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  [bookmark: uid3] Section: 
      Overall Objectives
Main topics
TANC is located in the Laboratoire d'Informatique de
l'École polytechnique (LIX). The project was created on the 10th of
March 2003.




The aim of the TANC project is to promote the study, implementation
and use of robust and verifiable asymmetric cryptosystems based on
algorithmic number theory.

It is clear from this statement that we combine high-level mathematics
with efficient programming. Our main area of competence and interest is
that of algebraic curves over finite fields, and most notably their
computational aspects; these objects appear as a substitute
for modular arithmetic in new analogues of old-fashioned cryptography.
One reason for this change is that we can achieve an equivalent security
level with a much smaller key size.
Our research contributes to the global search for a diverse range of
secure substitutes for the famous RSA (Rivest–Shamir–Adleman) cryptosystem,
in case some attack appears and destroys the products that use it.

Whenever possible, we produce certificates (proofs) of validity for
the objects and systems we build. For instance, an elliptic curve has
many invariants, and their values need to be proved, since they
may be difficult to (re-)compute.

Our research area includes:


	[bookmark: uid4] Fundamental number theoretic algorithms:
We are interested in
primality proving algorithms based on elliptic curves, integer
factorization, and the computation of discrete logarithms over finite
fields. These problems lie at the heart of the security of arithmetic
based cryptosystems.



	[bookmark: uid5] Algebraic curves over finite fields:
We tackle algorithmic problems involving efficiently
computing group laws on Jacobians of curves, evaluating the
cardinality of these objects, and studying the security of the
discrete logarithm problem in such groups.
These topics are crucial to the applicability of these objects
in real crypto products.
The theory of curves over finite fields
is also essential in the field of AG codes,
and the algorithmic aspects of curves and their Jacobians
are important for good implementations and analysis.



	[bookmark: uid6] Complex multiplication:
The theory of Complex Multiplication is
a meeting point of algebra, complex analysis and algebraic
geometry. Its applications range from primality proving to the
efficient construction of elliptic and hyperelliptic curve-based cryptosystems.



	[bookmark: uid7] List Decoding of Algebraic codes Using List
Decoding one can fight adversarial noise at the same level as
the Shannon limit for stochastic noise.



	[bookmark: uid8] Decoding algorithms for Algebraic Geometric codes:
We use our algorithmic knowledge to
accelerate decoding algorithms, be they the classical one (up to
half to the minimum distance), or new ones which decode many more
errors.





[bookmark: uid9] Section: 
      Overall Objectives
Exploratory topics

As our project-team name suggests, we aim to provide robust
primitives for asymmetric cryptography.
In recent years, we have made
several attempts at applying our knowledge to real life protocols.
We also aim
to promote the use of curve-based cryptography in new environments
such as ad hoc networks. We will also try to promote
the use of AG codes, which are the coding-theoretic analogue
of elliptic curves in cryptology.


[bookmark: uid10] Section: 
      Overall Objectives
Highlights
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  [bookmark: uid12] Section: 
      Scientific Foundations
General overview



Once considered beautiful but useless,
arithmetic has proven
a spectacular success in the creation of a new paradigm in cryptography.
Classical cryptography was mainly concerned with
symmetric techniques: two parties wishing to communicate
secretly had to share a common secret (the “key”) beforehand,
and this same secret key
was used both for encrypting the message and for decrypting it.
This
mode of communication is efficient enough when traffic is low,
or when the parties can meet prior to communication.
However, modern networks are simply too large for the classical paradigm
to remain efficient any longer.

We therefore need cryptography without prior contact.
In theory, this is simple: find two algorithms E and D that are
reciprocal (that is, D(E(m)) = m) and such that the knowledge of
E does not help in computing D. Then E is dubbed a public key,
available to anyone, and D is the secret key, reserved to a single
user. When Alice wants to send an email message m to Bob,
she uses his public
key E to send him the encrypted message E(m),
which he can decrypt with the secret key D:
we have thus achieved secret communication without a common secret key.
(Of course, everything has to be presented in the modern language of
complexity theory: E and D must be computable in polynomial
time, while finding D from E alone without some secret knowledge
should be possible only in, say, exponential time.)
This simplified and somewhat idealized example
is at the heart of asymmetric cryptology.
Modern asymmetric cryptography provides not only secure communication channels
but also solutions to the signature problem,
as well as some solutions for identifying all parties in protocols,
thus enabling products to be usable on the Internet (such as ssh and ssl/tls).

