

[image: cover]

FORMES
Formal Methods for Embedded Systems
2012 Research Team Activity Report
	Paris - Rocquencourt

	 Field :
	 Algorithmics, Programming, Software and Architecture

Theme :
Programs, Verification and Proofs
Presentation of the Team

	Members
	Overall Objectives	[bookmark: uid6]Overall Objectives
	[bookmark: uid10]Highlights of the Year

	Scientific Foundations	[bookmark: uid13]Rewriting and Type theory
	[bookmark: uid14]Verification
	[bookmark: uid15]Decision Procedures
	[bookmark: uid17]Simulation
	[bookmark: uid21]Trustworthy Software

	Application Domains	[bookmark: uid23]Simulation
	[bookmark: uid24]Certified Compilation for Embedded systems
	[bookmark: uid25]Distributed Systems
	[bookmark: uid26]Security

	Software	[bookmark: uid28]aCiNO
	[bookmark: uid29]CoLoR
	[bookmark: uid35]CoqMT
	[bookmark: uid36]EDOLA
	[bookmark: uid37]HOT
	[bookmark: uid38]Moca
	[bookmark: uid41]Rainbow
	[bookmark: uid42]SimSoC
	[bookmark: uid43]SimSoC-Cert

	New Results	[bookmark: uid45]Higher-Order Abstract Syntax
	[bookmark: uid49]CoqMTU
	[bookmark: uid50]Normal Rewriting
	[bookmark: uid51]Decreasing Diagrams
	[bookmark: uid52]Higher-order Reduction Orderings
	[bookmark: uid56]Certification of Termination Proofs
	[bookmark: uid57]Certification of Moca
	[bookmark: uid58]First steps towards the certification of an ARM simulator
	[bookmark: uid59]Certified implementation of BIP
	[bookmark: uid60]Formal model and proofs for Netlog protocols
	[bookmark: uid61]Formalisation of security APIs for mobile phones
	[bookmark: uid62]Trace Analysis

	Bilateral Contracts and Grants with Industry	[bookmark: uid68]Bilateral Contracts with Industry

	Dissemination	[bookmark: uid80]Scientific Animation
	[bookmark: uid81]Teaching - Supervision - Juries
	[bookmark: uid101]Popularization

	Bibliography
		Major publications
	Publications of the year
	References in notes

Formes (http://formes.asia) is one of the projects of the LIAMA
consortium (http://liama.ia.ac.cn). It is funded by CNRS, Inria and
Tsinghua University (http://www.tsinghua.edu.cn), and located at Tsinghua
University, Beijing, China. It was created on September 2008 by
extending with formal methods Vania Joloboff's DeviceWare project on
system-on-chip simulation started in 2007.

Keywords: Simulation, Formal Proof, Rewriting Theory, Termination, VerificationSection: Members
Research Scientists
Frédéric Blanqui [Researcher, HdR]
Vania Joloboff [Senior researcher, team leader since 22/05/12]
Jean-Pierre Jouannaud [Senior researcher, team leader until 21/05/12, HdR]
Jean-François Monin [Senior researcher, HdR]
Guillaume Merle [post doc]
Faculty Members
Ming Gu [Tsinghua professor]
Fei He [Tsinghua assistant professor]
Jianqi Li [Tsinghua assistant professor]
Hehua Zhang [Tsinghua assistant professor]
Hai Wan [Tsinghua assistant professor]

PhD Students
Xiaomu Shi [UJF Grenoble]
Kim-Quyen Ly [UJF Grenoble]
Qian Wang [Tsinghua and École Polytechnique]
Jiaxiang Liu [Tsinghua and École Polytechnique]
Hui Kong [Tsinghua]
Liangze Yin [Tsinghua]
Lianyi Zhang [Tsinghua]
Min Zhou [Tsinghua]
Rui Wang [Tsinghua until 30/06/12]

Administrative Assistants
Lin Cui [Tsinghua, part time]
Mei Zhang [LIAMA, part time]

 Overall Objectives

 	Overall Objectives	[bookmark: uid6]Overall Objectives
	[bookmark: uid10]Highlights of the Year

 [bookmark: uid6] Section:
 Overall Objectives
Overall Objectives

Formes stands for FORmal Methods for Embedded Systems. Formes is
aiming at making research advances towards the development of safe and
reliable embedded systems, by exploiting synergies between two
different approaches, namely (real time) hardware simulation and
formal proofs development.

Embedded systems have become ubiquitous in our everyday life, ranging
from simple sensors to complex systems such as mobile phones, network
routers, airplane, aerospace and defense apparatus. As embedded
devices include increasingly sophisticated hardware and software, the
development of combined hardware and software has become a key to
economic success.

The development of embedded systems uses hardware with increasing
capacities. As embedded devices include increasingly sophisticated
hardware running complex functions, the development of software for
embedded systems is becoming a critical issue for the industry. There
are often stringent time to market and quality requirements for
embedded systems manufacturers. Safety and security requirements are
satisfied by using strong validation tools and some form of formal
methods, accompanied with certification processes such as DO178 or
Common Criteria certification. These requirements for quality of
service, safety and security imply to have formally proved the
required properties of the system before it is deployed.

Within the context described above, the Formes project aims at
addressing the challenges of embedded systems design with a new
approach, combining fast hardware simulation techniques with advanced
formal methods, in order to formally prove qualitative and
quantitative properties of the final system. This approach requires
the construction of a simulation environment and tools for the
analysis of simulation outputs and proofs of properties of the
simulated system. We therefore need to connect simulation tools with
code-analyzers and easy-to-use theorem provers for achieving the
following tasks:

	[bookmark: uid7] Enhance the hardware simulation technologies with new techniques to
improve simulation speed, and produce program representations that are
adequate for formal analysis and proofs of the simulated programs ;

	[bookmark: uid8] Connect validation tools that can be used in conjunction with
simulation outputs that can be exploited using formal methods ;

	[bookmark: uid9] Extend and improve the theorem proving technologies and tools to
support the application to embedded software simulation.

A main novelty of the project, besides improving the existing
technologies and tools, relies in the application itself: to combine
simulation technologies with formal methods in order to cut down the
development time for embedded software and scale up its
reliability. Apart from being a novelty, this combination is also a
necessity: proving very large code is unrealistic and will remain so
for quite some time; and relying only on simulation for assessing
critical properties of embedded systems is unrealistic as well.

We assume that these properties can be localized in critical, but
small, parts of the code, or dedicated hardware models. This
nevertheless requires scaling up the proof activity by an order of
magnitude with respect to the size of codes and the proof development
time. We expect that it is realistic to rely on both combined. We
plan to rely on formal proofs for assessing properties of small,
critical components of the embedded system that can be analyzed
independently of the environment. We plan to rely on formal proofs as
well for assessing correctness of the elaboration of program
representation abstractions from object code. We plan to rely on
simulations for testing the whole embedded system, and to formal
proofs to verify the completeness of test sets. We finally plan to
rely on formal proofs again for verifying the correct functioning of
our tools. Proving properties of these various abstractions requires
using a certified, interactive theorem prover.

[bookmark: uid10] Section:
 Overall Objectives
Highlights of the Year

	[bookmark: uid11] The automated termination prover HOT developed by Frédéric Blanqui won the 2012
termination
competition
in the category “higher-order rewriting union beta”.

 Scientific Foundations

 	Scientific Foundations	[bookmark: uid13]Rewriting and Type theory
	[bookmark: uid14]Verification
	[bookmark: uid15]Decision Procedures
	[bookmark: uid17]Simulation
	[bookmark: uid21]Trustworthy Software

 [bookmark: uid13] Section:
 Scientific Foundations
Rewriting and Type theory

Coq [42] is one of the most popular proof assistant, in the
academia and in the industry. Based on the Extended Calculus of
Inductive Constructions, Coq has four kinds of basic entities: objects
are used for computations (data, programs, proofs are objects); types
express properties of objects; kinds categorize types by their logical
structure. Coq's type checker can decide whether a given object
satisfies a given type, and if a given type has a logical structure
expressed by a given kind. Because it is possible to (uniformly)
define inductive types such as lists, dependent types such as
lists-of-length-n, parametric types such as lists-of-something,
inductive properties such as (even n) for some natural number n,
etc, writing small specifications in Coq is an easy task. Writing
proofs is a harder (non-automatable) task that must be done by the
user with the help of tactics. We are interested in two challenges
that one has to face with the development of formal proofs in Coq: the
theoretical status of equality on the one hand, and the confidence one
may have in Coq's proofs on the other hand. Our answer to the first
challenge is CoqMTU, which isolates equality in a theory T, which must
be first order, such as Presburger Arithmetic. Our answer to the
second challenge is the (manual) certification of CoqMTU in Coq.

Rewriting is at the heart of proof systems such as the Extended
Calculus of Constructions on which Coq is based, since mathematical
proofs are made of reasonning steps, expressed by the typing rules of
a given proof system, and computational steps, expressed by its
rewrite rules. The certification of a proof system involves, in
particular, proving three main properties of its rewrite rules:
subject reduction (rewriting should preserve types), confluence
(computations should be deterministic), and termination -computations
must always terminate. The fact that falsity is not provable in a
given proof system such as CoqMTU follows from the previous
properties, while decidability of type-checking may require further
work. These meta-theoretical proofs are indeed very complex, although
at the same time very repetitive, depending on both the typing rules
and the rewrite rules. A challenging research question here is to
develop certification tools aiming at automating these
proofs. Building such tools requires new results allowing to check
subject-reduction, confluence and termination of higher-order calculi
that are found in proof systems. Since subject-reduction is usually
easy to check while consistency and decidability of type-checking
follow, in general, from the others, confluence and termination
are two very active research topics in this area. A last challenge to
achieve these goals is the formalization itself of proof systems.

[bookmark: uid14] Section:
 Scientific Foundations
Verification

Model checking is an automatic formal verification technique
[38] . In order to apply the technique, users
have to formally specify desired properties on an abstract model of
the system under verification. Model checkers will check whether the
abstract model satisfies the given properties. If model checkers are
able to prove or disprove the properties on the abstract model, they
report the result and terminate. In practice, however, abstract models
can be extremely complicated, model checkers may not conclude with
reasonable computational resources.

