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Overall Objectives

Many phenomena of interest are analyzed and controlled
through graphs or n-dimensional images. Often, these graphs have
an irregular aspect, whether the studied phenomenon is of natural
or artificial origin. In the first class, one may cite
natural landscapes, most biological signals and images (EEG, ECG, MR images, ...),
and temperature records. In the second class, prominent examples include financial logs and TCP traces.

Such irregular phenomena are usually not adequately described by
purely deterministic models, and a probabilistic
ingredient is often added. Stochastic processes allow to take into account,
with a firm theoretical basis, the numerous microscopic fluctuations that shape the phenomenon.

In general, it is a wrong view to believe that
irregularity appears as an epiphenomenon, that is
conveniently dealt with by introducing randomness. In many situations, and
in particular in some of the examples
mentioned above, irregularity is a core
ingredient that cannot be removed without destroying the
phenomenon itself. In some cases, irregularity is even a
necessary condition for proper functioning.
A striking example is that of ECG: an ECG is inherently irregular, and, moreover, in a mathematically precise
sense, an increase in its regularity is strongly correlated with a degradation of its condition.

In fact, in various situations, irregularity is a crucial feature that can be used
to assess the behaviour of a given system. For instance,
irregularity may the result of two or more sub-systems that
act in a concurrent way to achieve some kind of equilibrium.
Examples of this abound in nature
(e.g. the sympathetic and parasympathetic systems in the regulation of the heart). For artifacts, such as financial logs and TCP traffic, irregularity is in a sense
an unwanted feature, since it typically makes regulations more complex. It is
again, however, a necessary one. For instance, efficiency in financial markets requires a constant flow of information among agents, which manifests itself
through permanent fluctuations of the prices: irregularity just reflects the evolution of this information.

The aim of Regularity is a to develop a coherent set of methods allowing to model such “essentially
irregular” phenomena in view of managing the uncertainties entailed by their irregularity.

Indeed, essential irregularity makes it more to difficult to study phenomena in terms of their description,
modeling, prediction and control. It introduces uncertainties both in
the measurements and the dynamics. It is, for instance, obviously easier to predict the short
time behaviour of a smooth (e.g. C1) process than of a nowhere differentiable one. Likewise,
sampling rough functions yields less precise information than regular ones.
As a consequence, when dealing with essentially irregular phenomena, uncertainties are
fundamental in the sense that
one cannot hope to remove them by a more careful analysis or a more adequate modeling. The study of
such phenomena then requires to develop specific approaches
allowing to manage in an efficient way these inherent uncertainties.



    Scientific Foundations

    
      	Scientific Foundations	[bookmark: uid5]Theoretical aspects: probabilistic modeling of irregularity
	[bookmark: uid13]Tools for characterizing and measuring regularity
	[bookmark: uid17]Stochastic models



    

  [bookmark: uid5] Section: 
      Scientific Foundations
Theoretical aspects: probabilistic modeling of irregularity

The modeling of essentially irregular phenomena is an important challenge, with an emphasis on understanding the sources and functions of this irregularity. Probabilistic tools are well-adapted to this task, provided one can design stochastic models for which the regularity can be measured and controlled precisely. Two points deserve special attention:


	[bookmark: uid6] first, the study of regularity has to be local. Indeed, in most applications, one will want to act on a system based on local temporal or spatial information. For instance, detection of arrhythmias in ECG
or of krachs in financial markets should be performed in “real time”, or, even better, ahead of time. In this sense, regularity is a local indicator of the local health of a system.



	[bookmark: uid7] Second, although we have used the term “irregularity” in a generic and somewhat vague sense, it seems obvious that, in real-world phenomena, regularity comes in many colors, and a rigorous analysis should distinguish between them. As an example, at least two kinds of irregularities are present in financial logs: the local “roughness” of the records, and the local density and height of jumps. These correspond to two different concepts of regularity (in technical terms, HÃ¶lder exponents and local index of stability), and they both contribute a different manner to financial risk.




In view of the above, the  Regularity team focuses on the design of methods that:


	[bookmark: uid8] define and study precisely various relevant measures of local regularity,



	[bookmark: uid9] allow to build stochastic models versatile enough to mimic the rapid variations of the different kinds of regularities observed in real phenomena,



	[bookmark: uid10] allow to estimate as precisely and rapidly as possible these regularities, so as to alert systems in charge of control.




Our aim is to address the three items above through the design of mathematical tools in the field of probability (and, to a lesser extent, statistics), and
to apply these tools to uncertainty management as described in the following section.
We note here
that we do not intend to address the problem of controlling
the phenomena based on regularity, that would naturally
constitute an item 4 in the list above. Indeed, while we strongly believe that generic tools may be designed to measure and
model regularity, and that these tools may be used to analyze
real-world applications, in particular in the field of
uncertainty management, it is clear that, when it comes to control, application-specific tools are required, that we do not wish to address.

The research topics of the Regularity team can be roughly divided into two strongly interacting axes, corresponding to two complementary ways of studying regularity:


	[bookmark: uid11] developments of tools allowing to characterize, measure and estimate
various notions of local regularity, with a particular emphasis on
the stochastic frame,



	[bookmark: uid12] definition and fine analysis of stochastic models for which some aspects of local regularity may be prescribed.




These two aspects are detailed in sections 
	3.2  and 
	3.3  below.
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Tools for characterizing and measuring regularity

Fractional Dimensions

Although the main focus of our team is on characterizing local
regularity, on occasions, it is interesting to use a global
index of regularity. Fractional dimensions provide such an index.
In particular, the regularization dimension, that was defined
in [35] , is well adapted to the study stochastic processes, as its
definition allows to build robust estimators in an easy way.
Since its introduction, regularization dimension has been used by various teams
worldwide in many different applications including the characterization of certain stochastic
processes, statistical estimation,
the study of mammographies or galactograms for breast
carcinomas detection,
ECG analysis for the study of ventricular arrhythmia,
encephalitis diagnosis from EEG, human skin analysis,
discrimination between the nature of radioactive contaminations,
analysis of porous media textures,
well-logs data analysis,
agro-alimentary image analysis, road profile analysis, remote sensing,
mechanical systems assessment, analysis of video games, ...(see http://regularity.saclay.inria.fr/theory/localregularity/biblioregdim 
for a list of works using the regularization dimension).

HÃ¶lder exponents

The simplest and most popular measures of local
regularity are the pointwise
and local HÃ¶lder exponents. For a stochastic process
[image: Im1 ${{X{(t)}}}_{t\#8712 \#8477 }$] whose trajectories are
continuous and nowhere differentiable,
these are defined, at a point t0, as the random variables:

[bookmark: uid14] 	[image: Im2 ${\#945 _X{(t_0,\#969 )}=sup\mfenced o={ c=} \#945 :\munder lim sup{\#961 \#8594 0}\munder sup{t,u\#8712 B(t_0,\#961 )}\mfrac {{|}X_t-X_u{|}}\#961 ^\#945 \lt \#8734 ,}$]	(1)




and

[bookmark: uid15] 	[image: Im3 ${\mover \#945 \#732 _X{(t_0,\#969 )}=sup\mfenced o={ c=} \#945 :\munder lim sup{\#961 \#8594 0}\munder sup{t,u\#8712 B(t_0,\#961 )}\mfrac {{|}X_t-X_u{|}}{\#8741 t-u\#8741 }^\#945 \lt \#8734 .}$]	(2)




Although these quantities are in general random, we will omit as is customary
the dependency in ω and X and write α(t0) and [image: Im4 ${\mover \#945 \#732 {(t_0)}}$] instead of αX(t0, ω) and [image: Im5 ${\mover \#945 \#732 _X{(t_0,\#969 )}}$].

The random functions [image: Im6 ${t\#8614 \#945 _X{(t_0,\#969 )}}$] and [image: Im7 ${t\#8614 \mover \#945 \#732 _X{(t_0,\#969 )}}$]
are called respectively the pointwise and local Hölder functions of the process X.

The pointwise Hölder exponent is a very versatile
tool, in the sense that the set of pointwise Hölder functions of
continuous functions is quite large (it coincides with the set of
lower limits of sequences of continuous functions [7] ). In this sense,
the pointwise exponent is often a more precise tool
(i.e. it varies in a more rapid way)
than the local one, since local Hölder functions are always lower semi-continuous.
This is why, in particular, it is
the exponent that is used as a basis ingredient in multifractal
analysis (see section 
	3.2 ). For certain classes of stochastic
processes, and most notably Gaussian processes, it has the remarkable
property that, at each point, it assumes an almost sure value [19] .
SRP, mBm, and processes of this kind (see sections 
	3.3  and

	3.3 ) rely on the sole use
of the pointwise Hölder exponent for prescribing the regularity.

However, αX obviously does not give a complete description
of local regularity, even for continuous processes. It is for instance
insensitive to “oscillations”, contrarily to the local exponent.
A simple example in the deterministic frame is provided by the
function xγsin(x-β), where γ, β
are positive real numbers. This so-called “chirp function”
exhibits two kinds of irregularities: the first one, due to the
term xγ is measured by the pointwise HÃ¶lder exponent.
Indeed, α(0) = γ. The
second one is due to the wild oscillations around 0, to which
α is blind. In contrast, the local HÃ¶lder exponent
at 0 is equal to [image: Im8 $\mfrac \#947 {1+\#946 }$], and is thus influenced
by the oscillatory behaviour.

Another, related, drawback of the pointwise exponent is that it is
not stable under integro-differentiation, which sometimes makes
its use complicated in applications. Again, the local exponent provides
here a useful complement to α, since [image: Im9 $\mover \#945 \#732 $] is
stable under integro-differentiation.

Both exponents have proved useful in various applications, ranging
from image denoising and segmentation to TCP traffic characterization.
Applications require precise estimation of these exponents.

Stochastic 2-microlocal analysis

Neither the pointwise nor the local exponents give a complete characterization of
the local regularity, and, although their joint use somewhat improves the situation, it
is far from yielding the complete picture.

A fuller description of local regularity is provided by the
so-called 2-microlocal analysis, introduced by J.M. Bony
[44] . In this frame, regularity
at each point is now specified by two indices, which makes the analysis
and estimation tasks more difficult. More precisely,
a function f is said to belong to the 2-microlocal space
Cx0s, s', where s + s'>0, s'<0, if and only if its
m = [s + s']-th order derivative exists around x0, and if there
exists δ>0, a polynomial P with degree lower than
[s]-m, and a constant C, such that

[image: Im10 ${\mfenced o=| c=| \mfrac {\#8706 ^mf{(x)}-P{(x)}}{{|x-}x_0{|}^{[s]-m}}-\mfrac {\#8706 ^mf{(y)}-P{(y)}}{{|y-}x_0{|}^{[s]-m}}\#8804 {C|x-y|}^{s+s^'-m}{(|x-y|+|x-}x_0{|)}^{-s^'-{[s]}+m}}$]


for all x, y such that 0<|x-x0|<δ, 0<|y-x0|<δ.
This characterization was obtained in [26] , [36] .
See [56] , [57]  for other characterizations and results.
These spaces are stable through integro-differentiation, i.e. [image: Im11 ${f\#8712 C_x^{s,s^'}}$] if and only if [image: Im12 ${f^'\#8712 C_x^{s-1,s^'}}$]. Knowing to which
space f belongs thus allows to predict the evolution of its
regularity after derivation, a useful feature if one uses models
based on some kind differential equations. A lot of work remains to be done
in this area, in order to obtain more general characterizations,
to develop robust estimation
methods, and to extend the “2-microlocal formalism” : this is a tool
allowing to detect which space a function belongs to, from the
computation of the Legendre transform of an auxiliary function known as its 2-microlocal
spectrum. This spectrum provide a wealth of information on the local
regularity.

