

[image: cover]

IPSO
Invariant Preserving SOlvers
2012 Research Team Activity Report
	Rennes - Bretagne-Atlantique

	    Field : 
	    Applied Mathematics, Computation and Simulation




Theme : 
Computational models and simulation
Presentation of the 
		Project-Team 

	Members
	Overall Objectives	[bookmark: uid3]An overview of geometric numerical integration
	[bookmark: uid4]Overall objectives
	[bookmark: uid11]Highlights of the Year


	Scientific Foundations	[bookmark: uid17]Structure-preserving numerical schemes for solving ordinary differential equations
	[bookmark: uid27]Highly-oscillatory systems
	[bookmark: uid30]Geometric schemes for the Schrödinger equation
	[bookmark: uid33]High-frequency limit of the Helmholtz equation
	[bookmark: uid35]From the Schrödinger equation to Boltzmann-like equations


	Application Domains	[bookmark: uid39]Laser physics
	[bookmark: uid40]Molecular Dynamics
	[bookmark: uid41]Plasma physics


	New Results	[bookmark: uid43]PIROCK: a swiss-knife partitioned implicit-explicit orthogonal Runge-Kutta Chebyshev integrator for
stiff diffusion-advection-reaction problems with or without noise
	[bookmark: uid44]Mean-square A-stable diagonally drift-implicit integrators of weak second order for stiff Itô stochastic
differential equations
	[bookmark: uid45]Weak second order explicit stabilized methods for stiff stochastic differential equations
	[bookmark: uid46]High weak order methods for stochastic differential equations based on modified equations
	[bookmark: uid47]Analysis of the finite element heterogeneous multiscale method for nonmonotone elliptic
homogenization problems
	[bookmark: uid48]Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization
problems: a fully discrete space-time analysis
	[bookmark: uid49]A priori error estimates for finite element methods with numerical
quadrature for nonmonotone nonlinear elliptic problems
	[bookmark: uid50]An Isogeometric Analysis Approach for the study of the gyrokinetic quasi-neutrality equation
	[bookmark: uid51]Guiding-center simulations on curvilinear meshes using semi-Lagrangian conservative methods
	[bookmark: uid52]Quasi-periodic solutions of the 2D Euler equation
	[bookmark: uid53]Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles
	[bookmark: uid54]Two-Scale Macro-Micro decomposition of the Vlasov equation with a strong magnetic field
	[bookmark: uid55]A dynamic multi-scale model for transient radiative transfer calculations
	[bookmark: uid56]Accuracy of unperturbed motion of particles in a gyrokinetic semi-Lagrangian code
	[bookmark: uid57]High order Runge-Kutta-Nyström splitting methods for the Vlasov-Poisson equation
	[bookmark: uid58]A Discontinuous Galerkin semi-Lagrangian solver for the guiding-center problem
	[bookmark: uid59]Asymptotic preserving schemes for highly oscillatory kinetic equation
	[bookmark: uid60]Asymptotic preserving schemes for the Wigner-Poisson-BGK equations in the diffusion limit
	[bookmark: uid61]Orbital stability of spherical galactic models
	[bookmark: uid62]Stable ground states and self-similar blow-up solutions for the gravitational Vlasov-Manev system
	[bookmark: uid63]Micro-macro schemes for kinetic equations including boundary layers
	[bookmark: uid64]Stroboscopic averaging for the nonlinear Schrödinger equation
	[bookmark: uid65]An asymptotic preserving scheme based on a new formulation for NLS in the semiclassical limit
	[bookmark: uid66]Analysis of a large number of Markov chains competing for transitions
	[bookmark: uid67]High frequency behavior of the Maxwell-Bloch mdel with relaxations: convergence to the Schrödinger-rate system
	[bookmark: uid68]Radiation condition at infinity for the high-frequency Helmholtz equation: optimality of a non-refocusing criterion
	[bookmark: uid69]Coexistence phenomena and global bifurcation structure in a chemostat-like model with species-dependent diffusion rates
	[bookmark: uid70]Markov Chains Competing for Transitions: Application to Large-Scale Distributed Systems
	[bookmark: uid71]Optimized high-order splitting methods for some classes of
parabolic equations
	[bookmark: uid72]A formal series approach to averaging: exponentially small error estimates
	[bookmark: uid73]Higher-order averaging, formal series and numerical integration II: the quasi-periodic case
	[bookmark: uid74]Existence of densities for the 3D Navier-Stokes equations driven by Gaussian noise
	[bookmark: uid75]Diffusion limit for a stochastic kinetic problem
	[bookmark: uid76]Global Existence and Regularity for the 3D Stochastic Primitive Equations of the Ocean and
Atmosphere with Multiplicative White Noise
	[bookmark: uid77]Weak backward error analysis for SDEs
	[bookmark: uid78]Convergence of stochastic gene networks to hybrid piecewise deterministic processes
	[bookmark: uid79]Exponential mixing of the 3D stochastic Navier-Stokes equations driven by mildly degenerate
noises
	[bookmark: uid80]Existence and stability of solitons for fully discrete approximations of the nonlinear Schrödinger
equation
	[bookmark: uid81]Fast Weak-Kam Integrators
	[bookmark: uid82]Sparse spectral approximations for computing polynomial functionals