Compositional reasoning is a way to ameliorate the complexity in
abstract models [75] . Compositional
reasoning tries to prove global properties on abstract models by
establishing local properties on their components. If local properties
on components are easier to verify, compositional reasoning can
improve the capacity of model checking by local reasoning.
Experiences however suggest that local reasoning may not suffice to
establish global properties. It is rare that a global property can be
established without considering their interactions. In
assume-guarantee reasoning, model checkers try to verify local
properties under a contextual assumption of each component. If
contextual assumptions faithfully capture interactions among
components, model checkers can conclude the verification of global
properties.

Finding contextual assumptions however is difficult and may require
clairvoyance. Interestingly, a fully automated technique for computing
contextual assumptions was proposed in [41] . The
automated technique formalizes the contextual assumption generation
problem as a learning problem. If properties and abstract models are
formalized as finite automata, then a contextual assumption is nothing
but an unknown finite automaton that characterizes the
environment. Applying a learning algorithm for finite automata, the
automated technique will generate contextual assumptions for
assume-guarantee reasoning. Experimental results show that the
automated technique can outperform a monolithic and explicit
verification algorithm.

The success of the learning-based assume-guarantee reasoning is
however not satisfactory. Most verification tools are using implicit
algorithms. In fact, implicit representations such as Binary Decision
Diagrams can improve the capacity of model checking algorithms in
several order of magnitudes. Early learning-based techniques, on the
other hand, are based on the L* learning algorithm using explicit
representations. If a contextual assumption requires hundreds of
states, the learning algorithm will take too much time to infer an
assumption. Subsequently, early learning-based techniques cannot
compete with monolithic implicit verification [40] .

Recently, we propose assume-guarantee reasoning with implicit learning
[37] . Our idea is to adopt an
implicit representation used in the learning-based framework. Instead
of enumerating states of contextual assumptions explicitly, our new
technique computes transition relations as an implicit representation
of contextual assumptions. Using a learning algorithm for Boolean
functions, the new technique can easily compute contextual assumptions
with thousands of states. Our preliminary experimental results show
that the implicit learning technique can outperform
interpolation-based monolithic implicit model checking in several
parametrized test cases such as synchronous bus arbiters and the MSI
cache coherence protocol.

Learning Boolean functions can also be applied to loop invariant
inference
[53] , [54] . Suppose
that a programmer annotates a loop with pre- and post-conditions. We
would like to compute a loop invariant to verify that the annotated
loop conforms to its specification. Finding loop invariants manually
is very tedious. One makes a first guess and then iteratively refines
the guess by examining the loop body. This process is in fact very
similar to learning an unknown formula. Applying predicate abstraction
and decision procedures, a learning algorithm for Boolean functions
can infer loop invariants generated by a given set of atomic
predicates. Preliminary experimental results show that the
learning-based technique is effective for annotated loops extracted
from source codes of Linux and SPEC2000 benchmarks.

Although implicit learning techniques have been developed for
assume-guarantee reasoning and loop invariant inference successfully,
challenges still remain. Currently, the learning algorithm is able to
infer Boolean functions over tens of Boolean variables. Contextual
assumptions over tens of Boolean variables are not enough. Ideally,
one would like to have contextual assumptions over hundreds (even
thousands) of Boolean variables. On the other hand, it is known that
learning arbitrary Boolean functions is infeasible. The scalability of
implicit learning techniques cannot be improved satisfactorily by
tuning the learning algorithm alone. Combining implicit learning with
abstraction will be essential to improve its scalability.

Our second challenge is to extend learning-based techniques to other
computation models. In addition to finite automata, probabilistic
automata and timed automata are also widely used to specify abstract
models. Their verification problems are much more difficult than those
for finite automata. Compositional reasoning thus can improve the
capacity of model checkers more significantly. Recently, the L*
algorithm is applied in assume-guarantee reasoning for probabilistic
automata [46] . The new technique is unfortunately
incomplete. Developing a complete learning-based assume-guarantee
reasoning technique for probabilistic automata and timed automata will
be very useful to their verification.

Through predicate abstraction, learning Boolean functions can be very
useful in program analysis. We have successfully applied algorithmic
learning to infer both quantified and quantifier-free loop invariants
for annotated loops. Applying algorithmic learning to static analysis
or program testing will be our last challenge. In the context of
program analysis, scalability of the learning algorithm is less of an
issue. Formulas over tens of atomic predicates usually suffice to
characterize relation among program variables. On the other hand,
learning algorithms require oracles to answer queries or generate
samples. Designing such oracles necessarily requires information
extracted from program texts. How to extract information will be
essential to applying algorithmic learning in static analysis or
program testing.

[bookmark: uid15] Section:
 Scientific Foundations
Decision Procedures

Decision procedures are of utmost importance for us, since they are at
the heart of theorem proving and verification. Research in decision
procedures started several decades ago, and are now commonly used both
in the academia and industry. A decision procedure [55]
is an algorithm which returns a correct yes/no answer to a given input
decision problem. Many real-world problems can be reduced to the
decision problems, making this technique very practical. For example,
Intel and AMD are developing solvers for their circuit verification
tools, while Microsoft is developing decision procedures for their
code analysis tools.

Mathematical logic is the appropriate tool to formulate a decision
problem. Most decision problems are formulated as a decidable fragment
of a first-order logic interpreted in some specific domain. On such,
easy and popular fragment, is propositional (or Boolean) logic, which
corresponding decision procedure is called SAT. Representing real
problems in SAT often results in awkward encodings that destroy the
logical structure of the original problem.

A very popular, effective recent trend is Satisfiability Modulo
Theories (SMT) [74] , a general technique to solve
decision problems formulated as propositional formulas operating on
atoms in a given background theory, for example linear real
arithmetic. Existing approaches for solving SMT problems can be
classified into two categories: lazy method
[67] , and eager method
[68] . The eager method encodes an SMT
problem into an equi-satisfiable SAT problem, while the lazy method
employs different theory solvers for each theory and coordinates them
appropriately. The eager method does allow the user to express her
problem in a natural way, but does not exploit its logical structure
to speed up the computation. The lazy approach is more appealing, and
has prompted much interest in algorithms for the various background
theories important in practice.

Our SMT solver aCiNO is based on the lazy approach. So far, it
provides with two (popular) theories only: linear real arithmetic
(LRA) and uninterpreted functions (UF). For efficiency consideration,
the solver is implemented in an incremental way. It also invokes an
online SAT solver, which is now a modified DPLL procedure, so that
recovery from conflicts is possible. Our challenge here is twofold:
first, to add other theories of interest for the project, we are
currently working on fragments of the theory of arrays
[61] , [34] . The theory of arrays is important
because of its use for expressing loop invariants in programs with
arrays, but its full first-order theory is undecidable. We are also
interested in the theory of bit vectors, very much used for hardware
verification.

Theory solvers implement state-of-the-art algorithms which
sophistication makes their correct implementation a delicate
task. Moreover, SMT solvers themselves employ a quite complex
machinery, making them error prone as well (It took almost 20
years to have a correct implementation of a correct version of
Shostak's algorithm for combining decision procedures, which can be
seen as an ancestor of SMT.) We therefore strongly believe that
decision procedures, and SMT provers, should come along with a formal
assessment of their correctness. As usual, there are two ways: ensure
the correctness of an arbitrary output by proving the code, or deliver
for each input a certificate ensuring the correctness of the
corresponding output when the checker says so. Developing concise
certificates together with efficient certificate checkers for the
various decision procedures of interest and their combination with SMT
is yet another challenge which is at the heart of the project Formes.

[bookmark: uid17] Section:
 Scientific Foundations
Simulation

The development of complex embedded systems platforms requires putting
together many hardware components, processor cores, application
specific co-processors, bus architectures, peripherals, etc. The
hardware platform of a project is seldom entirely new. In fact, in
most cases, 80 percent of the hardware components are re-used from
previous projects or simply are COTS (Commercial Off-The-Shelf)
components. There is no need to simulate in great detail these already
proven components, whereas there is a need to run fast simulation of
the software using these components.

These requirements call for an integrated, modular simulation
environment where already proven components can be simulated quickly,
(possibly including real hardware in the loop), new components under
design can be tested more thoroughly, and the software can be tested
on the complete platform with reasonable speed.

Modularity and fast prototyping also have become important aspects of
simulation frameworks, for investigating alternative designs with
easier re-use and integration of third party components.

The project aims at developing such a rapid prototyping, modular
simulation platform, combining new hardware components modeling,
verification techniques, fast software simulation for proven
components, capable of running the real embedded software application
without any change.

To fully simulate a complete hardware platform, one must simulate the
processors, the co-processors, together with the peripherals such as
network controllers, graphics controllers, USB controllers, etc. A
commonly used solution is the combination of some ISS (Instruction Set
Simulator) connected to a Hardware Description Language (HDL)
simulator which can be implemented by software or by using a FPGA
[60] simulator. These solutions tend to present slow
iteration design cycles and implementing the FPGA means the hardware
has already been designed at low level, which comes normally late in
the project and become very costly when using large FPGA
platforms. Others have implemented a co-simulation environment, using
two separate technologies, typically one using a HDL and another one
using an ISS
[47] , [50] , [66] . Some
communication and synchronization must be designed and maintained
between the two using some inter-process communication (IPC), which
slows down the process.

The idea we pursue is to combine hardware modeling and fast simulation
into a fully integrated, software based (not using FPGA) simulation
environment named SimSoC, which uses a single simulation loop thanks
to Transaction Level Modeling (TLM) [36] , [23]
combined with a new ISS technology designed specifically to fit within
the TLM environment.

The most challenging way to enhance simulation speed is to simulate
the processors. Processor simulation is achieved with Instruction Set
Simulation (ISS). There are several alternatives to achieve such
simulation. In interpretive simulation, each instruction of the
target program is fetched from memory, decoded, and executed. This
method is flexible and easy to implement, but the simulation speed is
slow as it wastes a lot of time in decoding. Interpretive simulation
is used in Simplescalar [35] . Another technique to
implement a fast ISS is dynamic translation
[39] , [65] , [44] which has been favored by many
[63] , [44] , [64] , [65] in the past
decade.

With dynamic translation, the binary target instructions are fetched
from memory at run-time, like in interpretive simulation. They are
decoded on the first execution and the simulator translates these
instructions into another representation which is stored into a
cache. On further execution of the same instructions, the translated
cached version is used. Dynamic translation introduces a translation
time phase as part of the overall simulation time. But as the
resulting cached code is re-used, the translation time is amortized
over time. If the code is modified during run-time, the simulator must
invalidate the cached representation. Dynamic translation provides
much faster simulation while keeping the advantage of interpretive
simulation as it supports the simulation of programs that have either
dynamic loading or self-modifying code.

