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Overall Objectives

The scientific objectives of ASPI are the design, analysis and
implementation of interacting Monte Carlo methods, also known as particle
methods, with focus on


	[bookmark: uid4] statistical inference in hidden Markov models
and particle filtering,



	[bookmark: uid5] risk evaluation and simulation of rare events,



	[bookmark: uid6] global optimization.




The whole problematic is multidisciplinary,
not only because of the many scientific and engineering areas
in which particle methods are used,
but also because of the diversity of the scientific communities
which have already contributed to establish the foundations
of the field

target tracking,
interacting particle systems,
empirical processes,
genetic algorithms (GA),
hidden Markov models and nonlinear filtering,
Bayesian statistics,
Markov chain Monte Carlo (MCMC) methods, etc.

Intuitively speaking, interacting Monte Carlo methods are sequential
simulation methods, in which particles


	[bookmark: uid7] explore the state space by mimicking the evolution
of an underlying random process,



	[bookmark: uid8] learn the environment by evaluating a fitness function,



	[bookmark: uid9] and interact so that only the most successful particles
(in view of the value of the fitness function) are allowed to survive
and to get offsprings at the next generation.




The effect of this mutation / selection mechanism is to automatically
concentrate particles (i.e. the available computing power) in regions of
interest of the state space. In the special case of particle filtering,
which has numerous applications under the generic heading of positioning,
navigation and tracking, in

target tracking,
computer vision,
mobile robotics,
wireless communications,
ubiquitous computing and ambient intelligence,
sensor networks, etc.,

each particle represents a possible hidden state, and is multiplied
or terminated at the next generation on the basis of its consistency with
the current observation, as quantified by the likelihood function.
With these genetic–type algorithms, it becomes easy to efficiently combine
a prior model of displacement with or without constraints, sensor–based
measurements, and a base of reference measurements, for example in the
form of a digital map (digital elevation map, attenuation map, etc.).
In the most general case, particle methods provide approximations of
Feynman–Kac distributions, a pathwise generalization of Gibbs–Boltzmann
distributions, by means of the weighted empirical probability distribution
associated with an interacting particle system,
with applications that go far beyond filtering, in

simulation of rare events,
simulation of conditioned or constrained random variables,
interacting MCMC methods,
molecular simulation, etc.

The main applications currently considered are
geolocalisation and tracking of mobile terminals,
terrain–aided navigation,
data fusion for indoor localisation,
optimization of sensors location and activation,
risk assessment in air traffic management,
protection of digital documents.
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Interacting Monte Carlo methods
and particle approximation of Feynman–Kac distributions

Monte Carlo methods are numerical methods that are widely used
in situations where
(i) a stochastic (usually Markovian) model is given for some underlying
process, and (ii) some quantity of interest should be evaluated, that
can be expressed in terms of the expected value of a functional of the
process trajectory, which includes as an important special case the
probability that a given event has occurred.
Numerous examples can be found, e.g. in financial engineering (pricing of options and derivative
securities)  [50] ,
in performance evaluation of communication networks (probability of buffer
overflow), in statistics of hidden Markov models (state estimation,
evaluation of contrast and score functions), etc.
Very often in practice, no analytical expression is available for
the quantity of interest, but it is possible to simulate trajectories
of the underlying process. The idea behind Monte Carlo methods is
to generate independent trajectories of this process
or of an alternate instrumental process,
and to build an approximation (estimator) of the quantity of interest
in terms of the weighted empirical probability distribution
associated with the resulting independent sample.
By the law of large numbers, the above estimator converges
as the size N of the sample goes to infinity, with rate [image: Im1 ${1/\sqrt N}$]
and the asymptotic variance can be estimated using an appropriate
central limit theorem.
To reduce the variance of the estimator, many variance
reduction techniques have been proposed.
Still, running independent Monte Carlo simulations can lead to
very poor results, because trajectories are generated blindly,
and only afterwards are the corresponding weights evaluated.
Some of the weights can happen to be negligible, in which case the
corresponding trajectories are not going to contribute to the estimator,
i.e. computing power has been wasted.

A recent and major breakthrough,
has been the introduction of interacting Monte Carlo methods,
also known as sequential Monte Carlo (SMC) methods,
in which a whole (possibly weighted) sample,
called system of particles, is propagated in time, where
the particles


	[bookmark: uid12] explore the state space under the effect of
a mutation mechanism which mimics the evolution of the
underlying process,



	[bookmark: uid13] and are replicated or terminated, under
the effect of a selection mechanism which automatically
concentrates the particles, i.e. the available computing power,
into regions of interest of the state space.




In full generality, the underlying process is a discrete–time Markov
chain, whose state space can be

finite,
continuous,
hybrid (continuous / discrete),
graphical,
constrained,
time varying,
pathwise, etc.,

the only condition being that it can easily be simulated.

In the special case of particle filtering,
originally developed within the tracking community,
the algorithms yield a numerical approximation of the optimal Bayesian
filter, i.e. of the conditional probability distribution
of the hidden state given the past observations, as a (possibly
weighted) empirical probability distribution of the system of particles.
In its simplest version, introduced in several different scientific
communities under the name of
bootstrap filter  [52] ,
Monte Carlo filter  [57] 
or condensation (conditional density propagation)
algorithm  [54] ,
and which historically has been the first algorithm to include
a redistribution step,
the selection mechanism is governed by the likelihood function:
at each time step, a particle is more likely to survive
and to replicate at the next generation if it is consistent with
the current observation.
The algorithms also provide as a by–product a numerical approximation
of the likelihood function, and of many other contrast functions for
parameter estimation in hidden Markov models, such as the prediction
error or the conditional least–squares criterion.

Particle methods
are currently being used in many scientific and engineering areas

positioning, navigation, and tracking  [53] , [47] ,
visual tracking  [54] ,
mobile robotics  [48] , [71] ,
ubiquitous computing and ambient intelligence,
sensor networks,
risk evaluation and simulation of rare events  [51] ,
genetics, molecular simulation  [49] , etc.