In [19] , we have laid some foundations for a stochastic
version of 2-microlocal analysis. We believe this will provide a fine analysis
of the local regularity of random processes in a direction different
from the one detailed for instance in [62] .We have defined random versions
of the 2-microlocal spaces, and given almost sure conditions for continuous
processes to belong to such spaces. More precise results have also been
obtained for Gaussian processes. A preliminary investigation
of the 2-microlocal behaviour of Wiener integrals has been performed.

Multifractal analysis of stochastic processes

A direct use of the local regularity is often fruitful in applications.
This is for instance the case in RR analysis or terrain
modeling. However, in some situations,
it is interesting to supplement or replace it by a more global
approach known as multifractal analysis (MA). The idea behind
MA is to group together all points with same regularity (as measured
by the pointwise HÃ¶lder exponent) and to measure the “size” of
the sets thus obtained [32] , [45] , [52] . There are mainly two ways to do so, a geometrical
and a statistical one.

In the geometrical approach, one defines the
Hausdorff multifractal spectrum of a process or function
X as the function: [image: Im13 ${\#945 \#8614 f_h{(\#945 )}=dim{{t:\#945 _X{(t)}=\#945 }}}$], where dimE denotes the Hausdorff dimension of the set E.
This gives a fine measure-theoretic information, but is often difficult
to compute theoretically, and almost impossible to estimate on numerical
data.

The statistical path to MA is based on the so-called
large deviation multifractal spectrum:

[image: Im14 ${f_g{(\#945 )}=\munder lim{\#949 \#8594 0}\munder lim inf{n\#8594 \#8734 }\mfrac {log~N_n^\#949 {(\#945 )}}{log~n},}$]


where:

[image: Im15 ${N_n^\#949 {(\#945 )}=#{{k:\#945 -\#949 \#8804 \#945 _n^k\#8804 \#945 +\#949 }},}$]


and αnk is the “coarse grained exponent” corresponding to the
interval [image: Im16 ${I_n^k=\mfenced o=[ c=] \mfrac kn,\mfrac {k+1}n}$], i.e.:

[image: Im17 ${\#945 _n^k=\mfrac {{log|}Y_n^k{|}}{-log~n}.}$]


Here, Ynk is some quantity that measures the variation
of X in the interval Ink, such as the increment, the oscillation
or a wavelet coefficient.

The large deviation spectrum is typically easier to compute and
to estimate than the Hausdorff one. In addition, it often gives
more relevant information in applications.

Under very mild conditions (e.g. for instance, if
the support of fg is bounded, [41] )
the concave envelope of fg can be computed easily from an auxiliary
function, called the Legendre multifractal spectrum. To do so,
one basically interprets the spectrum fg as a rate function in a
large deviation principle (LDP): define, for [image: Im18 ${q\#8712 \#8477 }$],

[bookmark: uid16] 	[image: Im19 ${S_n{(q)}=\munderover \#8721 {k=0}{n-1}{|Y_n^k|}^q,}$]	(3)




with the convention 0q: = 0 for all [image: Im18 ${q\#8712 \#8477 }$].
Let:

[image: Im20 ${\#964 {(q)}=\munder lim inf{n\#8594 \#8734 }\mfrac {logS_n{(q)}}{-log(n)}.}$]


The Legendre multifractal spectrum of X is defined as the Legendre
transform τ* of τ:

[image: Im21 ${f_l{(\#945 )}:={\#964 }^*{(\#945 )}:=\munder inf{q\#8712 \#8477 }{(q\#945 -\#964 {(q)})}.}$]


To see the relation between fg and fl, define the sequence of random
variables Zn: = log|Ynk| where the randomness is through a
choice of k uniformly in {0, ..., n-1}.
Consider the corresponding moment generating functions:

[image: Im22 ${c_n{(q)}:=-\mfrac {logE_n{[exp{(qZ_n)}]}}{log(n)}}$]


where En denotes expectation with respect to Pn, the uniform
distribution on {0, ..., n-1}.
A version of Gärtner-Ellis theorem
ensures that if limcn(q) exists
(in which case it equals 1 + τ(q)), and is differentiable, then
c* = fg-1. In this case, one says that the weak multifractal
formalism holds, i.e. fg = fl. In favorable cases,
this also coincides with fh, a situation referred to as the strong
multifractal formalism.

Multifractal spectra subsume a lot of information about the
distribution of the regularity, that has proved useful in various
situations. A most notable example is the strong correlation reported
recently in several works between the narrowing of the multifractal
spectrum of ECG and certain pathologies of the heart [53] , [55] .
Let us also mention the multifractality of TCP traffic, that has been both
observed experimentally and proved on simplified models of TCP
[2] , [42] .

Another colour in local regularity: jumps

As noted above, apart from HÃ¶lder exponents and their generalizations,
at least another type of irregularity may sometimes be observed on
certain real phenomena: discontinuities, which occur for instance
on financial logs and certain biomedical signals. In this frame, it is of
interest to supplement HÃ¶lder exponents and their extensions with (at least) an additional
index that measures the local intensity and size of jumps. This is a topic we
intend to pursue in full generality in the near future. So far, we have developed an approach
in the particular frame of multistable processes. We refer to section 
	3.3 
for more details.


[bookmark: uid17] Section: 
      Scientific Foundations
Stochastic models

The second axis in the theoretical developments of the Regularity team aims at defining and studying stochastic processes for which various aspects of the local regularity may be prescribed.

Multifractional Brownian motion

One of the simplest stochastic process for which some kind of control over the HÃ¶lder exponents is
possible is probably fractional Brownian motion (fBm). This process was defined by Kolmogorov
and further studied by Mandelbrot and Van Ness, followed by many authors. The so-called “moving average”
definition of fBm reads as follows:

[image: Im23 ${Y_t=\#8747 _{-\#8734 }^0\mfenced o=[ c=] {(t-u)}^{H-\mfrac 12}-{(-u)}^{H-\mfrac 12}.\#120142 {(du)}+\#8747 _0^t{(t-u)}^{H-\mfrac 12}.\#120142 {(du)},}$]


where [image: Im24 $\#120142 $] denotes the real white noise. The parameter H ranges in (0, 1), and it governs
the pointwise regularity: indeed, almost surely, at each point, both the local and pointwise HÃ¶lder
exponents are equal to H.

Although varying H yields processes with different regularity, the fact that the exponents are constant
along any single path is often a major drawback for the modeling of real world phenomena. For instance, fBm
has often been used for the synthesis natural terrains. This is not satisfactory since it
yields images lacking crucial features of
real mountains, where some parts are smoother than others, due, for instance, to erosion.

It is possible to generalize fBm to obtain a Gaussian process for which the pointwise Hölder exponent
may be tuned at each point: the multifractional Brownian motion (mBm) is such
an extension, obtained by substituting the constant parameter [image: Im25 ${H\#8712 (0,1)}$]
with a regularity function [image: Im26 ${H:\#8477 _+\#8594 {(0,1)}}$].

mBm was introduced independently by two groups of authors:
on the one hand, Peltier and Levy-Vehel [33]  defined the mBm [image: Im27 ${{X_t;~t\#8712 \#8477 _+}}$] from the moving average definition of the fractional Brownian motion, and set:

[image: Im28 ${X_t=\#8747 _{-\#8734 }^0\mfenced o=[ c=] {(t-u)}^{H{(t)}-\mfrac 12}-{(-u)}^{H{(t)}-\mfrac 12}.\#120142 {(du)}+\#8747 _0^t{(t-u)}^{H{(t)}-\mfrac 12}.\#120142 {(du)},}$]


On the other hand, Benassi, Jaffard and Roux [43]  defined the mBm from the harmonizable representation of the
fBm, i.e.:

[image: Im29 ${X_t=\#8747 _\#8477 \mfrac {e^{it\#958 }-1}\mfenced o=| c=| \#958 ^{H{(t)}+\mfrac 12}.\mover \#120142 ^{(d\#958 )},}$]


where [image: Im30 $\mover \#120142 ^$] denotes the complex white noise.

The Hölder exponents of the mBm are prescribed almost surely:
the pointwise Hölder exponent is [image: Im31 ${\#945 _X{(t)}=H{(t)}\#8743 \#945 _H{(t)}}$] a.s., and the local Hölder exponent is [image: Im32 ${\mover \#945 \#732 _X{(t)}=H{(t)}\#8743 \mover \#945 \#732 _H{(t)}}$] a.s.
Consequently, the regularity of the sample paths of the mBm are determined by the function H or by its regularity. The multifractional Brownian motion is our prime example of a stochastic process with prescribed local regularity.

The fact that the local regularity of mBm
may be tuned via a functional parameter has made it a useful
model in various areas such as finance, biomedicine,
geophysics, image analysis, ....
A large number of studies have been devoted worldwide to its mathematical properties,
including in particular its local time. In addition,
there is now a rather strong body of work dealing the estimation of its
functional parameter, i.e. its local regularity. See http://regularity.saclay.inria.fr/theory/stochasticmodels/bibliombm 
for a partial list of works, applied or
theoretical, that deal with mBm.

Self-regulating processes

We have recently introduced another class of stochastic models, inspired by mBm,
but where the local regularity, instead of being tuned “exogenously”, is
a function of the amplitude. In other words, at each point t, the Hölder
exponent of the process X verifies almost surely αX(t) = g(X(t)), where g is a
fixed deterministic function verifying certain conditions. A process
satisfying such an equation is generically termed a self-regulating process (SRP).
The particular process obtained by adapting adequately mBm is called
the self-regulating multifractional process [3] . Another instance is given by
modifying the LÃ©vy construction of Brownian motion [39] .
The motivation for introducing self-regulating processes is based on the following general fact: in nature, the local regularity of a phenomenon is often related to its amplitude.
An intuitive example is provided by natural terrains: in young mountains, regions
at higher altitudes are typically more irregular than regions at lower altitudes.
We have verified this fact experimentally on several digital elevation models
[9] . Other natural phenomena displaying a relation between
amplitude and exponent include temperatures
records and RR intervals extracted from ECG [39] .

To build the SRMP, one starts from a field of fractional Brownian motions B(t, H), where (t, H) span [0, 1]×[a, b]
and 0<a<b<1. For each fixed H, B(t, H) is a fractional
Brownian motion with exponent H. Denote:

[image: Im33 $\mtable{...}$]


the affine rescaling between α' and β'
of an arbitrary continuous random field over a compact set K.
One considers the following (stochastic) operator, defined almost surely:

[image: Im34 $\mtable{...}$]


where [image: Im35 ${\#945 \#8804 \#945 ^'\lt \#946 ^'\#8804 \#946 }$], α and
β are two real numbers, and α', β' are random
variables adequately chosen. One may show that this operator is contractive with respect
to the sup-norm. Its unique fixed point is the SRMP. Additional arguments
allow to prove that, indeed, the HÃ¶lder exponent at each point is almost surely
g(t).