There are many ways of translating binary code into cached data, which
each come at a price, with different trade-offs between the
translation time and the obtained speed up on cache execution. Also,
simulation speed-ups usually don't come for free : most of time there
is a trade-off between accuracy and speed.

There are two well known variants of the dynamic translation
technology: the target code is translated either directly into machine
code for the simulation host, or into an intermediate representation,
independent from the host machine, that makes it possible to execute
the code with faster speed. Both have pros and cons.

Processor simulation is also achieved in Virtual Machines such as QEMU
[28] and GXEMUL [49] that emulate to a large
extent the behavior of a particular hardware platform. The technique
used in QEMU is a form of dynamic translation. The target code is
translated directly into machine code using some pre-determined code
patterns that have been pre-compiled with the C compiler. Both QEMU
and GXEMUL include many device models of open-source C code, but this
code is hard to reuse. The functions that emulate device accesses do
not have the same profile. The scheduling process of the parallel
hardware entities is not specified well enough to guarantee the
compatibility between several emulators or re-usability of third-party
models using the standards from the electronics industry (e.g. IEEE
1666).

A challenge in the development of high performance simulators is to
maintain simultaneously fast speed and simulation accuracy. In the
Formes project, we expect to develop a dynamic translation technology
satisfying the following additional objectives:

	[bookmark: uid18] provide different levels of translation with different degrees of
accuracy so that users can choose between accurate and slow (for
debugging) or less accurate but fast simulation.

	[bookmark: uid19] to take advantage of multi-processor simulation hosts to parallelize
the simulation;

	[bookmark: uid20] to define intermediate representations of programs that optimize the
simulation speed and possibly provide a more convenient format for
studying properties of the simulated programs.

Another objective of the Formes simulation is to extract information
from the simulated applications to prove properties. Running a
simulation is exercising a test case. In most cases, if a test is
failing, a bug has been found. One can use model checking tools to
generate tests that can be run on the simulator to check whether the
test fails or not on the real application. It is also a goal of
Formes simulation activity to use such formal methods tools to detect
bugs, either by generating tests, or by using formal methods tools to
analyze the results of simulation sessions.

[bookmark: uid21] Section:
 Scientific Foundations
Trustworthy Software

Since the early days of software development, computer scientists have
been interested in designing methods for improving software
quality. Formal methods based on model checking, correctness proofs,
common criteria certification, all address this issue in their own
way. None of these methods, however, considers the trustworthiness of
a given software system as a system-level property, requiring to grasp
a given software within its environment of execution.

The major challenge we want to address here is to provide a framework
in which to formalize the notion of trustworthiness, to evaluate the
trustworthiness of a given software, and if necessary improve it.

To make trustworthiness a fruitful concept, our vision is to formalize
it via a hierarchy of observability and controllability degrees: the
more the software is observable and controllable, the more its
behaviors can be trusted by users. On the other hand, users from
different application domains have different expectations from the
software they use. For example, aerospace embedded software should be
safety-critical while e-commerce software should be insensitive to
attacks. As a result, trustworthiness should be domain-specific.

A main challenge is the evaluation of trustworthiness. We believe
that users should be responsible for describing the level of
trustworthiness they need, in the form of formal requirements that the
software should satisfy. A major issue is to come up with some
predefined levels of trustworthiness for the major applicative areas.
Another is to use stepwise refinement techniques to achieve the
appropriate level of trustworthiness. These levels would then drive
the design and implementation of a software system: the objective
would be to design a model with enough details (observability) to make
it possible to check all requirements of that level.

The other challenge is the effective integration of results obtained
from different verification methods. There are many verification
techniques, like simulation, testing, model checking and theorem
proving. These methods may operate on different models of the software
to be then executed, while trustworthiness should measure our trust in
the real software running in its real execution environment. There are
also monitoring and analysis techniques to capture the characteristics
of actual executions of the system. Integrating all the analysis in
order to decide the trustworthiness level of a software is quite a
hard task.

 Application Domains

 	Application Domains	[bookmark: uid23]Simulation
	[bookmark: uid24]Certified Compilation for Embedded systems
	[bookmark: uid25]Distributed Systems
	[bookmark: uid26]Security

 [bookmark: uid23] Section:
 Application Domains
Simulation

Simulation is relevant to most areas where complex embedded systems
are used, not only to the semiconductor industry for System-on-Chip
modeling, but also to any application where a complex hardware
platform must be assembled to run the application software. It has
applications for example in industry automation, digital TV,
telecommunications and transportation.

[bookmark: uid24] Section:
 Application Domains
Certified Compilation for Embedded systems

Many frameworks have been designed in order to make the design and
the development of embedded systems more rigourous and secure on the
basis of some formal model. All these frameworks implicitly assume
the reliability of the translation to executable code, in
order to guarantee the verified properties in the design level are
preserved in the implementation. In other words, they rely on a
claim saying that the compilers from high level model description to
the implementation perfectly will not introduce undesired behaviors
or errors in silence. The only safe way to satisfy such a claim is
to certify correctness of the compilers, that is, to prove that the
code they produce has exactly the semantics of the source code or
model.

[bookmark: uid25] Section:
 Application Domains
Distributed Systems

Many embedded systems run in a distributed environment.
Distributed systems raise extremely challenging issues,
both for the design and the implementation,
because decisions can be made only from a local knowledge,
which is imperfect due to communication time and unreliability
of transmissions.

[bookmark: uid26] Section:
 Application Domains
Security

The convergence between embedded technologies and the Internet
offers many opportunities to malicious people for
breaking the privacy of consumers or of organisations.
Using cryptography is not enough for ensuring the protection of data,
because of possible flaws in protocols and interfaces,
providing opportunities for many well-known attacks.
This area is therefore an important target of formal methods.

 Software

 	Software	[bookmark: uid28]aCiNO
	[bookmark: uid29]CoLoR
	[bookmark: uid35]CoqMT
	[bookmark: uid36]EDOLA
	[bookmark: uid37]HOT
	[bookmark: uid38]Moca
	[bookmark: uid41]Rainbow
	[bookmark: uid42]SimSoC
	[bookmark: uid43]SimSoC-Cert

 [bookmark: uid28] Section:
 Software
aCiNO
Participants :
 Fei He [correspondant] , Min Zhou.

aCiNO is an SMT (Satisfiability Modulo Theory) solver based on a
Nelson-Oppen [62] architecture, and written in
C++. Currently, two popular theories are considered: linear real
arithmetic (LRA) and uninterpreted functions (UF). A lazy approach is
used for solving SMT problem. For efficiency consideration, the solver
is implemented in an incremental way. It also invokes an online SAT
solver, which is now a modified MiniSAT, so that recovery from
conflict is possible.

[bookmark: uid29] Section:
 Software
CoLoR
Participants :
 Frédéric Blanqui [correspondant] , Kim-Quyen Ly.

CoLoR is a Coq [42] library on rewriting theory and
termination of more than 72,000 lines of code
[4] . It provides definitions and
theorems for:

	[bookmark: uid30] Mathematical structures: relations, (ordered) semi-rings.

	[bookmark: uid31] Data structures: lists, vectors, polynomials with multiple variables,
finite multisets, matrices.

	[bookmark: uid32] Term structures: strings, algebraic terms with symbols of fixed arity,
algebraic terms with varyadic symbols, simply typed lambda-terms.

	[bookmark: uid33] Transformation techniques: conversion from strings to algebraic terms,
conversion from algebraic to varyadic terms, arguments filtering, rule
elimination, dependency pairs, dependency graph decomposition,
semantic labelling.

	[bookmark: uid34] Termination criteria: polynomial interpretations, multiset ordering,
lexicographic ordering, first and higher order recursive path
ordering, matrix interpretations.

CoLoR is distributed under the CeCILL license on
http://color.inria.fr/ . Various people participated to its
development (see the website for more information).

[bookmark: uid35] Section:
 Software
CoqMT
Participants :
 Qian Wang [correspondant] , Jean-Pierre Jouannaud.

The proof-assistant Coq is based on a complex type theory, which
resulted from various extensions of the Calculus of Constructions
studied independently from each other. With the collaboration of Bruno
Barras, we decided to address the challenge of proving the real type
theory underlying Coq, and even, indeed, of its recent extension CoqMT
developed in Formes by Pierre-Yves Strub. To this end, we have studied
formally the theory CoqMTU, which extends the pure Calculus of
Constructions by inductive types, a predicative hierarchy of
universes, and a decidable theory T for some first-order inductive
types [1] . Recently, we were able to
announce the complete certification of CoqMTU in Coq augmented with
appropriate intuitionistic set-theoretic axioms in order to fight
Gödel's incompleteness theorem, a work which has not been published
yet. As a consequence, Coq and CoqMTU are the first proof assistants
which consistency (relative to intuitionistic set theory IZF augmented
with the afore-mentioned axioms) is formally entirely proved (in
Coq). While previous formal proofs for Coq and other proof assistants
all assumed strong normalization, the present one proves strong
normalization thanks to the new notion of strongly-normalizing
model introduced by Bruno Barras. While consistency is done already,
decidability of type-checking remains to be done. This is a
straightforward consequence for Coq, but a non-trivial task for CoqMTU
because of the interaction between inductive types and the first-order
theory T. It should however be announced around the turn of the year.
We consider this work as a major scientific achievement of the team.

[bookmark: uid36] Section:
 Software
EDOLA
Participants :
 Hehua Zhang [correspondant] , Ming Gu, Hui Kong.

Joint work with Jiaguang Sun (Tsinghua University, China).

EDOLA [72] is an integrated tool for
domain-specific modeling and verification of PLC applications
[70] . It is based on a domain-specific modeling
language to describe system models. It supports both model checking
and automatic theorem proving techniques for verification. The goal of
this tool is to possess both the usability in domain modeling, the
reusability in its architecture and the capability of automatic
verification.

For the moment, we have developed a prototype of the EDOLA language,
which can easily describe the features of PLC applications like the
scan cycle mechanism, the pattern of environment model, time
constraints and five property patterns. TLA+
[56] was chosen as the intermediate language
to implement the automatic verification of EDOLA models. A prototype
of EDOLA has also been developed, which comes along with an editor to
help writing EDOLA models. To automatically verify properties on EDOLA
models, it provides the interface for both a model checker TLC
[56] and a first-order theorem prover SPASS
[71] .

[bookmark: uid37] Section:
 Software
HOT
Participant :
 Frédéric Blanqui [correspondant] .

