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  [bookmark: uid3] Section: 
      Overall Objectives
Highlights of the Year

Emmanuel Trélat obtained the Felix Klein Prize at the 6th European Congress of Mathematics in Krakow.

Motivations by the prize committee:
Emmanuel Trélat receives the Felix Klein Prize
for combining truly impressive and beautiful contributions in fine fundamental mathematics to understand and solve new problems in control of PDE's and ODE's (continuous, discrete and mixed problems), and above all for his studies on singular trajectories, with remarkable numerical methods and algorithms able to provide solutions to many industrial problems in real time, with substantial impact especially in the area of astronautics.
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  [bookmark: uid5] Section: 
      Scientific Foundations
Geometric control theory

The main research topic of the project-team will be
geometric control, with a special focus on control design.
The application areas that we target are control of
quantum mechanical systems,
neurogeometry and
switched
systems.

Geometric control theory provides a viewpoint and several tools, issued in particular from
differential geometry, to tackle
typical questions arising in the control framework:
controllability, observability, stabilization, optimal control... [27] , [62]  The geometric control approach is particularly well suited
for systems involving
nonlinear and nonholonomic
phenomena.
We recall that nonholonomicity
refers to the property of
a velocity constraint that is not equivalent to a state constraint.

The expression control design refers here to all phases of the
construction of a control law, in a mainly open-loop perspective:
modeling, controllability analysis, output tracking, motion planning, simultaneous control algorithms, tracking algorithms,
performance comparisons for control and tracking algorithms, simulation and implementation.

We recall that


	[bookmark: uid6] controllability denotes the property of a system for which any two states can be connected by a trajectory corresponding to an admissible control law ;



	[bookmark: uid7] output tracking refers to a control strategy aiming at keeping the value of some functions of the state arbitrarily close to a prescribed time-dependent profile. A typical example is configuration tracking for a mechanical system, in which the controls act as forces and
one prescribes the position variables along the trajectory, while the evolution of the momenta is free. One can think for instance at the lateral movement of a car-like vehicle: even if such a movement is unfeasible, it can be tracked with arbitrary precision by applying a suitable control strategy;



	[bookmark: uid8] motion planning is the expression usually denoting the algorithmic strategy for selecting one control law steering the system from a given initial state to an attainable final one;



	[bookmark: uid9] simultaneous control concerns algorithms that aim at driving the system from two different initial conditions, with the same control law and over the same time interval, towards two given final states (one can think, for instance, at some control action on a fluid whose goal is to steer simultaneously two floating bodies.)
Clearly, the study of which pairs (or n-uples) of states can be simultaneously connected thanks to an admissible control requires an additional controllability analysis with respect to the plain controllability mentioned above.




At the core of control design is then the notion of motion planning.
Among the motion planning methods,
a preeminent role is played by
those based on the Lie algebra associated with the control system
( [83] , [70] , [76] ), those exploiting the possible flatness of the system ([56] ) and those based on the continuation method ([95] ).
Optimal control is clearly another method for choosing a control law connecting two states, although it generally introduces new computational and theoretical difficulties.

Control systems with special structure, which are very important for applications
are those for which the controls appear linearly. When the controls are not bounded, this means that the admissible velocities form a distribution in the tangent bundle to the state manifold. If the distribution is equipped with a smoothly varying norm (representing a cost of the control), the resulting geometrical structure is called
sub-Riemannian.
Sub-Riemannian geometry thus appears as the underlying geometry of the nonholonomic control systems, playing the same role as Euclidean geometry for linear systems. As such, its study is fundamental for control design. Moreover its importance goes far beyond control theory and is an active field of research both in differential geometry ( [82] ), geometric measure theory ([57] , [31] ) and hypoelliptic operator theory ([43] ).

Other important classes of control systems are those
modeling mechanical systems.
The dynamics are naturally defined on the tangent or cotangent bundle of the configuration manifold, they have Lagrangian or Hamiltonian structure, and the controls act as forces. When the controls appear linearly, the resulting model can be seen somehow as a second-order sub-Riemannian structure (see [49] ).