Now, where do the hard problems behind encryption and decryption come from?
Mostly from arithmetic, where we
find problems such as integer factorization
and the discrete logarithm problem (DLP).
It appears to be important to vary the groups
which act as settings for concrete instances of the abstract hard problems,
since this provides some bio-diversity which is key to
resisting crypto-analytic attacks.
The groups proposed include
finite fields, modular integers, algebraic curves, and class groups.
All of these now form cryptographic primitives that need to be
assembled in protocols, and finally in commercial products.

Our activity is concerned with the beginning of this process: we
are interested in difficult problems arising in computational
number theory, and the efficient construction of these primitives.
TANC concentrates on modular arithmetic, finite fields
and algebraic curves.

We have a strong, well-known reputation for breaking records,
whatever the subject is: constructing systems or breaking them.
We have world-record computations in areas including
primality proving, class polynomials, modular equations,
computing cardinalities of algebraic curves, and discrete logarithms.
This means writing programs and putting in all the work needed to
support calculations that run for weeks or months.
An important part of our task is now to
transform record-breaking programs into programs to solve everyday
cryptographic problems for current parameter sizes.

Certificates are another of our major concerns.
By certificates,
we mean efficiently verifiable proofs of the properties
of the objects we build.
While these certificates might be difficult to build,
they are easy to check (by customers, for example).
The traditional example is certificates for primality of prime numbers,
introduced by Pratt in 1974.
We know how to construct certificates for the important properties
of elliptic curves, with
the aim of establishing what we call an identity card for a curve
(including its cardinality, together with the proof of its
factorization, its group structure with proven generators,
its discriminant with proven factorization,
and the class number of the associated order).
The theory is ready for this, and the algorithms are not out of reach.
This approach
must be extended to other curves; the theory is
almost ready in several cases, but algorithms are still to be found. This is
one of the main problems facing TANC.

The mathematics used in cryptology is becoming more and more complex
(for example, consider recent algorithms based on p-adic cohomology).
The new, more mathematically complex algorithms
will remain mere theoretical curiosities if we do not implement them.
For implementations,
we need more and more evolved algorithmic primitives;
currently, these may be available
in very rare mathematical systems such as Magma.
Once our algorithms work in Magma, it is
customary to rewrite them in C or C++ to gain speed. Along the same
lines, some of our C programs developed for our research (an
old version of ECPP, some parts of discrete log computations,
cardinality of curves) are now included in the Magma system,
as a result of our collaboration with the Sydney group.


[bookmark: uid13] Section: 
      Scientific Foundations
Algebraic curves over finite
fields

One of the most common cryptographic protocols is
Diffie–Hellman Key Exchange, which enables
Alice and Bob to exchange secret information over an insecure
channel. Given a publicly known cyclic group G with generator g, Alice
sends ga for a random a to Bob, and Bob responds with gb
for a random b. Both Alice and Bob can now compute gab,
and this is henceforth their common secret.
Of course, this a schematic presentation; real-life
protocols based on this need more security properties.
The difficulty of recovering
recover a from ga (the Discrete Log Problem, or DLP) is
fundamental to the security of the scheme, and groups for which the
DLP is hard must be favored.
Therefore, the choice of group G is crucial;
TANC concentrates on groups derived from algebraic curves.
These groups offer a very interesting alternative to finite fields:
the DLP in a finite field can be broken by subexponential algorithms,
while exponential time is required for an elliptic curve over the same field.
Smaller keys can therefore be used in curve-based cryptosystems;
this is very interesting
from the point of view of limited-power devices.

In order to build a cryptosystem based on an algebraic curve over a
finite field, one needs to efficiently compute the group law (and hence
have a nice representation for elements of the Jacobian of the curve).
Next, one must compute the cardinality of the Jacobian,
so that we can find generators of the group.
Once the curve is built, one
needs to test its security, for example by determining the hardness of
the DLP in its Jacobian.

[bookmark: idp3017552] Effective group laws

The curves that interest us are typically defined over a finite field
 GF (pn), where p is the (prime) characteristic of the field.
The points of an elliptic curve E (of equation y2 = x3 + ax + b,
say) form an abelian group, that was thoroughly studied over the
preceding millennium. Adding two points is usually done using the
so-called chord-and-tangent formulæ. When dealing with a genus
g curve (the elliptic curve case being g = 1), the associated group is the
Jacobian (set of g-tuples of points modulo an equivalence relation),
an object of dimension g. Points are replaced by polynomial
ideals. This requires the help of tools from effective commutative
algebra, such as Gröbner bases or Hermite normal forms.

