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Introduction

The VerTeCs team is focused on the use of formal methods
to assess the reliability, safety and security
of reactive software systems.
By reactive software system we mean a system
controlled by software which reacts
with its environment (human or other reactive software).
Among these, critical systems are of primary importance, as errors occurring
during their execution may have dramatic economical or human consequences.
Thus, it is essential to establish their correctness before they are deployed
in a real environment, or at least detect incorrectness during execution
and take appropriate action.
For this aim, the VerTeCs team promotes the use of formal methods,
i.e. formal specification of software and their required properties
and mathematically founded validation methods.
Our research covers several validation methods, all
oriented towards a better reliability of software systems:


	[bookmark: uid4] Verification, which is used during the analysis and design phases,
and whose aim is to establish the correctness of specifications
with respect to requirements, properties or higher level specifications.



	[bookmark: uid5] Control synthesis, which consists in “forcing”
(specifications of) systems to stay within desired behaviours by
coupling them with a supervisor.



	[bookmark: uid6] Conformance testing, which is used to check the correctness
of a real system with respect to its specification.
In this context, we are interested in model-based testing,
and in particular
automatic test generation of test cases from specifications.



	[bookmark: uid7] Diagnosis and monitoring, which are used during execution
to detect erroneous behaviour.



	[bookmark: uid8] Combinations of these techniques, both at the methodological
level (combining several techniques within formal validation
methodologies) and at the technical level (as the same set of formal
verification techniques - model checking, theorem proving and
abstract interpretation - are required for control synthesis, test
generation and diagnosis).




Our research is thus concerned with the development of formal models
for the description of software systems, the formalization of
relations between software artifacts (e.g. satisfaction, conformance
between properties, specifications, implementations), the interaction
between these artifacts (modelling of execution, composition, etc).
We develop methods and algorithms for verification, controller
synthesis, test generation and diagnosis that ensure desirable
properties (e.g. correctness, completeness, optimality, etc). We try
to be as generic as possible in terms of models and techniques in
order to cope with a wide range of application domains and
specification languages. Our research has been applied to
telecommunication systems, embedded systems, smart-cards application,
and control-command systems. We implement prototype tools for
distribution in the academic world, or for transfer to the industry.

Our research is based on formal models and our basic tools are verification techniques such as model checking, abstract interpretation, the control theory of discrete event systems,
and their underlying models and logics. The close connection between
testing, control and verification produces a synergy between these
research topics and allows us to share theories, models, algorithms
and tools.
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      Overall Objectives
Highlights

FoSSaCS paper [18]  and TACAS
paper [17]  seriously improve the
state of the art and may have a strong impact.
[18]  proposes an approximate
determinization procedure for timed automata, successfuly adapted
in [17]  for off-line test
generation from timed automata, and is promising for other
observability problems (diagnosis, implementability,...).
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Underlying models

The formal models we use are mainly automata-like structures such as
labelled transition systems (LTS) and some of their extensions: an
LTS is a tuple [image: Im1 ${M=(Q,\#923 ,\#8594 ,q_o)}$] where Q is a
non-empty set of states; [image: Im2 ${q_o\#8712 Q}$] is the initial state; A is
the alphabet of actions, [image: Im3 ${\#8594 \#8838 Q×\#923 ×Q}$] is
the transition relation. These models are adapted for testing and
controller synthesis.

To model reactive systems in the testing context, we use Input/Output
labeled transition systems (IOLTS for short). In this setting, the
interactions between the system and its environment (where the tester
lies) must be partitioned into inputs (controlled by the environment),
outputs (observed by the environment), and internal (non observable)
events modeling the internal behavior of the system. The alphabet
Λ is then partitioned into [image: Im4 ${\#923 _!\#8746 \#923 _?\#8746 \#119983 }$] where Λ! is the alphabet of outputs, Λ?
the alphabet of inputs, and [image: Im5 $\#119983 $] the alphabet of internal
actions.

In the controller synthesis theory, we also distinguish between
controllable and uncontrollable events ([image: Im6 ${\#923 =\#923 _c\#8746 \#923 _{uc}}$]), observable and unobservable events ([image: Im7 ${\#923 =\#923 _O\#8746 \#119983 }$]).

In the context of verification, we also use Timed Automata. A timed
automaton is a tuple [image: Im8 ${A=(L,X,E,\#8464 )}$] where L is a set of
locations, X is a set of clocks whose valuations are positive real
numbers, [image: Im9 ${E\#8838 L×\#119970 (\#119987 )×}$]2 X×L is a
finite set of edges composed of a source and a target state, a guard
given by a finite conjunction of expressions of the form [image: Im10 ${x\#8764 c}$]
where x is a clock, c is a natural number and [image: Im11 ${\#8764 \#8712 {\lt ,\#8804 ,=,\#8805 ,\gt }}$], a set of resetting clocks, and [image: Im12 ${\#8464 :\#8466 \#8594 \#119970 (\#119987 )}$] assigns an invariant to each
location  [27] . The semantics of a timed automaton is
given by a (infinite states) labelled transition system whose states
are composed of a location and a valuation of clocks.

Also, for verification purposes, we use graph grammars that are a
general tool to define families of graphs. Such grammars are formed by a set of rules, left-hand sides being
simply hyperedges and right-hand sides hypergraphs. For finite degree,
these graph grammars characterise transition graphs of pushdown
automata (each graph generated by such a grammar corresponds to the
transition graph of a pushdown automaton). They provide a simple yet
powerfull setting to define and study infinite state systems.

In order to cope with more realistic models, closer to real
specification languages, we also need higher level models that
consider both control and data aspects. We defined (input-output)
symbolic transition systems ((IO)STS), which are extensions of (IO)LTS
that operate on data (i.e., program variables, communication
parameters, symbolic constants) through message passing, guards, and
assignments. Formally, an IOSTS is a tuple (V, Θ, Σ, T),
where V is a set of variables (including a counter variable encoding
the control structure), Θ is the initial condition defined by a
predicate on V, Σ is the finite alphabet of actions, where
each action has a signature (just like in IOLTS, Σ can be
partitioned as e.g. [image: Im13 ${\#931 _?\#8746 \#931 _!\#8746 \#931 _\#964 }$]),
T is a finite set of symbolic transitions of the form t = (a, p, G, A)
where a is an action (possibly with a polarity reflecting its
input/output/internal nature), p is a tuple of communication
parameters, G is a guard defined by a predicate on p and V, and
A is an assignment of variables. The semantics of IOSTS is
defined in terms of (IO)LTS where states are vectors of values of
variables, and transitions between them are labelled with instantiated
actions (action with valued communication parameter). This (IO)LTS
semantics allows us to perform syntactical transformations at the
(IO)STS level while ensuring semantical properties at the (IO)LTS
level. We also consider extensions of these models with added
features such as recursion, fifo channels, etc. An alternative to
IOSTS to specify systems with data
variables is the model of synchronous dataflow equations.