An example of a two dimensional SRMP with function g(x) = 1-x2 is displayed
on figure 1 .

[bookmark: uid18]Figure
	1. Self-regulating miltifractional process with g(x) = 1-x2	[image: IMG/Z2D_geo_5.png]





We believe that SRP open a whole new and very promising area of research.

Multistable processes

Non-continuous phenomena are commonly encountered in real-world
applications, e.g. financial records or EEG traces.
For such processes, the information brought
by the HÃ¶lder exponent must be supplemented by some measure of
the density and size of jumps. Stochastic processes with jumps,
and in particular LÃ©vy processes, are currently an active area of research.

The simplest class of non-continuous LÃ©vy processes is maybe the one
of stable processes [64] . These are mainly characterized by a parameter
[image: Im36 ${\#945 \#8712 (0,2]}$], the stability index (α = 2 corresponds to the Gaussian case, that we do not consider here).
This index measures in some precise sense
the intensity of jumps. Paths of stable processes with
α close to 2 tend
to display “small jumps”, while, when α is near 0,
their aspect is governed by large ones.

In line with our quest for the characterization and modeling of
various notions of local regularity, we have defined multistable processes.
These are processes which are
“locally” stable, but where
the stability index α is now a function of time.
This allows to model phenomena which, at times, are “almost
continuous”, and at others display large discontinuities.
Such a behaviour is for instance obvious on almost any sufficiently long financial record.

More formally, a multistable process is a process which is,
at each time u, tangent to a stable process [51] . Recall that
a process Y is said to be tangent at u to the process Yu'
if:

[bookmark: uid19] 	[image: Im37 ${\munder lim{r\#8594 0}\mfrac {Y(u+rt)-Y(u)}r^h=Y_{u}^'{(t)},}$]	(4)




where the limit is understood either in finite dimensional
distributions or in the stronger sense of distributions.
Note Yu' may and in general will vary with u.

One approach to defining multistable processes is similar to the one
developed for constructing mBm [33] : we consider fields of stochastic processes
X(t, u), where t is time and u is an independent parameter that controls
the variation of α. We then consider a “diagonal” process Y(t) = X(t, t),
which will be, under certain conditions, “tangent” at each point t
to a process [image: Im38 ${t\#8614 X(t,u)}$].

A particular class of multistable processes, termed
“linear multistable multifractional
motions” (lmmm) takes the following form [11] , [10] .
Let [image: Im39 ${(E,\#8496 ,m)}$] be a
σ-finite measure space, and
Π be a Poisson process on [image: Im40 ${E×\#8477 }$] with mean measure
[image: Im41 ${m×\#8466 }$] ([image: Im42 $\#8466 $] denotes the Lebesgue measure).
An lmmm is defined as:

[bookmark: uid20] 	[image: Im43 ${Y{(t)}=a{(t)}\munder \#8721 {(\#120247 ,\#120248 )\#8712 \#928 }{\#120248 }^{\lt -1/\#945 (t)\gt }\mfenced o=( c=) {|t-\#120247 |}^{h(t)-1/\#945 (t)}-{|\#120247 |}^{h(t)-1/\#945 (t)}~{(t\#8712 \#8477 )}.}$]	(5)




where [image: Im44 ${x^{\lt y\gt }:=\mtext sign{(x)}{|x|}^y}$], [image: Im45 ${a:\#8477 \#8594 \#8477 ^+}$]
is a C1 function and [image: Im46 ${\#945 :\#8477 \#8594 (0,2)}$] and
[image: Im47 ${h:\#8477 \#8594 (0,1)}$] are C2 functions.

In fact, lmmm are somewhat more general than said above:
indeed, the couple (h, α) allows to prescribe at
each point, under certain conditions, both the pointwise HÃ¶lder
exponent and the local intensity of
jumps. In this sense, they generalize both the mBm and the
linear multifractional stable motion [65] .
From a broader perspective, such multistable
multifractional processes are expected to provide relevant
models for TCP traces, financial logs, EEG and other phenomena
displaying time-varying regularity both in terms of HÃ¶lder exponents
and discontinuity structure.

Figure 2  displays a graph of an lmmm with linearly
increasing α and linearly decreasing H. One sees that
the path has large jumps at the beginning, and almost no jumps
at the end. Conversely, it is smooth (between jumps) at the beginning,
but becomes jaggier and jaggier as time evolves.

[bookmark: uid21]Figure
	2. Linear multistable multifractional
motion with linearly
increasing α and linearly decreasing H	[image: IMG/lmmm.png]





Multiparameter processes

In order to use stochastic processes to represent the variability of multidimensional phenomena, it is necessary to define extensions for indices in [image: Im48 $\#8477 ^N$] ([image: Im49 ${N\#8805 2}$]) (see [58]  for an introduction to the theory of multiparameter processes). Two different kinds of
extensions of multifractional Brownian motion have already been considered: an isotropic extension using the Euclidean norm of [image: Im48 $\#8477 ^N$] and a tensor product of one-dimensional processes on each axis. We refer to [16]  for a comprehensive survey.

These works have highlighted the difficulty of giving satisfactory definitions for increment stationarity, Hölder continuity and covariance structure which are not closely dependent on the structure of [image: Im48 $\#8477 ^N$]. For example, the Euclidean structure can be unadapted to represent natural phenomena.

A promising improvement in the definition of multiparameter extensions is the concept of set-indexed processes. A set-indexed process is a process whose indices are no longer “times” or “locations” but may be some compact connected subsets of a metric measure space. In the simplest case, this framework is a generalization of the classical multiparameter processes [54] : usual multiparameter processes are set-indexed processes where the indexing subsets are simply the rectangles [0, t], with [image: Im50 ${t\#8712 \#8477 _+^N}$].

Set-indexed processes allow for greater flexibility, and should in particular be useful for the modeling of censored data. This situation occurs frequently in biology and medicine, since, for instance, data may not be constantly monitored. Censored data also appear in natural terrain modeling when data are acquired from sensors in presence of hidden areas. In these contexts, set-indexed models should constitute a relevant frame.


A set-indexed extension of fBm is the first step toward the modeling of
irregular phenomena within this more general frame. In [21] , the so-called set-indexed fractional Brownian motion (sifBm) was defined as the mean-zero Gaussian process [image: Im51 ${{\#119809 _U^H;~U\#8712 \#119964 }}$] such that

[image: Im52 ${\#8704 U,V\#8712 \#119964 ;~E{[\#119809 _U^H~\#119809 _V^H]}=\mfrac 12\mfenced o=[ c=] m{(U)}^{2H}+m{(V)}^{2H}-m{(U\#9651 V)}^{2H}}$]


where [image: Im53 $\#119964 $] is a collection of connected compact subsets of a measure metric space and [image: Im54 ${0\lt H\#8804 \mfrac 12}$].

This process appears to be the only set-indexed process whose projection on increasing paths is a one-parameter fractional Brownian motion [20] .
The construction also provides a way to define fBm's extensions on non-euclidean spaces, e.g. indices can belong to the unit hyper-sphere of [image: Im48 $\#8477 ^N$].
The study of fractal properties needs specific definitions for increment stationarity and self-similarity of set-indexed processes [23] .
We have proved that the sifBm is the only Gaussian set-indexed process satisfying these two (extended) properties.

In the specific case of the indexing collection [image: Im55 ${\#119964 ={{[0,t]},t\#8712 \#8477 _+^N}\#8746 {{\#8709 }}}$], the sifBm can be seen as a multiparameter extension of fBm which is called multiparameter fractional Brownian motion (MpfBm). This process differs from the Lévy fractional Brownian motion and the fractional Brownian sheet, which are also multiparameter extensions of fBm (but do not derive from set-indexed processes).
The local behaviour of the sample paths of the MpfBm has been studied in [14] . The self-similarity index H is proved to be the almost sure value of the local Hölder exponent at any point, and the Hausdorff dimension of the graph is determined in function of H.


The increment stationarity property for set-indexed processes, previously defined in the study of the sifBm, allows to consider set-indexed processes whose increments are independent and stationary. This generalizes the definition of Bass-Pyke and Adler-Feigin for Lévy processes indexed by subsets of [image: Im48 $\#8477 ^N$], to a more general indexing collection. We have obtained a Lévy-Khintchine representation for these set-indexed Lévy processes and we also characterized this class of Markov processes.
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  [bookmark: uid23] Section: 
      Application Domains
Application: uncertainties management

Our theoretical works are motivated by and find natural applications to
real-world problems in a general frame generally referred to as uncertainty
management, that we describe now.

Since a few decades, modeling has gained an increasing part in complex systems design in various fields of industry such as automobile, aeronautics, energy, etc.
Industrial design involves several levels of modeling: from behavioural models in preliminary design to finite-elements models aiming at representing sharply physical phenomena. Nowadays, the fundamental challenge of numerical simulation is in designing physical systems while saving the experimentation steps.

As an example, at the early stage of conception in aeronautics, numerical simulation aims at exploring the design parameters space and setting the global variables such that target performances are satisfied. This iterative procedure needs fast multiphysical models. These simplified models are usually calibrated using high-fidelity models or experiments.
At each of these levels, modeling requires control of uncertainties due to
simplifications of models, numerical errors, data imprecisions, variability of surrounding conditions, etc.

One dilemma in the design by numerical simulation is that many crucial choices are made very early, and thus when uncertainties are maximum, and that these choices have a fundamental impact on the final performances.

Classically, coping with this variability is achieved through model registration by experimenting and adding fixed margins to the model response.
In view of technical and economical performance, it appears judicious to replace these fixed margins by a rigorous analysis and control of risk. This may be achieved through a probabilistic approach to uncertainties, that provides decision criteria adapted to the management
of unpredictability inherent to design issues.

From the particular case of aircraft design emerge several general aspects of management of uncertainties in simulation.
Probabilistic decision criteria, that translate decision making into mathematical/probabilistic terms, require the following three steps to be considered [50] :


	[bookmark: uid24] build a probabilistic description of the fluctuations of the model's parameters (Quantification of uncertainty sources),



	[bookmark: uid25] deduce the implication of these distribution laws on the model's response (Propagation of uncertainties),



	[bookmark: uid26] and determine the specific influence of each uncertainty source on the model's response variability (Sensitivity Analysis).





The previous analysis now constitutes the framework of a general study of uncertainties. It is used in industrial contexts where uncertainties can be represented by random variables (unknown temperature of an external surface, physical quantities of a given material, ... at a given fixed time). However, in order for the numerical models to describe with high fidelity a phenomenon, the relevant uncertainties must generally depend on time or space variables.
Consequently, one has to tackle the following issues:


	[bookmark: uid27] How to capture the distribution law of time (or space) dependent parameters,
without directly accessible data?
The distribution of probability of the continuous time (or space) uncertainty sources must describe the links between variations at neighbor times (or points).
The local and global regularity are important parameters of these laws, since it describes how the fluctuations at some time (or point) induce fluctuations at close times (or points).
The continuous equations representing the studied phenomena should help to propose models for the law of the random fields.
Let us notice that interactions between various levels of modeling might also be used to derive distributions of probability at the lowest one.