The great catalog of usable curves is now complete,
as a result of the work of TANC,
notably in two ACI (cryptocourbes and cryptologie p-adique)
that are now completed.


[bookmark: idp3036864] Cardinality

Once the group law is tractable, one has to find means of computing the
cardinality of the group: this is not an easy task in general. Of
course, if frequently changing the group
is imperative in applications,
then this computation has to be done as fast as possible.

Two parameters enter the scene: the genus g of the curve, and the
characteristic p of the underlying finite field. When g = 1 and p
is large, the only currently known algorithm for computing the number of
points of an elliptic curve over  GF (p) is the
Schoof–Elkies–Atkin algorithm. Thanks
to the work of the project, widespread implementations are able
to build cryptographically strong curves in less than one minute on a
standard PC.
Recent improvements were made by F. Morain and P. Gaudry (CACAO) (see
[48] ), see also [3]  and in
[10] , in which a new approach to eigenvalue
computation is described and proven. Note that A. Sutherland now
detains the record in computations using a new algorithm for computing
modular polynomials.

When p is small (one of the most interesting cases for hardware
implementation in smart cards being p = 2) the best current methods
use p-adic numbers, following the breakthrough of T. Satoh with a
method working for [image: Im1 ${p\#8805 5}$]. The first version of this algorithm for
p = 2 was proposed independently by M. Fouquet, P. Gaudry and
R. Harley and by B. Skjernaa. J. -F. Mestre has designed the current
fastest algorithm, based on the arithmetic-geometric mean (AGM).
Developed by R. Harley and P. Gaudry, it led to new world
records. Then, P. Gaudry combined this method with other
approaches to make it competitive for cryptographic sizes [47] .

When g>1 and p is large, polynomial time algorithms exist, but
their implementation is not an easy task. P. Gaudry and É. Schost
have modified the best existing algorithm so as to make it more
efficient. They were able to build the first random cryptographically
strong genus 2 curves defined over a large prime field [49] .
To get one step further, one needs to use genus 2 analogues of modular
equations. After a theoretical study [50] , they are now
investigating the practical use of these equations, finally leading to
[51] .

When p = 2, p-adic algorithms led to striking new results. First,
the AGM approach extends to the case g = 2 and is competitive in
practice (only three times slower than in the case g = 1). In another
direction, Kedlaya has introduced a new approach, based on
Monsky–Washnitzer cohomology. His algorithm was originally designed for p>2.
P. Gaudry and N. Gürel implemented this algorithm and
extended it to superelliptic curves, thus adding
these curves to the list of those usable in cryptography.

Closing the gap between small and large characteristic leads to
pushing the p-adic methods as far as possible. In this spirit, P. Gaudry and
N. Gürel have adapted Kedlaya's algorithm and exhibited a linear
complexity in p, making it possible to reach a characteristic of around
1000 (see [45] ).
For larger p's, one can use the Cartier–Manin
operator. Recently, A. Bostan, P. Gaudry and É. Schost have found
a much faster algorithm than currently known ones
[33] . Primes p around 109 are now doable.


[bookmark: idp12541856] Computing isogenies

The core of the Schoof–Elkies–Atkin (SEA) algorithm for computing
cardinality of elliptic curves over large-characteristic finite fields
consists in using
the theory of isogenies to find small factors of division
polynomials.

Isogenies are also a tool for understanding the difficulty of the Discrete
Log problem among classes of elliptic curves [57] .
Recently, there appeared suggestions to use isogenies in a
cryptographic context, replacing the multiplication on curves by
composition of isogenies [66] , [64] .

Algorithms for computing isogenies are very well known and widely used in the
large characteristic case. When the characteristic is small, three
algorithms exist:
two due to Couveignes [36] , [37] , [60] ,
and one due to Lercier [59] .


[bookmark: idp12554224] The Discrete Logarithm Problem

The Discrete Logarithm Problem (DLP) is one of the major difficult problems
upon which we build secure cryptosystems. It has essentially been
proven equivalent to the computational Diffie–Hellman problem, which
corresponds more closely to the actual security of many protocols.
For an arbitrary group of prime order N,
the DLP can be solved by a generic, exponential
algorithm in [image: Im2 ${\#920 (\sqrt N)}$] group operations.
For elliptic curves (setting aside some rare and easily avoidable instances),
no faster algorithms are known.