Our research is based on well established theories: conformance
testing, supervisory control, abstract interpretation, and theorem
proving. Most of the algorithms that we employ take their origins in
these theories:


	[bookmark: uid12] graph traversal algorithms (breadth first, depth first, strongly
connected components, ...). We use these algorithms for
verification as well as test generation and control synthesis.



	[bookmark: uid13] BDDs (Binary Decision Diagrams) algorithms, for manipulating
Boolean formula, and their MTBDDs (Multi-Terminal Decision Diagrams)
extension for manipulating more general functions. We use these
algorithms for verification, test generation and control.



	[bookmark: uid14] abstract interpretation algorithms, specifically in the abstract
domain of convex polyhedra (for example, Chernikova's algorithm for
the computation of dual forms). Such algorithms are used in
verification and test generation.



	[bookmark: uid15] logical decision algorithms, such as satisfiability of formulas
in Presburger arithmetics. We use these algorithms during generation
and execution of symbolic test cases.





[bookmark: uid16] Section: 
      Scientific Foundations
Verification

Verification in its full generality consists in checking that a
system, which is specified by a formal model, satisfies a required
property. Verification takes place in our research in two ways: on
the one hand, a large part of our work, and in particular controller
synthesis and conformance testing, relies on the ability to solve
some verification problems. Many of these problems reduce to
reachability and coreachability questions on a formal model (a state
s is reachable from an initial state si if an execution
starting from si can lead to s; s is coreachable from a
final state sf if an execution starting from s can lead to
sf). These are important cases of verification problems, as they
correspond to the verification of safety properties.

On the other hand we investigate verification on its own in the
context of complex systems. For expressivity purposes, it is
necessary to be able to describe faithfully and to deal with complex
systems. Some particular aspects require the use of infinite state
models. For example asynchronous communications with unknown
transfer delay (and thus arbitrary large number of messages in
transit) are correctly modeled by unbounded FIFO queues, and real
time systems require the use of continuous variables which evolve
with time. Apart from these aspects requiring infinite state data
structure, systems often include uncertain or random behaviours
(such as failures, actions from the environment), which it make
sense to model through probabilities. To encompass these aspects, we
are interested in the verification of systems equipped with
infinite data structures and/or probabilistic features.

When the state space of the system is infinite, or when we try to
evaluate performances, standard model-checking techniques
(essentially graph algorithms) are not sufficient. For large or
infinite state spaces, symbolic model-checking or approximation
techniques are used. Symbolic verification is based on efficient
representations of sets of states and permits exact model-checking of
some well-formed infinite-state systems. However, for feasibility
reasons, it is often mandatory to use approximate computations,
either by computing a finite abstraction and resort to graph
algorithms, or preferably by using more sophisticated abstract
interpretation techniques. For systems with stochastic aspects, a
quantitative analysis has to be performed, in order to evaluate the
performances. Here again, either symbolic techniques (e.g. by
grouping states with similar behaviour) or approximation techniques
should be used.

We detail below verification topics we are interested in: abstract
interpretation, quantitative model-checking and analysis of systems defined by graph
grammars.

[bookmark: uid17] Abstract interpretation and data handling

Most problems in test generation or controller synthesis reduce to
state reachability and state coreachability problems which can be
solved by fixpoint computations of the form [image: Im14 ${x=F(x),x\#8712 C}$] where
C is a lattice. In the case of reachability analysis, if we denote
by S the state space of the considered program, C is the lattice
[image: Im15 ${\#8472 (S)}$] of sets of states, ordered by inclusion, and F is roughly
the “successor states” function defined by the program.

The big change induced by taking into account the data and not only
the (finite) control of the systems under study is that the fixpoints
become uncomputable. The undecidability is overcome by resorting to
approximations, using the theoretical framework of Abstract
Interpretation  [29] . The fundamental principles of
Abstract Interpretation are:


	[bookmark: uid18] to substitute to the concrete domain C a simpler
abstract domain A (static approximation) and to transpose
the fixpoint equation into the abstract domain, so that one has to
solve an equation [image: Im16 ${y=G(y),y\#8712 A}$];



	[bookmark: uid19] to use a widening operator (dynamic approximation) to
make the iterative computation of the least fixpoint of G converge
after a finite number of steps to some upper-approximation (more
precisely, a post-fixpoint).




Approximations are conservative so that the obtained result is an
upper-approximation of the exact result.
In simple cases the state space that should be
abstracted has a simple structure, but this may be more complicated
when variables belong to different data types (Booleans, numerics,
arrays) and when it is necessary to establish relations between
the values of different types.


[bookmark: uid20] Model-checking quantitative systems

Model-checking techniques for finite-state systems are now quite
developed, and a current challenge is to adapt them as much as
possible to infinite-state systems. We detail below two types of
models we are interested in: timed automata and infinite-state
probabilistic systems.

Model-checking timed automata The model of timed automata,
introduced by Alur and Dill in the 90's  [27]  is commonly
used to represent real-time systems. Timed automata consist of an
extension of finite automata with continuous variables, called clocks,
that evolve synchronously with time, and can be tested and reset along
an execution. Despite their uncountable state space, checking
reachability, and more generally ω-regular properties, is
decidable via the construction of a finite abstraction, the
so-called region automaton. The recent developments in model-checking
timed automata have aimed at modelling and verifying quantitative
aspects encompassing timing constraints, for example costs,
probabilities, frequencies. These quantitative questions demand
advanced techniques that go far beyond the classical methods.