Other examples of the many applications of particle filtering can be
found in the contributed volume  [34]  and in the special
issue of IEEE Transactions on Signal Processing devoted
to Monte Carlo Methods for Statistical Signal Processing
in February 2002,
where the tutorial paper  [35]  can be found,
and in the textbook  [67]  devoted
to applications in target tracking.
Applications of sequential Monte Carlo methods to other areas,
beyond signal and image processing, e.g. to genetics,
can be found in  [66] .
A recent overview can also be found in  [37] .

Particle methods are very easy to implement, since it is sufficient
in principle to simulate independent trajectories of the underlying
process.
The whole problematic is multidisciplinary,
not only because of the already mentioned diversity of the scientific
and engineering areas in which particle methods are used,
but also because of the diversity of the scientific communities
which have contributed to establish the foundations of the field

target tracking,
interacting particle systems,
empirical processes,
genetic algorithms (GA),
hidden Markov models and nonlinear filtering,
Bayesian statistics,
Markov chain Monte Carlo (MCMC) methods.

These algorithms can be interpreted as numerical approximation schemes
for Feynman–Kac distributions, a pathwise generalization of Gibbs–Boltzmann
distributions,
in terms of the weighted empirical probability distribution
associated with a system of particles.
This abstract point of view  [42] , [40] ,
has proved to be extremely fruitful in providing a very general
framework to the design and analysis of numerical approximation schemes,
based on systems of branching and / or interacting particles,
for nonlinear dynamical systems with values in the space of probability
distributions, associated with Feynman–Kac distributions.
Many asymptotic results have been proved as the number N of
particles (sample size) goes to infinity,
using techniques coming from applied probability (interacting particle
systems, empirical processes  [74] ),
see e.g. the survey article  [42] 
or the recent textbook  [40] , and references therein

convergence in Lp,
convergence as empirical processes indexed by classes of functions,
uniform convergence in time, see also  [63] , [64] ,
central limit theorem, see also  [59] ,
propagation of chaos,
large deviations principle,
etc.

The objective here is to
systematically study the impact of the many algorithmic variants
on the convergence results.


[bookmark: uid14] Section: 
      Scientific Foundations
Statistics of HMM

Hidden Markov models (HMM) form a special case of partially
observed stochastic dynamical systems, in which the state of a Markov
process (in discrete or continuous time, with finite or continuous
state space) should be estimated from noisy observations.
The conditional probability distribution of the hidden state given
past observations is a well–known example of a normalized (nonlinear)
Feynman–Kac distribution,
see 
	3.1 .
These models are very flexible, because of the introduction of latent
variables (non observed) which allows to model complex time dependent
structures, to take constraints into account, etc.
In addition, the underlying Markovian structure makes it possible
to use numerical algorithms (particle filtering, Markov chain Monte Carlo
methods (MCMC), etc.) which are computationally intensive
but whose complexity is rather small.
Hidden Markov models are widely used in various applied areas, such as
speech recognition, alignment of biological sequences, tracking in
complex environment, modeling and control of networks, digital
communications, etc.

Beyond the recursive estimation of a hidden state from noisy
observations, the problem arises of statistical inference of HMM
with general state space  [38] ,
including estimation of model parameters,
early monitoring and diagnosis of small changes in model parameters,
etc.

Large time asymptotics   A fruitful approach is the asymptotic study, when the observation
time increases to infinity, of an extended Markov chain, whose
state includes (i) the hidden state, (ii) the observation,
(iii) the prediction filter (i.e. the conditional probability
distribution of the hidden state given observations at all previous
time instants), and possibly (iv) the derivative of the prediction
filter with respect to the parameter.
Indeed, it is easy to express the log–likelihood function,
the conditional least–squares criterion, and many other clasical
contrast processes, as well as their derivatives with respect to
the parameter, as additive functionals of the extended Markov chain.

The following general approach has been proposed


	[bookmark: uid15] first, prove an exponential stability property (i.e. an exponential forgetting property of the initial condition) of the
prediction filter and its derivative, for a misspecified model,



	[bookmark: uid16] from this, deduce a geometric ergodicity property
and the existence of a unique invariant probability distribution
for the extended Markov chain, hence a law of large numbers
and a central limit theorem for a large class of contrast processes
and their derivatives, and a local asymptotic normality property,



	[bookmark: uid17] finally, obtain the consistency (i.e. the convergence
to the set of minima of the associated contrast function), and the
asymptotic normality of a large class of minimum contrast estimators.




This programme has been completed in the case of a finite state
space [7] , and has been generalized  [43] 
under an uniform minoration assumption for the Markov transition kernel,
which typically does only hold when the state space is compact.
Clearly, the whole approach relies on the existence of an exponential
stability property of the prediction filter, and the main challenge
currently is to get rid of this uniform minoration assumption for
the Markov transition kernel  [41] , [64] ,
so as to be able to consider more interesting situations, where
the state space is noncompact.

Small noise asymptotics   Another asymptotic approach can also be used, where it is rather easy
to obtain interesting explicit results, in terms close to the language
of nonlinear deterministic control theory  [58] .
Taking the simple example where the hidden state is the solution to
an ordinary differential equation, or a nonlinear state model, and
where the observations are subject to additive Gaussian white noise,
this approach consists in assuming that covariances matrices
of the state noise and of the observation noise go simultaneously
to zero. If it is reasonable in many applications to consider that
noise covariances are small, this asymptotic approach is less natural
than the large time asymptotics, where it is enough (provided a
suitable ergodicity assumption holds) to accumulate observations
and to see the expected limit laws (law of large numbers, central
limit theorem, etc.). In opposition, the expressions obtained in the
limit (Kullback–Leibler divergence, Fisher information matrix, asymptotic
covariance matrix, etc.) take here a much more explicit form than in the
large time asymptotics.

