45x improvement over
the Fine compiler, while still enabling efficient bytecode
verification.

To date, we have programmed and verified more than 20,000 lines
of F* including
(1) new schemes for multi-party sessions;
(2) a zero-knowledge privacy-preserving payment protocol;
(3) a provenance-aware curated database;
(4) a suite of 17 web-browser extensions verified for authorization properties; and
(5) a cloud-hosted multi-tier web application with a verified reference monitor.

This paper was published at ICFP 2011 [27] .


[bookmark: uid35] Section: 
      New Results
Security by Typing for Cryptographic Protocol Implementations
Participants :
      Karthikeyan Bhargavan [correspondant] , Cédric Fournet [MSR Cambridge] , Andrew D. Gordon [MSR Cambridge] , Alfredo Pironti.


We propose to use refinement typing to verify the security of
cryptographic protocol implementations. Our method is based on
declaring and enforcing invariants on the usage of cryptography. We
develop cryptographic libraries that embed a logic model of their
cryptographic structures and that specify preconditions and
postconditions on their functions so as to maintain their invariants.

We implement the method for protocols coded in F# and veriﬁed using
F7, our SMT-based typechecker for reﬁnement types, that is, types
carrying formulas to record invariants. As illustrated by a series of
programming examples, our method can ﬂexibly deal with a range of
different cryptographic constructions and protocols [24] .

We are currently evaluating this method on a fully-fledged
implementation of TLS. While previous uses of typing for cryptographic
protocol implementations focused on the symbolic model of
cryptography, we use a new technique by Fournet et al to develop
computational proofs for our implementations. Our TLS implementation
consists of 6000 lines of code. We have currently annotated and
verified about half of this implentation.

We recently published a tutorial on our verification method as part of
the proceedings of FOSAD 2010, and a journal paper on our type system
at TOPLAS [20] .


[bookmark: uid36] Section: 
      New Results
Authorization for the Social Web: from Formal Analysis to Concrete Attacks
Participants :
      Chetan Bansal [BITS Goa] , Karthikeyan Bhargavan [correspondant] , Sergio Maffeis [Imperial College] .


Social sign-on and social sharing are becoming an ever more popular
feature of web applications. This success is caused in part by the
APIs support offered by leading websites such as Facebook, Twitter and
Google, and by the openness of standards such as OAuth 2.0. A formal
analysis of such protocols must account for malicious websites and
their JavaScript, and common website vulnerabilities, such as cross
site request forgery and open redirectors.

We present a formal model for web application protocols called WebSpi,
implemented as a library for the protocol verification tool
ProVerif. We use WebSpi to model and verify several configurations of
the OAuth 2.0 protocol. We show that our formal analysis can be used
to reconstruct concrete website attacks. Our approach is validated by
finding dozens of previously unknown vulnerabilities in popular
websites such as Yahoo and Wordpress, when they connect to social
networks such as Twitter and Facebook.

We are in discussion with Facebook, Twitter and other websites to
address the vulnerabilites found by our analysis. We have submitted a
paper describing this work, and plan to release the WebSpi library in
2012.


[bookmark: uid37] Section: 
      New Results
Verified Android Cryptographic Applications
Participants :
      Karthikeyan Bhargavan [correspondant] , Quentin Lefebvre [MPRI] .


With the emergence of application markets for smartphones, hundreds of
third-party applications now use cryptography to protect sensitive
user data before storing it on disk or sending it out on the network.
However, using cryptographic mechanisms correctly to fulfill a desired
security goal is challenging and error-prone, even for experts.
Our goal is to build verification tools that developers may use to
develop security proofs for their applications.

We show how to verify the security of third-party cryptographic
applications written in Java for the Android platform.
We first develop symbolic security specifications for classes
in the JCA.
We can then verify that applications that use these libraries satisfy
their security goals, even in the presence of a Dolev-Yao adversary
who controls the network, the disk, and potentially other applications
on the device.
We report preliminary verification results using the Krakatoa
verification tool for Java programs.

We presented this work at the ASA workshop 2011 [23] .


[bookmark: uid38] Section: 
      New Results
Logical Auditing of JavaScript Programs for Security
Participants :
      Karthikeyan Bhargavan [correspondant] , Sergio Maffeis [Imperial College] , Ravinder Shankesi [UIUC] .


Client side web applications are error-prone and hard to secure, as
proven by frequent vulnerability reports. We experiment with using
logical annotations as a means to specify inlined security policies
for web pages, and we implement a run-time monitoring system that
generates a logical trace of the program execution. Feeding the
logical trace to external theorem provers, it is possible to detect,
post-facto, violations of the security policies, helping the on-line
debugging of web applications.

We present JSTY a browser-based logical auditing framework for
JavaScript programs. We show how first-order logic contracts can be
used to express cryptographic assumptions and security goals for
JavaScript ptograms that use cryptography. We demonstrate our approach
on realistic examples, including browser extensions for password
management. We find security vulnerabilities in commercial products
by logical auditing. This work is currently unpublished.