	Dissemination	[bookmark: uid114]Scientific Animation
	[bookmark: uid149]Teaching - Supervision - Juries
	[bookmark: uid161]Popularization


	Bibliography
		Major publications
	Publications of the year
	References in notes




The IPSO team is an associated team with the Department of Mathematics of the University of Rennes 1 and the Department of Mathematics of ENS Cachan-Bruz.


Keywords: Numerical Methods, Geometric Integration, Stochastic Methods, Fluid DynamicsSection: Members
Research Scientists
Philippe Chartier [Team leader, Senior Researcher, Inria, HdR] 
Nicolas Crouseilles [Junior Researcher, Inria, HdR] 
Erwan Faou [Senior Researcher, Inria, HdR] 
Mohammed Lemou [Senior Researcher, CNRS, HdR] 
Florian Méhats [On leave from the University of Rennes 1, HdR] 
Faculty Members
François Castella [Professor (Pr), University of Rennes 1, HdR] 
Arnaud Debussche [Professor (Pr), ENS Cachan, HdR] 
Gilles Vilmart [Agrégé préparateur (AgPr), ENS Cachan] 
External Collaborator
Michel Crouzeix [Professor (Pr), University of Rennes 1, HdR] 

PhD Students
Charles-Edouard Brehier [ENS Cachan] 
Marie Kopec [ENS Cachan] 
Guillaume Leboucher [University of Rennes 1] 
Post-Doctoral Fellows
Katharina Schratz [Inria, ERC Georpardi, from September 2012] 
Tiphaine Jezequel [Inria, ERC Georpardi, from September 2012] 

Administrative Assistant
Cécile Bouton [TR, Administrative assistant, Inria] 





    Overall Objectives

    
      	Overall Objectives	[bookmark: uid3]An overview of geometric numerical integration
	[bookmark: uid4]Overall objectives
	[bookmark: uid11]Highlights of the Year



    

  [bookmark: uid3] Section: 
      Overall Objectives
An overview of geometric numerical integration

A fundamental and enduring challenge in science and technology is the quantitative prediction of time-dependent nonlinear phenomena. While dynamical simulation (for ballistic trajectories) was one of the first applications of the digital computer, the problems treated, the methods used, and their implementation have all changed a great deal over the years. Astronomers use simulation to study long term evolution of the solar system. Molecular simulations are essential for the design of new materials and for drug discovery. Simulation can replace or guide experiment, which often is difficult or even impossible to carry out as our ability to fabricate the necessary devices is limited.

During the last decades, we have seen dramatic increases in computing power, bringing to the fore an ever widening spectrum of applications for dynamical simulation. At the boundaries of different modeling regimes, it is found that computations based on the fundamental laws of physics are under-resolved in the textbook sense of numerical methods. Because of the vast range of scales involved in modeling even relatively simple biological or material functions, this limitation will not be overcome by simply requiring more computing power within any realistic time. One therefore has to develop numerical methods which capture crucial structures even if the method is far from “converging" in the mathematical sense. In this context, we are forced increasingly to think of the numerical algorithm as a part of the modeling process itself. A major step forward in this area has been the development of structure-preserving or “geometric" integrators which maintain conservation laws, dissipation rates, or other key features of the continuous dynamical model. Conservation of energy and momentum are fundamental for many physical models; more complicated invariants are maintained in applications such as molecular dynamics and play a key role in determining the long term stability of methods. In mechanical models (biodynamics, vehicle simulation, astrodynamics) the available structure may include constraint dynamics, actuator or thruster geometry, dissipation rates and properties determined by nonlinear forms of damping.

In recent years the growth of geometric integration has been very
noticeable. Features such as symplecticity
or time-reversibility are now widely recognized as essential properties to preserve,
owing to their physical significance. This has motivated a lot
of research [61] , [58] , [57]  and led to many
significant theoretical achievements (symplectic and symmetric methods,
volume-preserving integrators, Lie-group methods, ...).
In practice, a few simple schemes such as the Verlet method or the Störmer method
have been used for years with great success in molecular dynamics or astronomy. However, they now need to be further improved in order to fit the tremendous increase of complexity and size of the models.