The following results have been obtained using this approach


	[bookmark: uid18] the consistency of the maximum likelihood estimator (i.e. the convergence to the set M of global minima of the Kullback–Leibler
divergence), has been obtained using large deviations techniques,
with an analytical approach  [55] ,



	[bookmark: uid19] if the abovementioned set M does not reduce to the true
parameter value, i.e. if the model is not identifiable, it is still
possible to describe precisely the asymptotic behavior of the
estimators  [56] : in the simple case where the state
equation is a noise–free ordinary differential equation and using
a Bayesian framework,
it has been shown that (i) if the rank r of the Fisher
information matrix I is constant in a neighborhood of the
set M, then this set is a differentiable submanifold of
codimension r, (ii) the posterior probability distribution of the
parameter converges to a random probability distribution in the limit,
supported by the manifold M, absolutely continuous w.r.t. the Lebesgue measure on M, with an explicit expression for the density,
and (iii) the posterior probability distribution of the suitably
normalized difference between the parameter and its projection on
the manifold M, converges to a mixture of Gaussian probability
distributions on the normal spaces to the manifold M, which
generalized the usual asymptotic normality property,



	[bookmark: uid20] it has been shown  [65] 
that (i) the parameter dependent
probability distributions of the observations are locally asymptotically
normal (LAN)  [61] , from which the asymptotic
normality of the maximum likelihood estimator follows, with an explicit
expression for the asymptotic covariance matrix, i.e. for the Fisher
information matrix I, in terms of the Kalman filter
associated with the linear tangent linear Gaussian model,
and (ii) the score function (i.e. the derivative of the log–likelihood
function w.r.t. the parameter), evaluated at the true value of the
parameter and suitably normalized, converges to a Gaussian r.v. with
zero mean and covariance matrix I.





[bookmark: uid21] Section: 
      Scientific Foundations
Multilevel splitting for rare event simulation
See 
	4.2 ,
and 
	6.1 ,

	6.6 ,

	6.10 
and 
	6.11 .




The estimation of the small probability of a rare but critical event,
is a crucial issue in industrial areas such as

nuclear power plants,
food industry,
telecommunication networks,
finance and insurance industry,
air traffic management, etc.

In such complex systems, analytical methods cannot be used, and
naive Monte Carlo methods are clearly unefficient to estimate accurately
very small probabilities.
Besides importance sampling, an alternate widespread technique
consists in multilevel splitting  [60] ,
where trajectories going towards the
critical set are given offsprings, thus increasing the number of
trajectories that eventually reach the critical set.
As shown in [5] , the Feynman–Kac formalism
of 
	3.1  is well suited for the design
and analysis of splitting algorithms for rare event simulation.

Propagation of uncertainty   Multilevel splitting can be used in static situations. Here, the
objective is to learn the probability distribution of an output random
variable Y = F(X), where the function F is only defined pointwise
for instance by a computer programme, and where the probability distribution
of the input random variable X is known and easy to simulate from.
More specifically, the objective
could be to compute the probability of the output random variable
exceeding a threshold, or more generally to evaluate the
cumulative distribution function of the output random variable for
different output values.
This problem is characterized by
the lack of an analytical expression for the function, the
computational cost of a single pointwise evaluation of the function,
which means that the number of calls to the function should be limited as
much as possible, and finally the complexity and / or unavailability of the
source code of the computer programme, which makes any modification
very difficult or even impossible, for instance to change the model as in
importance sampling methods.

The key issue is to learn as fast as possible regions of the input space
which contribute most to the computation of the target quantity. The
proposed splitting methods consists in (i) introducing a sequence of
intermediate regions in the input space, implicitly defined by exceeding
an increasing sequence of thresholds or levels, (ii) counting the fraction
of samples that reach a level given that the previous level has been
reached already, and (iii) improving the diversity of the selected
samples, usually using an artificial Markovian dynamics.
In this way, the algorithm learns


	[bookmark: uid22] the transition probability between successive levels, hence
the probability of reaching each intermediate level,



	[bookmark: uid23] and the probability distribution of the input random variable,
conditionned on the output variable reaching each intermediate level.




A further remark, is that this conditional probability distribution is
precisely the optimal (zero variance) importance distribution needed to
compute the probability of reaching the considered intermediate level.

Rare event simulation   To be specific, consider a complex dynamical system modelled as a Markov
process, whose state can possibly contain continuous components and
finite components (mode, regime, etc.), and the objective is to
compute the probability, hopefully very small, that a critical region
of the state space is reached by the Markov process before a final
time T, which can be deterministic and fixed, or random (for instance
the time of return to a recurrent set, corresponding to a nominal
behaviour).

The proposed splitting method consists in (i) introducing a decreasing
sequence of intermediate, more and more critical, regions in the state
space, (ii) counting the fraction of trajectories that reach an
intermediate region before time T, given that the previous intermediate
region has been reached before time T, and (iii) regenerating the
population at each stage, through redistribution. In addition to the
non–intrusive behaviour of the method, the splitting methods make it
possible to learn the probability distribution of typical critical
trajectories, which reach the critical region before final time T,
an important feature that methods based on importance sampling usually
miss.
Many variants have been proposed, whether


	[bookmark: uid24] the branching rate (number of offsprings allocated to a
successful trajectory) is fixed, which allows for depth–first exploration
of the branching tree, but raises the issue of controlling the population
size,



	[bookmark: uid25] the population size is fixed, which requires a breadth–first
exploration of the branching tree, with random (multinomial) or deterministic
allocation of offsprings, etc.




Just as in the static case, the algorithm learns


	[bookmark: uid26] the transition probability between successive levels, hence
the probability of reaching each intermediate level,



	[bookmark: uid27] and the entrance probability distribution of the Markov process
in each intermediate region.




Contributions have been given to


	[bookmark: uid28] minimizing the asymptotic variance, obtained through a
central limit theorem, with respect to the shape of the intermediate
regions (selection of the importance function), to the thresholds (levels),
to the population size, etc.