[bookmark: uid39] Section: 
      New Results
Secure Interpreters for Sessions
Participants :
      James Leifer, Jean Pichon [intern from ENST Telecom ParisTech] .


We developed an interpreter for decentralised multi-party
sessions. The interpreter takes a graph-based description of a session
and provides a high-level interface for sending and receiving messages
permissible in the session. The interpreter protects the integrity of
session execution in a realistic security setting where an adversary
has the ability to: (1) control the network to capture and reinject
messages at will, and read and forge messages using leaked
cryptographic keys; (2) compromise arbitrary session participants. By
producing and verifying cryptographic signatures, the interpreter
ensures that all non-compromised participants have consistent views of
the session’s execution history.

We previously worked on a session compiler. The compiler took as input
“local graphs” described in process-calculus fashion. It produced
one F# library for each role, and an F7 interface/specification for
this library. If the library typechecked (with the F7 type-checker)
against its interface, then it was secure. However, the production of
the library was not itself verified, and could fail.

By contrast, this present work is concerned with a session
interpreter. This interpreter works like an ML functor (i.e. a
compile-time function from modules to modules). It takes as input a
module describing a global graph by exposing a specific interface. The
application of the interpreter functor to a graph module yields an
F[image: Im1 $\#9734 $] module that contains the interface/specification. The
interpreter functor, being checked against an abstract description of
a graph, is typechecked “once and for all”. Because the interpreter
functor typechecks against its interface (that contains
specifications), it is secure (through refinements). The interpreter
functor can then be applied to a concrete session graph to be used.

The interpreter is written in F[image: Im1 $\#9734 $], a dialect of ML enriched with
refinement types, and its correctness is proven by type annotations.

The interpreter consists of approximately 3000 lines of code.


[bookmark: uid40] Section: 
      New Results
Models of Audit Logs
Participants :
      Karthikeyan Bhargavan, Cédric Fournet [MSR Cambridge] , Nataliya Guts, Francesco Zappa Nardelli.


This line of research was accurately described in last year activity
report of Moscova. Here we just mention that Nataliya Guts defended
her PhD [19]  on "Auditability for security protocols" on
January 11th, 2011.



    Contracts and Grants with Industry

    
      	Contracts and Grants with Industry	[bookmark: uid42]Grants with Industry



    

  [bookmark: uid42] Section: 
      Contracts and Grants with Industry
Grants with Industry

In 2006, we started to work at the Microsoft Research-INRIA Joint
Centre in a common project with Cédric Fournet (MSR Cambridge),
Gilles Barthe (now at IMDEA), Nataliya Guts (who defended her PhD in
January 2011) and Jérémy Planul (who will defend on February
2012). The project is named Secure Distributed Computations
and their Proofs and deals with security, programming languages
theory and formal proofs. This work is still under active
collaboration within all year 2011.



    Partnerships and Cooperations

    
      	Partnerships and Cooperations	[bookmark: uid44]European Initiatives
	[bookmark: uid53]International Initiatives



    

  [bookmark: uid44] Section: 
      Partnerships and Cooperations
European Initiatives

[bookmark: uid45] FP7 Projet

[bookmark: uid46] CRYSP


	[bookmark: uid47] Title:CRYSP: A Novel Framework for
Collaboratively Building Cryptographically Secure Programs and
their Proofs



	[bookmark: uid48] Type: IDEAS ()



	[bookmark: uid49] Instrument: ERC Starting Grant (Starting)



	[bookmark: uid50] Duration: November 2010 - October 2015



	[bookmark: uid51] Coordinator: Karthikeyan Bhargavan, INRIA (France)



	[bookmark: uid52] Abstract: The goal of this grant proposal is to develop a collaborative
specification framework and to build incremental, modular, scalable
verification techniques that enable a group of collaborating
programmers to build an application and its security proof
side-by-side. We propose to validate this framework by developing
the first large-scale web application and full-featured
cryptographic protocol libraries with formal proofs of security.




[bookmark: uid53] Section: 
      Partnerships and Cooperations
International Initiatives

We are Équipe Associée with Computer lab at University of Cambridge
(P. Sewell et al).



    Dissemination

    
      	Dissemination	[bookmark: uid55]Animation of the scientific community
	[bookmark: uid69]Teaching
	[bookmark: uid85]Participations to conferences, Seminars, Invitations



    

  [bookmark: uid55] Section: 
      Dissemination
Animation of the scientific community

	[bookmark: uid56] J. Leifer was a member of the Program Committee of JFLA'11.



	[bookmark: uid57] J.-J. Lévy is director of the Microsoft Research-INRIA Joint Centre,
see http://msr-inria.inria.fr .



	[bookmark: uid58] J.-J. Lévy is member of the Scientific Committee of the “Fondation
Sciences Mathématiques de Paris” and participates to corresponding
meetings and juries.



	[bookmark: uid59] J.-J. Lévy is member of the Program Committee of Digiteo as
representative of INRIA–Paris-Rocquencourt.



	[bookmark: uid60] L. Maranget is elected member of the INRIA Comité
technique paritaire. He participates to one meeting every two
months, discussing about the politics of Inria at the highest level.