[bookmark: uid4] Section: 
      Overall Objectives
Overall objectives

To become more specific, the project IPSO aims at finding and implementing new
structure-preserving schemes and at understanding the behavior of existing ones for the following type of problems:


	[bookmark: uid5] systems of differential equations posed on a manifold.



	[bookmark: uid6] systems of differential-algebraic equations of index 2 or 3,
where the constraints are part of the equations.



	[bookmark: uid7] Hamiltonian systems and constrained Hamiltonian systems (which are special cases of the first two items though with some additional structure).



	[bookmark: uid8] highly-oscillatory systems (with a special focus of those resulting from the Schrödinger equation).




Although the field of application of the ideas contained in geometric integration is extremely wide (e.g. robotics, astronomy, simulation of vehicle dynamics, biomechanical modeling, biomolecular dynamics, geodynamics, chemistry...), IPSO will mainly concentrate on applications for molecular dynamics simulation and laser simulation:


	[bookmark: uid9] There is a large demand in biomolecular modeling for models that integrate microscopic
molecular dynamics simulation into statistical macroscopic quantities. These simulations involve huge systems of ordinary differential equations over very long time intervals. This is a typical situation where the determination of accurate trajectories is out of reach and where one has to rely on the good qualitative behavior of structure-preserving integrators. Due to the complexity of the problem, more efficient numerical schemes need to be developed.



	[bookmark: uid10] The demand for new models and/or new structure-preserving schemes is also quite large in laser simulations. The propagation of lasers induces, in most practical cases, several well-separated scales: the intrinsically highly-oscillatory waves travel over long distances. In this situation, filtering the oscillations in order to capture the long-term trend is what is required by physicists and engineers.





[bookmark: uid11] Section: 
      Overall Objectives
Highlights of the Year


	[bookmark: uid12] The team is part of the newly accepted Labex “Lebesgues Center" (see http://www.lebesgue.fr/ ).

[bookmark: uid12] The Lebesgue Center (Foundations, Interactions, Application and Training) has been selected as an excellence cluster in February 2012. The Center proposes to build a highly attractive and efficient Research Center and Graduate School in Western France that will coordinate the research in geometry, analysis, statistics and probabilities with strong interdisciplinary links to the socio-economic environment and its applications.

[bookmark: uid12] Coordinators : Vũ Ngọc San (Irmar, Rennes 1) together with Arnaud Debussche (Irmar, ENS Cachan, IPSO), Christoph Sorger and Laurent Guillopé (LMJL, Nantes).



	[bookmark: uid13] Two members of the team, Florian Méhats and Mohammed Lemou, published a paper in “Inventiones Mathematicae” (see [31] )



	[bookmark: uid14] Erwan Faou published the book [34]  in the series “Zurich Lectures in Advanced Mathematics. Zürich: European
Mathematical Society (EMS)".



	[bookmark: uid15] Arnaud Debussche has launched with Boris Rozovskii a new journal entitled "Stochastic Partial Differential Equations:
Analysis and Computations", edited by Springer.
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  [bookmark: uid17] Section: 
      Scientific Foundations
Structure-preserving numerical schemes for solving ordinary differential equations
Participants :
      François Castella, Philippe Chartier, Erwan Faou, Vilmart Gilles.


ordinary differential equation, numerical integrator, invariant, Hamiltonian
system, reversible system, Lie-group system


In many physical situations, the time-evolution of
certain quantities may be written as a Cauchy problem for a
differential equation of the form

[bookmark: uid18] 	[image: Im1 $\mtable{...}$]	(1)




For a given y0, the solution y(t) at time t is denoted [image: Im2 ${\#981 _t{(y_0)}}$].
For fixed t, [image: Im3 $\#981 _t$] becomes a function of y0 called the flow of (1 ). From this point of view, a numerical scheme with step size h for solving (1 ) may be regarded as an approximation Φh of [image: Im4 $\#981 _h$]. One of the main
questions of geometric integration is whether intrinsic properties of
[image: Im3 $\#981 _t$] may be passed on to Φh.

This question can be more specifically addressed in the following situations:

[bookmark: uid19] Reversible ODEs

The system (1 ) is said to be ρ-reversible if there exists an involutive linear map ρ such that

[bookmark: uid20] 	[image: Im5 $\mtable{...}$]	(2)




It is then natural to require that Φh satisfies the same relation. If this is
so, Φh is said to be symmetric. Symmetric methods
for reversible systems of ODEs are just as much important as symplectic
methods for Hamiltonian systems and offer an interesting alternative
to symplectic methods.