For higher genus curves, the algorithms with the best complexity create
relations as smooth principal divisors on the curve and use linear
algebra to deduce discrete logarithms, similarly to the quadratic
sieve for factoring. The first such algorithm for high genus
hyperelliptic curves with a heuristic complexity analysis is given in
[31] , and A. Enge developed the first algorithm with a
proven subexponential run time of L(1/2) in
[42] . Generalisations to other groups proposed for
cryptography (in particular ideal class groups of imaginary quadratic
number fields) are obtained by A. Enge and P. Gaudry in
[6]  and [41] .
Proofs for arbitrary curves of large genus are
given by J.-M. Couveignes [35] 
and F. Heß [55] .

The existence of subexponential algorithms shows that high genus
curves are less secure than low-genus curves (including elliptic curves)
in cryptography.
By analyzing the same algorithms differently, concrete recommendations
for key lengths can be obtained, an approach introduced by P. Gaudry
in [46]  and pursued in [52] . It turns out that
elliptic curves and hyperelliptic curves of genus 2 are not
affected, while the key lengths have to be increased in higher genus,
for instance by 12 % in genus 3.

Using similar algorithms to those analyzed in [6] ,
C. Diem has shown in [38]  that non-hyperelliptic curves
(of genus at least 3) are even less secure than hyperelliptic ones of
the same genus. This effectively leaves only elliptic and low genus
hyperelliptic curves as potential sources for public-key cryptosystems.


[bookmark: uid14] Section: 
      Scientific Foundations
Complex multiplication

[bookmark: idp12582512] Genus 1

Despite the achievements described above, random curves are sometimes
difficult to use, since their cardinality is not easy to compute or
some useful properties are too rare to occur (suitability for pairings,
for instance). In some cases, curves with special properties can be
used. For example, curves with complex multiplication (in brief
CM), have easily-computable cardinalities. For example, the elliptic
curve by the equation y2 = x3 + x over GF(p) has cardinality
p + 1-2u, when p = u2 + v2, and computing this u is easy.

The CM theory for genus 1 is well known, dating back to the middle
of the nineteenth century (Kronecker, Weber, etc.). Its algorithmic
aspects are also well understood; recently more work was done, largely
by TANC. Twenty years ago, this theory
was applied by Atkin to the primality proving of arbitrary integers,
yielding the ECPP algorithm developed since then by F. Morain.
Though the decision problem isPrime? was shown
to be in P (by the work of Agrawal, Kayal, and Saxena in 2002), practical
primality proving for large random numbers is still done only with ECPP.

These CM curves enabled A. Enge, R. Dupont and F. Morain to give an
algorithm for building good curves for use in Identity Based
Cryptosystems [40] .

CM curves are defined by algebraic integers, whose minimal polynomials
have to be computed exactly, the coefficients being exact integers. The
fastest algorithm to perform these computations requires a floating
point evaluation of the roots of the polynomial to a high precision.
F. Morain on one hand, and A. Enge (together with R. Schertz) on
the other, have developed the use of new class invariants
characterizing CM curves. The union
of these two families is currently the state of the art in the field
(see [8] ). More recently, F. Morain and A. Enge have
designed a fast method for the computation of the roots of this
polynomial over a finite field using Galois theory [43] .
These invariants, together with this new algorithm, are incorporated
in the working version of the program ECPP.

F. Morain analyzed a fast variant of ECPP, called fastECPP,
which led him to gain one order of magnitude in the complexity of the
problem (see [13]  [62] ), reaching
heuristically O((logN)4 + ϵ) (compared to O((logN)5 + ϵ) for the basic version).
By comparison, the best proven version of Agrawal–Kayal–Saxena
[58]  has complexity O((logN)6 + ϵ),
and has not been implemented so far; the best randomized version
[32]  reaches the same O((logN)4 + ϵ)
bound but suffers from memory problems, and is not yet competitive.
F. Morain implemented fastECPP, and was able to
prove the primality of 10, 000 decimal digit numbers [13] ,
as opposed to 5, 000 for the basic (historical) version. Continual
improvements to this algorithm led to
new records in primality proving, some of which were obtained with his
co-authors J. Franke, T. Kleinjung and T. Wirth [44]  who
developed their own programs. F. Morain set the current world record
to 20,562 decimal digits in early June 2006 (compared to 15,071 two
years earlier). This record was made possible by using an updated MPI-based
implementation of the algorithm, and distributing the process on a
cluster of 64-bit bi-processors (AMD Opteron(tm) Processor 250 at 2.39
GHz). In 2007, another large number was proven to be prime, namely
(242737 + 1)/3 with 12, 865 decimal digits.

In his thesis, R. Dupont investigated the complexity of the
evaluation of some modular functions and forms (such as the elliptic
modular function j and the Dedekind eta function).
High precision evaluation of such functions is at
the core of algorithms to compute class polynomials (used in complex
multiplication) or modular polynomials (used in the SEA elliptic curve point
counting algorithm).