Model-checking infinite state probabilistic systems
Model-checking techniques for finite state probabilistic systems are
now quite developed. Given a finite state Markov chain, for example,
one can check whether some property holds almost surely (i.e. the set
of executions violating the property is negligible), and one can even
compute (or at leat approximate as close as wanted) the probability
that some property holds. In general, these techniques cannot be
adapted to infinite state probabilistic systems, just as
model-checking algorithms for finite state systems do not carry over
to infinite state systems. For systems exhibiting complex data
structures (such as unbounded queues, continuous clocks) and
uncertainty modeled by probabilities, it can thus be hard to design
model-checking algorithms. However, in some cases, especially when
considering qualitative verification, symbolic methods can lead to
exact results. Qualitative questions do not aim at computing neither
approximating a probability, but are only concerned with almost-sure
or non negligible behaviours (that is events either of probability
one, or non zero). In some cases, qualitative
model-checking can be derived from a combination of techniques for
infinite state systems (such as abstractions) with methods for finite
state probabilistic systems. However, when one is interested in
computing (or rather approximating) precise probability values
(neither 0 nor 1), exact methods are scarce. To deal with these
questions, we either try to restrict to classes of systems where exact
computations can be made, or look for approximation algorithms.


[bookmark: uid21] Analysis of infinite state systems defined by graph grammars

Currently, many techniques (reachability, model checking, ...) from
finite state systems have been generalised to pushdown systems, that
can be modeled by graph grammars. Several such extensions heavily
depend on the actual definition of the pushdown automata, for example,
how many top stack symbols may be read, or whether the existence of
ε-transitions (silent transitions) is allowed. Many of
these restrictions do not affect the actual structure of the graph,
and interesting properties like reachability or satisfiability (of a
formula) only depend on the structure of a graph.

Deterministic graph grammars enable to focus on structural properties
of systems. The connexion with finite graph algorithms is often
straightforward: for example reachability is simply the finite graph
algorithm iterated on the right hand sides. On the other hand,
extending these grammars with time or probabilities is not
straightforward: qualitative values associated to each copy (in the
graph) of the same vertex (in the grammar) is different, introducing
more complex equations. Furthermore, the fact that the left-hand
sides are single hyperarcs is a very strong restriction. But removing
this restriction leads to non-recursive graphs. Identifying decidable
families of graphs defined by contextual graph grammars is also very
challenging.


[bookmark: uid22] Section: 
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Automatic test generation

We are mainly interested in conformance testing
which consists in checking whether a black box
implementation under test (the real system that is only known by its
interface) behaves correctly with respect to its specification (the
reference which specifies the intended behavior of the system). In
the line of model-based testing, we use formal specifications and
their underlying models to unambiguously define the intended behavior
of the system, to formally define conformance and to design test case
generation algorithms. The difficult problems are to generate test
cases that correctly identify faults (the oracle problem) and, as
exhaustiveness is impossible to reach in practice, to select an
adequate subset of test cases that are likely to detect faults.
Hereafter we detail some elements of the models, theories and
algorithms we use.

We use IOLTS (or IOSTS) as formal models for specifications,
implementations, test purposes, and test cases. We adapt a well
established theory of conformance testing  [32] , which
formally defines conformance as a relation between formal models of
specifications and implementations. This conformance relation, called
ioco compares the visible behaviors (called suspension
traces) of the implementation I (denoted by STraces(I)) with
those of the specification S (STraces(S)). Suspension traces are
sequence of inputs, outputs or quiescence (absence of action denoted
by δ), thus abstract away internal behaviors that cannot be
observed by testers. Intuitively, I ioco S if after a
suspension trace of the specification, the implementation I can only
show outputs and quiescences of the specification S. We
re-formulated ioco as a partial inclusion of visible behaviors as
follows:

[image: Im17 ${I~ioco~S\#8660 STraces{(I)}\#8745 [STraces{(S)}.\#923 _!^\#948 \#8726 STraces{(S)}]=\#8709 .}$]


In other words, suspension traces of I which are
suspension traces of S prolongated by an output or quiescence,
should still be suspension traces of S.

Interestingly, this characterization presents conformance with respect
to S as a safety property of suspension traces of I.
The negation of this property is charaterized by a canonical tester
Can(S) which recognizes exactly [image: Im18 ${[STraces{(S)}.\#923 _!^\#948 \#8726 STraces{(S)}]}$], the set of non-conformant suspension traces.
This canonical tester also serves as a basis for test selection.

Test cases are processes executed against implementations in order
to detect non-conformance. They are also formalized by IOLTS (or
IOSTS) with special states indicating verdicts. The execution
of test cases against implementations is formalized by a parallel
composition with synchronization on common actions.
A Fail verdict means that the IUT is rejected and should correspond
to non-conformance, a Pass verdict means that the IUT
exhibited a correct behavior and some specific targeted behaviour
has been observed, while an Inconclusive verdict is given to a
correct behavior that is not targeted.

Test suites (sets of test cases) are required to exhibit some properties
relating the verdict they produce to the conformance relation.
Soundness means that only non conformant
implementations should be rejected by a test suite and
exhaustiveness means that every non conformant implementation may be rejected
by the test suite. Soundness is not difficult to obtain, but
exhaustiveness is not possible in practice and one
has to select test cases.

Test selection is often based on the coverage of some criteria
(state coverage, transition coverage, etc). But test
cases are often associated with test purposes describing some
abstract behaviors targeted by a test case.
In our framework, test purposes are specified as
IOLTS (or IOSTS) associated with marked states or dedicated variables,
giving them the
status of automata or observers accepting runs
(or sequences of actions or suspension traces).
Selection of test cases amounts to selecting traces
of the canonical tester accepted by the test purpose.
The resulting test case is then both an observer of
the negation of a safety property (non-conformance wrt. S), and an
observer of a reachability property (acceptance by the test
purpose).
Selection can be reduced to a model-checking
problem where one wants to identify states (and transitions between
them) which are both reachable from the initial state and co-reachable
from the accepting states. We have proved that these algorithms
ensure soundness. Moreover the (infinite) set of all possibly
generated test cases is also exhaustive. Apart from these
theoretical results, our algorithms are designed to be as efficient
as possible in order to be able to scale up to real applications.

Our first test generation algorithms are based on enumerative
techniques, thus adapted to IOLTS models, and optimized to fight the
state-space explosion problem. On-the-fly
algorithms where designed and implemented in the TGV tool (see 
	5.1 ),
which consist in computing co-reachable states from a target state
during a lazy exploration of the
set of reachable states in a product of the specification and the
test purpose [4] .
However, this enumerative technique suffers
from some limitations when specification models contain data.