The control design topics presented above naturally extend to the case of distributed parameter control systems. The geometric approach to control systems governed by
partial differential equations is a novel subject with great potential. It could
complement purely analytical and numerical approaches, thanks to its more dynamical, qualitative and intrinsic point of view.
An interesting example of this approach is the paper [28]  about the controllability of Navier–Stokes equation by low forcing modes.
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  [bookmark: uid11] Section: 
      Application Domains
Quantum control

The issue of designing efficient transfers between
different
atomic or molecular levels is crucial in atomic and molecular physics,
in particular because of its importance in those fields such as
photochemistry (control by laser pulses of chemical reactions), nuclear magnetic resonance (NMR, control by a magnetic field of spin dynamics)
and, on a more distant time horizon,
the strategic
domain of
quantum computing.
This last application
explicitly relies on the design
of quantum gates, each of them being, in essence,
an open loop
control law devoted to a prescribed
simultaneous control action. NMR is one of the most promising techniques for the implementation of a quantum computer.

Physically, the control action
is realized by
exciting the quantum system
by means of one or several external fields, being them magnetic or electric fields.
The resulting control problem has attracted increasing attention,
especially among quantum physicists and chemists (see, for instance, [88] , [93] ).
The rapid evolution of the domain is driven by
a multitude of
experiments getting more and more precise and complex (see the recent review [48] ). Control strategies have been proposed and implemented, both on numerical simulations and on physical systems,
but there is still a large gap to fill before
getting a complete picture of the control properties of quantum systems. Control techniques should necessarily be
innovative, in order to take into account the physical peculiarities of the model and the specific experimental constraints.

The area where the picture got clearer
is given by finite dimensional linear closed models.


	[bookmark: uid12] Finite dimensional refers to the dimension of the space of wave functions, and, accordingly, to the finite number of energy levels.



	[bookmark: uid13] Linear means that the evolution of the system for a fixed (constant in time) value of the control is determined by a linear vector field.



	[bookmark: uid14] Closed refers to the fact that the systems are assumed to be totally disconnected from
the environment, resulting in the conservation of
the norm of the wave function.




The resulting
model
is well suited for describing spin systems and also arises naturally when infinite dimensional quantum systems of the type discussed below are replaced
by their finite dimensional Galerkin approximations.
Without seeking exhaustiveness, let us mention some
of the issues that have been tackled for finite dimensional linear closed quantum systems:


	[bookmark: uid15] controllability [29] ,



	[bookmark: uid16] bounds on the controllability time [25] ,



	[bookmark: uid17] STIRAP processes [98] ,



	[bookmark: uid18] simultaneous control [71] ,



	[bookmark: uid19] optimal control ( [67] , [38] , [50] ),



	[bookmark: uid20] numerical simulations [77] .




Several of these results use suitable transformations or approximations (for instance the so-called rotating wave) to reformulate the finite-dimensional Schrödinger equation as a sub-Riemannian system.
Open systems have also been the object of an intensive
research activity (see, for instance, [30] , [68] , [89] , [44] ).

In the case where the state space is infinite dimensional,
some optimal control results are known (see, for instance, [34] , [45] , [63] , [35] ).
The controllability issue is less understood than in the finite dimensional setting, but
several advances should be mentioned.
First of all, it is known
that one cannot expect exact controllability on the whole Hilbert sphere [97] .
Moreover, it has been shown that a relevant model, the quantum oscillator, is not even approximately controllable [90] , [80] .
These negative results have been more recently completed by positive ones.
In [36] , [37] 
Beauchard and Coron obtained the first positive controllability result for a quantum particle in a 1D potential well.
The result is highly nontrivial and is based on Coron's return method (see [52] ).
Exact controllability is proven to hold among regular enough wave functions. In particular, exact controllability among eigenfunctions of the uncontrolled Schrödinger operator can be achieved. Other important approximate controllability results have then been proved using Lyapunov methods [79] , [84] , [64] . While [79]  studies a controlled Schrödinger equation in [image: Im1 $\#8477 $] for which the uncontrolled Schrödinger operator has mixed spectrum, [84] , [64]  deal mainly with general discrete-spectrum Schrödinger operators.

In all the positive results recalled in the previous paragraph, the quantum system is steered by a single external field.
Different techniques can be applied in the case of two or more external fields, leading to additional controllability results
[55] , [41] .

The picture is even
less clear for
nonlinear models, such as Gross–Pitaevski and Hartree–Fock
equations. The obstructions to exact controllability, similar to the ones mentioned in the linear case, have been discussed in [61] .
Optimal control approaches have also been considered [33] , [46] . A comprehensive controllability analysis of such models is probably
a long way away.