Exploiting the deep connection between the arithmetic-geometric mean (AGM)
and a special kind of modular forms known as theta constants, he devised an
algorithm based on Newton iterations and the AGM that has
quasi-optimal linear
complexity. In order to certify the correctness of the result to a specified
precision, a fine analysis of the algorithm and its complexity was
necessary.

Using similar techniques, he has given a proven
algorithm for the evaluation of the logarithm of complex numbers with
quasi-optimal time complexity.

A. Enge has been able to analyse precisely the complexity of class polynomial
computations via complex floating point approximations [5] .
Using techniques from fast symbolic computation
(multievaluation of polynomials) and results from R. Dupont's PhD thesis
[39] , he has obtained two algorithms which are quasi-linear
(up to logarithmic factors) in the output size. The second algorithm has
been used for a record computation of a class polynomial of degree 100,000,
the largest coefficient of which has almost 250,000 bits.
The implementation is based on GMP, mpfr, mpc and mpfrcx
(see Section 5); the only limiting factor for going further has
become the memory requirements of the final result.

Alternative algorithms use p-adic approximations or the Chinese
remainder theorem to compute class polynomials over the integers.
A. Enge and his coauthors have presented an optimized algorithm based
on Chinese remaindering in [2]  and improved the
number theoretic bounds underlying the complexity analysis. They have
shown that all three different approaches have a quasi-linear complexity,
while the the floating point algorithm appeared to be the fastest one in
practice.

Inspired by [2] , A. Sutherland has come up with a new
implementation of the Chinese remainder based algorithm that has led to
new record computations [65] . Unlike the other
algorithms, this approach does not need to hold the complete
polynomial in main memory, but essentially only one coefficient at a
time, which enables it to go much further. The
main bottleneck is currently an extension of the algorithm to
class invariants, which is work in progress by A. Enge.


[bookmark: idp12677776] Genus 2

The theory of Complex Multiplication also exists for non-elliptic curves,
but is more intricate, and only recently can we dream to use
them. Some of the recent results occurred as the work of R. Dupont
(former member of TANC) in his thesis.

R. Dupont has worked on adapting his algorithm to genus 2, which induces
great theoretical and technical difficulties. He has studied
a generalization of the AGM known as Borchardt sequences, proven the
convergence of these sequences in a general setting, and determined the
set of limits of such sequences in genus 2.
In particular, he proved a theorem parametrizing the set of all possible limits of Borchardt sequences starting with a fixed 4-tuple.
He developed an algorithm for the fast evaluation of theta constants
in genus 2, and as a byproduct
obtained an algorithm to compute the Riemann matrix of a given hyperelliptic
curve: given the equation of such a curve, it computes a lattice L such
that the Jacobian of the curve is isomorphic to [image: Im3 ${\#8450 /L}$]. These
algorithms are both quasi-linear, and have been implemented (in C,
using the multiprecision package GMP – see http://gmplib.org/ ).

Using these implementations, R. Dupont has began computing modular polynomials
for groups of the form Γ0(p) in genus 2
(these polynomials link the genus 2 j-invariants of
p-isogenous curves). He computed the modular polynomials for p = 2, which had
never been done before, and did
some partial computations for p = 3 (results are available
at http://www.lix.polytechnique.fr/Labo/Regis.Dupont ).


[bookmark: uid15] Section: 
      Scientific Foundations
Algebraic Geometry codes

There are many other applications of algorithmic methods for
algebraic curves besides asymmetric cryptography. These algebraic
geometry (AG) codes form a very powerful family of codes that often
beat records for their parameters: they often offer the best
correction capacity. The main topic of research is to accelerate the
decoding algorithms of these codes, which have a slightly expensive
cost [56] . A reference implementation would be of
major interest, to help people compare AG codes with Reed–Solomon
codes.

Guruswami and Sudan have obtained a breakthrough [54] 
for decoding AG codes with many errors. Still, there is no
implementation available yet, even for the most simple AG codes
(which are the Hermitian codes). In this domain too, the main
problem is find a reasoneable complexity for these algorithms.
implementation.
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      Application Domains
Communications

Clearly, our main field of applications is telecommunications.
We participate in the protection of information. We are proficient on
a theoretical level, and ready to develop applications using
modern cryptographic techniques, with a main focus on elliptic curve
cryptography and codes based on algebraic curves. One potential
application is cryptosystems in environments with limited resources
as smart cards, mobile phones, and ad hoc networks.
For coding, we envisage developing algebraic codes
for the erasure channel or distributed storage.
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  [bookmark: uid19] Section: 
      Software
ECPP

F. Morain has been continuously improving his primality proving
algorithm called ECPP, originally developed in the early 1990s.
Binaries for version 6.4.5 have been available since 2001 on his web page.
Proving the primality of a 512 bit number requires less than a
second on an average PC.
His personal record is around 25, 000 decimal digits,
with the fast version he started developing in 2003.
All of the code is written in C, and based on publicly available
packages (GMP, mpfr, mpc, mpfrcx).