More recently, we have explored symbolic test generation techniques
for IOSTS specifications  [31] . The objective is to avoid
the state space explosion problem induced by the enumeration of
values of variables and communication parameters. The idea consists
in computing a test case under the form of an IOSTS, i.e., a
reactive program in which the operations on data are kept in a
symbolic form. Test selection is still based on test purposes (also
described as IOSTS) and involves syntactical transformations of IOSTS
models that should ensure properties of their IOLTS semantics.
However, most of the operations involved in test generation
(determinisation, reachability, and coreachability) become
undecidable. For determinisation we employ heuristics that allow us
to solve the so-called bounded observable non-determinism (i.e., the
result of an internal choice can be detected after finitely many
observable actions). The product is defined syntactically. Finally
test selection is performed as a syntactical transformation of
transitions which is based on a semantical reachability and
co-reachability analysis. As both problems are undecidable for
IOSTS, syntactical transformations are guided by over-approximations
using abstract interpretation techniques. Nevertheless, these
over-approximations still ensure soundness of test
cases [5] . These techniques are implemented in
the STG tool (see 
	5.2 ), with an interface with NBAC
used for abstract interpretation.
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Control synthesis

The supervisory control problem is concerned with ensuring
(not only checking) that a computer-operated system works correctly.
More precisely, given a specification model and a required property,
the problem is to control the specification's behavior, by coupling
it to a supervisor, such that the controlled specification satisfies
the property  [30] . The models used are LTSs and the
associated languages, which make a distinction between controllable and non-controllable actions and between observable and non-observable actions. Typically, the
controlled system is constrained by the supervisor, which acts on
the system's controllable actions and forces it to behave as
specified by the property. The control synthesis problem can be
seen as a constructive verification problem: building a supervisor
that prevents the system from violating a property. Several kinds
of properties can be ensured such as reachability, invariance (i.e.
safety), attractivity, etc. Techniques adapted from model checking
are then used to compute the supervisor w.r.t. the objectives.
Optimality must be taken into account as one often wants to obtain a
supervisor
that constrains the system as few as possible.

Supervisory control theory overview. Supervisory control
theory deals with control of Discrete Event Systems. In this theory,
the behavior of the system S is assumed not to be fully
satisfactory. Hence, it has to be reduced by means of a feedback
control (named Supervisor or Controller) in order to achieve a given
set of requirements  [30] . Namely, if S denotes the
specification of the system and Φ is a safety property that has
to be ensured on S (i.e. [image: Im19 ${S¬\#8871 \#934 }$]), the problem consists
in computing a supervisor [image: Im20 $\#119966 $], such that

[bookmark: uid24] 	[image: Im21 $\mtable{...}$]	(1)




where [image: Im22 $\#8741 $] is the classical parallel composition between two
LTSs. Given S, some events of S are said to be uncontrollable
(Σuc), i.e. the occurrence of these events cannot be
prevented by a supervisor, while the others are controllable
(Σc). It means that all the supervisors satisfying
(1 ) are not good candidates. In fact, the behavior of the
controlled system must respect an additional condition that happens to
be similar to the ioco conformance relation that we previously
defined in 
	3.3 . This condition is called the controllability condition and is defined as follows.

[bookmark: uid25] 	[image: Im23 $\mtable{...}$]	(2)




Namely, when acting on S, a supervisor is not allowed to disable
uncontrollable events. Given a safety property Φ, that can be
modeled by an LTS AΦ, there actually exist many different
supervisors satisyfing both (1 ) and (2 ). Among all
the valid supervisors, we are interested in computing the supremal
one, ie the one that restricts the system as few as possible. It has
been shown in  [30]  that such a supervisor always
exists and is unique. It gives access to a behavior of the controlled
system that is called the supremal controllable sub-language of
AΦ w.r.t. S and Σuc. In some situations, it may
also be interesting to force the controlled system to be non-blocking
(See  [30]  for details).

The underlying techniques are similar to the ones used for Automatic
Test Generation. It consists in computing a product between the
specification and AΦ and to remove the states of the obtained
LTS that may lead to states that violate the property by triggering
only uncontrollable events.
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Overview

The methods and tools developed by the VerTeCs project-team for
test generation and control synthesis of reactive systems are intended
to be as generic as possible. This allows us to apply them in many
application domains where the presence of software is predominant and
its correctness is essential. In particular, we apply our research in
the context of telecommunication systems, for embedded systems, for
smart-cards application, and control-command systems.


[bookmark: uid28] Section: 
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Telecommunication systems

Our research on test generation was initially proposed for
conformance testing of telecommunication protocols. In this domain,
testing is a normalized process  [26] , and formal
specification languages are widely used (SDL in particular). Our
test generation techniques have already proved useful in this
context, going up to industrial transfer. New standardized
component-based design methodologies such as UML and OMG's MDE
increase the need for formal techniques in order to ensure the
compositionality of components, by verification and testing. Our
techniques, by their genericity and adaptativity, have also proved
useful at different levels of these methodologies, from component
testing to system testing. The telecommunication industry now also
tries to provide more and more services to the users. These services
must be validated.


[bookmark: uid29] Section: 
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Software embedded systems

In the context of transport, software embedded systems are
increasingly predominant. This is particularly important in
automotive systems, where software replaces electronics for power
train, chassis (e.g. engine control, steering, brakes) and cabin
(e.g. wiper, windows, air conditioning) or new services to
passengers are increasing (e.g. telematics, entertainment). Car
manufacturers have to integrate software components provided by many
different suppliers, according to specifications. One of the
problems is that testing is done late in the life cycle, when the
complete system is available. Faced with these problems, but also
to the complexity of systems, compositionality of components,
distribution, etc, car manufacturers now try to promote standardized
interfaces and component-based design methodologies. They also
develop virtual platforms which allow for testing components before
the system is complete. It is clear that software quality and trust
are one of the problems that have to be tackled in this context.
This is why we believe that our techniques (testing and control) can
be useful in such a context.


[bookmark: uid30] Section: 
      Application Domains
Control-command systems

The main application domain for our techniques is control-command
systems. In general, such systems control costly machines (see e.g.
robotic systems, flexible manufacturing systems), that are connected
to an environment (e.g. a human operator). Such systems are often
critical systems and errors occurring during their execution may
have dramatic economical or human consequences. In this field, the
controller synthesis methodology (CSM) is useful to ensure by
construction the interaction between 1) the different components,
and 2) the environment and the system itself. For the first point,
the CSM is often used as a safe scheduler, whereas for the second
one, the supervisor can be interpreted as a safe discrete
tele-operation system. Also in the context of the Vacsim ANR
project, we investigate the testing, monitoring and verification of
control-command systems.
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TGV
Participant :
      Thierry Jéron.