	[bookmark: uid61] L. Maranget is president of CUMIR-R Commission des
utilisateurs des moyens informatiques de Rocquencourt-Recherche.



	[bookmark: uid62] F. Zappa Nardelli is member of the Comité Directeur of the CEA-EDF-INRIA summer schools.



	[bookmark: uid63] F. Zappa Nardelli is the correspondent of the Équipes associates MM.



	[bookmark: uid64] F. Zappa Nardelli is member of the comité de suivi doctoral de l'INRIA Saclay.



	[bookmark: uid65] F. Zappa Nardelli served in the POPL 2012 PC. He attended the PC
meeting on September, 29-2 at U. Maryland, USA.



	[bookmark: uid66] F. Zappa Nardelli organised the POPL PC Workshop.



	[bookmark: uid67] January 11, F. Zappa Nardelli served in Nataliya Guts PhD Jury.



	[bookmark: uid68] K. Bhargavan and J. Leifer organised the security seminar
series. Leifer continued in 2011 with a series of talks by invited
researchers: 11-01 (Graham Steel, Nataliya Guts), 09-03 (François
Dupressoir), 15-03 (David Cadé), 28-04 (Nikhil Swamy), 01-06 (Kristin Lauter).



[bookmark: uid69] Section: 
      Dissemination
Teaching

Our project-team participates to the following courses:


	[bookmark: uid70] October-February, K. Bhargavan taught courses in programming as
a Chargé d'Enseignement at the École Polytechnique in 2011.



	[bookmark: uid71] October-November, J. Leifer participated to the “Concurrency”
course, Master Parisien de Recherche en informatique (MPRI),
2011-2012, at U. of Paris 7, 23 students, (J. Leifer taught the
pi-calculus semantics: 15 hours plus the mid-term exam)



	[bookmark: uid72] J.-J. Lévy taught “Reductions and Causality”, an advanced
course on the lambda-calculus in October-November, Tsinghua
University, Beijing (15 students, 12h)
http://jeanjacqueslevy.net/courses/tsinghua/reductions .



	[bookmark: uid73] J.-J. Lévy wrote a vulgarisation article on “Les dominos de
Wang” in Quadrature, journal for the students of the French
Classes Préparatoires.



	[bookmark: uid74] L. Maranget is the coordinator of the computer science
examinations of the Concours d'entrée à l'École polytechnique.



	[bookmark: uid75] January, F. Zappa Nardelli was responsible of a quarter of the Master
course “Concurrency”, Master Parisien de Recherche en Informatique,
where he lectured about proof methods for concurrent programs (12
hours of lecture plus a final exam, about 30 students).



	[bookmark: uid76] February, F. Zappa Nardelli lectured at ENS Lyon on "Shared memory: an elusive
abstraction" (4h, about 15 students).



	[bookmark: uid77] June, 20-23, F. Zappa Nardelli lectured on "Shared memory: an elusive
abstraction" at the UPMARC Summer School, Sweden (4h, about 60 students).



	[bookmark: uid78] November, 7-11, F. Zappa Nardelli was teaching assistant at the
"Introduction to the Coq proof assistant" CEA-EDF-INRIA summer school
(20 hours, about 25 students).




Training and Supervisions:


	[bookmark: uid79] K. Bhargavan supervised 2 Masters internships (stagiaires) in
2011: Quentin Lefebvre and Evmorfia-Iro Bartzia.



	[bookmark: uid80] K. Bhargavan supervised 2 summer internships: Chetan Bansal and
Ravinder Shankesi.



	[bookmark: uid81] K. Bhargavan is supervising Evmorfia-Iro Bartzia as a
PhD. student since October 2011.



	[bookmark: uid82] K. Bhargavan is supervising Alfredo Pironti as a post-doc since
2010.



	[bookmark: uid83] J. Leifer supervised Jean Pichon, a Masters (M1) research intern
from ENST Telecom ParisTech, from 1 July - 31 December 2011. The
topic of the research project was “A verified interpreter for
secure multiparty sessions”. Pichon will hold his defence in
January 2012.



	[bookmark: uid84] F. Zappa Nardelli supervised the 6 months long M2 internship of
Kayvan Memarian (ENS Cachan) on “Correctness of compilation of C++11
low-level atomics”.





[bookmark: uid85] Section: 
      Dissemination
Participations to conferences, Seminars, Invitations

[bookmark: idp140514511921792] Participations to conferences


	[bookmark: uid86] January 24-30, F. Zappa Nardelli attended the POPL conference in
Austin, Texas (US).



	[bookmark: uid87] January 29-Feb. 1, J. Leifer, J.-J. Lévy, L. Maranget attended the JFLA'11, La Bresse
France. L. Maranget gave a tutorial on Jocaml, 5 hours, for a public of about
40 reseachers.



	[bookmark: uid88] February 2-5, L. Maranget attended the GGJJ 2011, in Gérardmer.
He gave an invited talk with Jade Alglave.



	[bookmark: uid89] February 2-5, F. Zappa Nardelli attended the GGJJ 2011, in
Gérardmer. He gave a talk on “relaxed memory models must be
rigorous”.