[bookmark: uid20] Section: 
      Software
SEA

Together with E. Schost and L. DeFeo, F. Morain has developed a new
implementation of the SEA algorithm that computes the cardinality of
elliptic curves over finite fields (large prime case, case p = 2). It
uses NTL and includes the more recent algorithms for solving all
subtasks. The large prime case is relevant to cryptographical
needs. The p = 2 case, though not directly useful, is a good testbed
for the FAAST program of LDeFeo (see 
	5.4 ). This program
forms a gforge  project.


[bookmark: uid21] Section: 
      Software
TIFA

The TIFA library (short for Tools for Integer FActorization) was initially
developed in 2006 and has been continuously improved during the last few
years. TIFA is made up of a base library written in C99 using the GMP library,
together with stand-alone factorization programs and a basic benchmarking
framework to assess the performance of each algorithm.

As of november 2011, the library includes the following algorithms:


	[bookmark: uid22] CFRAC (Continued FRACtion factorization [63] )



	[bookmark: uid23] ECM (Elliptic Curve Method)



	[bookmark: uid24] Fermat (McKee's “fast” variant of Fermat's algorithm
[61] )



	[bookmark: uid25] SIQS (Self-Initializing Quadratic Sieve [34] )



	[bookmark: uid26] SQUFOF (SQUare FOrm Factorization [53] )




The complete TIFA package has been registered at the French Agency for Software
Protection (APP – http://app.legalis.net/ ) on June, 1st 2011
with the Inter Deposit Digital Number:

IDDN.FR.001.220019.000.S.A.2011.000.31235. 

It is now available online at
http://www.lix.polytechnique.fr/Labo/Jerome.Milan/tifa/tifa.xhtml 
and distributed under the Lesser General Public License, version 2.1
or later.


[bookmark: uid27] Section: 
      Software
FAAST

The FAAST library is developed in C++ by L. De Feo and makes use of
the NTL library. It implements the algorithms presented in
[4] , plus other algorithms needed by the author for his
research on explicit isogenies.

Version 0.2.0, released on July 11 2009, is available at
http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST/ .
The source code is distributed under the General Public License
version 2 or higher.

FAAST is a very efficient library for lattices of extensions of finite
fields. Our aim is to add support for arbitrary finite fields, making
it an essential building block for efficient computer algebra systems.


[bookmark: uid28] Section: 
      Software
Quintix

The Quintix library is a Mathemagix package available at
http://www.mathemagix.org/www/main/index.en.html . It is
developed in C++ within the Mathemagix computer algebra system. It
implements basic arithmetic for Galois rings and their unramified
extensions, basic functions for the manipulation of Reed-Solomon
codes and the complete Sudan list-decoding algorithm. It also
implements the root-finding algorithms presented in
[29] . The source code is
distributed under the General Public License version 2 or higher.

Quintix is a very efficient library for Galois rings, extensions
of Galois rings and root-finding in Galois rings.


[bookmark: uid29] Section: 
      Software
APIP

As part of his activity in the PACE ANR, J. Milan completed, under the
supervision of A. Enge, the development of APIP (Another Pairings
Implementation in PARI), a PARI/GP module to compute state-of-the-art
cryptographic pairings over elliptic curves. This module was intended
to be an experimental framework for comparing the performances of the
main cryptographic pairings with an emphasis on the standard 128, 192
and 256 bit high security levels.

APIP implements the Tate, Weil, ate and twisted ate pairings together
with some optimal variants of the ate and twisted ate pairings for some
elliptic curve families. Due to its very flexible architecture, it makes
it easy to select several algorithm variants for each step of a pairing
computation for a finer analysis.