[bookmark: uid21] ODEs with an invariant manifold

The system (1 ) is said to have an invariant manifold g whenever

[bookmark: uid22] 	[image: Im6 $\mtable{...}$]	(3)




is kept globally invariant by [image: Im3 $\#981 _t$]. In terms of derivatives and for sufficiently
differentiable functions f and g, this means that

[image: Im7 $\mtable{...}$]


As an example, we mention Lie-group equations, for which the manifold has an additional group
structure. This could possibly be exploited for the space-discretisation.
Numerical methods amenable to this sort of problems have been
reviewed in a recent paper [56]  and divided into two
classes, according to whether they use g explicitly or through a
projection step. In both cases, the numerical solution is forced
to live on the manifold at the expense of some Newton's
iterations.


[bookmark: uid23] Hamiltonian systems

Hamiltonian problems are ordinary differential equations of the form:

[bookmark: uid24] 	[image: Im8 $\mtable{...}$]	(4)




with some prescribed initial values (p(0), q(0)) = (p0, q0) and
for some scalar function H, called the Hamiltonian. In this
situation, H is an invariant of the problem. The evolution
equation (4 ) can thus be regarded as a differential
equation on the manifold

[image: Im9 $\mtable{...}$]


Besides the Hamiltonian function, there might exist other invariants for
such systems: when there exist d invariants in involution, the system (4 ) is said to be integrable. Consider now the parallelogram P originating from the point [image: Im10 ${{(p,q)}\#8712 \#8477 ^{2d}}$] and spanned by the two vectors [image: Im11 ${\#958 \#8712 \#8477 ^{2d}}$]
and [image: Im12 ${\#951 \#8712 \#8477 ^{2d}}$], and let ω(ξ, η) be the sum of the oriented areas of the projections over the planes (pi, qi) of P,

[image: Im13 $\mtable{...}$]


where J is the canonical symplectic matrix

[image: Im14 $\mtable{...}$]


A continuously differentiable map g from [image: Im15 $\#8477 ^{2d}$] to itself is called symplectic if
it preserves ω, i.e. if

[image: Im16 $\mtable{...}$]


A fundamental property of Hamiltonian systems is that their exact flow is symplectic.
Integrable Hamiltonian systems behave in a very remarkable way: as a matter of fact, their invariants persist under small perturbations, as shown in the celebrated theory of Kolmogorov, Arnold and Moser. This behavior motivates the introduction of symplectic numerical flows that share most of the properties of the exact flow. For practical simulations
of Hamiltonian systems, symplectic methods possess an important advantage: the error-growth as a function of time is indeed linear, whereas it would typically be quadratic for non-symplectic methods.


[bookmark: uid25] Differential-algebraic equations

Whenever the number of differential equations is insufficient to determine
the solution of the system, it may become necessary to solve the
differential part and the constraint part altogether. Systems of
this sort are called differential-algebraic systems. They can be
classified according to their index, yet for the purpose of this
expository section, it is enough to present the so-called
index-2 systems

[bookmark: uid26] 	[image: Im17 $\mtable{...}$]	(5)




where initial values (y(0), z(0)) = (y0, z0) are given and assumed
to be consistent with the constraint manifold. By constraint
manifold, we imply the intersection of the manifold

[image: Im18 $\mtable{...}$]


and of the so-called hidden manifold

[image: Im19 $\mtable{...}$]


This manifold [image: Im20 ${\#8499 =\#8499 _1\#8898 \#8499 _2}$] is the manifold on which the exact
solution (y(t), z(t)) of (5 ) lives.

There exists a whole set of schemes which provide a numerical approximation lying on [image: Im21 $\#8499 _1$]. Furthermore, this solution can be
projected on the manifold [image: Im22 $\#8499 $] by standard projection
techniques. However, it it worth mentioning that a projection destroys the
symmetry of the underlying scheme, so that the construction of a symmetric numerical scheme preserving [image: Im22 $\#8499 $] requires a more sophisticated approach.


[bookmark: uid27] Section: 
      Scientific Foundations
Highly-oscillatory systems
Participants :
      François Castella, Philippe Chartier, Nicolas Crouseilles, Erwan Faou, Florian Méhats, Mohammed Lemou, Gilles Vilmart.


second-order ODEs, oscillatory solutions, Schrödinger and wave equations, step size restrictions.


In applications to molecular dynamics or quantum dynamics for instance, the right-hand side of (1 ) involves fast forces (short-range interactions) and slow forces (long-range interactions). Since fast forces are much cheaper to evaluate than slow forces, it seems highly desirable to design numerical methods for which the number of evaluations of slow forces is not (at least not too much) affected by the presence of fast forces.