	[bookmark: uid90] March 22-24, All Moscova attended the INRIA evaluation seminar,
Paris.



	[bookmark: uid91] March 26 - April 3, L. Maranget attended TACAS'11, in Saarbrücken.
He gave a talk and a tool presentation [31] .



	[bookmark: uid92] April 18-22, J. Leifer attended the “Behavioural Types
Workshop”, Lisbon, Portugal. He presented a talk “Secure protocol
synthesis for multi-party sessions” and was an invited member of a
panel on “Comparing approaches to behavioural types”.



	[bookmark: uid93] June 6–8, L. Maranget attended PLDI'11, San Jose,
California. His co-author S. Sarkar gave a talk of this article [26] .



	[bookmark: uid94] July 16–20, L. Maranget attended CAV'11, in Snowbird, Utah.
His co-author J. Alglave gave a talk of this article [30] .



	[bookmark: uid95] June 26-29: K.Bhargavan, J. Leifer, J.-J. Lévy attended CSF
2011, “The 24th IEEE Computer Security Foundations Symposium”,
Domaine de l'Abbaye des Vaux de Cernay, France.



	[bookmark: uid96] September, 2, F. Zappa Nardelli gave a talk on “Veryifing Fence elimination
Optimisations” at the POPL PC workshop.





[bookmark: idp140514511941744] Seminars


	[bookmark: uid97] January 31, F. Zappa Nardelli gave a talk on relaxed memory models at
the Parkas seminar, Paris.



	[bookmark: uid98] March 3, F. Zappa Nardelli gave a talk on relaxed memory models at
the “groupe de travail Programmation”, Paris.



	[bookmark: uid99] April, 7-10, F. Zappa Nardelli visited Cambridge University for collaboration with
Peter Sewell.



	[bookmark: uid100] April, 7-10, K. Memarian visited Cambridge University for
collaboration with Peter Sewell.



	[bookmark: uid101] May 5, K. Bhargavan gave a seminar as part of the le Modèle et
l’Algorithme series in INRIA Rocquencourt.



	[bookmark: uid102] June 1–4, L. Maranget visited IBM in Austin, Texas, for
discussion with D. Williams (IBM), J. Alglave (U. of Oxford),
S. Sarkar and P. Sewell (U. of Cambridge).



	[bookmark: uid103] July, K. Memarian visited Cambridge University for collaboration with
Peter Sewell.





[bookmark: idp140514511952176] Invited visitors


	[bookmark: uid104] Sergio Maffeis (Imperial College) visited the Moscova EPI as
invited professor from June to November and worked with
K. Bhargavan.



	[bookmark: uid105] June 24, Mike Hicks (U. Maryland) visited the Moscova EPI and gave a
talk on "monads in OCaml".



	[bookmark: uid106] June-July, Pankaj Pawan (IIT Kanpur) was intern student in the Moscova project team under the supervision of F. Zappa Nardelli.



	[bookmark: uid107] May-September, Kayvan Memarian (ENS Cachan) was intern student in the Moscova project team under the supervision of F. Zappa Nardelli.



	[bookmark: uid108] May-August, Jan Vitek (U. Purdue) visited the Moscova project as Invited Professor. He collaborated with F. Zappa Nardelli.



	[bookmark: uid109] June, Gregor Richards (U. Purdue) visited the Moscova project for collaboration with F. Zappa Nardelli and Jan Vitek.





 Bibliography
[bookmark: Major]Major publications by the team in recent years
	[1][bookmark: moscova-2011-bid31]
	G. Barthe, C. Fournet (editors)
Trustworthy Global Computing, Third Symposium, TGC 2007, Sophia-Antipolis, France, November 5-6, 2007, Revised Selected Papers, Lecture Notes in Computer Science, Springer,  2008, vol. 4912.

    	[2][bookmark: moscova-2011-bid34]
	20th IEEE Computer Security Foundations Symposium, CSF 2007, 6-8 July 2007, Venice, Italy, IEEE Computer Society,  2007.

    	[3][bookmark: moscova-2011-bid37]
	Proceedings of the 22nd IEEE Computer Security Foundations Symposium, CSF 2009, Port Jefferson, New York, USA, July 8-10, 2009, IEEE Computer Society,  2009.

    	[4][bookmark: moscova-2011-bid32]
	P. Ning, P. F. Syverson, S. Jha (editors)
Proceedings of the 2008 ACM Conference on Computer and Communications Security, CCS 2008, Alexandria, Virginia, USA, October 27-31, 2008, ACM,  2008.

    	[5][bookmark: moscova-2011-bid26]
	F. Besson, T. Blanc, C. Fournet, A. D. Gordon.
From Stack Inspction to Access Control: A Security Analysis for Libraries, in: 17th IEEE Computer Security Foundations Workshop, June 2004, p. 61–75.

    	[6][bookmark: moscova-2011-bid36]
	K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, J. J. Leifer.
Cryptographic Protocol Synthesis and Verification for Multiparty Sessions, in: CSF, IEEE Computer Society,  2009, p. 124-140.