HOT is an automated termination prover for higher-order rewrite
systems based on the notion of computability closure and size
annotation [13] . It won the 2012
competition
in the category “higher-order rewriting union beta”. The sources are
not public.

[bookmark: uid38] Section:
 Software
Moca
Participant :
 Frédéric Blanqui [correspondant] .

Joint work with Pierre Weis (Inria Rocquencourt) and Richard Bonichon
(CEA).

Moca is a construction functions generator for OCaml [57]
data types with invariants.

It allows the high-level definition and automatic management of
complex invariants for data types. In addition, it provides the
automatic generation of maximally shared values, independently or in
conjunction with the declared invariants.

A relational data type is a concrete data type that declares
invariants or relations that are verified by its constructors. For
each relational data type definition, Moca compiles a set of
construction functions that implements the declared relations.

Moca supports two kinds of relations:

	[bookmark: uid39] predefined algebraic relations (such as associativity or commutativity of a
binary constructor),

	[bookmark: uid40] user-defined rewrite rules that map some pattern of constructors and
variables to some arbitrary user's define expression.

The properties that user-defined rules should satisfy (completeness,
termination, and confluence of the resulting term rewriting system)
must be verified by a programmer's proof before compilation. For the
predefined relations, Moca generates construction functions that allow
each equivalence class to be uniquely represented by their canonical
value.

Moca is distributed under QPL on http://moca.inria.fr/ .

[bookmark: uid41] Section:
 Software
Rainbow
Participants :
 Frédéric Blanqui [correspondant] , Kim-Quyen Ly.

Rainbow is a tool for verifying the correctness of termination
certificates expressed in the
CPF XML format
as used in the termination
competition . Termination
certificates are currently translated and checked in Coq by using the
CoLoR library. But a new standalone version is under development using
Coq extraction mechanism.

Rainbow is distributed under the CeCILL license on
http://color.inria.fr/rainbow.html . See the website for more
information.

[bookmark: uid42] Section:
 Software
SimSoC
Participant :
 Vania Joloboff [correspondant] .

SimSoC is an infrastructure to run simulation models which comes along
with a library of simulation models. SimSoC allows its users to
experiment various system architectures, study hardware/software
partition, and develop embedded software in a co-design environment
before the hardware is ready to be used. SimSoC aims at providing high
performance, yet accurate simulation, and provide tools to evaluate
performance and functional or non functional properties of the
simulated system.

SimSoC is based on SystemC standard and uses Transaction Level
Modeling for interactions between the simulation models. The current
version of SimSoC is based on the open source libraries from the OSCI
Consortium: SystemC version 2.2 and TLM 2.0.1
[52] , [25] . Hardware components are modeled as TLM
models, and since TLM is itself based on SystemC, the simulation is
driven by the SystemC kernel. We use standard, unmodified, SystemC
(version 2.2), hence the simulator has a single simulation loop.

The second open source version of SimSoC, SimSoC v0.7.1, has been
released in November 2010. It contains a full simulator for ARM V5 and
PowerPC both running at an average speed of about 80 Millions
instructions per second in, and a simulator for the MIPS architecture
with an average speed of 20 Mips in mode DT1. It represents about
70,000 lines of source code and includes:

SimSoC is distributed under LGPL on
https://gforge.inria.fr/projects/simsoc .

[bookmark: uid43] Section:
 Software
SimSoC-Cert
Participants :
 Frédéric Blanqui, Vania Joloboff, Jean-François Monin [correspondant] , Xiaomu Shi.

SimSoC-Cert is a set of tools that can automatically generate in
various target languages (Coq and C) the decoding functions and the
state transition functions of each instruction and addressing mode of
the ARMv6 architecture manual [22] (implemented by
the ARM11 processor family) but the Thumb and coprocessor
instructions. The input of SimSoC-Cert is the ARMv6 architecture
manual itself.

Based on this, we first developed simlight (8000 generated lines
of C, plus 1500 hand-written lines of C), a simulator for ARMv6
programs using no peripheral and no coprocessor. Next, we developed
simlight2, a fast ARMv6 simulator integrated inside a
SystemC/TLM module, now part of SimSoC v0.7.

We can also generate similar programs for SH4 [24] but
this is still experimental (work done by Frédéric Tuong in 2011).

Finally, we started to prove that the C code for simulating ARM instructions
in Simlight is correct with respect to the Coq model.

 New Results

 	New Results	[bookmark: uid45]Higher-Order Abstract Syntax
	[bookmark: uid49]CoqMTU
	[bookmark: uid50]Normal Rewriting
	[bookmark: uid51]Decreasing Diagrams
	[bookmark: uid52]Higher-order Reduction Orderings
	[bookmark: uid56]Certification of Termination Proofs
	[bookmark: uid57]Certification of Moca
	[bookmark: uid58]First steps towards the certification of an ARM simulator
	[bookmark: uid59]Certified implementation of BIP
	[bookmark: uid60]Formal model and proofs for Netlog protocols
	[bookmark: uid61]Formalisation of security APIs for mobile phones
	[bookmark: uid62]Trace Analysis

 [bookmark: uid45] Section:
 New Results
Higher-Order Abstract Syntax

This recently started project funded by the National Science
Foundation of China aims at setting up a generic infrastructure for
representating logical systems and automate their meta-theoretical
study. We view a logical system as a type theory made of three
components: a language of terms, types being particular terms; a set
of typing rules; and a set of computational rules described by typed
higher-order rewrite rules.

There are several challenges in this project. The first is to define
logical frameworks which are expressive enough -at least as expressive
as Girard's System F or Edingburgh's LF- to define the syntax and
semantics of rich type theories, such as CoqMTU as an extreme
example. A second challenge is to
develop new techniques for checking the three main properties of
higher-order rewrite rules: type preservation -which is usually easy-,
confluence and termination. Our work here has progressed steadily, in
paticular with new advanced techniques for checking termination and
confluence described next. A third challenge is to
formalize these results in Coq, in order to provide proof certificates
for particular cases. The fourth challenge is to build a a general
infrastructure in Coq in which all these techniques become available
in order to study particular logical systems.

As initial steps, we undertook the following formalizations :

	[bookmark: uid46] Hua Mei implemented an intensional framework for
simply typed lambda-calculus in Coq, where α- and
β-conversions have been axiomized.

	[bookmark: uid47] Frédéric Blanqui has formalized in Coq the pure lambda-calculus following the
definition of Curry and Feys in [43] (named
variables and explicit alpha-equivalence), and the proof of
termination of β-reduction for simply-typed λ-terms
based on computability predicates [51] . To the best
of his knowledge, this is the first formalization of the termination
of β-reduction using named variables and explicit
alpha-equivalence, all the other formalizations using De Bruijn
indices [73] or nominal logic
[48] .

	[bookmark: uid48] Qian Wang formalized completely the theory of CoqMTU in Coq augmented
with strong set-theoretic axioms in order to get around Gödel's
incompleteness theorem. This is described in more details next.

[bookmark: uid49] Section:
 New Results
CoqMTU

The proof-assistant Coq is based on a complex type theory, which
resulted from various extensions of the Calculus of Constructions
studied independently fromf each other. With Bruno Barras, we decided
to address the challenge of proving the real type theory underlying
Coq, and even, indeed, its recent extension CoqMT. To this end, we
have studied formally the theory CoqMTU, which extends the calculus of
Constructions with inductive types, a predicative hierarchy of
universes and a decidable theory T for some first-order inductive
types for which large elimination is no more available. This work has
been published at LICS [1] . It leaves open
the question whether large elimination can be accomadated for those
inductive types which carry along a decidable theory T. This problem
has been solved recently by Wang, who constructed a set-theoretic
model of CoqMTU with strong elimination.

[bookmark: uid50] Section:
 New Results
Normal Rewriting

There are many forms of rewriting used in the litterature: plain
rewriting (rules are fired via plain pattern matching), rewriting
modulo T (rules are fired via pattern matching modulo T), higher-order
rewriting (rules are fired via higher-order pattern matching, but
apply to simply typed lambda-terms terms provided the redex is of base
type and in beta-normal eta-long form). For each of these rewriting
mechanisms, there are results describing how to check confluence and
termination.

Regarding confluence, these results describe which critical pairs
must be computed in order to check the confluence property of the
rewriting relation, assuming some termination
property. In [17] , we describe a general
abstract result which can then be instantiated to all of the previous
cases, and removes the assumptions above for higher-order
rewriting. This is done via two novel notions: abstract positional
rewriting allows us to capture the notion of critical peak without
having to talk about a specific term structure; abstract normal
rewriting with a triple (R, S, E) allows us to capture all different
forms of rewriting: S = E = [image: $ \emptyset$] for plain rewriting; S = [image: $ \emptyset$]
for rewriting modulo; E is alpha-conversion for higher-order
rewriting, while the set of simplifiers S is made of beta-reduction
and eta-expansion, R being the set of user-defined rules. Of course,
there are other applications of normal rewriting described in the
paper: for first-order computations, but also for higher-order
computations at higher types, or using eta-reduction instead of
eta-expansion, therefore solving a long-standing open problem.

Regarding termination, these results are very preliminary. In a
recent paper submitted to ACM Transactions on Computational Logics, we
extend the termination proof methods for higher-order computations
based on plain pattern matching to higher-order rewriting systems
based on higher-order pattern matching. We accomodate, for the one
hand, with a weakly polymorphic, algebraic extension of Church's
simply typed λ-calculus, and on the other hand, with any use
of eta, as a reduction, as an expansion or as an equation. User's
rules may be of any type in this type system, either a base,
functional, or polymorphic type. Our techniques fit well with
higher-order reduction orderings, such as the computability path
ordering, but can also be used by other techniques, such as
higher-order dependency pairs. All examples of normal higher-order
rewrite rules that can be found in the litterature can be treated by
our techniques, even those for which termination is by no means
obvious to the expert.

[bookmark: uid51] Section:
 New Results
Decreasing Diagrams

Based on the so-called Newman's lemma, the method for checking
confluence introduced in the former paragraph applies to terminating
computations. A completely different technique based on the so-called
Hindley-Rosen's lemma applies when computation do not terminate, and
is at the basis of Tait's confluence proof for the pure
lambda-calculus. In recent papers, van Oostrom succeeded to capture
both within a single framework thanks to the notion of decreasing
diagram of a labelled abstract
relation [76] , see
also [11] for an improved
proof. Decreasing diagrams are specific convertibility proofs for
local peaks, which labels are smaller in some sense than those of the
local peak they aim at replacing. Any convertibility proof can then be
converted into a confluence proof by recursively replacing its local
peaks by their associated decreasing diagrams. Using a subtle
characterization of confluence for arbitrary (possibly
non-terminating) relations by cofinal derivations due to Klop [11],
van Oostrom showed that any confluent relation which convertibility
classes are countable, can be labelled in a way that makes it a
labelled relation satisfying the decreasing diagram condition.