A typical model of highly-oscillatory systems is the second-order differential equations

[bookmark: uid28] 	[image: Im23 $\mtable{...}$]	(6)




where the potential V(q) is a sum of potentials V = W + U acting on different time-scales,
with [image: $ \nabla$]2W positive definite and [image: Im24 ${{\#8741 }\#8711 ^2{W\#8741 \gt \gt \#8741 }\#8711 ^2{U\#8741 }}$]. In order to get a bounded error propagation in the linearized equations for an explicit numerical method, the step size must be restricted according to

[image: Im25 $\mtable{...}$]


where C is a constant depending on the numerical method and where ω is the highest frequency of the problem, i.e. in this situation the square root of the largest eigenvalue of [image: $ \nabla$]2W. In applications to molecular dynamics for instance, fast forces deriving from W (short-range interactions) are much cheaper to evaluate than slow forces deriving from U (long-range interactions). In this case, it thus seems highly desirable to design numerical methods for which the number of evaluations of slow forces is not (at least not too much) affected by the presence of fast forces.

Another prominent example of highly-oscillatory systems is encountered in quantum dynamics where the Schrödinger equation is the model to be used. Assuming that the Laplacian has been discretized in space, one indeed gets the time-dependent Schrödinger equation:

[bookmark: uid29] 	[image: Im26 $\mtable{...}$]	(7)




where H(t) is finite-dimensional matrix and where ε typically is the square-root of a mass-ratio (say electron/ion for instance) and is small ([image: Im27 ${\#949 \#8776 10^{-2}}$] or smaller). Through the coupling with classical mechanics (H(t) is obtained by solving some equations from classical mechanics), we are faced once again with two different time-scales, 1 and ε. In this situation also, it is thus desirable to devise a numerical method able to advance the solution by a time-step
h>ε.


[bookmark: uid30] Section: 
      Scientific Foundations
Geometric schemes for the Schrödinger equation
Participants :
      François Castella, Philippe Chartier, Erwan Faou, Florian Méhats, Gilles Vilmart.


Schrödinger equation, variational splitting, energy conservation.


Given the Hamiltonian structure of the Schrödinger equation, we are led to consider the question of energy preservation for time-discretization schemes.

At a higher level, the Schrödinger equation is a partial differential equation which may exhibit Hamiltonian structures. This is the case of the time-dependent Schrödinger equation, which we may write as

[bookmark: uid31] 	[image: Im28 ${i\#949 \mfrac {\#8706 \#968 }{\#8706 t}=H\#968 ,}$]	(8)




where ψ = ψ(x, t) is the wave function depending on the spatial variables
[image: Im29 ${x=(x_1,\#8943 ,x_N)}$] with [image: Im30 ${x_k\#8712 \#8477 ^d}$] (e.g., with d = 1 or 3 in the
partition) and the time [image: Im31 ${t\#8712 \#8477 }$].
Here, ε is a (small)
positive number representing the scaled Planck constant and i is the complex imaginary unit. The Hamiltonian operator H is written

H = T + V


with the kinetic and potential energy operators

[image: Im32 ${T=-\munderover \#8721 {k=1}N\mfrac \#949 ^2{2m_k}\#916 _x_k~\mtext and~V=V{(x)},}$]


where mk>0 is a particle mass and Δxk the
Laplacian in the variable [image: Im30 ${x_k\#8712 \#8477 ^d}$], and
where the real-valued potential V acts as a multiplication operator on ψ.

The multiplication by i in (8 ) plays the role of the multiplication by J in classical mechanics, and the
energy [image: Im33 ${\#9001 \#968 |H|\#968 \#9002 }$] is conserved along the solution of (8 ), using the physicists' notations
[image: Im34 ${\#9001 u|A|u\#9002 =\#9001 u,Au\#9002 }$] where [image: Im35 ${\#9001 ~~,~\#9002 }$]
denotes the Hermitian L2-product over the phase space.
In quantum mechanics, the number N
of particles is very large making the direct approximation of (8 ) very difficult.

The numerical approximation of (8 ) can be obtained using projections onto submanifolds of the phase space, leading to various PDEs or ODEs: see [60] , [59]  for reviews. However the long-time behavior of these approximated solutions is well understood only in this latter case, where the dynamics turns out to be finite dimensional.
In the general case, it is very difficult to prove the preservation of qualitative
properties of (8 ) such as energy conservation or growth in time of Sobolev norms.
The reason for this is that backward error analysis is not directly applicable for PDEs. Overwhelming these difficulties is thus a very interesting challenge.