	[bookmark: uid28] The navigation between the various natures of models needs a kind of metric which could mathematically describe the notion of granularity or fineness of the models.
Of course, the local regularity will not be totally absent of this mathematical definition.



	[bookmark: uid29] All the various levels of conception, preliminary design or high-fidelity modelling, require registrations by experimentation to reduce model errors.
This calibration issue has been present in this frame since a long time, especially in a deterministic optimization context. The random modeling of uncertainty requires the definition of a systematic approach.
The difficulty in this specific context is: statistical estimation with few data and estimation of a function with continuous variables using only discrete setting of values.





Moreover, a multi-physical context must be added to these questions. The complex system design is most often located at the interface between several disciplines. In that case, modeling relies on a coupling between several models for the various phenomena and design becomes a multidisciplinary optimization problem. In this uncertainty context, the real challenge turns robust optimization to manage technical and economical risks (risk for non-satisfaction of technical specifications, cost control).

We participate in the uncertainties community through several collaborative
research projects (ANR and Pôle SYSTEM@TIC), and
also through our involvement in the MASCOT-NUM research group (GDR of CNRS).
In addition, we are considering probabilistic models as phenomenological models to cope with uncertainties
in the DIGITEO ANIFRAC project. As explained above, we focus on essentially
irregular phenomena, for which irregularity is a relevant quantity to capture the variability (e.g. certain biomedical signals, terrain modeling, financial data, etc.). These will be modeled through stochastic processes with prescribed regularity.


[bookmark: uid30] Section: 
      Application Domains
Design of complex systems

[bookmark: uid31]Figure
	3. Coupling uncertainty between heterogeneous models	[image: IMG/CouplageMulti.png]





The design of a complex (mechanical) system such as aircraft, automobile or nuclear plant involves numerical simulation of several interacting physical phenomena: CFD and structural dynamics, thermal evolution of a fluid circulation, ...
For instance, they can represent the resolution of coupled partial differential equations using finite element method.
In the framework of uncertainty treatment, the studied “phenomenological model" is a chaining of different models representing the various involved physical phenomena.
As an example, the pressure field on an aircraft wing is the result of both aerodynamic and structural mechanical phenomena.
Let us consider the particular case of two models of partial differential equations coupled by limit conditions. The direct propagation of uncertainties is impossible since it requires an exploration and then, many calls to costly models. As a solution, engineers use to build reduced-order models: the complex high-fidelity model is substituted with a CPU less costly model. The uncertainty propagation is then realized through the simplified model, taking into account the approximation error (see [46] ).

Interactions between the various models are usually explicited at the finest level (cf. Fig. 3 ). How may this coupling be formulated when the fine structures of exchange have disappeared during model reduction?
How can be expressed the interactions between models at different levels (in a multi-level modeling)?
The ultimate question would be: how to choose the right level of modeling with respect to performance requirements?

In the multi-physical numerical simulation, two kinds of uncertainties then coexist: the uncertainty due to substitution of high-fidelity models with approximated reduced-order models, and the uncertainty due to the new coupling structure between reduced-order models.


According to the previous discussion, the uncertainty treatment in a multi-physical and multi-level modeling implies a large range of issues, for instance numerical resolutions of PDE (which do not enter into the research topics of  Regularity ). Our goal is to contribute to the theoretical arsenal that allows to fly among the different levels of modeling (and then, among the existing numerical simulations).
We will focus on the following three axes:


	[bookmark: uid32] In the case of a phenomenon represented by two coupled partial differential equations whose resolution is represented by reduced-order models, how to define a probabilistic model of the coupling errors? In connection with our theoretical development, we plan to characterize the regularity of this error in order to quantify its distribution. This research axis is supported by an ANR grant (OPUS project).



	[bookmark: uid33] The multi-level modeling assumes the ability to choose the right level of details for the models in adequacy to the goals of the study. In order to do that, a rigorous mathematical definition of the notion of model fineness/granularity would be very helpful. Again, a precise analysis of the fine regularity of stochastic models is expected to give elements toward a precise definition of granularity.
This research axis is supported by a a PÃ´le SYSTEM@TIC grant (EHPOC project), and also by a collaboration with EADS.



	[bookmark: uid34] Some fine characteristics of the phenomenological model may be used to define the probabilistic behaviour of its variability. The action of modeling a phenomena can be seen as an interpolation issue between given observations. This interpolation can be driven by physical evolution equations or fine analytical description of the physical quantities.
We are convinced that Hölder regularity is an essential parameter in that context, since it captures how variations at a given point induce variations at its neighbors.
Stochastic processes with prescribed regularity (see section 
	3.3 ) have already been used to represent various fluctuating phenomena: Internet traffic, financial data, ocean floor. We believe that these models should be relevant to describe solutions of PDE perturbed by uncertain (random) coefficients or limit conditions. This research axis is supported by a PÃ´le SYSTEM@TIC grant (CSDL project).





[bookmark: uid35] Section: 
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Biomedical Applications

ECG analysis and modeling

ECG and signals derived from them are an important source of
information in the detection of various pathologies, including e.g. congestive heart failure, arrhythmia and sleep apnea. The fact that the
irregularity of ECG bears some information on the condition of the heart
is well documented (see e.g. the web resource http://www.physionet.org ).
The regularity parameters that have been studied so far are mainly the box and
regularization dimensions, the
local HÃ¶lder exponent and the multifractal spectrum [53] , [55] .
These have been found to correlate well with certain pathologies in some
situations. From a general point of view, we participate in this research area in two
ways.


	[bookmark: uid36] First, we use refined regularity characterizations,
such as the regularization dimension, 2-microlocal analysis and
advanced multifractal spectra for a more precise analysis of ECG data.
This requires in particular to test current
estimation procedures and to develop new ones.



	[bookmark: uid37] Second, we build stochastic processes that mimic in a faithful way
some features of the dynamics of ECG. For instance, the local regularity of
RR intervals, estimated in a parametric way based on a modeling by an
mBm, displays correlations with the amplitude of the signal, a
feature that seems to have remained unobserved so far [3] . In other words,
RR intervals behave as SRP. We believe that modeling in a simplified way some
aspects of the interplay between the sympathetic and parasympathetic
systems might lead to an SRP, and to explain both this
self-regulating property and
the reasons behind the observed multifractality of records.
This will open the way to understanding
how these properties evolve under abnormal behaviour.




Pharmacodynamics and patient drug compliance

Poor adherence to treatment is a worldwide problem that threatens
efficacy of therapy, particularly in the case of chronic
diseases. Compliance to pharmacotherapy can range from 5% to
90%. This fact renders clinical tested therapies less effective in
ambulatory settings. Increasing the effectiveness of adherence
interventions has been placed by the World Health Organization at the
top list of the most urgent needs for the health system.
A large number of studies have appeared on this new topic in recent
years [67] , [66] . In
collaboration with the pharmacy faculty of MontrÃ©al university, we
consider the problem of compliance within the context of
multiple dosing. Analysis of multiple dosing drug concentrations, with
common deterministic models, is usually based on patient full
compliance assumption, i.e., drugs are administered at a fixed
dosage. However, the drug concentration-time curve is often influenced
by the random drug input generated by patient poor adherence behaviour,
inducing erratic therapeutic outcomes. Following work already
started in MontrÃ©al [60] , [61] , we consider stochastic processes induced by
taking into account the random drug intake induced by various
compliance patterns. Such studies have been made possible by
technological progress, such as the “medication event monitoring
system”, which allows to obtain data describing the behaviour of
patients.

We use different approaches to study this problem: statistical methods where
enough data are available, model-based ones in presence of qualitative
description of the patient behaviour. In this latter case, piecewise deterministic
Markov processes (PDP) seem a promising path. PDP are non-diffusion processes whose evolution
follows a deterministic trajectory governed by a flow between random time instants,
where it undergoes a jump according to some probability measure
[49] . There is a well-developed
theory for PDP, which studies stochastic properties such as
extended generator, Dynkin formula, long time behaviour.
It is easy to cast a simplified model of non-compliance in terms of
PDP. This has allowed us already to obtain
certain properties of interest of the random concentration of drug [40] .
In the simplest case of a Poisson distribution, we have obtained rather precise results that
also point to a surprising connection with infinite Bernouilli convolutions [29] , [13] , [12] .
Statistical aspects remain to be investigated in the general case.



    Software

    
      	Software	[bookmark: uid39]FracLab



    

  [bookmark: uid39] Section: 
      Software
FracLab
Participants :
      Paul BalanÃ§a, Jacques LÃ©vy VÃ©hel [correspondant] .


FracLab was developed for two main purposes:


	[bookmark: uid40] propose a general platform allowing research teams to avoid the need
to re-code basic and advanced techniques in the processing of signals
based on (local) regularity.



	[bookmark: uid41] provide state of the art algorithms allowing both to disseminate
new methods in this area and to compare results on a common basis.




FracLab is a general purpose signal and image processing toolbox based
on fractal, multifractal and local regularity methods. FracLab can be approached from
two different perspectives:


	[bookmark: uid42] (multi-) fractal and local regularity analysis: A large number
of procedures allow to compute
various quantities associated with 1D or 2D signals, such as
dimensions, Hölder and 2-microlocal exponents or multifractal spectra.



	[bookmark: uid43] Signal/Image processing: Alternatively, one can use FracLab directly
to perform many basic tasks in signal processing, including
estimation, detection, denoising, modeling,
segmentation, classification, and synthesis.




A graphical interface makes FracLab easy to use and
intuitive. In addition, various wavelet-related tools are
available in FracLab.

FracLab is a free software. It mainly consists of routines
developed in MatLab or C-code interfaced with MatLab.
It runs under Linux, MacOS and Windows environments. In addition,
a “stand-alone” version (i.e. which does not require
MatLab to run) is available.

Fraclab has been downloaded several thousands of times in the last years
by users all around the world. A few dozens
laboratories seem to use it regularly, with more than two hundreds registered users.
Our ambition is to make it the
standard in fractal softwares for signal and image processing
applications. We have signs that this is starting to become
the case. To date, its use has been acknowledged in more than two hundreds
research papers in various areas such as astrophysics, chemical engineering,
financial modeling, fluid dynamics, internet and road traffic analysis, image and signal processing,
geophysics, biomedical applications, computer science, as well as in mathematical studies in analysis and
statistics (see http://fraclab.saclay.inria.fr/  for a partial list with papers).
In addition, we have opened the development of FracLab so that other teams
worldwide may contribute. Additions have been made by groups in Australia, England, the USA,
and Serbia.
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White Noise-based Stochastic Calculus with respect to Multifractional Brownian Motion
Participants :
      Joachim Lebovits, Jacques LÃ©vy VÃ©hel.


The purpose of this work is to build a stochastic calculus with respect to (mBm) with a view to applications in finance and particularly to stochastic volatility models.
We use an approach based on white noise theory.