TGV (Test Generation with Verification technology) is a tool for test
generation of conformance test suites from specifications of reactive
systems [4] . It is based on the IOLTS model, a well
defined theory of testing, and on-the-fly test generation algorithms
coming from verification technology. Originally, TGV allows test
generation focused on well defined behaviors formalized by test
purposes. The main operations of TGV are (1) a synchronous product
which identifies sequences of the specification accepted by a test
purpose, (2) abstraction and determinisation for the computation of
next visible actions, (3) selection of test cases by the computation
of reachable states from the initial states and co-reachable states
from accepting states. TGV has been developed in collaboration with
Vérimag Grenoble and uses libraries of the CADP toolbox (VERIMAG
and VASY). TGV can be seen as a library that can be linked to
different simulation tools through well defined APIs. An academic
version of TGV is distributed in the CADP toolbox and allows test
generation from Lotos specifications by a connection to its simulator
API. TGV has been registered at APP (Agence de Protection des
Programmes) under deposit number
IDDN.FR.001.310012.00.R.P.1997.000.2090.


[bookmark: uid33] Section: 
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Participant :
      Thierry Jéron.


Stg (Symbolic Test Generation) is a prototype tool for the generation and execution of test cases
using symbolic techniques. It takes as input a specification and a
test purpose described as IOSTS, and generates a test case program
also in the form of IOSTS. Test generation in STG is based on a
syntactic product of the specification and test purpose IOSTS, an
extraction of the subgraph corresponding to the test purpose,
elimination of internal actions, determinisation, and simplification.
The simplification phase now relies on NBAC, which approximates
reachable and coreachable states using abstract interpretation. It is
used to eliminate unreachable states, and to strengthen the guards of
system inputs in order to eliminate some Inconclusive verdicts.
After a translation into C++ or Java, test cases can be executed on an
implementation in the corresponding language. Constraints on system
input parameters are solved on-the-fly (i.e. during execution) using a
constraint solver. The first version of STG was developed in C++,
using Omega as constraint solver during execution. This version has
been deposited at APP under number
IDDN.FR.001.510006.000.S.P.2004.000.10600.

A new version in OCaml has been developed in the last years. This
version is more generic and will serve as a library for symbolic
operations on IOSTS. Most functionalities of the C++ version have
been re-implemented. Also a new translation of abstract test cases
into Java executable tests has been developed, in which the constraint
solver is LuckyDraw (VERIMAG). This version has also
been deposit at APP and is available for download on the web as well
as its documentation and some examples.

Finally, in collaboration with ULB, we implemented a prototype SMACS, derived from STG, that is devoted to the control of
infinite system modeled by STS.


[bookmark: uid34] Section: 
      Software
SIGALI
Participant :
      Hervé Marchand.


Sigali is a model-checking tool that operates on ILTS (Implicit
Labeled Transition Systems, an equational representation of an
automaton), an intermediate model for discrete event systems. It
offers functionalities for verification of reactive systems and
discrete controller synthesis. It is developed jointly by the ESPRESSO and VerTeCs teams. The techniques used consist in
manipulating the system of equations instead of the set of solutions,
which avoids the enumeration of the state space. Each set of states
is uniquely characterized by a predicate and the operations on sets
can be equivalently performed on the associated predicates.
Therefore, a wide spectrum of properties, such as liveness,
invariance, reachability and attractivity, can be checked. Algorithms
for the computation of predicates on states are also
available [6]  [28] . Sigali
is connected with the Polychrony environment (ESPRESSO
project-team) as well as the Matou environment (VERIMAG), thus
allowing the modeling of reactive systems by means of Signal
Specification or Mode Automata and the visualization of the
synthesized controller by an interactive simulation of the controlled
system. Sigali is registered at APP.
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[bookmark: uid37] Analysis of partially observed recursive discrete-event systems
Participants :
      Sébastien Chédor, Thierry Jéron, Hervé Marchand, Christophe Morvan.


Monitoring of recursive discrete-event systems under partial
observation is an important issue with major applications such as the
diagnosability of faulty behaviors and the detection of information
flow. We consider regular discrete-event systems, that is recursive
discrete-event systems definable by deterministic graph grammars. This
setting is expressive enough to capture classical models of recursive
systems such as the pushdown systems. Hence they are infinite-state in
general and standard powerset constructions for monitoring do not
apply anymore. We exhibit computable conditions on these grammars
together with non-trivial transformations of graph grammars that
enable us to construct a monitor. This construction is applied to
diagnose faulty behaviors, to detect information flow in regular
discrete-event systems, and to generate tests.


[bookmark: uid38] Analysis of timed systems

[bookmark: uid39] Approximate determinization of timed automata
Participants :
      Nathalie Bertrand, Thierry Jéron, Amélie Stainer.


Timed automata are frequently used to model real-time systems. Their
determinization is a key issue for several validation
problems. However, not all timed automata can be determinized, and
determinizability itself is
undecidable. In [18] , we propose a
game-based algorithm which, given a timed automaton, tries to produce
a language-equivalent deterministic timed automaton, otherwise a
deterministic over-approximation. Our method subsumes two recent
contributions: it is at once more general than an existing (non
terminating) determinization procedure by Baier et al. (2009)
and more precise than the approximation algorithm of Krichen and
Tripakis (2009). Moreover, an extension of the method allows to deal
with invariants and ϵ-transitions, and to consider other
useful approximations: under approximation, and combination of under-
and over-approximations which are particularly useful in testing (see

	6.2.1 ).


[bookmark: uid40] Frequency analysis for timed automata
Participants :
      Nathalie Bertrand, Amélie Stainer.


The languages of infinite timed words accepted by timed automata are
traditionally defined using Büchi-like conditions. These acceptance
conditions focus on the set of locations visited infinitely often
along a run, but completely ignore quantitative timing
aspects. In [15]  we propose a natural
quantitative semantics for timed automata based on the so-called
frequency, which measures the proportion of time spent in the
accepting states. We study various properties of timed languages
accepted with positive frequency, and in particular the emptiness and
universality problems.


[bookmark: uid41] Petri nets reachability graphs
Participant :
      Christophe Morvan.