	[bookmark: uid29] controlling the probability of extinction (when not even one
trajectory reaches the next intermediate level),



	[bookmark: uid30] designing and studying variants suited for hybrid state space
(resampling per mode, marginalization, mode aggregation),




and in the static case, to


	[bookmark: uid31] minimizing the asymptotic variance, obtained through a central
limit theorem, with respect to intermediate levels, to the Metropolis
kernel introduced in the mutation step, etc.




A related issue is global optimization. Indeed, the difficult problem
of finding the set M of global minima of a real–valued function V
can be replaced by the apparently simpler problem of sampling a population
from a probability distribution depending on a small parameter,
and asymptotically supported by the set M as the small parameter goes
to zero. The usual approach here is to use the cross–entropy
method  [68] , [39] , which relies on learning
the optimal importance distribution within a prescribed parametric
family. On the other hand, multilevel splitting methods could provide
an alternate nonparametric approach to this problem.


[bookmark: uid32] Section: 
      Scientific Foundations
Nearest neighbor estimates

This additional topic was not present in the initial list of objectives,
and has emerged only recently.

In pattern recognition and statistical learning, also known as machine
learning, nearest neighbor (NN) algorithms are amongst the simplest but
also very powerful algorithms available.
Basically, given a training set of data, i.e. an N–sample of i.i.d. object–feature pairs, with real–valued features,
the question is how to generalize,
that is how to guess the feature associated with any new object.
To achieve this, one chooses some integer k smaller than N, and
takes the mean–value of the k features associated with the k objects
that are nearest to the new object, for some given metric.

In general, there is no way to guess exactly the value of the feature
associated with the new object, and the minimal error that can be done
is that of the Bayes estimator, which cannot be computed by lack of knowledge
of the distribution of the object–feature pair, but the Bayes estimator
can be useful to characterize the strength of the method.
So the best that can be expected is that the NN estimator converges, say
when the sample size N grows, to the Bayes estimator. This is what has been
proved in great generality by Stone  [69]  for the mean square
convergence, provided that the object is a finite–dimensional random
variable, the feature is a square–integrable random variable,
and the ratio k/N goes to 0.
Nearest neighbor estimator is not the only local averaging estimator with
this property, but it is arguably the simplest.

The asymptotic behavior when the sample size grows is well understood in
finite dimension, but the situation is radically different in
general infinite dimensional spaces, when the objects to be classified
are functions, images, etc.

Nearest neighbor classification in infinite dimension   In finite dimension, the k–nearest neighbor classifier
is universally consistent, i.e. its probability of error converges to
the Bayes risk as N goes to infinity, whatever the joint probability
distribution of the pair, provided that the ratio k/N goes to zero.
Unfortunately, this result is no longer valid in general metric spaces,
and the objective is to find out reasonable sufficient conditions for
the weak consistency to hold. Even in finite dimension, there are exotic
distances such that the nearest neighbor does not even get closer (in the
sense of the distance) to the point of interest, and the state space
needs to be complete for the metric, which is the first condition.
Some regularity on the regression function is required next. Clearly,
continuity is too strong because it is not required in finite dimension,
and a weaker form of regularity is assumed. The following consistency
result has been obtained: if the metric space is separable and
if some Besicovich condition holds, then the nearest neighbor classifier
is weakly consistent.
Note that the Besicovich condition is always fulfilled in finite dimensional
vector spaces (this result is called the Besicovich theorem), and that
a counterexample [3]  can be given in an infinite
dimensional space with
a Gaussian measure (in this case, the nearest neighbor classifier is clearly
nonconsistent). Finally, a simple example has been found which verifies
the Besicovich condition with a noncontinuous regression function.

Rates of convergence of the functional k–nearest neighbor
estimator   Motivated by a broad range of potential applications, such as regression
on curves, rates of convergence of the k–nearest neighbor estimator
of the regression function, based on N independent copies of the
object–feature pair, have been investigated
when the object is in a suitable ball in some functional space.
Using compact embedding theory, explicit and general finite sample bounds
can be obtained for the expected squared difference between the k–nearest
neighbor estimator and the Bayes regression function, in a very general
setting. The results have also been
particularized to classical function spaces such as Sobolev spaces,
Besov spaces and reproducing kernel Hilbert spaces.
The rates obtained are genuine nonparametric convergence rates,
and up to our knowledge the first of their kind for k–nearest neighbor
regression.

This emerging topic has produced several theoretical
advances [1] , [2] 
in collaboration with Gérard Biau (université Pierre et Marie Curie,
ENS Paris and EPI CLASSIC, Inria Paris—Rocquencourt),
and a possible target application domain has been identified
in the statistical analysis of recommendation systems, that would
be a source of interesting problems.
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Localisation, navigation and tracking
See 
	6.9 .




Among the many application domains of particle methods, or interacting
Monte Carlo methods, ASPI has decided to focus on applications
in localisation (or positioning), navigation and
tracking  [53] , [47] , which already covers a very broad
spectrum of application domains. The objective here is to estimate
the position (and also velocity, attitude, etc.) of a mobile object,
from the combination of different sources of information, including


	[bookmark: uid35] a prior dynamical model of typical evolutions of the mobile,
such as inertial estimates and prior model for inertial errors,



	[bookmark: uid36] measurements provided by sensors,



	[bookmark: uid37] and possibly a digital map providing some useful feature
(terrain altitude, power attenuation, etc.) at each possible position.




In some applications, another useful source of information is provided by


	[bookmark: uid38] a map of constrained admissible displacements, for instance in
the form of an indoor building map,




which particle methods can easily handle (map-matching).
This Bayesian dynamical estimation problem is also called filtering,
and its numerical implementation using particle methods, known as
particle filtering, has been introduced by the target tracking
community  [52] , [67] , which has already contributed
to many of the most interesting algorithmic improvements and is still
very active, and has found applications in

target tracking,
integrated navigation,
points and / or objects tracking in video sequences,
mobile robotics,
wireless communications,
ubiquitous computing and ambient intelligence,
sensor networks, etc.