[bookmark: cid1] White Noise-based Stochastic Calculus with respect to multifractional Brownian motion

The following results may be found in [28] .
Integration with respect to mBm requires stochastic spaces in which we can differentiate or integrate stochastic processes. Considering the probability space [image: Im56 ${(\#120138 ^'{(\#8477 )},\#120121 {(\#120138 ^'{(\#8477 )})},\#956 )}$] where μ is probability measure given by BÃ¶chner Minlos theorem, one can build to spaces, noted [image: Im57 ${(\#119982 )}$] and [image: Im58 ${({\#119982 }^*)}$] which will play an analogous role to the spaces [image: Im59 ${\#120138 (\#8477 )}$] and [image: Im60 ${\#120138 ^'{(\#8477 )}}$] for tempered distributions. We recall that [image: Im59 ${\#120138 (\#8477 )}$] is the Schwartz space of rapidly decreasing functions which are infinitely differentiable and [image: Im60 ${\#120138 ^'{(\#8477 )}}$] is the space of tempered distributions. Let us moreover note (L2) the space of random variables defined on the probability space [image: Im56 ${(\#120138 ^'{(\#8477 )},\#120121 {(\#120138 ^'{(\#8477 )})},\#956 )}$] which admit a second order moment. The mBm B(h) has the following Wiener-ItÃ´ chaos decomposition in (L2):

[bookmark: uid46] 	[image: Im61 $\mstyle {B^{(h)}{(t)}={\munderover \#8721 {k=0}{+\#8734 }{\lt 1_{[0;t]},M_{h(t)}{(e_k)}\gt }_{L^2{(\ ... {\munderover \#8721 {k=0}{+\#8734 }\mfenced o=( c=) \#8747 _0^tM_{h(t)}{(e_k)}{(s)}ds\lt .,e_k\gt }}$]	(6)




where [image: Im62 ${(e_k)}_{k\#8712 \#8469 }$] denotes the family of Hermite functions, defined for every integer k in [image: Im63 $\#8469 $], by ek(x): = π-1/4(2kk!)-1/2e-x2/2hk(x) and where [image: Im64 ${(h_k)}_{k\#8712 \#8469 }$] is the family of Hermite polynomial, defined for every integer k in [image: Im63 $\#8469 $], by
[image: Im65 ${h_k{(x)}:={(-1)}^ke^x^2\mfrac d^k{dx^k}{(e^{-x^2})}}$]. Note moreover that MH is an operator from [image: Im59 ${\#120138 (\#8477 )}$] to [image: Im66 ${L^2{(\#8477 )}}$] for every real H in (0, 1) and <., ek> is a centered random Gaussian variable with variance equal to 1 for all k in [image: Im63 $\#8469 $]. We can now define a process, noted W(h), from [image: Im67 $\#8477 $] to [image: Im58 ${({\#119982 }^*)}$], which is the derivative of B(h) in sense of [image: Im58 ${({\#119982 }^*)}$] by

[bookmark: uid47] 	[image: Im68 $\mstyle {W^{(h)}{(t)}={\munderover \#8721 {k=0}{+\#8734 }[\mfrac d{dt}}\mfenced o=( c=) \#8747 _0^t~M_{h(t)}{(e_k)}{(s)}~ds]~\lt .,e_k\gt .}$]	(7)




Hence we define integral with respect to mBm of any process [image: Im69 ${\#934 :\#8477 \#8594 ({\#119982 }^*)}$] as being the element of [image: Im58 ${({\#119982 }^*)}$] given by:

[bookmark: uid48] 	[image: Im70 ${\#8747 _\#8477 \#934 {(s,\#969 )}dB^{(h)}{(s)}=\#8747 _\#8477 \#934 {(s)}\#8900 W^{(h)}{(s)}ds~{(\#969 )},}$]	(8)




where [image: Im71 $\#8900 $] denotes the Wick product on [image: Im58 ${({\#119982 }^*)}$]. It is then possible to get ItÃ´ formulas and Tanaka formula such as



[bookmark: uid49] 	[image: Im72 $\mtable{...}$]	(9)






for functions with sub exponential growth and where the last equality holds in L2.

Once this stochastic calculus with respect to mBm is defined, we can solve differential equations arising in mathematical finance.


[bookmark: cid2] Multifractional stochastic volatility
Multifractional stochastic volatility
The results of this part may be found in [6] . We assume that, under the risk-neutral measure, the forward price of a risky asset is the solution of the S.D.E.

[bookmark: uid50] 	[image: Im73 $\mfenced o={  \mtable{...}$]	(10)




where W and Wσ are two standard Brownian motions and Bh is a multifractional Brownian motion independent of W and Wσ with functional parameter h, which is assumed to be continuously differentiable. We assume that W is decomposed into [image: Im74 ${\#961 dW_t^\#963 +\sqrt {1-\#961 ^2}dW_t^F}$], where WF is a Brownian motion independent of Wσ. Note that [image: Im75 ${d^\#8900 B_t^h}$] denotes differentiation in the sense of white Noise theory.
The solution of the volatility process [image: Im76 ${(\#963 _t)}_{t\#8712 [0,T]}$] is

[bookmark: uid51] 	[image: Im77 ${\#963 _t\mover ={a.s.}exp\mfenced o=( c=) ln{(\#963 _0)}e^{-\#952 t}+\#956 \mfenced o=( c=) 1-e^{-\#952 t}+\#947 _\#963 \#8747 _0^te^{\#952 (s-t)}dW_s^\#963 +\#947 _h~e^{-\#952 t}I_t\mfenced o=( c=) B^h,}$]	(11)




where [image: Im78 ${I_t\mfenced o=( c=) B^h:\mover ={\#119886 .\#119904 }e^{\#952 t}B_t^h-\#952 \#8747 _0^t~e^{\#952 s}~B_s^h~ds}$].

Since the solution the previous S.D.E. is not explicit for [image: Im79 ${(F_t)}_{t\#8712 [0,T]}$] we use preconditioning and then cubature methods in order to get an approximation of it. This model allows to take into account the well-known "smile" effect of volatility, as well as its evolution at
various maturities.


[bookmark: cid3] Approximation of mBm by fBms

In [18] , we establish that a sequence of well-chosen lumped fractional Brownian motions converges in law to a multifractional Brownian motion. This allows to define stochastic integrals with respect to mBm by "transporting" corresponding stochastic integrals with respect to fBm.
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Sample paths properties of the set-indexed Lévy process
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      Erick Herbin.


In collaboration with Prof. Ely Merzbach (Bar Ilan University, Israel).

In [24] , the class of set-indexed Lévy processes is considered using the stationarity property defined for the set-indexed fractional Brownian motion in [23] .
Following Ivanoff-Merzbach's definitions of an indexing collection [image: Im53 $\#119964 $] and its extensions [image: Im80 ${\#119966 _0={{U\#8726 V;~U,V\#8712 \#119964 }}}$] and

[image: Im81 ${\#119966 =\mfenced o={ c=} U\#8726 \munder \#8899 {1\#8804 i\#8804 n}V_i;~n\#8712 \#119821 ;U,V_1,\#8943 ,V_n\#8712 \#119964 ,}$]


a set-indexed process [image: Im82 ${X=\mfenced o={ c=} X_U;~U\#8712 \#119964 }$] is called a set-indexed Lévy process if the following conditions hold


	[bookmark: uid53] [image: Im83 ${X_\#8709 ^'=0}$] almost surely, where [image: Im84 ${\#8709 ^'=\#8898 _{U\#8712 \#119964 }U}$].



	[bookmark: uid54] the increments of X are independent: for all pairwise disjoint [image: Im85 ${C_1,\#8943 ,C_n}$] in [image: Im86 $\#119966 $], the random variables [image: Im87 ${\#916 X_C_1,\#8943 ,\#916 X_C_n}$] are independent.



	[bookmark: uid55] X has m-stationary [image: Im88 $\#119966 _0$]-increments, i.e. for all integer n, all [image: Im89 ${V\#8712 \#119964 }$] and for all increasing sequences (Ui)i and (Ai)i in [image: Im53 $\#119964 $], we have

[image: Im90 ${\mfenced o=[ c=] \#8704 i,~m{(U_i\#8726 V)}=m{(A_i)}\#8658 {(\#916 X_{U_1\#8726 V},\#8943 ,\#916 X_{U_n\#8726 V})}\mover ={(d)}{(\#916 X_A_1,\#8943 ,\#916 X_A_n)}}$]




	[bookmark: uid56] X is continuous in probability.




On the contrary to previous works of Adler and Feigin (1984) on one hand, and Bass and Pyke (1984) one the other hand, the increment stationarity property allows to obtain explicit expressions for the finite-dimensional distributions of a set-indexed LÃ©vy process.
From these, we obtained a complete characterization in terms of Markov properties.

The question of continuity is more complex in the set-indexed setting than for real-parameter stochastic processes. For instance, the set-indexed Brownian motion can be not continuous for some indexing collection.
We consider a weaker form of continuity, which studies the possibility of point jumps.

The point mass jump of a set-indexed function
[image: Im91 ${x:\#119964 \#8594 \#119825 }$] at [image: Im92 ${t\#8712 \#119983 }$] is
defined by

[bookmark: uid57] 	[image: Im93 ${J_t{(x)}=\munder lim{n\#8594 \#8734 }\#916 x_{C_n{(t)}},~where~C_n{(t)}=\munder \#8898 \mfrac {C\#8712 \#119966 _n}{t\#8712 C}C}$]	(12)




and for each [image: Im94 ${n\#8805 1}$], [image: Im95 $\#119966 _n$] denotes the collection of subsets [image: Im96 ${U\#8726 V}$] with [image: Im97 ${U\#8712 \#119964 _n}$] (a finite sub-semilattice which generates [image: Im53 $\#119964 $] as [image: Im98 ${n\#8594 \#8734 }$]) and [image: Im99 ${V\#8712 \#119964 _n{(u)}}$].
A set-indexed function [image: Im91 ${x:\#119964 \#8594 \#119825 }$] is said pointwise-continuous if Jt(x) = 0, for all [image: Im92 ${t\#8712 \#119983 }$].

Theorem 
Let [image: Im100 ${{X_U;~U\#8712 \#119964 }}$] be a set-indexed Lévy process with Gaussian increments. Then for any [image: Im101 ${U_max\#8712 \#119964 }$] such that m(Umax)< + ∞, the sample paths of X are almost surely pointwise-continuous inside Umax, i.e.

[image: Im102 ${P(\#8704 t\#8712 U_max,J_t{(X)}=0)=1.}$]




In the general case, for all ϵ>0,
For all [image: Im103 ${U\#8712 \#119964 }$] with [image: Im104 ${U\#8834 U_max}$], we define

[bookmark: uid58] 	[image: Im105 $\mtable{...}$]	(13)





for all [image: Im106 ${B\#8712 \#8492 _\#1013 }$], the σ-field generated by the opened subsets of [image: Im107 ${{x\#8712 \#119825 :|x|\gt \#1013 }}$].
The sample paths of the set-indexed Lévy processes can be derived from the following Lévy-Ito decomposition proved in [24] .

Theorem 
Let (σ, γ, ν) the generating triplet of the SI Lévy process X.