Petri nets are a general model for concurrency, the structure of their
reachability graph is mostly
unknown. In [19]  we have
investigated the decidability and complexity status of model-checking
problems on unlabelled reachability graphs of Petri nets by
considering first-order, modal and pattern-based languages without
labels on transitions or atomic propositions on markings. We consider
several parameters to separate decidable problems from undecidable
ones. These results illustrate the intrinsic complexity of the
structure of these graphs.
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[bookmark: uid43] Off-line test selection with test purposes for non-deterministic timed automata
Participants :
      Nathalie Bertrand, Thierry Jéron, Amélie Stainer.


In [17] , we propose novel off-line
test generation techniques for non-deterministic timed automata with
inputs and outputs (TAIOs) in the formal framework of the tioco
conformance theory. In this context, a first problem is the
determinization of TAIOs, which is necessary to foresee next enabled
actions, but is in general impossible. The determinization problem is
addressed in [18]  thanks to an
approximate determinization using a game approach (see

	6.1.2.1 ). We adapt this procedure here to over- and
under-approximation, in order to preserve tioco and guarantee the
soundness of generated test cases. A second problem is test selection
for which a precise description of timed behaviors to be tested is
carried out by expressive test purposes modeled by a generalization of
TAIOs. Finally, using a symbolic co-reachability analysis guided by
the test purpose, test cases are generated in the form of TAIOs
equipped with verdicts.


[bookmark: uid44] Test generation using pushdown automata
Participant :
      Puneet Bhateja.


IOLTS (input output labeled transition system) is a versatile
model and is frequently used in model based testing to model the
functional behavior of an IUT (implementation under test). However
when a system is tested remotely, its observed behavior can be
different from its actual functional behavior. In a previous paper, we
defined a notion of remotely observed behavior of an IOLTS in terms of
its actual behavior. Paper [14] 
contributes by proposing a methodology to simulate a PDA
(pushdown automaton) from the given IOLTS such that the
simulated PDA precisely expresses the remotely observed behavior of
the IOLTS. The simulated PDA can be thought of as an automatic test
generator for remote testing.


[bookmark: uid45] Test case selection in asynchronous testing
Participants :
      Puneet Bhateja, Thierry Jéron.


Conformance testing has a rich underlying formal
theory called IOLTS-based conformance testing. Depending
upon whether the implementation-under-test (IUT) interacts
with its environment directly, or indirectly through a medium,
IOLTS-based conformance testing can be classified as synchronous
testing or asynchronous testing, respectively.
So far the problem of test case selection has been addressed mostly
in the context of synchronous testing.
In this work we contribute by
addressing this problem in the context of asynchronous testing.
Though an asynchronously communicating
process can be simulated by a synchronously communicating
process, the fact that the simulating process is infinite state
even if the simulated process is finite state made the problem
challenging.


[bookmark: uid46] A tagging protocol for asynchronous testing
Participant :
      Puneet Bhateja.


Conformance testing has a rich underlying theory popularly called
IOCO-test theory. In the realm of IOCO-test theory, this paper
addresses the issue of testing a component of an asynchronously
communicating distributed system. Testing a system which communicates
asynchronously (i.e., through some medium) with its environment is
more difficult than testing a system which communicates synchronously
(i.e., directly without any medium). What impedes asynchronous testing
is that the actual behavior of the implementation under test (IUT)
appears distorted and infinite to the tester. This impediment
consequently renders the problem of generating a complete test suite,
from the given specification of the IUT, infeasible. To this end,
paper [13]  proposes a tagging protocol
which when implemented by the asynchronously communicating distributed
system will enable the generation of a complete test suite, from the
specification of any of its component. Further, this paper describes
how to generate the test suite from the given specification of the
component.


[bookmark: uid47] Abstracting time and data for conformance testing of real-time systems
Participants :
      Thierry Jéron, Hervé Marchand.


Current approaches to model-based conformance testing of real-time
systems are mostly based either on finite state machines/transition
systems or on timed automata. However, most real-time systems
manipulate data while being subjected to time constraints. The usual
solution consists in enumerating data values (in finite domains) while
treating time symbolically, thus leading to the classical state
explosion problem. Paper [12]  with
W.L. Andrade and P. Machado (Fed. Univ. Campina Grande) proposes a new
model of real-time systems as an extension of both symbolic transition
systems and timed automata, in order to handle both data and time
requirements symbolically. We then adapt the tioco conformance testing
theory to deal with this model and describe a test case generation
process based on a combination of symbolic execution and constraint
solving for the data part and symbolic analysis for timed aspects.


[bookmark: uid48] Ensuring security properties

[bookmark: uid49] Runtime enforcement monitors: composition, synthesis, and enforcement abilities
Participant :
      Yliès Falcone.


Runtime enforcement is a powerful technique to ensure that a program
will respect a given set of
properties. In [9]  we extend previous
work on this topic in several directions. Firstly, we propose a
generic notion of enforcement monitors based on a memory device and
finite sets of control states and enforcement operations. Moreover, we
specify their enforcement abilities w.r.t. the general Safety-Progress
classification of properties. Furthermore, we propose a systematic
technique to produce a monitor from the automaton recognizing a given
safety, guarantee, obligation or response property. Finally, we show
that this notion of enforcement monitors is more amenable to
implementation and encompasses previous runtime enforcement
mechanisms.


[bookmark: uid50] What can you verify and enforce at runtime?
Participant :
      Yliès Falcone.


The underlying property, its definition and representation play a
major role when monitoring a system. Having a suitable and convenient
framework to express properties is thus a concern for runtime
analysis. It is desirable to delineate in this framework the sets of
properties for which runtime analysis approaches can be applied
to. [8]  presents a unified view of
runtime verification and enforcement of properties in the
Safety-Progress classification. Firstly, we extend the Safety-Progress
classification of properties in a runtime context. Secondly, we
characterize the set of properties which can be verified (monitorable
properties) and enforced (enforceable properties) at runtime. We
propose in particular an alternative definition of ”property
monitoring” to the one classically used in this context. Finally, for
the delineated sets of properties, we define specialized verification
and enforcement monitors.
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Partially Observable Markov Decision Processes (POMDP for
short) have been extensively studied in several research communities,
among which AI and model-checking.
In [16]  we address the problem of the
minimal information a user needs at runtime to achieve a
simple goal, modeled as reaching an objective with probability one.
More precisely, to achieve her goal, the user can either choose at
each step to use partial information only, or pay a fixed cost and
receive full information. The natural question is then to minimize the
cost the user needs to fulfill its objective. This optimization
question gives rise to two different problems, whether we consider to
minimize the worst case cost, or the average cost. On the
one hand, concerning the worst case cost, we show that efficient
techniques from the model checking community can be adapted to compute
the optimal worst case cost and give optimal strategies for the users.
On the other hand, we show that the optimal average price (a question
typically considered in the AI community) cannot be computed in
general, nor can it be approximated in polynomial time even up to a
large approximation factor.