A particularly interesting case of study is given by symmetric splitting methods, such as the Strang splitting:

[bookmark: uid32] 	ψ1 = exp(-i(δt)V/2)exp(i(δt)Δ)exp(-i(δt)V/2)ψ0	(9)




where δt is the time increment (we have set all the parameters to 1 in the equation). As the Laplace operator is unbounded, we cannot apply the standard methods used in ODEs to derive long-time properties of these schemes. However, its projection onto finite dimensional submanifolds (such as Gaussian wave packets space or FEM finite dimensional space of functions in x) may exhibit Hamiltonian or Poisson structure, whose long-time properties turn out to be more tractable.


[bookmark: uid33] Section: 
      Scientific Foundations
High-frequency limit of the Helmholtz equation
Participant :
      François Castella.


waves, Helmholtz equation, high oscillations.


The Helmholtz equation models the propagation of waves in
a medium with variable refraction index. It
is a simplified version of the Maxwell system for
electro-magnetic waves.

The high-frequency regime is characterized by the fact that
the typical wavelength of the signals under consideration is much smaller
than the typical distance of observation of those signals.
Hence, in the high-frequency regime, the Helmholtz equation
at once involves highly oscillatory phenomena that are to be described in
some asymptotic way. Quantitatively,
the Helmholtz equation reads

[bookmark: uid34] 	[image: Im36 $\mtable{...}$]	(10)




Here, ε is the small adimensional parameter that measures the typical
wavelength of the signal, n(x) is the space-dependent refraction index, and
fε(x) is a given (possibly dependent on ε) source term. The unknown is
uε(x). One may think
of an antenna emitting waves in the whole space (this is the
fε(x)), thus creating at any point x the signal uε(x) along the
propagation. The small αε>0 term takes into account damping of the waves
as they propagate.

One important scientific objective typically is to
describe the high-frequency regime in terms of rays propagating
in the medium, that are
possibly refracted at interfaces, or bounce on boundaries,
etc. Ultimately, one would like to replace the true numerical resolution
of the Helmholtz equation by that of a simpler, asymptotic model,
formulated in terms of rays.

In some sense, and in comparison with, say, the wave equation,
the specificity of the Helmholtz equation is the following.
While the wave equation typically describes the evolution of waves
between some initial time and some given observation time,
the Helmholtz equation takes into account at once
the propagation of waves over infinitely long
time intervals. Qualitatively, in order to have a good understanding
of the signal observed in some bounded region of space, one readily
needs to be able to describe the propagative phenomena
in the whole space, up to infinity. In other words, the “rays” we refer to
above need to be understood from the initial time up to infinity.
This is a central difficulty in the analysis of the high-frequency behaviour
of the Helmholtz equation.


[bookmark: uid35] Section: 
      Scientific Foundations
From the Schrödinger equation to Boltzmann-like equations
Participant :
      François Castella.


Schrödinger equation, asymptotic model, Boltzmann equation.


The Schrödinger equation is the appropriate way to describe
transport phenomena at the scale of electrons. However,
for real devices, it is important to derive
models valid at a larger scale.

In semi-conductors, the Schrödinger equation is the ultimate model that allows
to obtain quantitative information
about electronic transport in crystals. It reads, in convenient adimensional
units,

[bookmark: uid36] 	[image: Im37 $\mtable{...}$]	(11)




where V(x) is the potential and ψ(t, x) is the time- and space-dependent
wave function. However,
the size of real devices makes it important to derive simplified
models that
are valid at a larger scale.
Typically, one wishes to have kinetic transport equations.
As is well-known, this requirement needs one
to be able to describe “collisions”
between electrons in these devices, a concept that makes sense at the
macroscopic level, while it does not at the microscopic (electronic) level.
Quantitatively, the question is the following:
can one obtain the Boltzmann equation (an equation that describes
collisional phenomena) as an asymptotic model for the Schrödinger equation,
along the physically relevant micro-macro asymptotics?
From the point of view of modelling, one wishes here to understand
what are the “good objects”, or, in more technical words, what are the
relevant
“cross-sections”, that describe the elementary collisional phenomena.
Quantitatively, the Boltzmann equation reads, in a simplified, linearized,
form :

[bookmark: uid37] 	[image: Im38 $\mtable{...}$]	(12)




Here, the unknown is f(x, v, t), the probability that a particle sits at
position x, with a velocity v, at time t. Also, σ(v, v') is called
the cross-section, and it describes the probability that a particle
“jumps” from velocity v to velocity v' (or the converse) after a
collision process.
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  [bookmark: uid39] Section: 
      Application Domains
Laser physics

Laser physics considers the propagation over long space (or time) scales
of high frequency waves. Typically, one has to deal with the propagation
of a wave having a wavelength of the order of 10-6m, over distances of
the order 10-2m to 104m. In these situations, the propagation
produces both a short-scale oscillation and exhibits a long term trend
(drift, dispersion, nonlinear interaction with the medium, or so), which
contains the physically important feature. For this reason, one needs to
develop ways of filtering the irrelevant high-oscillations, and to build up
models and/or numerical schemes that do give information on the long-term
behavior. In other terms, one needs to develop high-frequency models and/or
high-frequency schemes.