Then X can be decomposed as

[image: Im108 $\mtable{...}$]



where


	[bookmark: uid59] [image: Im109 ${X^{(0)}={{X_U^{(0)};~U\#8712 \#119964 }}}$] is a set-indexed Lévy process with Gaussian increments, with generating triplet (σ, γ, 0),



	[bookmark: uid60] [image: Im110 ${X^{(1)}={{X_U^{(1)};~U\#8712 \#119964 }}}$] is the set-indexed Lévy process with generating triplet (0, 0, σ), defined for some [image: Im111 ${\#937 _1\#8712 \#8497 }$] with P(Ω1) = 1 by

[bookmark: uid61] 	[image: Im112 $\mtable{...}$]	(14)





where NU is defined in (13 ) and the last term of (14 ) converges uniformly in [image: Im104 ${U\#8834 U_max}$] (for any given [image: Im101 ${U_max\#8712 \#119964 }$]) as [image: Im113 ${\#1013 \#8595 0}$],



	[bookmark: uid62] and the processes X(0) and X(1) are independent.





[bookmark: uid63] Section: 
      New Results
Hölder regularity of Set-Indexed processes
Participants :
      Erick Herbin, Alexandre Richard.


In collaboration with Prof. Ely Merzbach (Bar Ilan University, Israel).

In the set-indexed framework of Ivanoff and Merzbach ( [54] ), stochastic processes can be indexed not only by [image: Im67 $\#8477 $] but by a collection [image: Im53 $\#119964 $] of subsets of a measure and metric space [image: Im114 ${(\#119983 ,d,m)}$], with some assumptions on [image: Im53 $\#119964 $]. In [25] , we introduce and study some assumptions on the metric indexing collection [image: Im115 ${(\#119964 ,d_\#119964 )}$] in order to obtain a Kolmogorov criterion for continuous modifications of SI stochastic processes. Under this assumption, the collection is totally bounded and a set-indexed process with good incremental moments will have a modification whose sample paths are almost surely Hölder continuous, for the distance [image: Im116 $d_\#119964 $].

Once this condition is established, we investigate the definition of Hölder coefficients for SI processes. From the real-parameter case, the most straightforward are the local (and pointwise) Hölder exponents around [image: Im117 ${U_0\#8712 \#119964 }$]:

[image: Im118 ${\mover \#945 \#732 _X{(U_0)}=sup\mfenced o={ c=} \#945 :~\munder lim sup{\#961 \#8594 0}\munder sup{U,V\#8712 B_d_\#119964 {(U_0,\#961 )}}\mfrac {{|}X_U-X_V{|}}{d_\#119964 {(U,V)}^\#945 }\lt \#8734 .}$]


When the processes are Gaussian, a deterministic counterpart to this exponent is defined as it is in the real-parameter framework. For all [image: Im117 ${U_0\#8712 \#119964 }$], we proved that almost surely, the random and the deterministic exponents are equal. Also, we proved that for the local exponents, this result holds almost surely, uniformly on [image: Im53 $\#119964 $].

Given the particular structure of [image: Im53 $\#119964 $], other coefficients of Hölder regularity were studied on [image: Im86 $\#119966 $]:

[bookmark: uid64] 	[image: Im119 ${\#119966 =\mfenced o={ c=} A\#8726 \munderover \#8899 {k=1}nB_k:A,B_1,\#8943 ,B_n\#8712 \#119964 ,n\#8712 \#8469 .}$]	(15)




On specific subclasses [image: Im120 $\#119966 ^l$] of [image: Im86 $\#119966 $] (satisfying [image: Im121 ${\#8746 _{l\#8805 1}\#119966 ^l=\#119966 }$]), the local (and pointwise) [image: Im120 $\#119966 ^l$]-Hölder exponents are defined:

[bookmark: uid65] 	[image: Im122 ${\mover \#945 \#732 _{X,\#119966 ^l}{(U_0)}=sup\mfenced o={ c=} \#945 :\munder lim sup{\#961 \#8594 0}\munder sup\mtable{...}\mfrac {{|\#916 }X_{U\#8726 V}{|}}{d_\#119964 {(U,V)}^\#945 }\lt \#8734 ,}$]	(16)




and this definition is proved to be independent of l, leading to the definition of [image: Im123 ${\mover \#945 \#732 _{X,\#119966 }{(U_0)}}$]. It is compared to [image: Im124 ${\mover \#945 \#732 _X{(U_0)}}$] and related to the Hölder exponent of the process projected on flows (a flow is a continuous increasing path in [image: Im53 $\#119964 $]). This last technique permits to show that the pointwise Hölder exponent of the SIfBm is almost surely uniformly equal to H, the Hurst parameter of the SIfBm. This completes some previous results on the multiparameter fractional Brownian motion.

The last exponent which is studied is the exponent of pointwise continuity:

[bookmark: uid66] 	[image: Im125 ${\#945 _X^{pc}{(t)}=sup\mfenced o={ c=} \#945 :~\munder lim sup{n\#8594 \#8734 }\mfrac {{|\#916 }X_{C_n{(t)}}{|}}{m{(C_n{(t)})}^\#945 }\lt \#8734 }$]	(17)




for all [image: Im92 ${t\#8712 \#119983 }$], where Cn(t) is the smaller set of [image: Im95 $\#119966 _n$] containing t. Almost sure results are also obtained in that case. For instance, the coefficient of pointwise continuity of a SI Brownian motion equals 1/2 a.s.

All these results are finally applied to the SIfBm and the SI Ornstein-Ühlenbeck process ([1] ).


[bookmark: uid67] Section: 
      New Results
Stochastic 2-microlocal analysis
Participants :
      Erick Herbin, Paul Balança.


Stochastic 2-microlocal analysis has been introduced in [19]  to study the local regularity of stochastic processes. If [image: Im126 ${X={(X_t)}_{t\#8712 \#119825 _+}}$] is a stochastic process, then for all [image: Im127 ${t_0\#8712 \#119825 _+}$], a function [image: Im128 ${s^'\#8614 \#963 _{X,t_0}{(s^')}}$] called the 2-microlocal frontier is defined to characterize entirely the local regularity of X at t0. In particular, for all [image: Im129 ${s^'\#8712 \#119825 }$] such that [image: Im130 ${\#963 _{X,t_0}{(s^')}\#8712 \mfenced o=( c=) 0,1}$], it is defined as

[image: Im131 ${\#963 _{X,t_0}{(s^')}=sup\mfenced o={ c=} \#963 :\munder lim sup{\#961 \#8594 0}\munder sup{u,v\#8712 B(t_0,\#961 )}\mfrac {|X_u-X_v|}{{|u-v|}^\#963 \#961 ^{-s^'}}\lt \#8734 .}$]


The 2-microlocal frontier gives a more complete picture of the regularity than classical pointwise and local Hölder exponents, which are widely used in the literature. Furthermore, it is stable under the action of (pseudo-)differential operators.

[19]  mainly focused on Gaussian processes, and in particular obtained a characterization of the regularity for Wiener integrals [image: Im132 ${X_t=\#8747 _0^t\#951 _udW_u}$], with [image: Im133 ${\#951 \#8712 L^2{(\#119825 )}}$].

Our main goal was therefore to extend this result to any stochastic integral

[image: Im134 ${X_t=\#8747 _0^tH_udM_u,}$]


where M is a local martingale and H an adapted continuous process.

In fact, in [15] , we first reduced this problem to the study of local martingales, and we have shown that almost surely for all [image: Im135 ${t\#8712 \#119825 _+}$], the 2-microlocal frontier of a local martingale M, with quadratic variation [image: Im136 ${\#9001 M\#9002 }$], satisfies

[image: Im137 ${\#8704 s^'\#8805 -\#945 _{M,t};~\#963 _{M,t}{(s^')}=\#931 _{M,t}{(s^')}=\mfrac 12\#931 _{\#9001 M\#9002 ,t}\mfenced o=( c=) {2s^'},}$]


where for any process X, ΣX, t denotes the pseudo 2-microlocal frontier which is characterized as following

[image: Im138 ${\#8704 s^'\#8712 \#119825 ;~\#931 _{X,t}{(s^')}=\#963 _{X,t}{(s^')}\#8743 {(s^'+p_{X,t})}\#8743 1,}$]


where pX, t corresponds to

[image: Im139 ${p_{X,t}=inf\mfenced o={ c=} n\#8805 1:X^{(n)}{(t)}~\mtext exists~\mtext and~X^{(n)}{(t)}\#8800 0,}$]


with the usual convention [image: Im140 ${inf{\#8709 }=+\#8734 }$].

As the previous result is based on Dubins-Schwarz representation theorem, it can be easily extended to characterize the regularity of time-changed multifractional Brownian motions. In this case, we obtain a similar equation where [image: Im141 $\mstyle \mfrac 12$] is replaced by H(t), the value of the Hurst function at t.

Using this last equality, we can obtain the regularity of the stochastic integral X previously defined: almost surely for all [image: Im135 ${t\#8712 \#119825 _+}$]

[image: Im142 ${\#8704 s^'\#8805 -\#945 _{X,t};~\#963 _{X,t}{(s^')}=\#931 _{X,t}{(s^')}=\mfrac 12\#931 _{\#8747 _{0}^\mtable{...}H_u^2d{\#9001 M\#9002 }_u,t}\mfenced o=( c=) {2s^'}.}$]


In the particular case of an integration with respect to a Brownian motion B, the result can be simplified using the stability under differential operators: for almost all [image: Im143 ${\#969 \#8712 \#937 }$] and for all [image: Im135 ${t\#8712 \#119825 _+}$], the 2-microlocal frontier satisfies


	[bookmark: uid68] if [image: Im144 ${H_t{(\#969 )}\#8800 0}$]:

[image: Im145 ${\#8704 s^'\#8712 \#119825 ;~\#963 _{X,t}{(s^')}=\#963 _{B,t}{(s^')}=\mfenced o=( c=) \mfrac 12+s^'\#8743 \mfrac 12;}$]




	[bookmark: uid69] if Ht(ω) = 0:

[image: Im146 ${\#8704 s^'\#8805 -\#945 _{X,t};~\#963 _{X,t}{(s^')}=\mfenced o=( c=) \mfrac 12+\mfrac {\#931 _{H^2,t}{(2s^')}}2\#8743 \mfrac 12,}$]


unless H is locally equal to zero at t, which induces in that case: σX, t =  + ∞.




Based on this last characterization, we were able to study the regularity of stochastic diffusions. In particular, we illustrated our purpose with the square of δ-dimensional Bessel processes which verify the following equation

[image: Im147 ${Z_t=x+2\#8747 _0^t\sqrt Z_sd\#946 _s+\#948 t.}$]




[bookmark: uid70] Section: 
      New Results
Tempered multistable measures and processes
Participants :
      Jacques LÃ©vy VÃ©hel, Lining Liu.


This year, we concentrated on the following points:


	[bookmark: uid71] Define a new type of multistable processes called tempered multistable processes.



	[bookmark: uid72] Study the short time and long time behaviors of tempered multistable processes.



	[bookmark: uid73] Compare the multistable Lévy processes defined by finite-dimensional distributions (characteristic functions), Poisson representation and series representation.