[bookmark: uid53] Supervisory control for synchronous systems

[bookmark: uid54] Controller synthesis and programming language
Participant :
      Hervé Marchand.


In [24]  we define a mixed
imperative/declarative programming language: declarative contracts are
enforced upon imperatively described behaviors. We rely on the notion
of Discrete Controller Synthesis (DCS), a formal technique stemming
from control theory and the supervisory control of discrete event
systems. We target the application domain of adaptive and
reconfigurable computing systems: our language can serve programming
closed-loop adaptation controllers, enabling flexible execution of
functionalities w.r.t. changing resource and environment
conditions. We give a synthetic presentation of the language, its
semantics and compilation, and we illustrate its use with the example
of a robot system.


[bookmark: uid55] Symbolic supervisory control of infinite transition systems under partial observation using abstract interpretation
Participant :
      Hervé Marchand.


In [11] , we propose algorithms for the
synthesis of state-feedback controllers with partial observation of
infinite state discrete event systems modelled by Symbolic Transition
Systems. We provide models of safe memoryless controllers both for
potentially deadlocking and deadlock free controlled systems. The
termination of the algorithms solving these problems is ensured using
abstract interpretation techniques which provide an overapproximation
of the transitions to disable. We then extend our algorithms to
controllers with memory and to online controllers. We also propose
improvements in the synthesis of controllers in the finite case which,
to our knowledge, provide more permissive solutions than what was
previously proposed in the literature. Our tool SMACS gives an
empirical validation of our methods by showing their feasibility,
usability and efficiency.


[bookmark: uid56] Decentralized control of infinite systems
Participant :
      Hervé Marchand.


In [10]  we propose algorithms for the
synthesis of decentralized state-feedback controllers with partial
observation of infinite state systems, which are modeled by Symbolic
Transition Systems. We first consider the computation of safe
controllers ensuring the avoidance of a set of forbidden states and
then extend this result to the deadlock free case. The termination of
the algorithms solving these problems is ensured by the use of
abstract interpretation techniques, but at the price of
overapproximations, in particular, in the computation of the states
which must be avoided. We then extend our algorithms to the case where
the system to be controlled is given by a collection of subsystems
(modules). This structure is exploited to locally compute a controller
for each module. Our tool SMACS gives an empirical evaluation of our
methods by showing their feasibility, usability and efficiency.


[bookmark: uid57] Polychronous controller synthesis from MARTE CCSL timing specifications
Participant :
      Hervé Marchand.


The UML Profile for Modeling and Analysis of Real-Time and Embedded
systems (MARTE) defines a mathematically expressive model of time, the
Clock Constraint Specification Language (CCSL), to specify timed
annotations on UML diagrams and thus provides them with formally
defined timed interpretations. Thanks to its expressive capability,
the CCSL allows for the specification of static and dynamic
properties, of deterministic and non-deterministic behaviors, or of
systems with multiple clock domains. Code generation from such
multiclocked specifications (for the purpose of synthesizing a
simulator, for instance) is known to be a difficult issue. We address
it in [23]  by using the approach of
controller synthesis. In our framework, a timed CCSL specification is
regarded as a property whose satisfaction should be enforced for any
UML diagram carrying it as annotation. To do so, CCSL statements are
first translated into dynamical polynomial systems. Such systems can
be manipulated using the model-checker Sigali to synthesize an
executable property (a controller) which enforces the satisfaction of
the specified timing constraints on the UML diagram with which it is
executed.


[bookmark: uid58] Control of distributed systems
Participant :
      Hervé Marchand.


In this work, we consider the control of distributed systems composed
of subsystems communicating asynchronously; the aim is to build local
controllers that restrict the behavior of a distributed system in
order to satisfy a global state avoidance property. We model our
distributed systems as communicating finite state machines with
reliable unbounded FIFO queues between subsystems. Local controllers
can only observe the behavior of their local subsystem and do not see
the queue contents. To refine their control policy, the controllers
can use the FIFO queues to communicate by piggybacking extra
information (some timestamps and their state estimates) to the
messages sent by the
subsystems [21] . We provide an
algorithm that computes, for each local subsystem (and thus for each
controller), during the execution of the system, an estimate of the
current global state of the distributed system. The local estimate is
updated at each message reception. We then define synthesis algorithms
allowing to compute the local controllers. Our method relies on the
computation of (co)reachable states. Since the reachability problem is
undecidable in our model, we use abstract interpretation techniques to
obtain regular overapproximations of the possible FIFO queue contents,
and hence of the possible current global states. An implementation of
our algorithms provides an empirical evaluation of our
method [22] .
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[bookmark: uid61] ANR TesTec: Test of real-time and critical embedded system
Participants :
      Nathalie Bertrand, Thierry Jéron, Hervé Marchand.


The TesTec project is a three years [2008-2010]
industrial research project that gathers two
companies: an end-user (EDF R&D ) and one software editor for
embedded real-time systems and automation systems (Geensys), and
four laboratories from automation engineering and computer science
(I3S, INRIA Rennes, LaBRI, LURPA). This project focuses on automatic
generation and execution of tests for the class of embedded real-time
systems. They are highly critical. Such systems can be found in many
industrial domains, such as energy, transport systems. More precisely
the project TesTec will address two crucial technological issues:


	[bookmark: uid62] optimisation of test generation techniques for large size systems,
in particular by an explicit modelling of time and by simultaneous
management of continuous and discrete variables in hybrid
applications;



	[bookmark: uid63] reduction of the size of the tests derived from
specification models by using the results of formal verification of
implementation models.




The overall aim of this project is to propose a software tool for
generation and execution of tests; this tool will be based on an
existing environment for embedded systems design and will implement
the scientific results of the project.

This year our contributions to this project were our works on test generation
from timed models, as well as approximate determinization of timed automata.

In 2011, the post-doc position of Puneet Bhateja was funded by
TestTec.


[bookmark: uid64] ANR VACSIM: Validation of critical control-command systems by coupling simulation and formal analysis
Participants :
      Nathalie Bertrand, Thierry Jéron, Hervé Marchand.