In [15] , we first give a new, simple proof of
van Oostrom's initial result based on a subtle well-founded order on
conversions, and generalize it to rewriting modulo by using
strongly coherent cliffs as an analog of decreasing diagrams
for peaks. We then extend Klop's cofinal derivations to cofinal
streams, and prove again a completeness result under the strong
coherence assumption. Finally, we derive from these results a new,
compact proof of Toyama's theorem that confluence is a modular
property of rewriting systems built on disjoint vocabularies, and
extend it to rewriting modulo when strong coherence is satisfied.

We are now trying to get rid of the strong coherence assumption by
introducing a weaker analog of decreasing diagrams, decreasing
cliffs. A preliminary result was presented early november at the
Japanese Term Rewriting Workshop in Sendai.

This line of work is very promising. We expect it will eventually lead
to the solution of an old open problem, the characterization of a
class of non-left linear, non-terminating rewrite systems for which
confluence is decidable by means of (parallel) critical pairs. We
believe that the implementation of such a result would be impact the
way confluence proofs are carried out, including in type theory.

[bookmark: uid52] Section:
 New Results
Higher-order Reduction Orderings

Since HORPO , several higher-order reduction orderings have
been described, based on either Dershowitz's RPO ,
Blanqui-Jouannaud-Okada's Computational Closure , and Arts and
Giesel' dependency pairs . Our work continues in three
different directions:

	[bookmark: uid53] CPO is an order for simply typed lambda-terms that allows to
show strong normalization of beta-reduction even in presence of
higher-order rewrite rules provided these rules decrease in the
ordering [32] . It is currently the
only automated mechanism that achieves non-trivial computations by
turning Girard's computability predicates method into a usable
tool. It has been shown that CPO can handle weakly polymorphic type
disciplines, as well as inductive types. Recently, we have shown
that CPO scales up to dependently typed calculi as LF. We are
currently writing a paper describing CPO and its extensions to
calculi with inductive and dependent types which should be submitted
to a journal by the end of the year.

	[bookmark: uid54] Frédéric Blanqui defended his “Habilitation à diriger des recherches” at the
University Denis Diderot (Paris 7) on July 13. In
[13] , he gives a synthetic view on how the
notion of computability closure can be used to prove the termination
of various kinds of rewrite relations (class rewriting or rewriting
with matching modulo), and how it relates with other notions
(dependency pairs, semantic labeling, and HORPO, the predecessor of
CPO.

	[bookmark: uid55] Frédéric Blanqui has developed an automated termination prover called HOT based on
the above work on the computability closure and his former work on
size annotations [31] . For its
first participation, HOT won the international
competition
on termination in the category “higher-order rewriting union beta”.

[bookmark: uid56] Section:
 New Results
Certification of Termination Proofs

Frédéric Blanqui and Kim Quyen Ly continued to work on the development of a new
version of Rainbow based on Coq extraction mechanism
[59] . We developed a tool generating from an XSD
file, Coq and OCaml data structures representing the XML types defined
the XSD file, and OCaml parsing functions for generating such data
structures from an XML file. The main difficulty was to topologically
reorder the XSD type definitions in order to get simple and well
defined Coq data structures. We also defined and proved in Coq a
function for checking the correctness of termination certificates
based on the DP transformation [26] . The main
difficulty was to manage the evolution of the arity function along the
transformation. Indeed, to simplify the translation of CPF elements
into the data structures used in CoLoR [30] , we
decided to use a fixed but infinite set of symbols
[69] . However the arity function need to be
updated along the transformations applied to the system. These results
are presented in [20] .

[bookmark: uid57] Section:
 New Results
Certification of Moca

Frédéric Blanqui has formalized in Coq and proved the correctness and completeness
of the construction functions generated by Moca for the theory of
groups [29] . The first difficulty is to represent
the Moca functions themselves in a faithful way because, in Coq, there
is no “when” clauses and “match” constructions are expanded into
elementary “case” constructions with no tuple patterns and patterns
of depth one only. In addition, Coq termination checker only accepts
functions with exactly one structurally decreasing argument, which is
generally not the case of Moca functions. The second difficulty is the
completeness proof: it requires the use of intermediate data
structures for reasoning on normal forms. During his internship,
Rémi Nollet (L3, ENS Lyon) improved the representation of OCaml
functions by using inductive predicates, and extended the correctness
proof to commutative groups.

[bookmark: uid58] Section:
 New Results
First steps towards the certification of an ARM simulator

The simulation of Systems-on-Chip (SoC) is nowadays a hot topic
because, beyond providing many debugging facilities, it allows the
development of dedicated software before the hardware is
available. Low-consumption CPUs such as ARM play a central role in
SoC. However, the effectiveness of simulation depends on the
faithfulness of the simulator. To this effect, we started to prove
significant parts of such a simulator, SimSoC. Basically, on one
hand, we develop a Coq formal model of the ARM architecture while on
the other hand, we consider a version of the simulator including
components written in Compcert-C [58] . Then we
prove that the simulation of ARM operations, according to Compcert-C
formal semantics, conforms to the expected formal model of ARM.
Size issues are partly dealt with using automatic generation of
significant parts of the Coq model and of SimSoC from the official
textual definition of ARM [3] . A second step was
achieved in [12] , with the proof a significant
instruction (ADC, Add with Carry). A crucial technical issue was
then raised: facilitating reasoning by inversion on the rules
defined in Compcert-C. Hundreds such steps are required for a
single instruction, and each of them generates a dozen of new names.
Relying on Coq tactic inversion results in unmanageable scripts,
very fragile and difficult to maintain. In 2012 we dealt with this
issue by designing our own inversion mechanism, allowing us to
improve automation of the proof, while keeping enough command so
that interactive steps refer to controlled names. It was then
possible to get a much shorter proof on ADC and to prove at least
one instruction in each category of the ARM instruction set.

[bookmark: uid59] Section:
 New Results
Certified implementation of BIP

BIP (Behavior, Interaction, Priority) is a component-based
language designed at VERIMAG
for modeling and programming complex embedded systems [27] .
A BIP model is essentially a set of atomic components described
with explicit states and transitions,
composed together in a hierarchical way.
The main original feature of BIP lies in a very rich notion
of connector for defining interactions between components [33] .
An efficient implementation of BIP in C++ is already available at VERIMAG.

Building on our previous experience on SimSoC,
we started to work on a certified implementation of BIP.
Our long term objective is to propose a certified compilation chain
from BIP models to embedded code,
through a first translation from BIP to Compcert-C.

In 2012 we focused on a simple subset of BIP Currently, we have a
first definition of a formal semantics of this subset in Coq, in two
versions: an relational version, inspired by a rule-based operational
semantics, and a functional version, which specifies a possible
implementation of the relational version (in particular, it includes a
scheduler). We also produce a Compcert-C code which is expected to
behave exactly like the functional semantics, and we started to state
and prove corresponding statements on very simple BIP models.

[bookmark: uid60] Section:
 New Results
Formal model and proofs for Netlog protocols

Netlog is a language designed and implemented in the Netquest project
for describing protocols. Netlog has a precise semantics, provides a
high level of abstraction thanks to its Datalog flavor and benefits
from an efficient implementation. This makes it a very interesting
target language for proofs of protocols.

Jean-François Monin, Stéphane Grumbach (formerly LIAMA/Netquest) and Yuxin Deng
(Jiaotong University, Shanghai) designed a formal model of Netlog in
Coq, where the two possible semantics are derived from common basic
blocks. In a fully certified framework, a formal proof of the Netlog
engine (running on each node) would be required. We don't attack this
part at the moment: we assume that the implementation respects the
general properties stated in our model and focus on the issues raised
by the distributed model of computation provided by Netlog. This
framework could be applied to an algorithm constructing a
Breadth-First Search Spanning Tree (BFS) in a distributed system
[45] .

In 2011, Jean-François Monin and Meixian Chen (Jiaotong Shanghai)
generalized the model in order to take the removal of datalog facts into account,
and used the improved framework to Prim's algorithm.
In 2012, this work was slightly improved and published in
[16] .

[bookmark: uid61] Section:
 New Results
Formalisation of security APIs for mobile phones

This work is in cooperation with Nokia Beijing, who was interested by
the application of verification technologies to mobile phones.
We decided to focus on security APIs,
considering that mobile devices are commonly used by end-users to store
their personnal data (e.g., passwords),
while running all sort of downloaded applications at the same time.

For 2012, we (including Nokia) agreed to consider devices under
Android, though Nokia switched to windows, in order to circumvent
copyright issues.

Three models and corresponding sets of APIs for password storage
applications on Android were developed.
Each model fixes some bugs of the previous one and
introduces a new feature. We consider the third model is enough for
the basic function and well built to be safe.
Then, a full Coq proof of the third model was developed as well as its
corresponding API's security property.
A suitable abstraction of the application on the phone within its environment
is described as a state transition system.
Then we proved by induction that the expected secrets actually remain
secret at any reachable state.

[bookmark: uid62] Section:
 New Results
Trace Analysis

Simulation sessions produce huge trace files, sometimes now in
hundreds of gigabytes, that are hard to analyze with a quick response
time. This comes down to two sub-problems:

	[bookmark: uid63] The trace file size. Trace files are huge because they include lots of
information. But when looking for a specific problem, one does not
need all of this information. To search one given defect, one may ignore a
large amount of the data in the trace file. One would like the trace
file to contain only relevant information to the concerned problem.

	[bookmark: uid64] The expressive power of the language to analyze the trace, and its
usability. If the language is limited to expression search, it is easy
to use but hard to construct sophisticated formulas. If the language
used is Linear Temporal Logic (LTL), there is a very high expressive
power but many engineers are unable to write a LTL formula and to
maintain it over time.

We have started to build a trace analysis tool. It includes a language
which allows expression of time-related formulas as a subset of LTL,
but is simple to formulate expressions. When this language is
compiled, the compiler generates two outputs:

	[bookmark: uid65] a filter script that will help reduce the size of the trace file.