Generally speaking, the demand in developing such models or schemes in the
context of laser
physics, or laser/matter interaction, is large. It involves both modeling
and numerics (description of oscillations, structure preserving algorithms to
capture the long-time behaviour, etc).

In a very similar spirit, but at a different level of modelling,
one would like to understand the very coupling between a laser propagating
in, say, a fiber, and
the atoms that build up the fiber itself.

The standard, quantum, model in this direction is called the Bloch model: it is
a Schrödinger like equation that describes the evolution of the atoms,
when coupled to the laser field. Here the laser field induces a
potential that acts directly on the atom, and the link between this potential
and the laser itself is given by the so-called dipolar matrix, a matrix
made up of physical coefficients that describe the polarization
of the atom under the applied field.

The scientific objective here is twofold. First, one wishes to obtain
tractable asymptotic models that average out the high oscillations of the atomic
system and of the laser field. A typical phenomenon here is the resonance
between the field and the energy levels of the atomic system. Second, one
wishes to obtain good numerical schemes in order to solve
the Bloch equation, beyond the oscillatory phenomena entailed by this model.


[bookmark: uid40] Section: 
      Application Domains
Molecular Dynamics

In classical molecular dynamics, the equations describe the
evolution of atoms or molecules under the action of forces
deriving from several interaction potentials. These potentials may
be short-range or long-range and are treated differently in most
molecular simulation codes. In fact, long-range potentials are
computed at only a fraction of the number of steps. By doing so,
one replaces the vector field by an approximate one and alternates
steps with the exact field and steps with the approximate one.
Although such methods have been known and used with success for
years, very little is known on how the “space" approximation (of
the vector field) and the time discretization should be combined
in order to optimize the convergence. Also, the fraction
of steps where the exact field is used for the computation is
mainly determined by heuristic reasons and a more precise analysis
seems necessary. Finally, let us mention that similar questions
arise when dealing with constrained differential equations, which
are a by-product of many simplified models in molecular dynamics
(this is the case for instance if one replaces the
highly-oscillatory components by constraints).


[bookmark: uid41] Section: 
      Application Domains
Plasma physics

The development of efficient numerical methods is essential for the
simulation of plasmas and beams
at the kinetic level of description (Vlasov type equations). It is well
known that plasmas or beams give rise to small
scales (Debye length, Larmor radius, gyroperiod, mean free path...)
which make numerical simulations challenging.
Instead of solving the limit or averaged models by considering these
small scales equal to zero,
our aim is to explore a different strategy, which consists in using the
original kinetic equation.
Specific numerical scheme called `Asymptotic Preserving" scheme is then
built to discretize the original kinetic equation. Such a scheme allows
to pass to the limit with no stability problems, and provide in the
limit a consistent approximation of the limit or average model. A
systematic and robust way to design such a scheme is the micro-macro
decomposition
in which the solution of the original model is decomposed into an
averaged part and a remainder.
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  [bookmark: uid43] Section: 
      New Results
PIROCK: a swiss-knife partitioned implicit-explicit orthogonal Runge-Kutta Chebyshev integrator for
stiff diffusion-advection-reaction problems with or without noise

In [37] , a partitioned implicit-explicit orthogonal Runge-Kutta method (PIROCK) is proposed for the time
integration of diffusion-advection-reaction problems with possibly severely stiff reaction terms and stiff stochastic terms. The diffusion
terms are solved by the explicit second order orthogonal Chebyshev method (ROCK2), while the stiff reaction terms (solved implicitly)
and the advection and noise terms (solved explicitly) are integrated in the algorithm as finishing procedures. It is shown that the various
coupling (between diffusion, reaction, advection and noise) can be stabilized in the PIROCK method. The method, implemented in a
single black-box code that is fully adaptive, provides error estimators for the various terms present in the problem, and requires from the
user solely the right-hand side of the differential equation. Numerical experiments and comparisons with existing Chebyshev methods,
IMEX methods and partitioned methods show the efficiency and flexibility of our new algorithm.