[bookmark: uid21] Section: 
      Application Domains
Neurophysiology

At the interface between
neurosciences, mathematics, automatics and humanoid robotics,
an entire new approach to neurophysiology is emerging.
It arouses a strong interest in the four communities and its development requires
a joint effort and the sharing of complementary tools.

A family of extremely interesting problems concerns
the understanding of the mechanisms supervising
some sensorial reactions or biomechanics actions such as image reconstruction by the primary visual cortex, eyes movement and body
motion.

In order to study these phenomena, a promising approach consists in
identifying the motion planning
problems undertaken by the brain, through the analysis of the
strategies that it applies when
challenged by external inputs. The role of control is that of a
language allowing to read and model neurological phenomena.
The control algorithms would shed new light on the brain's geometric perception (the
so-called neurogeometry [86] )
and on the functional organization
of the motor pathways.


	[bookmark: uid22] A challenging problem is that of the understanding of
the mechanisms which are responsible for the process of image reconstruction
in the primary visual cortex V1.

[bookmark: uid22] The visual cortex areas composing V1 are notable for their complex
spatial organization and their functional
diversity.
Understanding and describing their architecture requires sophisticated
modeling
tools.
At the same time, the structure of the natural and
artificial images used in visual psychophysics can be fully
disclosed only using rather deep geometric concepts. The word
“geometry" refers here to the internal geometry of the
functional architecture of visual cortex areas (not to the geometry of
the Euclidean external space). Differential geometry and analysis
both play a fundamental role in the description of the structural
characteristics of visual perception.

[bookmark: uid22] A model of human perception based on a simplified description of the
visual cortex V1, involving geometric objects typical of control theory
and sub-Riemannian geometry, has been first proposed
by Petitot ( [87] ) and then modified by
Citti and Sarti ( [51] ). The model is based on
experimental observations, and in particular on the fundamental work
by Hubel and Wiesel [60]  who received the Nobel prize in 1981.

[bookmark: uid22] In this model, neurons of V1 are grouped into orientation columns,
each of them being sensitive to visual stimuli arriving at a given point of the
retina and oriented along a given direction. The retina is modeled by the real
plane, while the directions at a given point are modeled by the
projective line. The fiber bundle having as base the real plane and
as fiber the projective line is called the bundle of directions of
the plane.

[bookmark: uid22] From the neurological point of view, orientation columns are in turn
grouped into hypercolumns, each of them sensitive to stimuli arriving at a
given point, oriented along any direction. In the same hypercolumn, relative to a
point of the plane, we also find neurons that are sensitive to other
stimuli properties, such as colors.
Therefore, in this model the visual cortex treats an image not as a
planar object, but as a set of points in the bundle of directions of the
plane.
The reconstruction is then realized by minimizing the energy necessary
to activate orientation columns among those which are not activated directly by
the image.
This gives rise to a sub-Riemannian problem on the bundle of directions
of the plane.



	[bookmark: uid23] Another class of challenging problems
concern the
functional organization
of the motor pathways.

[bookmark: uid23] The interest in establishing a model of the motor pathways, at the
same time mathematically rigorous and biologically plausible,
comes from the possible spillovers in neurophysiology.
It could help
to
design better control strategies for robots and artificial limbs, rendering
them capable
to move more progressively and smoothly and also to react to exterior
perturbations in a flexible way.
An underlying relevant societal goal (clearly beyond our domain of expertise)
is to clarify the mechanisms of
certain debilitating troubles
such as cerebellar disease, chorea and Parkinson's disease.

[bookmark: uid23] A key issue in order to
establish a model of the motor pathways is to
determine the criteria underlying the brain's choices.
For instance, for the problem of
human locomotion (see [32] ), identifying such criteria would be crucial to understand the neural
pathways implicated in the generation of locomotion
trajectories.

[bookmark: uid23] A nowadays widely accepted paradigm is
that, among all possible movements, the
accomplished ones satisfy suitable optimality criteria
(see [96]  for a review). One is then led to study an
inverse optimal control problem: starting from a database of
experimentally recorded movements, identify a cost function such that
the corresponding optimal solutions are compatible with the observed
behaviors.