The Vacsim project (2011-2014) is a 3 years project with EDF
R&D, Dassault Systèmes, LURPA Cachan, I3S Nice and Labri Bordeaux.
The project aims at developping both methodological and formal
contributions for the simulation and validation of control-command
systems. The rôle of the Vertecs team will be to contribute to the
advance of validation techniques for timed systems, including
quantitative analysis and its application to testing, monitoring of
timed systems, and verification of communicating timed automata.


[bookmark: uid65] Action Incitative VeSPa: Verification of security and privacy properties
Participant :
      Nathalie Bertrand.


The VeSPa "Action Incitative" is a one-year [2011] project funded by
Rennes 1 University to develop emerging research themes. The goal of
the project is to strat and verify security and privacy properties in
protocols, using logic and games techniques. The participants are
Sophie Pinchinat (leader, S4), Sébastien Gambs (Cidre), Guillaume
Aucher (DistribCom), and Nathalie Bertrand (Vertecs). To gather
researchers interested in the topic, the second edition of a workshop
on Games, Logics and Security has been organized in October 2011.
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	[bookmark: uid70] Project title: Artist - European Network of Excellence on Embedded System Design



	[bookmark: uid71] Duration: 01/08 - 12/11



	[bookmark: uid72] Coordinator: VERIMAG



	[bookmark: uid73] Abstract: The central objective for ArtistDesign
http://www.artist-embedded.org/artist/-ArtistDesign-Participants-.html 
is to build on existing structures and links forged in Artist2, to
become a virtual Center of Excellence in Embedded Systems Design. This
will be mainly achieved through tight integration between the central
players of the European research community. Also, the consortium is
smaller, and integrates several new partners. These teams have
already established a long-term vision for embedded systems in Europe,
which advances the emergence of Embedded Systems as a mature
discipline.

The research effort aims at integrating topics, teams, and
competencies, grouped into 4 Thematic Clusters: “Modelling and
Validation”, “Software Synthesis, Code Generation, and Timing
Analysis”, “Operating Systems and Networks”, “Platforms and
MPSoC”. “Transversal Integration” covering both industrial
applications and design issues aims for integration between clusters.

The Vertecs EPI is a partner of the “Validation” activity of the
“Modeling and Validation” cluster. This year, the Vertecs EPI has
contributed to quantitative verification of timed
automata [15] , approximate
determinization of timed
automata [18]  and its adaptation to
test generation [17] , and control
sysnthesis using abstract interpretation for infinite state
systems [11] , on
decentralized [10]  and distributed
control [21] , [22] .
Amélie Stainer spent one month in Aalborg to implement the
approximate determinization of timed automata using UPPAAL libraries.




[bookmark: uid74] PHC Tournesol STP : Verification of timed and probabilistic systems
Participants :
      Nathalie Bertrand, Amélie Stainer.


A two-year contract with the group of Thomas Brihaye (Université Mons)
started in 2010. Its objective is to study timed and probabilistic
systems. This year, Nathalie Bertrand visited Thomas Brihaye in Mons,
and Thomas Brihaye came to Rennes to give a seminar and further
discuss with Nathalie Bertrand and Amélie Stainer.
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	[bookmark: uid80] University of Dresden (Germany), Prof. Christel Baier
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	[bookmark: uid92] This associated team
with the Federal University of Campina Grande (Prof. Patrícia
D. L. Machado) and University Pernambuco (Prof. Augusto Sampaio) in
Brazil started in 2009 and ended this year.



	[bookmark: uid93] In 2011 Nathalie Bertrand and Sébastien Chédor visited the
Brazilian team in Recife in November where a meeting took place,
and we had the visit of Wilkerson Andrade in November.



	[bookmark: uid94] This year the cooperation addressed problems in test generation
for timed input/output symbolic transition systems (see

	6.2.5 ) and compositional conformance
verification for these models, on the problems of non-determinism
in timed models for test generation (see 
	6.1.2.1  and

	6.2.1 ), on test vector generation for timed models, and
automatic test case generation and execution for regular graphs
(see 
	6.2.2 ).
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	University of Michigan

	(Prof. Stéphane Lafortune) on
control and diagnosis of discrete event systems.





[bookmark: uid97] Visits of international scientists

Laurie Ricker, associate professor at the Mathematics & Computer
Science department of Mount Allison University (Canada) has visited
Vertecs for 6 months, from January 2011 to June 2011. We collaborate
on control of discrete event systems for distributed systems.
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	Nathalie Bertrand

	was PC member of QAPL'11, and
co-organiser of the 2nd edition of the GIPSy Workshop in October
2011. She was invited to give a talk at the Seminar of the Centre
Fédéré en Vérification in Brussels, in May 2011.


	Yliès Falcone

	was a reviewer for DATE'12, ACM Tissec,
Elsevier Cosrev, ICFEM'11, HSCC'11. He was invited to give a talk at
LIG (Grenoble), LORIA (Nancy), LRI (Paris), NICTA (Canberra,
Asutralia), Valence (in the context of the SEMBA project). He is in
the Organization Committee of AFADL'12.


	Thierry Jéron

	was PC member of Scenario'2011, ICTSS'2011,
ICST'2012, TAP'2011. He was invited to give a talk in LIFC
Besançon. He is member of IFIP WG 10.2. He was member of the PhD
commitee of Alexander Heussner (Labri Bordeaux) and reviewer of the
PhD thesis of Gilles Benattar (University of Nantes), Julien Provost
(LURPA, ENS Cachan) and Pierre-Christophe Bué (LIFC Besançon).


	Hervé Marchand

	is Associate Editor of the IEEE
Transactions on Automatic Control journal and member of the IFAC
Technical Committee (TC 1.3 on Discrete Event and Hybrid
Systems). He was PC member of the ICINCO'11, DCDS,11, MSR'11
Conferences and IFAC World Congress 2011. He was member of the PhD
committee of Mingming REN (INSA de Lyon, July 2011).
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[bookmark: uid105] Teaching

Nathalie Bertrand


	[bookmark: uid106] Master : Advanced model-checking, 8h, niveau M2, ISTIC, Université de Rennes 1, France.



	[bookmark: uid107] Agrégation : Langages formels, 16h, niveau M2, ENS Cachan antenne de Bretagne, France.



Sébastien Chédor


	[bookmark: uid108] Licence : Java (TD-TP), 40h, niveau L1, ISTIC, Université de Rennes 1, France.

                Scheme (TP), 20h, niveau L1, ISTIC, Université de Rennes 1, France.
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