    	[7][bookmark: moscova-2011-bid29]
	R. Corin, P.-M. Deniélou, C. Fournet, K. Bhargavan, J. J. Leifer.
Secure Implementations for Typed Session Abstractions, in: 20th IEEE Computer Security Foundations Symposium (CSF'07), Venice, Italy, IEEE, July 2007, p. 170–186.
http://www.msr-inria.inria.fr/projects/sec/sessions/

    	[8][bookmark: moscova-2011-bid35]
	R. Corin, P.-M. Deniélou.
A Protocol Compiler for Secure Sessions in ML, in: TGC, G. Barthe, C. Fournet (editors), Lecture Notes in Computer Science, Springer,  2007, vol. 4912, p. 276-293.

    	[9][bookmark: moscova-2011-bid33]
	R. Corin, P.-M. Deniélou, C. Fournet, K. Bhargavan, J. J. Leifer.
Secure Implementations for Typed Session Abstractions, in: CSF, IEEE Computer Society,  2007, p. 170-186.

    	[10][bookmark: moscova-2011-bid30]
	R. Corin, P.-M. Deniélou, C. Fournet, K. Bhargavan, J. J. Leifer.
A secure compiler for session abstractions, in: Journal of Computer Security,  2008, vol. 16, no 5, p. 573-636.

    	[11][bookmark: moscova-2011-bid2]
	C. Fournet, G. Gonthier.
The Reflexive Chemical Abstract Machine and the Join-Calculus, in: Proceedings of the 23rd Annual Symposium on Principles of Programming Languages (POPL), (St. Petersburg Beach, Florida), ACM, January 1996, p. 372–385.

    	[12][bookmark: moscova-2011-bid3]
	C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, D. Rémy.
A Calculus of Mobile Agents, in: CONCUR '96: Concurrency Theory (7th International Conference), Pisa, Italy, U. Montanari, V. Sassone (editors), LNCS, Springer, August 1996, vol. 1119, p. 406–421.

    	[13][bookmark: moscova-2011-bid23]
	C. Fournet, C. Laneve, L. Maranget, D. Rémy.
Inheritance in the join calculus, in: Journal of Logics and Algebraic Programming, September 2003, vol. 57, no 1–2, p. 23–29.

    	[14][bookmark: moscova-2011-bid27]
	A. Hobor, A. Appel, F. Zappa Nardelli.
Oracle Semantics for Concurrent Separation Logic, in: 17th European Symposium on Programming (ESOP'08), April 2007.

    	[15][bookmark: moscova-2011-bid24]
	J. J. Leifer, G. Peskine, P. Sewell, K. Wansbrough.
Global abstraction-safe marshalling with hash types, in: Proc. 8th ICFP,  2003, Extended Abstract of INRIA Research Report 4851.
http://hal.inria.fr/inria-00071732/fr/

    	[16][bookmark: moscova-2011-bid28]
	M. Merro, F. Zappa Nardelli.
Behavioural theory for Mobile Ambients, in: Journal of ACM, November 2005, vol. 52, no 6, p. 961–1023.

    	[17][bookmark: moscova-2011-bid25]
	M. Qin, L. Maranget.
Expressive Synchronization Types for Inheritance in the Join Calculus, in: Proceedings of APLAS'03, Beijing China, LNCS, Springer, November 2003.

    	[18][bookmark: moscova-2011-bid22]
	S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Braibant, M. O. Myreen, J. Alglave.
The semantics of x86-CC multiprocessor machine code, in: POPL,  2009, p. 379-391.

    
[bookmark: year]Publications of the year
Doctoral Dissertations and Habilitation Theses
	[19][bookmark: moscova-2011-bid19]
	N. Guts.
Auditability for security protocols, Université Denis Diderot Paris 7,  2011.

    
Articles in International Peer-Reviewed Journal
	[20][bookmark: moscova-2011-bid17]
	J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, S. Maffeis.
Refinement types for secure implementations, in: ACM Trans. Program. Lang. Syst.,  2011, vol. 33, no 2, 8 p.
http://research.microsoft.com/pubs/70624/MSR-TR-2008-118-SP2.pdf

    
Articles in National Peer-Reviewed Journal
	[21][bookmark: moscova-2011-bid21]
	J.-J. Lévy.
Les dominos de Wang, in: Revue Quadrature, “Magazine de mathématiques pures et épicées”, Octobre-novembre-décembre 2011, vol. 82, 5 p.
http://jeanjacqueslevy.net/pubs/11quadrature.pdf

    
International Peer-Reviewed Conference/Proceedings
	[22][bookmark: moscova-2011-bid14]
	M. Batty, K. Memarian, S. Owens, S. Sarkar, P. Sewell.
Clarifying and Compiling C/C++ Concurrency: from C++11 to POWER, in: Proc. POPL 2012,  2011, to appear.

    	[23][bookmark: moscova-2011-bid18]
	K. Bhargavan, Q. Lefebvre.
Verified Android Cryptographic Applications, in: 5th International Workshop on Analysis of Security APIs (ASA-5), July 2011.