	[bookmark: uid66] a program that analyzes such trace files to find whether the formula
is satisfied.

When compiling one trace language input file, it generates a filter script.
The filter script is a set of data descriptors. It describes which events
from the simulator must be traced and which should be ignored.
Then during the simulation, the filter is loaded and only
the required output is generated.

We have started to design a trace language and a compiler, and
extended the SimSoC simulator to support generation of trace files
with a filter. A first version of the trace language compiler has been
implemented in OCAML, which generates OCAML programs for trace
analysis. In the current version under development, the filters are
not yet parallelized with simulation.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	[bookmark: uid68]Bilateral Contracts with Industry

 [bookmark: uid68] Section:
 Bilateral Contracts and Grants with Industry
Bilateral Contracts with Industry

We obtained a contract of 100 000 Chinese RMB (12 500 Euros) with Nokia Research Center
in Beijing to study formal proofs of security API's in Android mobile phones.

 Dissemination

 	Dissemination	[bookmark: uid80]Scientific Animation
	[bookmark: uid81]Teaching - Supervision - Juries
	[bookmark: uid101]Popularization

 [bookmark: uid80] Section:
 Dissemination
Scientific Animation

Frédéric Blanqui is member of the steering committe of the international conference
on rewriting techniques and its applications (RTA).

Frédéric Blanqui was member of the program committee of the 6th International
Workshop on Higher-Order Rewriting (HOR'12).

Jean-Pierre Jouannaud was member of the program committee of WOLLIC'2012.

Jean-Pierre Jouannaud is a member of the steering committee of LICS.

Jean-Pierre Jouannaud is a member of the Advisory Committee of Academia Sinica, Taipei.

Jean-Pierre Jouannaud is a member of the committee for the Ackermann prize (2011–2013).

Jean-Pierre Jouannaud was a member of the committee for the LICS test of time award (2012).

Vania Joloboff was invited speaker at China Open Source Week in Nanjing.

Vania Joloboff was invited speaker at a professional embedded systems workshop in Tokyo.

[bookmark: uid81] Section:
 Dissemination
Teaching - Supervision - Juries

[bookmark: uid82] Teaching

	[bookmark: uid83] Ming Gu is the director of the School of Software, Tsinghua. She
teaches at all levels.

	[bookmark: uid84] Last year undergraduate: Jianqi Li, An Introduction to Theories of Software, 16 hours, L1, Tsinghua University, China

	[bookmark: uid85] Licence : Jean-François Monin, Introduction to Interactive Proof of Software, 50 hours, L3, Tsinghua University, China

[bookmark: uid85] This course is expected to attract students in the Formes group via the local
PhD program; already one of them (2009) is currently a PhD student
of Jean-Pierre Jouannaud, another (2010) in is the PhD track with Gu Ming and 2 others
(2010) work with Jean-François Monin and Vania Joloboff.

	[bookmark: uid86] Licence : Jean-François Monin, Introduction to Functional Programming, 25 hours, L3, Beijing Jiatong University, China

	[bookmark: uid87] Master: He Fei, Formal verification for software systems, 32
hours, Tsinghua University, China

	[bookmark: uid88] Master: Jianqi Li, The Formal Semantics of Programming Languages,
32 hours 2012, M1, Tsinghua University, China

	[bookmark: uid89] Master : Jean-François Monin, Complements on Coq, 25 hours, M1-M2, Beijing University (PKU), China

	[bookmark: uid90] Doctorate : Frédéric Blanqui, Introduction to domain theory and topology, 3 hours, ISCAS, Beijing, China

	[bookmark: uid91] Doctorate : Jean-François Monin, Coq Summer School, 20 hours, ECNU Shanghai, China

[bookmark: uid92] Supervision

PhD & HdR :

	[bookmark: uid93] PhD in progress : Jiaxiang LIU, Decreasing diagrams
for confluence, Sept. 2011 Jean-Pierre Jouannaud

	[bookmark: uid94] PhD in progress : Qian WANG, A Complete Formalization
of Coq Modulo Theory, Sept. 2010, Jean-Pierre Jouannaud

	[bookmark: uid95] PhD in progress : Xiaomu SHI, Formalisation and Proof of an Instruction Set Simulator, nov. 2009, Jean-François Monin and Vania Joloboff

	[bookmark: uid96] PhD in progress : Kim Quyen LY, Automated Verification of Termination Certificates, nov. 2010, Frédéric Blanqui

[bookmark: uid97] Juries

	[bookmark: uid98] Jean-Pierre Jouannaud: ENS-Cachan, habilitation, Florent Jacquemard (rapporteur)

	[bookmark: uid99] Jean-François Monin: Paris-7, PhD, Stéphane Glondu (rapporteur)

	[bookmark: uid100] Jean-François Monin participated to the recruitment of Chinese students for the
polytechnic engineering schools of Grenoble, Marseille, Montpellier
and Nice.

[bookmark: uid101] Section:
 Dissemination
Popularization

Jean-Pierre Jouannaud gave presentations about formal proofs and
related topics at Tsinghua, one in the department of applied
mathematics in november 2011, and one in the department of computer
science in june 2011.

Vania Joloboff has given presentations about simulation at

	[bookmark: uid102] Shanghai Fudan University

	[bookmark: uid103] Guangzhou Normal University

	[bookmark: uid104] a workshop in Japan about Trustworthy Embedded Systems

Jean-François Monin gave presentations about formal methods and our research at FORMES to
Jiaotong (Shanghai) in June 2011,
UPC (Qingdao) in October 2012, HIT (Harbin) in November 2012
and ECNU (Shanghai) in December 2012.

Jean-François Monin initiated formal agreements between several Chinese universities
(Wuhan university, Beijing Jiaotong, UPC, HIT) and the Polytech Group
or UJF, and developed the existing formal cooperation between Beihang
and UJF.

 Bibliography
[bookmark: Major]Major publications by the team in recent years
	[1][bookmark: formes-2012-bid31]
	B. Barras, J.-P. Jouannaud, P.-Y. Strub, Q. Wang.
CoqMTU: a higher-order type theory with a predicative hierarchy of universes parametrized by a decidable first-order theory, in: Twenty-Sixth Annual IEEE Symposium on "Logic in Computer Science" - LICS 2011, Toronto, Canada, 2011, This research is sponsored by NSFC Program (No.91018015) and 973 Program (No.2010CB328003) of China.
http://hal.inria.fr/inria-00583136

 	[2][bookmark: formes-2012-bid71]
	F. Blanqui.
Definitions by rewriting in the Calculus of Constructions, in: Mathematical Structures in Computer Science, 2005, vol. 15, no 1, p. 37-92, Journal version of LICS'01. [
DOI : 10.1017/S0960129504004426]
http://hal.inria.fr/inria-00105648/en/

 	[3][bookmark: formes-2012-bid59]
	F. Blanqui, C. Helmstetter, V. Joloboff, J.-F. Monin, X. Shi.
Designing a CPU model: from a pseudo-formal document to fast code, in: 3rd Workshop on: Rapid Simulation and Performance Evaluation: Methods and Tools, Grèce Heraklion, 2011, Best paper award.
http://hal.inria.fr/inria-00546228/en/

 	[4][bookmark: formes-2012-bid30]
	F. Blanqui, A. Koprowski.
CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates, in: Mathematical Structures in Computer Science, 2011, vol. 21, no 4, p. 827-859.
http://hal.inria.fr/inria-00543157/en/

 	[5][bookmark: formes-2012-bid72]
	F. Blanqui, J.-P. Jouannaud, P.-Y. Strub.
From formal proofs to mathematical proofs: a safe, incremental way for building in first-order decision procedures, in: 5th IFIP International Conference on Theoretical Computer Science - TCS 2008, Milan Italie, IFIP, 2008, vol. 273. [
DOI : 10.1007/978-0-387-09680-3_24]
http://hal.inria.fr/inria-00275382/en/

 	[6][bookmark: formes-2012-bid70]
	B. Bérard, L. Fribourg, F. Klay, J.-F. Monin.
A compared study of two correctness proofs for the standardized algorithm of ABR conformance, in: Formal Methods in System Design, january 2003.

 	[7][bookmark: formes-2012-bid73]
	B. Delsart, V. Joloboff, E. Paire.
JCOD: A Lightweight Modular Compilation Technology for Embedded Java, in: Second International Conference on Embedded Software, Lecture Notes in Computer Science, Springer-Verlag, 2002, vol. 2491, p. 197–212, ISBN 3-540-44307-X.

 	[8][bookmark: formes-2012-bid74]
	F. He, X. Song, M. Gu, J. Sun.
Heuristic-Guided Abstraction Refinement, in: Computer Journal, May 2009, vol. 52, no 3, p. 280-287.

 	[9][bookmark: formes-2012-bid76]
	J.-P. Jouannaud, J.-Q. Li.
Church-Rosser Properties of Normal Rewriting, in: Computer Science Logic, Fontainebleau, France, P. Cégielsky, A. Durand (editors), LIPIcs, Dagstuhl Publishing, September 2012, vol. 16, p. 350-365. [
DOI : 10.4230/LIPIcs.CSL.2012.i]
http://hal.inria.fr/hal-00730271

 	[10][bookmark: formes-2012-bid75]
	J.-P. Jouannaud, A. Rubio.
Polymorphic Higher-Order Recursive Path Orderings, in: Journal of the ACM, 2007, vol. 54, no 1, p. 1-48.

 	[11][bookmark: formes-2012-bid48]
	J.-P. Jouannaud, V. van Oostrom.
Diagrammatic Confluence and Completion, in: International Conference in Automata, Languages and Programming, Grèce Rhodes, W. Thomas (editor), Springer Berlin/Heidelberg, 2009, vol. 2.
http://hal.inria.fr/inria-00436070/en/

 	[12][bookmark: formes-2012-bid60]
	X. Shi, J.-F. Monin, F. Tuong, F. Blanqui.
First Steps towards the Certification of an ARM Simulator Using Compcert, in: Certified Proofs and Programs - First International Conference, Kenting, Taiwan, J.-P. Jouannaud, Z. Shao (editors), LNCS, Springer, December 7-9 2011, vol. 7086, p. 346-361.