[bookmark: uid23] Different methods have been taken into account in the
literature to tackle this kind of problems, for instance in the linear
quadratic case [66]  or for Markov processes [85] .
However all these methods
have been conceived for very specific systems and they are not
suitable in the general case.
Two approaches are possible to overcome this difficulty. The direct approach consists in choosing
a cost function among a class of functions naturally adapted to the
dynamics (such as energy functions) and to compare the solutions of
the corresponding optimal control problem to the experimental data. In
particular one needs to compute, numerically or analytically, the
optimal trajectories and to choose suitable criteria (quantitative
and qualitative) for the comparison with observed trajectories.
The inverse approach consists in deriving the cost function from the
qualitative analysis of the data.





[bookmark: uid24] Section: 
      Application Domains
Switched systems

Switched systems form a subclass of hybrid systems, which themselves constitute a key growth area in automation and communication technologies with a broad
range of applications. Existing and emerging areas include automotive and transportation industry, energy
management and factory automation.
The notion of hybrid systems
provides a framework adapted to the description
of the heterogeneous aspects related to the interaction of continuous dynamics (physical system) and
discrete/logical components.

The characterizing feature of switched systems is
the collective aspect of the dynamics.
A typical question is that of
stability, in which one wants to determine whether a dynamical system whose evolution is
influenced by a time-dependent signal is uniformly stable
with respect to all signals in a fixed class ( [73] ).

The theory of finite-dimensional hybrid and switched systems has been the subject of
intensive research in the last decade and a large number of diverse and challenging problems such as stabilizability, observability, optimal control and synchronization have been
investigated (see for instance [94] , [74] ).

The question of stability, in particular, because of its
relevance for applications, has spurred a rich literature. Important contributions
concern the notion of common Lyapunov function: when there exists a Lyapunov function that decays along all possible modes of the system (that is, for every possible constant value of the signal), then the system is uniformly asymptotically stable. Conversely, if the system is stable uniformly with respect to all signals switching in an arbitrary way, then a common Lyapunov function exists [75] .
In the linear finite-dimensional case,
the existence of a common Lyapunov function
is actually equivalent to the
global uniform exponential
stability of the system [81]  and, provided that the admissible modes are finitely many,
the Lyapunov function can be taken polyhedral or polynomial
[39] , [40] , [53] .
A special role in the switched control literature has been played by common
quadratic Lyapunov functions, since their existence can be tested rather efficiently (see [54]  and references therein).
Algebraic approaches to prove the stability of switched systems under arbitrary switching, not relying on Lyapunov techniques, have been proposed in [72] , [26] .

Other interesting issues concerning the stability of switched systems arise when, instead of considering arbitrary switching, one restricts the class of admissible signals, by imposing, for instance, a dwell time constraint [59] .

Another rich area of research concerns discrete-time switched systems, where new intriguing phenomena
appear, preventing the algebraic characterization of stability even for small dimensions of the state space [69] . It is known that, in this context, stability cannot be tested on periodic signals alone
[42] .

Finally, let us mention
that little is known about
infinite-dimensional switched system, with the exception of
some results on uniform asymptotic stability
( [78] , [91] , [92] )
and some recent papers on optimal control ( [58] , [99] ).
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  [bookmark: uid26] Section: 
      Software
IRHD

We developed a first version of a software for reconstruction of corrupted and damaged images, named IRHD (for Image Reconstruction via Hypoelliptic Diffusion). One of the main features of the algorithm on which the software is based is that we don't use any information about the location and character of the corrupted places; this allows us to work with real non-academic images. Another important advantage is that this method is massively parallelizable; this allows to work with sufficiently large images. Theoretical background of the presented method is based on the model of geometry of vision due to Petitot, Citti and Sarti. The main step is numerical solution of the equation of 3D hypoelliptic diffusion.
IRHD is based on Fortran.
Alexey Remizov is in charge with the development of the software, in collaboration with Ugo Boscain and Jean-Paul Gauthier.
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  [bookmark: uid28] Section: 
      New Results
New results: geometric control

We start by presenting some results on the design of motion planning and tracking algorithms.


	[bookmark: uid29] In [10]  we present an iterative steering algorithm for nonholonomic systems (also called driftless control-affine systems) and we prove its global convergence under the sole assumption that the Lie Algebraic Rank Condition (LARC) holds true everywhere. That algorithm is an extension of the one introduced in [65]  for regular systems. The first novelty here consists in the explicit algebraic construction, starting from the original control system, of a lifted control system which is regular. The second contribution of the paper is an exact motion planning method for nilpotent systems, which makes use of sinusoidal control laws and which is a generalization of the algorithm described in [83]  for chained-form systems.