    	[24][bookmark: moscova-2011-bid16]
	C. Fournet, K. Bhargavan, A. D. Gordon.
Cryptographic Verification by Typing for a Sample Protocol Implementation, in: Foundations of Security Analysis and Design VI (FOSAD'10),  2011, p. 66-100.

    	[25][bookmark: moscova-2011-bid5]
	S. Owens, P. Böhm, F. Zappa Nardelli, P. Sewell.
Lem: A Lightweight Tool for Heavyweight Semantics, in: ITP,  2011.
http://www.cl.cam.ac.uk/~so294/documents/itp11.pdf

    	[26][bookmark: moscova-2011-bid10]
	S. Sarkar, P. Sewell, J. Alglave, L. Maranget, D. Williams.
Understanding POWER Multiprocessors, in: Proceedings of 32nd ACMSIGPLAN Conference on Programming Language Design and Implementation, June 2011, p. 175–186.
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/pldi105-sarkar.pdf

    	[27][bookmark: moscova-2011-bid15]
	N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, J. Yang.
Secure Distributed Programming with Value-dependent Types, in: 16th ACM SIGPLAN International Conference on Functional Programming, Tokyo, Japan,  2011, p. 266-278, Related Projects * F*: A Verifying ML Compiler for Distributed Programming.
http://hal.inria.fr/inria-00596715/en

    	[28][bookmark: moscova-2011-bid12]
	V. Vafeiadis, F. Zappa Nardelli.
Verifying Fence Elimination Optimisations, in: in Proc. SAS 2011,  2011.
http://www.cl.cam.ac.uk/~pes20/CompCertTSO/doc/fenceelim.pdf

    	[29][bookmark: moscova-2011-bid11]
	J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, P. Sewell, S. Jagannathan.
Relaxed-Memory Concurrency and Verified Compilation, in: Proc. POPL,  2011.
http://www.cl.cam.ac.uk/~pes20/CompCertTSO/doc/paper.pdf

    
Scientific Books (or Scientific Book chapters)
	[30][bookmark: moscova-2011-bid7]
	J. Alglave, L. Maranget.
Stability in Weak Memory Models, in: Computer Aided Verification, G. Gopalakrishnan, S. Qadeer (editors), Lecture Notes in Computer Science, Springer Berlin / Heidelberg,  2011, vol. 6806, p. 50–66.
http://dx.doi.org/10.1007/978-3-642-22110-1_6

    	[31][bookmark: moscova-2011-bid9]
	J. Alglave, L. Maranget, S. Sarkar, P. Sewell.
Litmus Running Tests against Hardware, in: Tools and Algorithms for the Construction and Analysis of Systems, P. Abdulla, K. Leino (editors), Lecture Notes in Computer Science, Springer Berlin / Heidelberg,  2011, vol. 6605, p. 41-44.

    
Other Publications
	[32][bookmark: moscova-2011-bid20]
	J. Alglave, A. Mahboubi.
A Generic Formalised Framework for Reasoning About Weak Memory Models,  2011.
http://hal.inria.fr/inria-00604656/en

    	[33][bookmark: moscova-2011-bid6]
	J. Alglave, L. Maranget, S. Sarkar, P. Sewell.
diy, release 4.0, January 2011, Software and documentation available.
http://diy.inria.fr/

    	[34][bookmark: moscova-2011-bid8]
	L. Maranget, L. Mandel, M. Qin.
JoCaml, release 3.12.1, July 2011, Software and documentation available.
http://jocaml.inria.fr/

    	[35][bookmark: moscova-2011-bid13]
	J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, P. Sewell, S. Jagannathan.
CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency,  2011, submitted.
http://moscova.inria.fr/~zappa/readings/compcerttso-long.pdf

    
[bookmark: References]References in notes
	[36][bookmark: moscova-2011-bid0]
	R. Milner.
Communication and Concurrency, International Series on Computer Science, Prentice Hall,  1989.

    	[37][bookmark: moscova-2011-bid1]
	R. Milner, J. Parrow, D. Walker.
A Calculus of Mobile Processes, Parts I and II, in: Journal of Information and Computation, September 1992, vol. 100, p. 1–77.

    	[38][bookmark: moscova-2011-bid4]
	B. C. Pierce.
Types and Programming Languages, The MIT Press,  2002.

    


OEBPS/page-template.xpgt
 

   
    
		 
    
  
     
		 
		 
    

     
		 
    

     
		 
		 
    

     
		 
    

     
		 
		 
    

     
         
             
             
             
             
             
             
        
    

  

   
     
  





OEBPS/IMG/math_image_1.png





OEBPS/uid68.xhtml
[bookmark: uid68] Section: 
      Dissemination

Teaching


Our project-team participates to the following courses:



		[bookmark: uid69] October-February, K. Bhargavan taught courses in programming as
a Chargé d'Enseignement at the École Polytechnique in 2011.





		[bookmark: uid70] October-November, J. Leifer participated to the “Concurrency”
course, Master Parisien de Recherche en informatique (MPRI),
2011-2012, at U. of Paris 7, 23 students, (J. Leifer taught the
pi-calculus semantics: 15 hours plus the mid-term exam)





		[bookmark: uid71] J.-J. Lévy taught “Reductions and Causality”, an advanced
course on the lambda-calculus in October-November, Tsinghua
University, Beijing (15 students, 12h)
http://jeanjacqueslevy.net/courses/tsinghua/reductions .