[bookmark: year]Publications of the year
Doctoral Dissertations and Habilitation Theses
	[13][bookmark: formes-2012-bid36]
	F. Blanqui.
Terminaison des systèmes de réécriture d'ordre supérieur basée sur la notion de clôture de calculabilité, Université Paris-Diderot - Paris VII, July 2012, Habilitation à Diriger des Recherches.
http://hal.inria.fr/tel-00724233

 	[14][bookmark: formes-2012-bid68]
	R. Wang.
Component based modelling method for PLC Control Software, Tsinghua University, 2012, In Chinese.

Articles in International Peer-Reviewed Journal
	[15][bookmark: formes-2012-bid49]
	J.-P. Jouannaud, J. Liu.
From Diagrammatic Confluence to Modularity, in: Theoretical Computer Science, November 2012, vol. 9032. [
DOI : 10.1016/j.tcs.2012.08.030]
http://hal.inria.fr/hal-00730272

International Peer-Reviewed Conference/Proceedings
	[16][bookmark: formes-2012-bid64]
	M. Chen, J.-F. Monin.
Formal Verification of Netlog Protocols, in: TASE, Beijing, China, T. Margaria, Z. Qiu, H. Yang (editors), IEEE, July 2012.
http://hal.inria.fr/hal-00733634

 	[17][bookmark: formes-2012-bid46]
	J.-P. Jouannaud, J.-Q. Li.
Church-Rosser Properties of Normal Rewriting, in: Computer Science Logic, Fontainebleau, France, P. Cégielsky, A. Durand (editors), LIPIcs, Dagstuhl Publishing, September 2012, vol. 16, p. 350-365. [
DOI : 10.4230/LIPIcs.CSL.2012.i]
http://hal.inria.fr/hal-00730271

 	[18][bookmark: formes-2012-bid65]
	L. Liu, F. Felgner, G. Frey.
Introducing Explicit Causality in Object-Oriented Hybrid System Modeling, in: 9th International Conference on Modeling, Optimization & SIMulation, Bordeaux, France, June 2012.
http://hal.inria.fr/hal-00728581

 	[19][bookmark: formes-2012-bid66]
	W. Meng, F. He, B.-Y. Wang, Q. Liu.
Thread-Modular Model Checking with Iterative Refinement, in: NFM 2012 - 4th International Conference on NASA Formal Methods, Norfolk, Virginia, United States, April 2012.
http://hal.inria.fr/hal-00730342

Workshops without Proceedings
	[20][bookmark: formes-2012-bid56]
	F. Blanqui, K. Q. Ly.
Automated verification of termination certificates, in: 15th National Symposium of Selected ICT Problems, Hanoi, Viet Nam, November 2012.
http://hal.inria.fr/hal-00763495

 	[21][bookmark: formes-2012-bid67]
	Z. Zuyu, V. Joloboff, X. Zhou, C. Helmstetter.
Fast Dynamic Translation Using LLVM On Multi-Core Hosts, in: 5th Workshop on Architectural and Microarchitectural Support for Binary Translation (AMAS-BT), Portland, Oregon, United States, ACM (editor), Intel Corporation, June 2012.
http://hal.inria.fr/hal-00777156

[bookmark: References]References in notes
	[22][bookmark: formes-2012-bid40]
	ARM Architecture Reference Manual DDI 0100I, ARM, 2005.

 	[23][bookmark: formes-2012-bid20]
	F. Ghenassia (editor)
Transaction-Level Modeling with SystemC. TLM Concepts and Applications for Embedded Systems, Springer, June 2005, ISBN 0-387-26232-6.

 	[24][bookmark: formes-2012-bid41]
	Software Manual, Renesas 32-Bit RISC Microcomputer SuperHTM RISC engine Family, Renesas, 2006.

 	[25][bookmark: formes-2012-bid39]
	OSCI SystemC TLM 2.0.1, Open SystemC Initiative, 2009.
http://www.systemc.org/

 	[26][bookmark: formes-2012-bid53]
	T. Arts, J. Giesl.
Termination of Term Rewriting Using Dependency Pairs, in: Theoretical Computer Science, 2000, vol. 236, p. 133-178.

 	[27][bookmark: formes-2012-bid61]
	A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen, J. Sifakis.
Rigorous Component-Based System Design Using the BIP Framework, in: IEEE Software, 2011, vol. 28, no 3, p. 41-48.

 	[28][bookmark: formes-2012-bid27]
	F. Bellard.
QEMU, A Fast And Portable Dynamic Translator, in: USENIX Annual Technical Conference, Philadelphia, PA, USA, 2005.

 	[29][bookmark: formes-2012-bid57]
	F. Blanqui, T. Hardin, P. Weis.
On the implementation of construction functions for non-free concrete data types, in: Proceedings of the 16th European Symposium on Programming, Lecture Notes in Computer Science 4421, 2007.

 	[30][bookmark: formes-2012-bid54]
	F. Blanqui, A. Koprowski.
CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates, in: Mathematical Structures in Computer Science, 2011, vol. 21, no 4, p. 827-859.

 	[31][bookmark: formes-2012-bid51]
	F. Blanqui.
A type-based termination criterion for dependently-typed higher-order rewrite systems, in: 15th International Conference on Rewriting Techniques and Applications - RTA'04, Aachen Allemagne, 2004, 15 p, Colloque avec actes et comité de lecture. internationale.
http://hal.inria.fr/inria-00100254/en/

 	[32][bookmark: formes-2012-bid50]
	F. Blanqui, J.-P. Jouannaud, A. Rubio.
The computability path ordering: the end of a quest, in: 7th EACSL Annual Conference on Computer Science Logic - CSL'08, Bertinoro Italie, LNCS, 2008, vol. 5213.
http://hal.inria.fr/inria-00288209/en/

 	[33][bookmark: formes-2012-bid62]
	S. Bliudze, J. Sifakis.
The algebra of connectors: structuring interaction in BIP, in: EMSOFT '07: Proceedings of the 7th ACM & IEEE international conference on Embedded software, New York, NY, USA, ACM, 2007, p. 11–20.
http://doi.acm.org/10.1145/1289927.1289935

 	[34][bookmark: formes-2012-bid14]
	A. R. Bradley, Z. Manna, H. B. Sipma.
What's decidable about arrays, in: VMCAI '06, E. A. Emerson, K. S. Namjoshi (editors), LNCS, Springer, 2006, vol. 3855, p. 427–442.

 	[35][bookmark: formes-2012-bid21]
	D. Burger, T. M. Austin.
The SimpleScalar tool set, version 2.0, in: SIGARCH Comput. Archit. News, 1997, vol. 25, no 3, p. 13–25.
http://doi.acm.org/10.1145/268806.268810

 	[36][bookmark: formes-2012-bid19]
	L. Cai, D. Gajski.
Transaction level modeling: an overview, in: CODES+ISSS '03: Proceedings of the 1st IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis, New York, NY, USA, ACM Press, 2003, p. 19–24.
http://doi.acm.org/10.1145/944645.944651

 	[37][bookmark: formes-2012-bid5]
	Y.-F. Chen, E. Clarke, A. Farzan, M.-H. Tsai, Y.-K. Tsay, B.-Y. Wang.
Automated Assume-Guarantee Reasoning through Implicit Learning, in: Computer Aided Verification, Royaume-Uni Edinburgh, 2010.
http://hal.inria.fr/inria-00496949/en/

 	[38][bookmark: formes-2012-bid1]
	E. Clarke, O. Grumberg, D. A. Peled.
Model Checking, The MIT Press, Cambridge, Massachusetts, 1999.

 	[39][bookmark: formes-2012-bid22]
	B. Cmelik, D. Keppel.
Shade: a fast instruction-set simulator for execution profiling, in: SIGMETRICS Perform. Eval. Rev., 1994, vol. 22, no 1, p. 128–137.
http://doi.acm.org/10.1145/183019.183032

 	[40][bookmark: formes-2012-bid4]
	J. M. Cobleigh, G. S. Avrunin, L. A. Clarke.
Breaking Up is Hard to do: An Evaluation of Automated Assume-Guarantee Reasoning, in: ACM Trans. Software Engineering Methodology, 2008, vol. 17, no 2.

 	[41][bookmark: formes-2012-bid3]
	J. M. Cobleigh, D. Giannakopoulou, C. S. Păsăreanu.
Learning Assumptions for Compositional Verification, in: TACAS, H. Garavel, J. Hatcliff (editors), Lecture Notes in Computer Science, Springer Verlag, 2003, vol. 2619, p. 331–346.

 	[42][bookmark: formes-2012-bid0]
	 Coq Development Team.
The Coq Reference Manual, Version 8.2, Inria Rocquencourt, France, 2008.
http://coq.inria.fr/

 	[43][bookmark: formes-2012-bid42]
	H. B. Curry, R. Feys.
Combinatory Logic, North-Holland, 1958.

 	[44][bookmark: formes-2012-bid24]
	J. D'Errico, W. Qin.
Constructing portable compiled instruction-set simulators: an ADL-driven approach, in: DATE '06: Proceedings of the conference on Design, automation and test in Europe, 3001 Leuven, Belgium, Belgium, European Design and Automation Association, 2006, p. 112–117.

 	[45][bookmark: formes-2012-bid63]
	Y. Deng, S. Grumbach, J.-F. Monin.
A Framework for Verifying Data-Centric Protocols, in: DisCoTec 2011 - 6th International Federated Conferences on Formal Techniques for Distributed Systems, Reykjavik, Iceland, R. Bruni, J. Dingel (editors), Lecture Notes in Computer Science, Springer, December 2011, vol. 6722, p. 106-120. [
DOI : 10.1007/978-3-642-21461-5_7]
http://hal.inria.fr/hal-00647802/en

 	[46][bookmark: formes-2012-bid8]
	L. Feng, M. Kwiatkowska, D. Parker.
Compositional Verification of Probabilistic Systems using Learning, in: QEST, G. Ciardo, R. Segal (editors), IEEE CS Press, 2010.

 	[47][bookmark: formes-2012-bid16]
	F. Fummi, G. Perbellini, M. Loghi, M. Poncino.
ISS-centric modular HW/SW co-simulation, in: ACM Great Lakes Symposium on VLSI, 2006, p. 31-36.

 	[48][bookmark: formes-2012-bid45]
	M. J. Gabbay, A. M. Pitts.
A New Approach to Abstract Syntax Involving Binders, in: Proceedings of the 14th IEEE Symposium on Logic in Computer Science, 1999.