	[bookmark: uid30] [6]  and [5]  are about motion planning for kinematic systems, and more particularly ε-approximations of non-admissible trajectories by admissible ones. This is done in a certain optimal sense.
The resolution of this motion planing problem is showcased through the thorough treatment of the ball with a trailer kinematic system, which is a non-holonomic system with flag of type (2, 3, 5, 6).




Application-oriented results about motion planning are contained in [15] . The paper proposes in particular
a strategy for
providing
Unmanned Aerial Vehicles
with
a certain degree of autonomy, via autonomous planification/replanification strategies.

Let us list some new results in sub-Riemannian geometry and hypoellitpic diffusion.


	[bookmark: uid31] In [1] 
we study the Radon-Nikodym derivative of the spherical Hausdorff measure with respect to a smooth volume
for a regular sub-Riemannian manifold . We prove that this is the volume of the unit ball in the nilpotent approximation and it is always a continuous function. We then prove that up to dimension 4 it is smooth, while starting from dimension 5, in corank 1 case, it is C3 (and C4 on every smooth curve) but in general not C5. These results answer to a question addressed by Montgomery about the relation between two intrinsic volumes that can be defined in a sub-Riemannian manifold, namely the Popp and the Hausdorff volume. If the nilpotent approximation depends on the point (that may happen starting from dimension 5), then they are not proportional, in general.



	[bookmark: uid32] In [9] 
we study the Laplace–Beltrami operator on generalized
Riemannian structures on orientable surfaces for which a local orthonormal frame is given by a pair of vector fields that can become collinear.
Under the assumption that the structure is 2-step Lie bracket generating, we prove that the Laplace–Beltrami operator is essentially self-adjoint and has discrete spectrum. As a consequence, a quantum
particle cannot cross the singular set (i.e., the set where the vector
fields become collinear) and the heat cannot flow through the singularity.



	[bookmark: uid33] For an equiregular sub-Riemannian manifold M, Popp's volume is a smooth volume which is canonically associated with the sub-Riemannian structure, and it is a natural generalization of the Riemannian one. In [4] 
we prove a general formula for Popp's volume, written in terms of a frame adapted to the sub-Riemannian distribution. As a first application of this result, we prove an explicit formula for the canonical sub-Laplacian, namely the one associated with Popp's volume. Finally, we discuss sub-Riemannian isometries, and we prove that they preserve Popp's volume. We also show that, under some hypotheses on the action of the isometry group of M, Popp's volume is essentially the unique volume with such a property.



	[bookmark: uid34] In [21] ,
for a sub-Riemannian manifold provided with a smooth volume, we relate the small time asymptotics of the heat kernel at a point y of the cut locus from x with roughly “how much” y is conjugate to x. This is done under the hypothesis that all minimizers connecting x to y are strongly normal, i.e. all pieces of the trajectory are not abnormal. Our result is a refinement of the one of Leandre 4tlogpt(x, y)[image: $ \rightarrow$]-d2(x, y) for t[image: $ \rightarrow$]0, in which only the leading exponential term is detected. Our results are obtained by extending an idea of Molchanov from the Riemannian to the sub-Riemannian case, and some details we get appear to be new even in the Riemannian context. These results permit us to obtain properties of the sub-Riemannian distance starting from those of the heat kernel and vice versa. For the Grushin plane endowed with the Euclidean volume we get the expansion [image: Im2 ${p_t{(x,y)}\#8764 t^{-5/4}exp{(-d^2{(x,y)}/4t)}}$] where y is reached from a Riemannian point x by a minimizing geodesic which is conjugate at y.
In [22]  we investigate the small time heat kernel asymptotics on the cut locus on the class of two-spheres of revolution, which is the simplest class of 2-dimensional Riemannian manifolds different from the sphere with
nontrivial cut-conjugate locus. We determine the degeneracy of the exponential map near a cut-conjugate point and present the consequences of this result to the small time heat kernel asymptotics at this point. These results give a first example where the minimal degeneration of the asymptotic expansion at the cut locus is attained.