The idea of the construction of tempered multistable measure and processes comes from the paper [63] . The interest of such processes is that they may be chosen to have moments of all orders. In addition, they are martingales.
This will allow to construct stochastic (partial) differential equation driven by tempered multistable measures, which may be used to describe certain physical phenomena.

The characteristic function of a termpered multistable process X(t) is

[image: Im148 $\mtable{...}$]


We have investigated the long time and short time behaviors this process:

Short time behavior:

Let α: [image: Im149 ${\#8477 \#8594 [a,b]\#8838 (0,2)}$] be continuous.
Let [image: Im150 ${u\#8712 \#8477 }$] and suppose that as [image: Im151 ${v\#8594 u}$],

[bookmark: uid74] 	[image: Im152 ${{|\#945 {(u)}-\#945 {(v)}|}=o\mfenced o=( c=) \mfrac 1{|log|u-v||}.}$]	(18)




Then when [image: Im153 ${h\#8594 0}$],

[bookmark: uid75] 	[image: Im154 ${h^{-1/\#945 (t)}{[X{(t+hu)}-X{(t)}]}\#8594 Y_{\#945 (t)}{(u)}}$]	(19)




in finite-dimentional-distributions, where

[image: Im155 ${Y_{\#945 (t)}{(u)}=\#8747 1_{[0,u]}{(z)}dM_{\#945 (t)}{(z)},}$]


and Mα(t) is an α(t) stable measure. In an other word, X(t) = M[0, t] is 1/α(t)-localisable at t with local form Yα(t).

Long time behavior:

Let α: [image: Im149 ${\#8477 \#8594 [a,b]\#8838 (0,2)}$] be continuous and [image: Im156 ${lim_{s\#8594 \#8734 }\#945 {(s)}\#8594 \#945 }$].
Then for [image: Im157 ${h\#8594 \#8734 }$]

[bookmark: uid76] 	[image: Im158 ${h^{-1/2}{[X{(t+hu)}-X{(t)}]}\#8594 \#915 {(2-\#945 )}B{(u)}}$]	(20)




in finite-dimensional-distributions, where
B is standard Brownian motion.

Let us now describe our work on the multistable LÃ©vy motion. For [image: Im159 ${0\lt a\#8804 b\lt 2}$] and [image: Im160 ${\#945 :\#8477 \#8594 [a,b]}$], the multistable Lévy motion Mc defined by finite-dimensional distributions (characteristics function) is the process such that

[bookmark: uid77] 	[image: Im161 ${\#120124 {(exp{(i\munderover \#8721 {j=1}d\#952 _jM_c{(t_j)})})}=exp\mfenced o=( c=) {-\#8747 |}\munderover \#8721 {j=1}d\#952 _j1_{[0,t_j]}{{(s)}|}^{\#945 (s)}ds;}$]	(21)




There also exist a Poisson representation of multistable LÃ©vy process Mp:

[bookmark: uid78] 	[image: Im162 ${M_p{(t)}=\munder \#8721 {(X,Y)\#8712 \#928 }C_{\#945 (X)}1_{[0,t]}{(X)}Y^{\lt -1/\#945 (X)\gt },}$]	(22)




where (X, Y) be the random point of the Poisson process Π, t>0, Y<-1/α(X)> = sign(Y)|Y|-1/α(X) and

[bookmark: uid79] 	[image: Im163 ${C_{\#945 (X)}=\mfenced o=( c=) \mfrac 1{\#915 {(1-\#945 {(X)})}cos{(\mfrac \#960 2\#945 {(X)})}}^{1/\#945 (X)};}$]	(23)




Finally, the series representation of multistable LÃ©vy motion Ms is

[bookmark: uid80] 	[image: Im164 ${M_s{(t)}=\munderover \#8721 {i=1}\#8734 C_{\#945 (U_i)}\#947 _i\#915 _i^{-1/\#945 (U_i)}1_{(U_i\#8804 t)},}$]	(24)




where [image: Im165 ${{\#915 }}_{i\#8805 1}$] is a sequence of arrival times of a Poisson process with unit arrival time, [image: Im166 ${{U}}_{i\#8805 1}$] is a sequence of i.i.d random variables with uniform distribution on [0, t], [image: Im167 ${{\#947 }}_{i\#8805 1}$] is a sequence of i.i.d random variables with distribution [image: Im168 ${\#8473 {(\#947 _i=1)}=\#8473 {(\#947 _i=-1)}=1/2}$]. All three sequences [image: Im165 ${{\#915 }}_{i\#8805 1}$], [image: Im166 ${{U}}_{i\#8805 1}$] and [image: Im167 ${{\#947 }}_{i\#8805 1}$] are independent, and

[bookmark: uid81] 	[image: Im169 ${C_{\#945 (U_i)}=\mfenced o=( c=) \mfrac 1{\#915 {(1-\#945 {(U_i)})}cos{(\mfrac \#960 2\#945 {(U_i)})}}^{1/\#945 (U_i)}.}$]	(25)




We have proved that these three definitions yield the same process in law.


[bookmark: uid82] Section: 
      New Results
Local strings and the CH set
Participant :
      Jacques LÃ©vy VÃ©hel.


In collaboration with Prof. Franklin Mendivil (Acadia University, Canada).

We have extended the definition of fractal strings originally proposed in [59]  and modified in [37]  to deal with the local behaviour of fractal sets. This allows to analyze the pointwise oscillatory properties of locally self-similar sets ([38] ).

We have also analyzed in details the structure of a set build by "stacking" Cantor sets with continuously varying dimensions (see figure 4 ). The resulting set, called "Christiane's hair" set or CH set, displays a number of interesting properties. Each "strand of hair" is a C∞ curve. Its Hausdorf dimension is 2. Furthermore, it is Minkowski measurable in dimension 2 with vanishing Minkowski content.

[bookmark: uid83]Figure
	4. The CH set.	[image: IMG/BIG_CH.png]






[bookmark: uid84] Section: 
      New Results
General models for drug concentration in multi-dosing administration
Participants :
      Lisandro Fermin, Jacques LÃ©vy VÃ©hel.


In collaboration with P.E Lévy Véhel (University of Nice-Sophia-Antipolis and Banque Postale).

In the past two years, we have developed models for investigating the probability
distribution of drug concentration in the case of non-compliance. We have focused on two aspects of practical
relevance: the variability of the concentration and the regularity of its probability distribution. In a first article [29] , in a series of three, is considered the case of
multi-intravenous dosing using the simplest possible law to model
random drug intake, i.e. a homogeneous Poisson distribution.
In a second article [13] , we consider the more
realistic multi-oral model, and deal with the complications brought
by the first-order kinetics, which are essentially technical.
Finally, in [12] , we put ourselves
in a powerful mathematical frame, known as Piecewise
Deterministic Markov process (PDMP), that allows us to deal with
general drug intake schedules, going beyond the homogeneous Poisson
case. We use a PDMP to model the drug concentration in the case of
multiple intravenous doses. In this particular model, we consider
that the doses administration regimen is modeled by a
non-homogeneous Poisson process whose jump rate is controlled by
mean of a Markov chain. In this sense our PDMP model is a generalization to the
continuos-models studied in [29] . In the following we detail our PDM model and the results obtained in the multi-IV case, see [12] .

The model setting

Inspired by the PDMP model given in [47] , [48] , we consider a drug dosing stochastic regimen defined
as follows.

Let us consider [image: Im170 ${(J_n)}_{n\#8712 \#119821 }$] an irreducible Markov chain taking
values in the state space K = {1, ..., k} with initial law
[image: Im171 ${\#945 _i=\#8473 {(J_0=i)}}$] for all [image: Im172 ${i\#8712 K}$] and transition probability
matrix [image: Im173 ${Q={(q_{ij})}_{i,j\#8712 K}}$]. We denote by [image: Im174 ${(T_n)}_{n\#8712 \#119821 }$] the
sequence of the random time doses and [image: Im175 ${(S_n)}_{n\#8712 \#119821 }$] the time
dose intervals; i.e. Sn = Tn + 1-Tn. We consider that the
doses administration regimen is modeled by mean of the Markov
process [image: Im170 ${(J_n)}_{n\#8712 \#119821 }$] considering the following assumptions:


	[bookmark: uid85] The patient takes a dose [image: Im176 ${D_J_n\#8712 {{D_i,~i\#8712 K}}}$] at the time Tn, where the doses Di are all different and different of zero.



	[bookmark: uid86] The time dose Sn is a random variable with exponential law of parameter [image: Im177 ${\#955 _J_n\#8712 {{\#955 _i,~i\#8712 K}}}$], where the jump rate λi of state i is a positive constant.




We consider that these doses translate into immediate increases of the concentration by the value
[image: Im178 ${d_i=\mfrac D_iV_d}$] if Jn = i, where Vd is the apparent volume
of distribution . After that, the effect of the dose taken at time
Tn decreases exponentially fast with an exponential rate of
elimination ke.

We define [image: Im179 ${(\#957 _t)}_{t\#8712 \#119825 }$] by [image: Im180 ${\#957 _t=\#8721 _{n\#8805 0}J_n1~l_{{[}T_n,T_{n+1}{[}}{(t)}}$]. We denote by [image: Im181 ${(C_t)}_{t\#8712 \#119825 }$] the drug concentration stochastic
process which take values on [image: Im182 ${\#119825 _+^*={]0,\#8734 [}}$], we suppose that
[image: Im183 ${\#8473 (C_0=x)=1}$]. Between the jumps, the dynamical evolution of the
continuous time process (Ct) is modeled by the flow φ(t, x) = xexp{-ket}.
Thus, the sample path of the stochastic process [image: Im184 ${(C_t)}_{t\#8712 \#119825 _+}$]
with values in [image: Im185 $\#119825 _+^*$] starting from a fixed point x is given by

[bookmark: uid87] 	[image: Im186 ${C_t=xe^{-k_et}+\munder \#8721 {i\#8805 1}d_J_ie^{-k_e{(t-T_i)}}1~l_{(t\#8805 T_i)}.}$]	(26)




The process [image: Im187 ${(C_t,\#957 _t)}_{t\#8712 \#119825 _+}$] is a PDMP. From [49] , we
have that the infinitesimal generator [image: Im188 $\#119984 $] of [image: Im187 ${(C_t,\#957 _t)}_{t\#8712 \#119825 _+}$] is given by

[bookmark: uid88] 	[image: Im189 ${\#119984 f{(x,i)}=-k_ex\mfrac d{dx}f{(x,i)}+\#955 _i\munder \#8721 {j\#8712 K}q_{ij}\mfenced o=( c=) f{(x+d_j,j)}-f{(x,i)},}$]	(27)




with [image: Im190 ${{(x,i)}\#8712 E=\#119825 _+^*×K}$] and [image: Im191 ${f\#8712 \#120123 (\#119984 )}$] the set of
measurable and differentiable on the first argument.