ASPI is contributing (or has contributed recently)
to several applications of particle filtering in
positioning, navigation and tracking, such as
geolocalisation and tracking in a wireless network,
terrain–aided navigation,
and data fusion for indoor localisation.
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Rare event simulation
See 
	3.3 ,
and 
	6.1 ,

	6.6 ,

	6.10 
and 
	6.11 .




Another application domain of particle methods, or interacting Monte Carlo
methods, that ASPI has decided to focus on is the estimation of the small
probability of a rare but critical event, in complex dynamical systems.
This is a crucial issue in industrial areas such as

nuclear power plants,
food industry,
telecommunication networks,
finance and insurance industry,
air traffic management, etc.

In such complex systems, analytical methods cannot be used, and naive
Monte Carlo methods are clearly unefficient to estimate accurately
very small probabilities.
Besides importance sampling, an alternate widespread technique
consists in multilevel splitting  [60] ,
where trajectories going towards the
critical set are given offsprings, thus increasing the number of
trajectories that eventually reach the critical set.
This approach not only makes it possible to estimate the probability of
the rare event, but also provides realizations of the random trajectory,
given that it reaches the critical set, i.e. provides realizations of typical
critical trajectories, an important feature that methods based on importance
sampling usually miss.

ASPI is contributing (or has contributed recently)
to several applications of multilevel splitting for
rare event simulation, such as risk assessment in air traffic management,
detection in sensor networks,
and protection of digital documents.
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This is a collaboration with Tony Lelièvre (ENPC).

Motivated by some numerical observations on molecular dynamics
simulations, we analyze metastable trajectories in a very simple
setting, namely paths generated by a one-dimensional overdamped Langevin
equation for a double well potential. More precisely, we are
interested in so–called reactive paths, namely trajectories which
leave definitely one well and reach the other one.
The aim of [32] 
is to precisely analyze the distribution of the lengths of
reactive paths in the limit of small temperature, and to compare the
theoretical results to numerical results obtained by a Monte Carlo method,
namely the multi–level splitting approach.
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Long time behavior of piecewise–deterministic
Markov processes
Participant :
      Florent Malrieu.


This is a collaboration with Michel Benaïm (université de Neuchâtel),
Stéphane Le Borgne (IRMAR) and Pierre–André Zitt (université
de Marne–la–Vallée).

[bookmark: uid43] Quantitative ergodicity for some switched
dynamical systems

We provide quantitative bounds for the long time behavior of a class of
piecewise deterministic Markov processes with state space Rd×E
where E is a finite set. The continuous component evolves
according to a smooth vector field that switches at the jump times of
the discrete coordinate. The jump rates may depend on the whole
position of the process. Under regularity assumptions on the jump
rates and stability conditions for the vector fields we provide
explicit exponential upper bounds for the convergence to equilibrium
in terms of Wasserstein distances [13] . As an example, we obtain
convergence results for a stochastic version of the Morris–Lecar model
of neurobiology.


[bookmark: uid44] On the stability of planar randomly
switched systems

Consider the random process (Xt) solution of dXt/dt = A(It)Xt
where (It) is a Markov process on {0, 1} and A0 and A1 are real
Hurwitz matrices on R2. Assuming that there exists λ[image: $ \in$](0, 1)
such that (1-λ)A0 + λA1 has a
positive eigenvalue, we establish that the norm of Xt may converge
to 0 or infinity, depending on the the jump rate of the process I.
An application to product of random matrices is studied.
The paper [29] 
can be viewed as a probabilistic counterpart
of the paper  [36]  by Baldé, Boscain and Mason.


[bookmark: uid45] Qualitative properties of certain
piecewise deterministic Markov processes

We study a class of piecewise deterministic Markov processes with
state space Rm×E where E is a finite set. The continous
component evolves according to a smooth vector field that it switched
at the jump times of the discrete coordinate. The jump rates may
depend on the whole position of the process. Working under the
general assumption that the process stays in a compact set, we detail
a possible construction of the process and characterize its support,
in terms of the solutions set of a differential inclusion. We
establish results on the long time behaviour of the process, in
relation to a certain set of accessible points, which is shown to be
strongly linked to the support of invariant measures. Under
Hörmander–type bracket conditions, we prove that there exists a
unique invariant measure and that the processes converges to
equilibrium in total variation. Finally we give examples where the
bracket condition does not hold, and where there may be one or many
invariant measures,
depending on the jump rates between the flows [30] .
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Quantitative long time behavior of an ergodic variant of the telegraph process
Participant :
      Florent Malrieu.


This is a collaboration with Joaquin Fontbona (University of Chile)
and Hélène Guérin (IRMAR).

Motivated by stability questions on piecewise deterministic Markov
models of bacterial chemotaxis, we study the long time behavior of a
variant of the classic telegraph process having a non–constant jump
rate that induces a drift towards the origin. We compute its invariant
law and show exponential ergodicity, obtaining a quantitative control
of the total variation distance to equilibrium at each instant of time.
These results [15] 
rely on an exact description of the excursions of
the process away from the origin and on the explicit construction of
an original coalescent coupling for both velocity and position.
Sharpness of the obtained convergence rate is discussed.
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Total variation estimates for the TCP process
Participant :
      Florent Malrieu.


This is a collaboration with Jean-Baptiste Bardet (université de Rouen),
Alejandra Christen (University of Chile),
Arnaud Guillin (université de Clermont–Ferrand),
and Pierre–André Zitt (université de Marne–la–Vallée).

The TCP window size process appears in the modeling of the famous
Transmission Control Protocol used for data transmission over the
Internet. This continuous time Markov process takes its values
in [0, ∞), is ergodic and irreversible. The sample paths are
piecewise linear deterministic and the whole randomness of the
dynamics comes from the jump mechanism.
The aim of [28] 
is to provide quantitative estimates for the exponential convergence
to equilibrium, in terms of the total variation and Wasserstein
distances.
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computation
Participants :
      Frédéric Cérou, Arnaud Guyader.