	[bookmark: uid35] In [24]  we studied normal forms for 2-dimensional almost-Riemannian structures. The latter are generalized Riemannian structures on surfaces for which a local orthonormal frame is given by a Lie bracket generating pair of vector fields that can become collinear. Generically, there are three types of points: Riemannian points where the two vector fields are linearly independent, Grushin points where the two vector fields are collinear but their Lie bracket is not, and tangency points where the two vector fields and their Lie bracket are collinear and the missing direction is obtained with one more bracket. In [24]  we consider the problem of finding normal forms and functional invariants at each type of point. We also require that functional invariants are complete, in the sense that they permit to recognize locally isometric structures. The problem happens to be equivalent to the one of finding a smooth canonical parameterized curve passing through the point and being transversal to the distribution. For Riemannian points such that the gradient of the Gaussian curvature K is different from zero, we use the level set of K as support of the parameterized curve. For Riemannian points such that the gradient of the curvature vanishes (and under additional generic conditions), we use a curve which is found by looking for crests and valleys of the curvature. For Grushin points we use the set where the vector fields are parallel. Tangency points are the most complicated to deal with. The cut locus from the tangency point is not a good candidate as canonical parameterized curve since it is known to be non-smooth. Thus, we analyse the cut locus from the singular set and we prove that it is not smooth either. A good candidate happens to be a curve which is found by looking for crests and valleys of the Gaussian curvature. We prove that the support of such a curve is uniquely determined and has a canonical parametrization.





[bookmark: uid36] Section: 
      New Results
New results: quantum control

New results have been obtained for the control of the bilinear Schrödinger equation.


	[bookmark: uid37] In [16] 
we obtained a sufficient condition for approximate controllability of the bilinear discrete-spectrum Schrödinger equation exploiting the use of more than one control. The controllability result extends to simultaneous controllability, approximate controllability in Hs, and tracking in modulus.
The result is more general than those present in the literature even in the case of one control and permits to treat situations in which the spectrum of the uncontrolled operator is very degenerate (e.g. multiple eigenvalues or presence of equal gaps among eigenvalues).
These results are applied
to the case
of a rotating polar linear molecule in the space, driven by three external fields.
A remarkable property of this model is the presence of infinitely many degeneracies and resonances in the spectrum preventing the application of the results in the literature.



	[bookmark: uid38] In [19]  we present a constructive method to control the bilinear
Schrödinger equation by means of two or three controlled external fields. The method is based on
adiabatic techniques and works if the spectrum of the Hamiltonian
admits eigenvalue intersections, with respect to variations of the controls, and if the latter are conical. We provide sharp estimates of the relation
between the error and the controllability time.



	[bookmark: uid39] In [18]  we consider the minimum time population transfer problem for a two level quantum system driven by two external fields with bounded amplitude. The controls are modeled as real functions and we do not use the Rotating Wave Approximation. After projection on the Bloch sphere, we tackle the time-optimal control problem with techniques of optimal synthesis on 2-D manifolds. Based on the Pontryagin Maximum Principle, we characterize a restricted set of candidate optimal trajectories. Properties on this set, crucial for complete optimal synthesis, are illustrated by numerical simulations. Furthermore, when the two controls have the same bound and this bound is small with respect to the difference of the two energy levels, we get a complete optimal synthesis up to a small neighborhood of the antipodal point of the starting point.





[bookmark: uid40] Section: 
      New Results
New results: neurophysiology


	[bookmark: uid41] In [17]  we
study the global properties of an optimal control model
of geometry of vision due to Petitot, Citti and Sarti.
In particular, we
consider the problem of minimizing [image: Im3 ${\#8747 _{0}^L\sqrt {\#958 ^2+K^2{(s)}}~ds}$] for a planar curve having fixed initial and final positions and directions. The total length L is free. Here s is the variable of arclength parametrization, K(s) is the curvature of the curve and ξ>0 a parameter. The main feature of the problem is that, if for a certain choice of boundary conditions there exists a minimizer, then this minimizer is smooth and has no cusp. However, not for all choices of boundary conditions there is a global minimizer.
We study existence of local and global minimizers for this problem. We prove that if for a certain choice of boundary conditions there is no global minimizer, then there is neither a local minimizer nor a stationary curve (geodesic).
We give properties of the set of boundary conditions for which there exists a solution to the problem. Finally, we present numerical computations of this set.