		[bookmark: uid72] J.-J. Lévy wrote a vulgarisation article on “Les dominos de
Wang” in Quadrature, journal for the students of the French
Classes Préparatoires.





		[bookmark: uid73] L. Maranget is the coordinator of the computer science
examinations of the Concours d'entrée à l'École polytechnique.





		[bookmark: uid74] January, F. Zappa Nardelli was responsible of a quarter of the Master
course “Concurrency”, Master Parisien de Recherche en Informatique,
where he lectured about proof methods for concurrent programs (12
hours of lecture plus a final exam, about 30 students).





		[bookmark: uid75] February, F. Zappa Nardelli lectured at ENS Lyon on "Shared memory: an elusive
abstraction" (4h, about 15 students).





		[bookmark: uid76] June, 20-23, F. Zappa Nardelli lectured on "Shared memory: an elusive
abstraction" at the UPMARC Summer School, Sweden (4h, about 60 students).





		[bookmark: uid77] November, 7-11, F. Zappa Nardelli was teaching assistant at the
"Introduction to the Coq proof assistant" CEA-EDF-INRIA summer school
(20 hours, about 25 students).







Training and Supervisions:



		[bookmark: uid78] K. Bhargavan supervised 2 Masters internships (stagiaires) in
2011: Quentin Lefebvre and Evmorfia-Iro Bartzia.





		[bookmark: uid79] K. Bhargavan supervised 2 summer internships: Chetan Bansal and
Ravinder Shankesi.





		[bookmark: uid80] K. Bhargavan is supervising Evmorfia-Iro Bartzia as a
PhD. student since October 2011.





		[bookmark: uid81] K. Bhargavan is supervising Alfredo Pironti as a post-doc since
2010.





		[bookmark: uid82] J. Leifer supervised Jean Pichon, a Masters (M1) research intern
from ENST Telecom ParisTech, from 1 July - 31 December 2011. The
topic of the research project was “A verified interpreter for
secure multiparty sessions”. Pichon will hold his defence in
January 2012.





		[bookmark: uid83] F. Zappa Nardelli supervised the 6 months long M2 internship of
Kayvan Memarian (ENS Cachan) on “Correctness of compilation of C++11
low-level atomics”.










OEBPS/uid52.xhtml
[bookmark: uid52] Section: 
      Contracts and Grants with Industry

International Initiatives


We are Équipe Associée with Computer lab at University of Cambridge
(P. Sewell et al).





OEBPS/uid54.xhtml
[bookmark: uid54] Section: 
      Dissemination

Animation of the scientific community


		[bookmark: uid55] J. Leifer was a member of the Program Committee of JFLA'11.





		[bookmark: uid56] J.-J. Lévy is director of the Microsoft Research-INRIA Joint Centre,
see http://msr-inria.inria.fr .





		[bookmark: uid57] J.-J. Lévy is member of the Scientific Committee of the “Fondation
Sciences Mathématiques de Paris” and participates to corresponding
meetings and juries.





		[bookmark: uid58] J.-J. Lévy is member of the Program Committee of Digiteo as
representative of INRIA–Paris-Rocquencourt.





		[bookmark: uid59] L. Maranget is elected member of the INRIA Comité
technique paritaire. He participates to one meeting every two
months, discussing about the politics of Inria at the highest level.





		[bookmark: uid60] L. Maranget is president of CUMIR-R Commission des
utilisateurs des moyens informatiques de Rocquencourt-Recherche.





		[bookmark: uid61] F. Zappa Nardelli is member of the Comité Directeur of the CEA-EDF-INRIA summer schools.





		[bookmark: uid62] F. Zappa Nardelli is the correspondent of the Équipes associates MM.





		[bookmark: uid63] F. Zappa Nardelli is member of the comité de suivi doctoral de l'INRIA Saclay.





		[bookmark: uid64] F. Zappa Nardelli served in the POPL 2012 PC. He attended the PC
meeting on September, 29-2 at U. Maryland, USA.





		[bookmark: uid65] F. Zappa Nardelli organised the POPL PC Workshop.





		[bookmark: uid66] January 11, F. Zappa Nardelli served in Nataliya Guts PhD Jury.





		[bookmark: uid67] K. Bhargavan and J. Leifer organised the security seminar
series. Leifer continued in 2011 with a series of talks by invited
researchers: 11-01 (Graham Steel, Nataliya Guts), 09-03 (François
Dupressoir), 15-03 (David Cadé), 28-04 (Nikhil Swamy), 01-06 (Kristin Lauter).







OEBPS/uid84.xhtml
[bookmark: uid84] Section: 
      Dissemination

Participations to conferences, Seminars, Invitations


[bookmark: idp12689584] Participations to conferences



		[bookmark: uid85] January 24-30, F. Zappa Nardelli attended the POPL conference in
Austin, Texas (US).