The characteristic function of the concentration

The characteristic function [image: Im192 ${\#981 _\#952 {(t,x,i)}}$] of Ct, given the starting point (x, i), is the unique solution of the following system

[bookmark: uid89] 	[image: Im193 $\mfenced o={  \mtable{...}$]	(28)




Variability of the concentration

From (28 ) we have that the expectation [image: Im194 ${m{(t,x,i)}=\#120124 _{(x,i)}{[C_t]}}$] of Ct, given the starting point (x, i), is given by

[bookmark: uid90] 	[image: Im195 ${m{(t,x,i)}=xe^{-k_et}+\munder \#8721 {\#957 ,j\#8712 K}\#955 _\#957 q_{\#957 j}d_j\#8747 _0^te^{-k_e{(t-s)}}P_{i\#957 }{(s)}ds,}$]	(29)




where [image: Im196 ${P_{i\#957 }{(t)}=\#8473 {(\#957 _t=\#957 |\#957 _0=i)}}$]. The variance Var(t, i) of Ct, given the initial state i, is given by

[bookmark: uid91] 	[image: Im197 $\mtable{...}$]	(30)




The distribution of limit concentration

The characteristic function [image: Im198 ${\#981 (\#952 ,i)}$] of the limit concentration C, given the starting state i, satisfies

[image: Im199 ${-k_e\#952 \mfrac d{d\#952 }\#981 {(\#952 ,i)}+\munder \#8721 {j\#8712 K}\#955 _jq_{ji}e^{\mtext i\#952 d_i}\#981 {(\#952 ,j)}-\#955 _i\#981 {(\#952 ,i)}=0.}$]


Thus, the random variables C(t) converge in distribution, when t tends to infinity, to a well defined random variable C whose characteristic function is

[image: Im200 ${\#981 {(\#952 )}=\munder \#8721 {j\#8712 K}\#981 {(\#952 ,j)}.}$]


Variability of the limit concentration

We denote by mi the mean of the limit concentration C in the state ν = i and [image: Im201 ${m=\#8721 _{i\#8712 K}m_i}$] the mean of C and Var its variance. Then,

[image: Im202 $\mtable{...}$]


Regularity of the limit concentration

The characteristic function [image: Im203 $\#981 $] satisfies

[bookmark: uid92] 	[image: Im204 ${{|\#981 {(\#952 )}|}\#8764 {K|\#952 |}^{-\#956 _{max}},~\#952 \#8594 \#8734 ,}$]	(31)




where K is a positive constant and [image: Im205 ${\#956 _{max}=max_{{i\#8712 K}}\mfrac \#955 _ik_e}$].

This result will allow us to describe in detail aspects of the
limit distribution that are important for assessing the efficacy of
therapy.




[bookmark: uid93] Section: 
      New Results
Complex systems design
Participant :
      Erick Herbin.


In collaboration with Dassault Aviation, EADS, EDF.

The preliminary design of complex systems can be described as an exploration process of a so-called design space, generated by the global parameters. An interactive exploration, with a decisional visualization goal, needs reduced-order models of the involved physical phenomena.
We are convinced that the local regularity of phenomena is a relevant quantity to drive these approximated models. Roughly speaking, in order to be representative, a model needs more informations where the fluctuations are the more important (and consequently, where irregularity is the more important).

In collaboration with Dassault Aviation, EDF and EADS, we study how the local regularity can provide a good quantification of the concept of granularity of a model, in order to select the good level of fidelity adapted to a required precision.

Our works in that field can be expressed into:


	[bookmark: uid94] The definition and the study of stochastic partial differential equations driven by processes with prescribed regularity (that do not enter into the classical theory of stochastic integration).



	[bookmark: uid95] The study of the evolution of the local regularity inside stochastic partial differential equations (SPDE). Stochastic 2-microlocal analysis should provide informations about the local regularity of the solutions, in function of the coefficients of the equations.
The knowledge of the fine behaviour of the solution of the SPDE will provide important informations in the view of numerical simulations.
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      	Contracts and Grants with Industry	[bookmark: uid97]Grants with Industry



    

  [bookmark: uid97] Section: 
      Contracts and Grants with Industry
Grants with Industry

Academic and industrial collaborations are supported by CSDL (Complex Systems Design Lab) project of the Pôle de Compétitivité SYSTEM@TIC PARIS-REGION (11/2009-10/2012). Among the involved industrial partners, we can mention Dassault Aviation, EADS, EDF, MBDA and Renault. The goal of the project is the development of a scientific platform of decisional visualization for preliminary design of complex systems.
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  [bookmark: uid99] Section: 
      Partnerships and Cooperations
Regional Initiatives

The Regularity team collaborates with Supelec (Hana Baili) and with the Department of Mathematics at the University of Nantes (Anne Philippe) in the frame of the DIGITEO ANIFRAC project


[bookmark: uid100] Section: 
      Partnerships and Cooperations
National Initiatives

Regularity participates in the CSDL project of the Pôle de Compétitivité SYSTEM@TIC PARIS-REGION. The academic partners involved are ECP, Ecole des Mines de Paris, ENS Cachan, INRIA, Supelec.


[bookmark: uid101] Section: 
      Partnerships and Cooperations
International Initiatives

[bookmark: uid102] INRIA International Partners


	[bookmark: uid103] The Regularity team collaborates with Bar Ilan university on theoretical developments around set-indexed fractional Brownian motion and set-indexed Lévy processes (invitations of Erick Herbin in IsraÃ«l during five months in 2006, 2007, 2008, 2009 and 2011 and invitation of Prof. Ely Merzbach at Ecole Centrale Paris in 2008, 2009, 2010 and 2011). The PhD thesis of Alexandre Richard is supervised in collaboration by Erick Herbin and Ely Merzbach.



	[bookmark: uid104] The Regularity team collaborates with Michigan State University (Prof. Yimin Xiao) on the study of fine regularity of multiparameter fractional Brownian motion (invitation of Erick Herbin at East Lansing in 2010).



	[bookmark: uid105] The Regularity team collaborates with St Andrews University (Prof. Kenneth Falconer) on the study of multistable processes.



	[bookmark: uid106] The Regularity team collaborates with Acadia University (Prof. Franklin Mendivil) on the study of fractal strings.





[bookmark: uid107] Visits of International Scientists

Ely Merzbach, from Bar Ilan university (Israel) visited the team for one month. Franklin Mendivil, from Acadia University (Canada), visited the team for one month.
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  [bookmark: uid109] Section: 
      Dissemination
Animation of the scientific community


	[bookmark: uid110] Paul Balança attended to the conference Journées de Probabilités 2011 at Nancy and made a presentation on 2-microlocal analysis, mainly focused on results from [15] .



	[bookmark: uid111] Alexandre Richard attended to the conference Journées de Probabilités 2011 at Nancy and made a presentation on HÃ¶lder regularity for set indexed-processes, mainly focused on results from [25] .



	[bookmark: uid112] Joachim Lebovits was invited to give a lecture in the mathematical department of University of Vienna (Austria). He made a presentation
at the 35th Stochastic Process and their Applications congress in Oaxaca (Mexico).



	[bookmark: uid113] Jacques Lévy Véhel gave an invited lecture at EPFL (Swizterland).



	[bookmark: uid114] Erick Herbin was invited to the Israel Mathematical Union 2011 Annual Meeting (Bar-Ilan University, Israel). Talk: "Some recent advances on stochastic 2-microlocal analysis for stochastic processes".



	[bookmark: uid115] Erick Herbin was invited to the Geometric Functional Analysis & Probability Seminar (Weizmann Institute of Science, Israel) in July, 2011. Talk: "Several characterisations of the set-indexed LÃ©vy processes".




[bookmark: uid116] Organisation committees

Erick Herbin is member of the IMdR Work Group "Uncertainty and industry".

Erick Herbin is member of the CNRS Research Group GDR Mascot Num, devoted to stochastic analysis methods for codes and numerical treatment.


[bookmark: uid117] Editorial board

Erick Herbin is reviewer for Mathematical Reviews (AMS).

Jacques Lévy Véhel is associate editor of the journal Fractals.


[bookmark: uid118] Section: 
      Dissemination
Teaching


	[bookmark: uid119] Erick Herbin is Director of the Mathematics Department at Ecole Centrale Paris.



	[bookmark: uid120] Erick Herbin is in charge of the Probability Course at Ecole Centrale Paris (20h).



	[bookmark: uid121] Erick Herbin is in charge of the Random Modeling Course at Ecole Centrale Paris (30h).



	[bookmark: uid122] Erick Herbin and Jacques LÃ©vy VÃ©hel are in charge of the Brownian Motion and Stochastic Calculus Course at Ecole Centrale Paris (30h).



	[bookmark: uid123] Jacques LÃ©vy VÃ©hel gives a course on wavelets and fractals at Ecole Centrale Nantes (8h).



	[bookmark: uid124] Erick Herbin gives travaux dirigés on Real and Complex Analysis at Ecole Centrale Paris (10h).



	[bookmark: uid125] Erick Herbin is in charge of the Numerical Simulation Program in the Applied Mathematics option of Ecole Centrale Paris.



	[bookmark: uid126] Erick Herbin is supervisor of several student's research projects in the field of Mathematics at Ecole Centrale Paris.



	[bookmark: uid127] Paul Balança gives travaux dirigés on Probability (L3) at Ecole Centrale Paris (9h).



	[bookmark: uid128] Paul Balança gives travaux dirigés on Real and Complex Analysis (L3) at Ecole Centrale Paris (9h)



	[bookmark: uid129] Paul Balança gives travaux dirigés on Random Modeling (M1) at Ecole Centrale Paris (20).



	[bookmark: uid130] Joachim Lebovits gives travaux dirigÃ©s on Real and Complex Analysis (L3) at Ecole Centrale Paris (9h).



	[bookmark: uid131] Joachim Lebovits gives travaux dirigÃ©s on Probability (L3) at Ecole Centrale Paris (9h).



	[bookmark: uid132] Joachim Lebovits gives travaux dirigÃ©s on financial mathematics (M1) at Ecole Centrale Paris (15h).



	[bookmark: uid133] Joachim Lebovits gives travaux dirigÃ©s on stochastic calculus (M2) at Ecole Centrale Paris (15h).



	[bookmark: uid134] Joachim Lebovits supervises students research projects on financial mathematics at Ecole Centrale Paris.



	[bookmark: uid135] Alexandre Richard gives travaux dirigés on Probability (L3) at Ecole Centrale Paris (9h).



	[bookmark: uid136] Alexandre Richard gives travaux dirigés on Statistics (L3) at Ecole Centrale Paris (9h).



	[bookmark: uid137] Alexandre Richard gives travaux dirigés on Random Modeling (M1) at Ecole Centrale Paris (20h).



	[bookmark: uid138] Alexandre Richard supervises students research projects on probability at Ecole Centrale Paris (approx. 10h).



	[bookmark: uid139] Alexandre Richard supervises students research projects on economic modelling of the cost and efficiency of a technique of hips resurfacing at Ecole Centrale Paris (approx. 15h).



	[bookmark: uid140] Benjamin Arras gives travaux dirigés on Probability (L3) at Ecole Centrale Paris (9h).



	[bookmark: uid141] Benjamin Arras gives travaux dirigés on Real and Complex Analysis (L3) at Ecole Centrale Paris (9h)



	[bookmark: uid142] Benjamin Arras gives travaux dirigés on stochastic calculus (M2) at Ecole Centrale Paris (15h).
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