	[bookmark: uid42] In [2]  we studied the general problem of reconstructing the cost from the observation of trajectories, in a problem of optimal control. It is motivated by
the problem of determining what is the cost minimized in human locomotion.
This applied question is very similar to the
following applied problem,
concerning HALE drones: one would like them to decide by themselves for their trajectories, and to
behave at least as a good human pilot.
These starting points are the reasons for the particular
classes of control systems and of costs under consideration. To summarize, our conclusion is that in
general, inside these classes, three experiments visiting the same values of the control are needed to
reconstruct the cost, and two experiments are in general not enough. The method is constructive.
The proof of these results is mostly based upon the Thom's transversality theory.





[bookmark: uid43] Section: 
      New Results
New results: switched systems


	[bookmark: uid44] In [12]  we study the phenomenon of polynomial instability of switched systems.
Stability properties for continuous-time linear switched systems are at first determined by the (largest) Lyapunov exponent associated with the system, which is the analogue of the joint spectral radius for the discrete-time case. We provided a characterization of marginally unstable systems, i.e., systems for which the Lyapunov exponent is equal to zero and such that there exists an unbounded trajectory. We also analyzed the asymptotic behavior of their trajectories. Our main contribution consists in pointing out a resonance phenomenon associated with marginal instability. In the course of our study, we derived an upper bound of the state at time t, which is polynomial in t and whose degree is computed from the resonance structure of the system. We also derived analogous results for discrete-time linear switched systems.



	[bookmark: uid45] The paper [13]  is concerned with the stability of planar linear
singularly perturbed
switched systems of the type [image: Im4 ${\mover x\#729 {(t)}=\#963 {(t)}A_1^\#1013 x{(t)}+{(1-\#963 {(t)})}A_2^\#1013 x{(t)}}$], where σ:[0,  + ∞)[image: $ \rightarrow$]{0, 1}, A1ϵ and A2ϵ are real matrices which represent singularly perturbed
modes.
By ϵ we denote here the parameter of
singular perturbation.
We propose a characterization of the stability properties of such
singularly perturbed
switched systems based on
the results given in [47] .
More generally, we study transitions as ϵ varies and we restrict their number and nature. Finally, we compare the results obtained in this way with the Tikhonov-type results for differential inclusions obtained in the literature.
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		[bookmark: uid59] Abstract: The aim of this project is to study certain PDEs for which geometric control techniques open new horizons. More precisely we plan to exploit the relation between the sub-Riemannian distance and the properties of the kernel of the corresponding hypoelliptic heat equation and to study controllability properties of the Schroedinger equation.


[bookmark: uid59] All subjects studied in this project are applications-driven: the problem of controllability of the Schroedinger equation has direct applications in Laser spectroscopy and in Nuclear Magnetic Resonance; the problem of nonisotropic diffusion has applications in cognitive neuroscience (in particular for models of human vision).
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		[bookmark: uid63] Sector of Functional Analysis and Applications, Geometric Control group. Coordinator: Andrei A. Agrachev.





		[bookmark: uid64] We collaborate with the Geometric Control group at SISSA mainly on subjects related with sub-Riemannian geometry. Thanks partly to our collaboration, SISSA has established an official research partnership with École Polytechnique.
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CONGEO (2009–2013) is financed by
Digitéo in the framework of the DIM Logiciels et systèmes complexes.
It focuses on the neurophysiology applications.
U. Boscain, Y. Chitour (leader), F. Jean and P. Mason are part of the project.










OEBPS/uid68.xhtml
[bookmark: uid68] Section: 
      Partnerships and Cooperations

International Research Visitors


[bookmark: uid69] Visits of International Scientists



		[bookmark: uid70] Gianluca Panati visited GECO from 18/6 to 18/7 (thanks to an invitation by École Polytechinque). He worked on the control of spin-boson systems in collaboration with U. Boscain, P. Mason and M. Sigalotti.
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The project
ANR GCM (programme blanc, 2009–13)
involves the great majority of GECO's members (permanent and external). It focuses on
various theoretical aspects of geometric control and on quantum control.
It is coordinated by J.-P. Gauthier.
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The project
ANR ArHyCo (programme ARPEGE, 2009–12)
is about switched systems. It is coordinated by J. Daafouz.
The first theme of the ANR, on stability of switched systems, is lead by M. Sigalotti.
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