Due to its emphasis on pairings for cryptographic purposes only, it is
doubtful that the APIP module will be integrated in the upstream PARI/GP
code base. We hope to be able to distribute APIP as an independent module
in the near future, ideally under an open-source licence.
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  [bookmark: uid31] Section: 
      New Results
Point counting

In joint work with Pierrick Gaudry (CARAMEL)
and David Kohel (Marseille),
B. Smith developed an accelerated Schoof-type point counting
algorithm for genus 2 curves with efficiently computable real
multiplication endomorphisms.
This project has made the computation of cryptographic-sized group
orders practical for curves of genus 2 over prime finite fields.
Going way beyond the current cryptographic range, the algorithm
has been used to compute the group order of a 1024-bit Jacobian
(smashing the previous 256-bit record of Gaudry and Schost).
The article describing this algorithm has been awarded the Best
Paper prize at ASIACRYPT 2011 [Oops!] ,
and an extended version has been invited for submission to Journal of
Cryptology (the leading journal in the field).


[bookmark: uid32] Section: 
      New Results
Complex multiplication

F. Morain has been investigating new invariants for building class
polynomials with small coefficients. This is still work in progress,
though advertised in some talks of his.


[bookmark: uid33] Section: 
      New Results
Steganography

D. Augot, M. Barbier and Caroline Fontaine randomized the bounded
syndrome coding problem on wet paper—an important embedding
problem in steganography—such that this problem always has a
solution [24] . This randomization is
inspired the Courtois–Finiasz–Sendrier signature scheme, and shows
nice results for linear perfect codes. In the special case of
binary Hamming codes, this new method reaches exactly the necessary
and sufficient bounds to ensure the embedding. The previous bounds
were introduced by Carlos Munuera and M. Barbier
[19] . These bounds depend on the
dual distance of the code used. Thanks to the generalized Hamming
weight, they proved that codes with low MDS rank are better in this
context. Since the nature of their results are combinatorial, the
authors generalized a bound for systematic non linear codes and
showed that the non-linear systematic codes could be good
candidates, as shown by the example of the Nadler code.


[bookmark: uid34] Section: 
      New Results
Homomorphic encryption

D. Augot, in collaboration with L. Perret from Salsa team, and
Bochum Universität [22] , designed a
“secret-key” homomorphic encryption scheme, which is much more
efficient than the public-key ones. It is based on q-ary
Reed-Muller codes (or multi-variate evaluation-interpolation
schemes). The main drawback is a severe restriction on the number of
uses of a given secret key, but the ease of decrypting leads to
think that the scheme can reencrypt its keys, enabling its reuse.


[bookmark: uid35] Section: 
      New Results
List decoding

D. Augot, M. Barbier and A. Couvreur wrote on how to decode binary
Goppa codes. Augot, Barbier, and Couvreur presented a simple way,
with a clean study of the
complexity [23] . Using this list
decoding algorithm, Barbier and Paulo Barreto proposed a key
reduction for the McEliece cryptosystem
[25] . The list decoding algorithm
above allowed them to add more errors during the McEliece encryption
step, making decoding attacks more difficult. At the same
complexity of these attacks, using the list decoding algorithm
decreases the public key size, which is the main drawback of this
cryptosystem.


[bookmark: uid36] Section: 
      New Results
Explicit isogeny constructions

B. Smith constructed six infinite series of families of pairs of
algebraic curves of arbitrarily high
genus [20] , defined over number fields,
together with an explicit isogeny between the Jacobians of the curves
splitting multiplication by 2, 3, or 4.


[bookmark: uid37] Section: 
      New Results
Quasi-cyclic codes

M. Barbier, Christophe Chabot and G. Quintin exhibited a
bijective correspondence between the [image: Im4 $\#8467 $]-quasi-cyclic codes over
[image: Im5 $\#120125 _q$] of length [image: Im6 ${m\#8467 }$] and the set of ideals of
[image: Im7 ${M_\#8467 {(\#120125 _q)}{[X]}/{(X^m-1)}}$]
[28] . They proposed also two new
classes
called the quasi-BCH and quasi-evaluation codes. For the first
one, they introduced a unambiguous decoding algorithm, and thanks to the
second one they designed 49 new codes over [image: Im8 $\#120125 _4$] which have
a bigger minimum distance than previously known codes.


[bookmark: uid38] Section: 
      New Results
Root-finding over Galois rings

Jérémy Berthomieu, Grégoire Lecerf and G. Quintin
presented a new algorithm to find all the roots of a given
polynomial with coefficients in a Galois
ring [29] . It has been used to
study the behavior of the Sudan algorithm for Reed-Solomon codes
over Galois rings. The algorithm has been adapted to work over
rings of power series in several variables. It was implemented in
the Quintix package of Mathemagix.
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  [bookmark: uid40] Section: 
      Contracts and Grants with Industry
Contracts with Industry


	[bookmark: uid41] A GEMPLUS contract corresponds to É. Brier's thesis on the use of
(hyper-)elliptic curves in cryptology.