This is a collaboration with Gérard Biau (ENS and université Pierre
et Marie Curie).

Approximate Bayesian computation (ABC for short) is a family of
computational techniques which offer an almost automated solution in
situations where evaluation of the posterior likelihood is
computationally prohibitive, or whenever suitable likelihoods are not
available. In [31] ,
we analyze the procedure from the point of
view of k-nearest neighbor theory and explore the statistical
properties of its outputs. We discuss in particular some asymptotic
features of the genuine conditional density estimate associated with
ABC, which is a new interesting hybrid between a k-nearest neighbor
and a kernel method. These are among the very few results on the
convergence of ABC, and our assumptions on the underlying probability
distribution are minimal.
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This is a collaboration with Nicolas Hengartner (Los Alamos).

It is well established now that one can use adaptive splitting levels
to compute the conditional probabilities of nested sets. To get an
efficient algorithm, the probability of a set given the previous one
should be always the same, which is approximately achieved adaptively
by using the empirical cdf (cumulative distribution function) of the scores.
The way to proceed is to fix
a probability of success p0, and then choose the p0 quantile of the
current scores. Here we investigate whether, by using the whole cdf,
and not only one quantile, we can design an algorithm with better
performance. The main trick is a transformation to have a sample of
exponential variables. This would require the knowledge of the cdf of
the cost, which is obviously unvailable, but we can replace it by the
empirical cdf of the sample at the previous level.
The complete theoretical study of this algorithm is still to be done,
but we have illustrated by some examples that it can lead to
significantly better results than the standard splitting procedure
with the same number of intermediate levels.


[bookmark: uid50] Section: 
      New Results
Decoding fingerprints using the Markov
chain Monte Carlo method
Participants :
      Frédéric Cérou, Arnaud Guyader.


This is a collaboration with Teddy Furon (Inria Rennes, project–team TEXMEX).

The paper [22]  proposes a new fingerprinting
decoder based on the Markov chain Monte Carlo (MCMC) method.
A Gibbs sampler generates groups of users according to the posterior
probability that these users could have forged the sequence
extracted from the pirated content. The marginal probability that
a given user pertains to the collusion is then estimated by a Monte
Carlo method. The users having the biggest empirical marginal
probabilities are accused. This MCMC method can decode any
type of fingerprinting codes.
This paper is in the spirit of the learn and match decoding
strategy: it assumes that the collusion attack belongs to a family
of models. The expectation–maximization algorithm estimates
the parameters of the collusion model from the extracted sequence.
This part of the algorithm is described for the binary
Tardos code and with the exploitation of the soft outputs of the
watermarking decoder.
The experimental body considers some extreme setups where
the fingerprinting code lengths are very small. It reveals that the
weak link of our approach is the estimation part. This is a clear
warning to the learn and match decoding strategy.
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Iterative isotone regression
Participants :
      Arnaud Guyader, Nicolas Jégou.


This is a collaboration with Nicolas Hengartner (Los Alamos)
and Eric Matzner–Løber (université de Rennes 2),
and with Alexander B. Németh (Babeş Bolyai University)
and Sándor Z. Németh (University of Birmingham).

The current collaboration on nonparametric regression focuses on a
novel nonparametric regression technique that applies ideas borrowed
from iterative bias reduction to estimating functions of bounded
variations. This work has emerged from the joint supervision of
Nicolas Jégou's PhD thesis
by Arnaud Guyader, Nick Hengartner and Eric Matzner-Løber.

A geometric approach has been investigated, as an extension of some ideas
developed in the thesis.
The current work [33] 
proposes and analyzes a novel method for estimating a
univariate regression function of bounded variation. The underpinning
idea is to combine two classical tools in nonparametric statistics,
namely isotonic regression and the estimation of additive models. A
geometrical interpretation enables us to link this iterative method
with Von Neumann's algorithm. Moreover, making a connection with the
general property of isotonicity of projection onto convex cones, we
derive another equivalent algorithm and go further in the analysis. As
iterating the algorithm leads to overfitting, several practical
stopping criteria are also presented and discussed.
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This is a collaboration with Olivier Rabaste (ONERA Palaiseau).

Track–before–detect refers to situations where the target SNR is so
low that it is practically impossible to detect the presence of a target,
using a simple thresholding rule. In such situations, the solution is
to keep all the information available in the raw radar data and to
address directly the tracking problem, using a particle filter with
a binary Markov variable that models the presence or absence of the target.
The choice of the proposal distribution is crucial here,
and an efficient particle filter is proposed [24] 
that is based on a relevant proposal distribution built from detection
and estimation considerations, that aims
at extracting all the available information from the measurements.
The proposed filter leads to a dramatically improved performance as
compared with particle filters based on the classical proposal
distribution, both in terms of detection and estimation.
A further improvement, in terms of detection performance, is to model the
problem as a quickest change detection problem  [70] 
in a Bayesian framework.
In this context, the posterior distribution of the first time of appearance
of the target is a mixture where each component represents the hypothesis
that the target appeared at a given time.
The posterior distribution is intractable in practice,
and it is proposed [23]  to approximate each component
of the mixture by a particle filter. It turns out that the mixture weights
can be computed recursively in terms of quantities that are provided by the
different particle filters. The overall filter yields good performance as
compared with classical particle filters for track–before–detect.
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This is a collaboration with Jérôme Morio (ONERA Palaiseau).

In [16] ,
the conflict probability between aircraft in uncontrolled airspace
is estimated using the importance splitting method, and
this algorithm is applied on realistic situations of aircraft conflict.
The current work aims at designing efficient intermediate regions at a
reasonnable computational cost, or alternatively at introducing weights
to compensate for a simple but suboptimal design of the intermediate
regions.
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This is a collaboration with Jérôme Morio (ONERA Palaiseau).