		[bookmark: uid86] January 29-Feb. 1, J. Leifer, J.-J. Lévy, L. Maranget attended the JFLA'11, La Bresse
France. L. Maranget gave a tutorial on Jocaml, 5 hours, for a public of about
40 reseachers.





		[bookmark: uid87] February 2-5, L. Maranget attended the GGJJ 2011, in Gérardmer.
He gave an invited talk with Jade Alglave.





		[bookmark: uid88] February 2-5, F. Zappa Nardelli attended the GGJJ 2011, in
Gérardmer. He gave a talk on “relaxed memory models must be
rigorous”.





		[bookmark: uid89] March 22-24, All Moscova attended the INRIA evaluation seminar,
Paris.





		[bookmark: uid90] March 26 - April 3, L. Maranget attended TACAS'11, in Saarbrücken.
He gave a talk and a tool presentation [31] .





		[bookmark: uid91] April 18-22, J. Leifer attended the “Behavioural Types
Workshop”, Lisbon, Portugal. He presented a talk “Secure protocol
synthesis for multi-party sessions” and was an invited member of a
panel on “Comparing approaches to behavioural types”.





		[bookmark: uid92] June 6–8, L. Maranget attended PLDI'11, San Jose,
California. His co-author S. Sarkar gave a talk of this article [26] .





		[bookmark: uid93] July 16–20, L. Maranget attended CAV'11, in Snowbird, Utah.
His co-author J. Alglave gave a talk of this article [30] .





		[bookmark: uid94] June 26-29: K.Bhargavan, J. Leifer, J.-J. Lévy attended CSF
2011, “The 24th IEEE Computer Security Foundations Symposium”,
Domaine de l'Abbaye des Vaux de Cernay, France.





		[bookmark: uid95] September, 2, F. Zappa Nardelli gave a talk on “Veryifing Fence elimination
Optimisations” at the POPL PC workshop.








[bookmark: idp12709536] Seminars



		[bookmark: uid96] January 31, F. Zappa Nardelli gave a talk on relaxed memory models at
the Parkas seminar, Paris.





		[bookmark: uid97] March 3, F. Zappa Nardelli gave a talk on relaxed memory models at
the “groupe de travail Programmation”, Paris.





		[bookmark: uid98] April, 7-10, F. Zappa Nardelli visited Cambridge University for collaboration with
Peter Sewell.





		[bookmark: uid99] April, 7-10, K. Memarian visited Cambridge University for
collaboration with Peter Sewell.





		[bookmark: uid100] May 5, K. Bhargavan gave a seminar as part of the le Modèle et
l’Algorithme series in INRIA Rocquencourt.





		[bookmark: uid101] June 1–4, L. Maranget visited IBM in Austin, Texas, for
discussion with D. Williams (IBM), J. Alglave (U. of Oxford),
S. Sarkar and P. Sewell (U. of Cambridge).





		[bookmark: uid102] July, K. Memarian visited Cambridge University for collaboration with
Peter Sewell.








[bookmark: idp12719968] Invited visitors



		[bookmark: uid103] Sergio Maffeis (Imperial College) visited the Moscova EPI as
invited professor from June to November and worked with
K. Bhargavan.





		[bookmark: uid104] June 24, Mike Hicks (U. Maryland) visited the Moscova EPI and gave a
talk on "monads in OCaml".





		[bookmark: uid105] June-July, Pankaj Pawan (IIT Kanpur) was intern student in the Moscova project team under the supervision of F. Zappa Nardelli.





		[bookmark: uid106] May-September, Kayvan Memarian (ENS Cachan) was intern student in the Moscova project team under the supervision of F. Zappa Nardelli.





		[bookmark: uid107] May-August, Jan Vitek (U. Purdue) visited the Moscova project as Invited Professor. He collaborated with F. Zappa Nardelli.





		[bookmark: uid108] June, Gregor Richards (U. Purdue) visited the Moscova project for collaboration with F. Zappa Nardelli and Jan Vitek.










OEBPS/uid43.xhtml
[bookmark: uid43] Section: 
      Contracts and Grants with Industry

European Initiatives


[bookmark: uid44] FP7 Projet


[bookmark: uid45] CRYSP



		[bookmark: uid46] Title:CRYSP: A Novel Framework for
Collaboratively Building Cryptographically Secure Programs and
their Proofs





		[bookmark: uid47] Type: IDEAS ()





		[bookmark: uid48] Instrument: ERC Starting Grant (Starting)





		[bookmark: uid49] Duration: November 2010 - October 2015





		[bookmark: uid50] Coordinator: Karthikeyan Bhargavan, INRIA (France)





		[bookmark: uid51] Abstract: The goal of this grant proposal is to develop a collaborative
specification framework and to build incremental, modular, scalable
verification techniques that enable a group of collaborating
programmers to build an application and its security proof
side-by-side. We propose to validate this framework by developing
the first large-scale web application and full-featured
cryptographic protocol libraries with formal proofs of security.








OEBPS/IMG/iTunesArtwork.png
Activity Report 2011
Project-Team moscova

Mobility, security,
concurrence,
verification and
analysis