	[bookmark: uid42] D. Augot, with Christine Eisenbess, is in discussion with
MassiveRand, an SME providing random bits at high rate, in order to
provide Rabin's HyperEncryption, which is provably secure.
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  [bookmark: uid44] Section: 
      Partnerships and Cooperations
Regional Initiatives


	[bookmark: uid45] Digiteo contributed the operational funding
for the project AMIGA
(Advanced Methods for Isogeny Graph Analysis),
with B. Smith as the scientific leader of the project.
On a national level, the DGA contributed
a postdoctoral salary to the project (see National Initiatives).





[bookmark: uid46] Section: 
      Partnerships and Cooperations
National Initiatives


	[bookmark: uid47] The DGA funded a postdoctoral researcher's salary
for Sorina Ionica, allowing her to join TANC
for one year (10/2010–09/2011) as a postdoctoral researcher
for the AMIGA project.



	[bookmark: uid48] The team received DGA funding for the project DIFMAT, joint with
ENSTA, to find good MDS matrices, which are used for diffusion in
block ciphers. The period is October 2011–September 2012,
eventually renewable one year.





[bookmark: uid49] Section: 
      Partnerships and Cooperations
European Initiatives

[bookmark: uid50] Major European Organizations with which Tanc has followed Collaborations


	[bookmark: uid51] Partner 1: Ulm Universität, TAIT group, Germany.



	[bookmark: uid52] Subject 1: bridging Ulm's unique decoding with
Guruswami-Sudan list decoding. Funded by a PHC Hubert Curien.




[bookmark: uid53] Section: 
      Partnerships and Cooperations
International Initiatives

[bookmark: uid54] INRIA International Partners


	[bookmark: uid55] DTU, Denmark.





[bookmark: uid56] Visits of International Scientists


	[bookmark: uid57] Kamal Khuri–Makdisi, American University of Beirut, two weeks.



	[bookmark: uid58] Iwan Duursma, University of Illinois at Urbana Champaign, two weeks,
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  [bookmark: uid60] Section: 
      Dissemination
Animation of the scientific community


	[bookmark: uid61] D. Augot is a member of the scientific committee for the French
CCA seminar.



	[bookmark: uid62] D. Augot was co-chair, with Anne Canteaut, of WCC 2001, and is
guest editor of a special issue of Design, Codes, and Cryptography
dedicated to the conference.



	[bookmark: uid63] F. Morain was invited speaker at the C2 meeting (Ile d'Oléron,
spring 2011).



	[bookmark: uid64] F. Morain gave two lectures in the summer school linked to ECC2011.



	[bookmark: uid65] B. Smith organised the rump session at ECC2011.





[bookmark: uid66] Section: 
      Dissemination
Teaching

D. Augot


	[bookmark: uid67] 18 hours, “Codes correcteurs d'erreurs et applications à la
cryptographie”, M2, MPRI, France.



F. Morain:


	[bookmark: uid68] 10 lectures of 1.5h, 1st year course “Introduction à
l'informatique” (INF311) at École polytechnique.



	[bookmark: uid69] 7.5h Algorithmes arithmétiques pour la cryptologie, M2, MPRI,
France.



B. Smith:


	[bookmark: uid70] INF321: Les principes des langages de programmation, 40h (TD), L1, École polytechnique, France



	[bookmark: uid71] Algorithmes arithmétiques pour la cryptologie, 9h, M2, MPRI, France



PhD & HdR (Les thèses soutenues doivent figurer dans la bibliographie) :


	[bookmark: uid72] PhD: Morgan Barbier, “Décodage en liste et
application à la sécurité de l’information”,
defended December 2nd, 2011, D. Augot.



	[bookmark: uid73] PhD in progress : Cécile GONÇALVES, Advanced
cardinality algorithms for cryptographically interesting
curves, 01/10/2011, F. Morain and B. Smith




[bookmark: uid74] Section: 
      Dissemination
Popular Science


	[bookmark: uid75] D. Augot made a presentation “Quand 1+1=0”
to Lycée students at Savigny-sur-Orge.



	[bookmark: uid76] D. Augot participated in a S[cube] meeting at
Gif-sur-Yvette, about mathematicians.



	[bookmark: uid77] D. Augot was interviewed for a video about Évariste Galois.



	[bookmark: uid78] D. Augot, M. Barbier, C. Gonçalves, S. Ionica, and B. Smith
took part in the “Nuit des chercheurs” at the
École polytechnique.
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