The paper [19]  first reviews the principle of
minimum volume set estimation of a given probability level
for a multidimensional density, a strategy that provides a sound solution
to the multidimensional quantile issue.
It then describes an importance sampling algorithm that is suitable for
this kind of estimation problems, and provides simulation results
for the estimation of the impact zone of a space launcher.
The current work aims at designing an importance splitting method
that would be more efficient for extreme quantiles.
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      New Results
Laplace and sequential Monte Carlo methods
in Bayesian filtering
Participants :
      François Le Gland, Paul Bui--Quang.


This is a collaboration with Christian Musso (ONERA Palaiseau).

The Laplace method is a deterministic technique to approximate integrals,
and it has been widely used in Bayesian statistics, e.g. to compute
posterior means and variances  [72] .
The approximation is consistent as the observations sample size goes to
infinity or as the observation noise intensity goes to zero, and the main
condition to apply the method is that the model should be identifiable.
The aim of [21]  is to combine SMC methods
and the Laplace method in order to better approximate the posterior
density in nonlinear Bayesian filtering.
At each stage of the proposed algorithm,
a first approximate density is build from the current
population of particles, then an accurate estimate of the posterior mean
and covariance matrix is obtained using the Laplace method,
and these estimates are used to shift and rescale the population of
particles.
Overall, this procedure could be interpreted as another design of
an importance distribution that takes the observations into account.
The current work aims at using the Laplace method to cope with weight
degeneracy in particle filtering, a phenomenon that typically occurs
when the observation noise is small, which is precisely the situation
where the Laplace method is efficient.
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      New Results
Wind–wave modelling
Participant :
      Valérie Monbet.


This is a collaboration with Pierre Ailliot (UBO).

Climate change will bring large changes to the mean climate, and
especially to climate extremes, over the coming
decades. Computationally expensive global climate model (GCM)
projections provide good information about future mean
changes. Computationally efficient, yet physically consistent,
statistical models of weather variables (stochastic weather
generators) allow us to explore the frequency and severity of weather
and climate events in much greater detail. When deployed as a
complement to GCMs, stochastic weather generators provide a much
richer picture of the future, allowing us to better understand,
evaluate and manage future weather and climate risks, especially for
renewal energy. In this context we are developing a space time model
for wind fields in the North–East Atlantic, based on a conditionally
transformed Gaussian state space model.


[bookmark: uid57] Section: 
      New Results
Sequential data assimilation:
ensemble Kalman filter vs. particle filter
Participants :
      François Le Gland, Valérie Monbet.


Surprisingly, very little was known about the asymptotic behaviour of
the ensemble Kalman filter  [44] , [45] , [46] ,
whereas on the other hand, the asymptotic behaviour of many different
classes of particle filters is well understood, as the number of particles
goes to infinity.
Interpreting the ensemble elements as a population of particles with
mean–field interactions,
and not only as an instrumental device producing an estimation
of the hidden state as the ensemble mean value, it has been possible to
prove the convergence of the ensemble Kalman filter, with a rate of
order [image: Im1 ${1/\sqrt N}$], as the number N of ensemble elements increases to
infinity  [62] .
In addition, the limit of the empirical distribution of the
ensemble elements has been exhibited, which differs from the
usual Bayesian filter.
The next step has been to prove (by induction) the asymptotic normality
of the estimation error, i.e. to prove a central limit theorem for
the ensemble Kalman filter.
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Scientific animation

Arnaud Guyader and Frédéric Cérou have co–organized the workshop
on Computation of Transition Trajectories and Rare Events
in Non-Equilibrium Systems, held in Lyon in June 2012.

Arnaud Guyader has organized the session
on Rare Events Simulation
at Journées MAS de la SMAI, held in Clermont–Ferrand
in August 2012.
He has also co–organized the 2012 edition
of the Journées de Statistiques Rennaises,
held in Rennes in October 2012.
He is the co–author of a book [27] 
on the statistical software R.

François Le Gland was a member of the scientific and organizing
committees for the international conference
on Ensemble Methods in Geophysical Sciences,
held in Toulouse in November 2012,
an event organized within the ANR project PREVASSEMBLE.

François Le Gland has been a member of the committee for the PhD
thesis of Cyrille Dubarry (université Pierre et Marie Curie, advisor:
Éric Moulines)
and he as been a reviewer for the PhD theses
of Romain Leroux (université de Poitiers, advisors: Ludovic Chatellier
and Laurent David),
Virgile Caron (université Pierre et Marie Curie, advisor:
Michel Broniatowski),
and Thierry Dumont (université Paris–Sud, advisor:
Elisabeth Gassiat).

Florent Malrieu has co–organized the 2012 edition
of Journées de probabilités, held in Roscoff in June 2012.

Valérie Monbet has co–organized
the first international workshop on Stochastic Weather Generators,
held in Roscoff in May 2012.
It gathered 30 participants from France, UK, USA and New-Zealand.
Most major teams working on WGs were present. The latest developments
were presented, thus providing an up–to–date and almost comprehensive
snapshot of the state–of–the art.

François Le Gland is a member of
the “conseil d'UFR” of the department of mathematics of université
de Rennes 1.

Florent Malrieu is a member of the “conseil” of IRMAR (institut de
recherche mathématiques de Rennes, UMR 6625).

Valérie Monbet is a member of the “comité de direction”
and of the “conseil” of IRMAR (institut de recherche mathématiques
de Rennes, UMR 6625).
She is also the director of the master on statistics and
econometry at université de Rennes 1.
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Arnaud Guyader is a member of the committee
of “oraux blancs d'agrégation de mathématiques” for ENS Cachan
at Ker Lann.

François Le Gland gives a course on
Kalman filtering and hidden Markov
models ,
at université de Rennes 1,
within the master SISEA (signal, image, systèmes embarqués, automatique,
école doctorale MATISSE),
a 3rd year course on
Bayesian filtering and particle
approximation ,
at ENSTA (école nationale supérieure de techniques avancées), Paris,
within the systems and control module,
a 3rd year course on
linear and nonlinear
filtering ,
at ENSAI (école nationale de la statistique et de l'analyse de
l'information), Ker Lann, within the statistical engineering track,
and a 3rd year course on
hidden Markov
models ,
at Télécom Bretagne, Brest.
He has also organized a thematic school on
particle
filtering ,
proposed as a complementary scientific training
to PhD students of école doctorale MATISSE.