 	[49][bookmark: formes-2012-bid28]
	A. Gavare.
GXemul Documentation, 2007.
http://gxemul.sourceforge.net/gxemul-stable/doc/index.html

 	[50][bookmark: formes-2012-bid17]
	P. Gerin, S. Yoo, G. Nicolescu, A. A. Jerraya.
Scalable and flexible cosimulation of SoC designs with heterogeneous multi-processor target architectures, in: ASP-DAC '01: Asia South Pacific Design Automation Conference, ACM, 2001, p. 63–68.

 	[51][bookmark: formes-2012-bid43]
	J.-Y. Girard, Y. Lafont, P. Taylor.
Proofs and Types, Cambridge University Press, 1988.

 	[52][bookmark: formes-2012-bid38]
	 IEEE.
IEEE Standard 1666 - SystemC Language Reference Manual, IEEE, 2006.

 	[53][bookmark: formes-2012-bid6]
	Y. Jung, S. Kong, B.-Y. Wang, K. Yi.
Deriving Invariants by Algorithmic Learning, Decision Procedures, and Predicate Abstraction, in: Verification, Model Checking, and Abstract Interpretation, Espagne Madrid, 2010.
http://hal.inria.fr/inria-00517257/en/

 	[54][bookmark: formes-2012-bid7]
	S. Kong, Y. Jung, C. David, B.-Y. Wang, K. Yi.
Automatically Inferring Quantified Loop Invariants by Algorithmic Learning from Simple Templates, in: ASIAN Symposium on Programming Languages and Systems, Chine Shanghai, K. Ueda (editor), 2010.
http://hal.inria.fr/inria-00515166/en/

 	[55][bookmark: formes-2012-bid9]
	D. Kroening, O. Strichman.
Decision Procedures: An Algorithmic Point of View, Springer, 2008, ISBN-10: 3540741046.

 	[56][bookmark: formes-2012-bid34]
	L. Lamport.
Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers, Addison-Wesley, 2002.

 	[57][bookmark: formes-2012-bid37]
	X. Leroy, D. Doligez, J. Garrigue, D. Rémy, J. Vouillon.
The Objective Caml system release 3.11, Documentation and user's manual, Inria, France, 2008.
http://caml.inria.fr/

 	[58][bookmark: formes-2012-bid58]
	X. Leroy.
A formally verified compiler back-end, in: Journal of Automated Reasoning, 2009, vol. 43, no 4, p. 363-446.

 	[59][bookmark: formes-2012-bid52]
	P. Letouzey.
Programmation fonctionnelle certifiée: l'extraction de programmes dans l'assistant Coq, Université Paris-Sud, France, 2004.

 	[60][bookmark: formes-2012-bid15]
	M. Meerwein, C. Baumgartner, T. Wieja, W. Glauert.
Embedded systems verification with FGPA-enhanced in-circuit emulator, in: ISSS '00: Proceedings of the 13th international symposium on System synthesis, Washington, DC, USA, IEEE Computer Society, 2000, p. 143–148.
http://doi.acm.org/10.1145/501790.501821

 	[61][bookmark: formes-2012-bid13]
	G. Nelson.
Techniques for program verification, Stanford University, Stanford, CA, USA, 1980.

 	[62][bookmark: formes-2012-bid29]
	G. Nelson, D. C. Oppen.
Simplification by cooperating decision procedures, in: ACM Trans. Program. Lang. Syst., 1979, vol. 1, no 2, p. 245–257.

 	[63][bookmark: formes-2012-bid25]
	A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, A. Hoffmann.
A universal technique for fast and flexible instruction-set architecture simulation, in: DAC '02: Proceedings of the 39th conference on Design automation, New York, NY, USA, ACM, 2002, p. 22–27.
http://doi.acm.org/10.1145/513918.513927

 	[64][bookmark: formes-2012-bid26]
	M. Poncino, J. Zhu.
DynamoSim: a trace-based dynamically compiled instruction set simulator, in: ICCAD '04: Proceedings of the 2004 IEEE/ACM International conference on Computer-aided design, Washington, DC, USA, IEEE Computer Society, 2004, p. 131–136.
http://dx.doi.org/10.1109/ICCAD.2004.1382557

 	[65][bookmark: formes-2012-bid23]
	M. Reshadi, P. Mishra, N. Dutt.
Instruction set compiled simulation: a technique for fast and flexible instruction set simulation, in: DAC '03: Proceedings of the 40th conference on Design automation, New York, NY, USA, ACM, 2003, p. 758–763.
http://doi.acm.org/10.1145/775832.776026

 	[66][bookmark: formes-2012-bid18]
	P. Schaumont, D. Ching, I. Verbauwhede.
An interactive codesign environment for domain-specific coprocessors, in: ACM Trans. Des. Autom. Electron. Syst., 2006, vol. 11, no 1, p. 70–87.
http://doi.acm.org/10.1145/1124713.1124719

 	[67][bookmark: formes-2012-bid11]
	R. Sebastiani.
Lazy satisfiability modulo theories, in: Journal on Satisfiability, Boolean Modeling and Computation, 2007, vol. 3, no 3-4, p. 141–224.

 	[68][bookmark: formes-2012-bid12]
	H. Sheini, K. Sakallah.
From propositional satisfiability to satisfiability modulo theories, in: Theory and Applications of Satisfiability Testing-SAT 2006, 2006, p. 1–9.

 	[69][bookmark: formes-2012-bid55]
	C. Sternagel, R. Thiemann.
Signature extensions preserve termination - An alternative proof via dependency pairs, in: Proceedings of the 24th International Conference on Computer Science Logic, Lecture Notes in Computer Science 6247, 2010.

 	[70][bookmark: formes-2012-bid33]
	 Technical Committee No.65.
IEC 1131 - Programmable Controllers, International Electrotechnical Commission, 1997.

 	[71][bookmark: formes-2012-bid35]
	C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, P. Wischnewski.
SPASS Version 3.5, in: Automated Deduction - CADE-22, 22nd International Conference on Automated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings, R. A. Schmidt (editor), Lecture Notes in Computer Science, Springer Verlag, 2009, p. 140-145.

 	[72][bookmark: formes-2012-bid32]
	H. Zhang, M. Gu, X. Song.
Edola: A Domain Modeling and Verification Language for PLC Systems, in: The Sixth International Conference on Software Engineering (ICSEA 2011), Barcelona, Spain, October 2011.
http://hal.inria.fr/inria-00612416/en

 	[73][bookmark: formes-2012-bid44]
	N. de Bruijn.
Lambda-Calculus Notation with Nameless Dummies: a Tool for Automatic Formula Manipulation with Application to the Church-Rosser Theorem, in: Indagationes Mathematicae, 1972, vol. 34, no 5, p. 381-392.

 	[74][bookmark: formes-2012-bid10]
	L. de Moura, B. Dutertre, N. Shankar.
A tutorial on satisfiability modulo theories, in: CAV'07: Proceedings of the 19th international conference on Computer aided verification, Berlin, Heidelberg, Springer-Verlag, 2007, p. 20–36.

 	[75][bookmark: formes-2012-bid2]
	W.-P. de Roever, F. de Boer, U. Hanneman, J. Hooman, Y. Lakhnech, M. Poel, J. Zwiers.
Concurrency Verification: Introduction to Compositional and Noncompositional Methods, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 2001, no 54.

 	[76][bookmark: formes-2012-bid47]
	V. van Oostrom.
Confluence by Decreasing Diagrams, in: RTA, A. Voronkov (editor), Lecture Notes in Computer Science, Springer, 2008, vol. 5117, p. 306-320.

OEBPS/uid70.xhtml
[bookmark: uid70] Section:
 Partnerships and Cooperations

National Initiatives

[bookmark: uid71] Tsinghua Grant

contract: Tsinghua National Laboratory for Information Science and
Technology, Cross-discipline Foundation grant 2011-9

title: An Intensional Logical Framework and Its Implementation

PIs: Jean-Pierre Jouannaud, Jianqi Li

duration: 2011 - 2012

Amount: 100,000 RMB

[bookmark: uid72] NSFC Grant

contract: National Science Foundation of China grant 61272002

title: The meta-theories of higher-order rewriting and their proof
automation: toward the next generation theorem prover

PIs: Jean-Pierre Jouannaud, Jianqi Li

duration : 2013-2016

Amount: 600,000 RMB

OEBPS/uid73.xhtml
[bookmark: uid73] Section:
 Partnerships and Cooperations

International Initiatives

[bookmark: uid74] Inria International Partners

FORMES is an international project from LIAMA in China, located on two sites,
Tsinghua University in Beijing, and CAS Shenzhen Institute of Advanced
Technologies in Shenzhen. In addition this project has had
collaborations with CAS Institute of Software and Harbin Engineering
University in 2012.

OEBPS/uid75.xhtml
[bookmark: uid75] Section:
 Partnerships and Cooperations

International Research Visitors

[bookmark: uid76] Visits of International Scientists

FORMES received visiting Pr Nachum Dershowitz from Israel at Tsinghua for a short stay.

[bookmark: uid77] Internships

Rémi Nollet (L3, ENS Lyon) did an internship at Inria Rocquencourt
co-supervised by Frédéric Blanqui and Pierre Weis on the certification of
construction functions generated by Moca.

[bookmark: uid78] Visits to International Teams

Jean-Pierre Jouannaud, invited in Barcelone, UTC, LSI-Lab, September 2012.

Frédéric Blanqui visited the Institute of Applied Mechanics and Informatics (IAMI)
of the Vietnamese Acadamy of Sciences at Ho Chi Minh City.

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid104.xhtml
[bookmark: uid104] Section:
 Dissemination

Popularization

Jean-Pierre Jouannaud gave presentations about formal proofs and
related topics at Tsinghua, one in the department of applied
mathematics in november 2011, and one in the department of computer
science in june 2011.

Vania Joloboff has given presentations about simulation at

		[bookmark: uid105] Shanghai Fudan University

		[bookmark: uid106] Guangzhou Normal University

		[bookmark: uid107] a workshop in Japan about Trustworthy Embedded Systems

Jean-François Monin gave presentations about formal methods and our research at FORMES to
Jiaotong (Shanghai) in June 2011,
UPC (Qingdao) in October 2012, HIT (Harbin) in November 2012
and ECNU (Shanghai) in December 2012.

Jean-François Monin initiated formal agreements between several Chinese universities
(Wuhan university, Beijing Jiaotong, UPC, HIT) and the Polytech Group
or UJF, and developed the existing formal cooperation between Beihang
and UJF.

OEBPS/IMG/iTunesArtwork.png
Activity Report 2012
Project-Team formes

Formal Methods for
Embedded Systems