Florent Malrieu teaches in the probability and statistics track
of the training programme for “agrégation de mathématiques”
at université de Rennes 1.

Valérie Monbet gives several courses
on data analysis,
on time series and hidden Markov models,
and on mathematical statistics,
all at université de Rennes 1 within the master on statistics and
econometrics.
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PhD and habilitation theses

Arnaud Guyader has been supervising one PhD student


	[bookmark: uid65] Nicolas Jégou,
title: Régression isotonique itérée,
defense in November 2012,
co–direction: Nick Hengartner (Los Alamos)
and Éric Matzner–Løber (université de Rennes 2).




Valérie Monbet is currently supervising one PhD student


	[bookmark: uid66] Julie Bessac,
provisional title: Space time modelling of wind fields,
started in October 2011,
co–direction : Pierre Ailliot (université de Bretagne Occidentale),




and she is a member of the PhD thesis committe of


	[bookmark: uid67] Jérôme Weiss,
provisional title: Modelling of extreme storm surge series,
funding : CIFRE grant with EDF R&D,
direction : Michel Benoît (Laboratoire d'Hydraulique Saint-Venant).




François Le Gland has been supervising one PhD student


	[bookmark: uid68] Rudy Pastel,
title: Estimation of rare event probabilities
and extreme quantiles. Applications in the aerospace domain,
defense in February 2012,
funding: ONERA grant,
co–direction: Jérôme Morio (ONERA, Palaiseau).




and he is currently supervising three PhD students


	[bookmark: uid69] Paul Bui–Quang,
provisional title: The Laplace method for particle filtering,
started in October 2009,
expected defense in 2013,
funding: ONERA grant,
co–direction: Christian Musso (ONERA, Palaiseau).



	[bookmark: uid70] Alexandre Lepoutre,
provisional title: Detection issues in track–before–detect,
started in October 2010,
funding: ONERA grant,
co–direction: Olivier Rabaste (ONERA, Palaiseau).



	[bookmark: uid71] Damien Jacquemart,
provisional title: Rare event methods for the estimation of collision
risk,
started in October 2011,
funding: DGA / ONERA grant,
co–direction: Jérôme Morio (ONERA, Palaiseau).
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Participation in workshops, seminars,
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In addition to presentations with a publication in the proceedings,
which are listed at the end of the document in the bibliography,
members of ASPI have also given the following presentations.

Arnaud Guyader has been invited to give a talk
on adaptive multilevel splitting for rare event estimation in a static case,
at the workshop
on Sequential Monte Carlo Methods and Efficient Simulation in Finance,
held at École Polytechnique in October 2012,
and a talk on Monte Carlo methods for rare event simulation,
at the Rencontres Statistiques Lyonnaises,
held in Lyon in October 2012.
He has given a talk on the nonparametric analysis of the ABC algorithm
and a talk on iterative isotone regression,
at the 44èmes Journées de Statistique,
held in Brussels in May 2012,
and a talk on soft level splitting for rare event estimation,
at the 9th International Workshop on Rare Event Simulation,
held in Trondheim in June 2012.

François Le Gland has given a talk
on adaptive resampling in sequential Monte Carlo methods,
at the CRiSM workshop on Recent Advances in Sequential Monte Carlo,
held at the University of Warwick in September 2012,
and a talk
on large sample asymptotics of the ensemble Kalman filter,
at the workshop on Data Assimilation,
held at the University of Oxford in September 2012,
and
at the international conference
on Ensemble Methods in Geophysical Sciences,
held at the Météo–France center in Toulouse in November 2012.

Florent Malrieu has given a three–hour mini–course
on the long time asymptotics of piecewise–deterministic Markov models,
in the workshop on Piecewise–Deterministic Markov Processes,
held in Marne–la–Vallée in March 2012.
He has been an invited speaker at the ERGONUM workshop
on Probabilistic Analysis of Large Time Systems,
held in Sophia–Antipolis in June 2012, and
at the EPSRC workshop At the Frontier of Analysis and Probability,
held in Warwick in September 2012.
He has been invited to give seminar talks
on the long time behaviour of the TCP process
in Marseilles in January 2012
and in Paris–Nanterre in May 2012,
and on the long time behaviour of some piecewise deterministic Markov processes
in Tours in October 2012,
in Montpellier and in Toulouse in November 2012.
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Visits and invitations

Arnaud Guyader has been invited by Nicolas Hengartner
to visit Los Alamos National Laboratories in April 2012.

François Le Gland has been invited by Arunabha Bagchi
to visit the department of applied mathematics of the University
of Twente in Enschede
and the technical business unit on radar engineering
at Thalès Nederland in Hengelo in December 2012,
and he has given there
a talk on rare event simulation in stochastic hybrid systems,
a talk on Laplace and SMC methods in Bayesian filtering,
and a talk on detection issues in track–before–detect.
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This ANR project is coordinated by École Normale Supérieure, Paris.
The other partner is Météo–France.
This is a collaboration with Étienne Mémin and Anne Cuzol (Inria Rennes
Bretagne Atlantique, project–team FLUMINANCE).


The contribution of ASPI to this project is to continue
the comparison of sequential data assimilation methods
initiated in  [73] , [62] , such as the ensemble Kalman
filter (EnKF) and the weighted ensemble Kalman filter (WEnKF), with
particle filters. This comparison has been made on the basis of asymptotic
variances, as the ensemble or sample size goes to infinity, and also on
the impact of dimension on small sample behavior.


The consortium has organized the international conference
on Ensemble Methods in Geophysical Sciences,
held in Toulouse in November 2012.
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