[bookmark: uid44] Section: 
      New Results
Mean-square A-stable diagonally drift-implicit integrators of weak second order for stiff Itô stochastic
differential equations

In [38] , we introduce two drift-diagonally-implicit and derivative-free integrators for stiff systems of Itô
stochastic differential equations with general non-commutative noise which have weak order 2 and deterministic order 2, 3, respectively. The methods are shown to be mean-square A-stable for the usual complex scalar linear test problem with multiplicative noise and
improve significantly the stability properties of the drift-diagonally-implicit methods previously introduced [K. Debrabant and A. Röß
ler, Appl. Num. Math., 59, 2009].


[bookmark: uid45] Section: 
      New Results
Weak second order explicit stabilized methods for stiff stochastic differential equations

In [39] , we introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of
weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not
suffer from the stepsize reduction faced by standard explicit methods. The family is based on the standard second order orthogonal
Runge-Kutta Chebyshev methods (ROCK2) for deterministic problems. The convergence, and the mean-square and asymptotic stability
properties of the methods are analyzed. Numerical experiments, including applications to nonlinear SDEs and parabolic stochastic
partial differential equations are presented and confirm the theoretical results.


[bookmark: uid46] Section: 
      New Results
High weak order methods for stochastic differential equations based on modified equations

Inspired by recent advances in the theory of modified differential equations, we propose in [11] , a new
methodology for constructing numerical integrators with high weak order for the time integration of stochastic differential equations. This
approach is illustrated with the constructions of new methods of weak order two, in particular, semi-implicit integrators well suited for stiff
(mean-square stable) stochastic problems, and implicit integrators that exactly conserve all quadratic first integrals of a stochastic
dynamical system. Numerical examples confirm the theoretical results and show the versatility of our methodology.


[bookmark: uid47] Section: 
      New Results
Analysis of the finite element heterogeneous multiscale method for nonmonotone elliptic
homogenization problems

In [13] , an analysis of the finite element heterogeneous multiscale method for a class of quasilinear elliptic
homogenization problems of nonmonotone type is proposed. We obtain optimal convergence results for dimension d[image: $ \le$]3. Our
results, which also take into account the microscale discretization, are valid for both simplicial and quadrilateral finite elements. Optimal
a-priori error estimates are obtained for the H1 and L2 norms, error bounds similar as for linear elliptic problems are derived for
the resonance error. Uniqueness of a numerical solution is proved. Moreover, the Newton method used to compute the solution is shown
to converge. Numerical experiments confirm the theoretical convergence rates and illustrate the behavior of the numerical method for
various nonlinear problems.


[bookmark: uid48] Section: 
      New Results
Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization
problems: a fully discrete space-time analysis

Numerical methods for parabolic homogenization problems combining finite element methods (FEMs) in space with Runge-Kutta
methods in time are proposed in [14] . The space discretization is based on the coupling of macro and micro finite
element methods following the framework of the Heterogeneous Multiscale Method (HMM). We present a fully-discrete analysis in both
space and time. Our analysis relies on new (optimal) error bounds in the norms L2(H1), C0(L2), and C0(H1) for the fully
discrete analysis in space. These bounds can then be used to derive fully discrete space-time error estimates for a variety of Runge-Kutta
methods, including implicit methods (e.g., Radau methods) and explicit stabilized method (e.g., Chebyshev methods). Numerical
experiments confirm our theoretical convergence rates and illustrate the performance of the methods.


[bookmark: uid49] Section: 
      New Results
A priori error estimates for finite element methods with numerical
quadrature for nonmonotone nonlinear elliptic problems

The effect of numerical quadrature in finite element methods for solving quasilinear elliptic problems of nonmonotone type is studied in
[12] . Under similar assumption on the quadrature formula as for linear problems, optimal error estimates in the
L2 and the H1 norms are proved. The numerical solution obtained from the finite element method with quadrature formula is
shown to be unique for a sufficiently fine mesh. The analysis is valid for both simplicial and rectangular finite elements of arbitrary order.
Numerical experiments corroborate the theoretical convergence rates.


[bookmark: uid50] Section: 
      New Results
An Isogeometric Analysis Approach for the study of the gyrokinetic quasi-neutrality equation

In [25] , a new discretization scheme of the gyrokinetic quasi-neutrality equation is proposed. It is based on
Isogeometric Analysis; the IGA which relies on NURBS functions, seems to accommodate arbitrary coordinates and the use of
complicated computation domains. Moreover, arbitrary high order degree of basis functions can be used. Here, this approach is
successfully tested on elliptic problems like the quasi-neutrality equation.


[bookmark: uid51] Section: 
      New Results
Guiding-center simulations on curvilinear meshes using semi-Lagrangian conservative methods

The purpose of this work [32]  is to design simulation tools for magnetised
plasmas in the ITER project framework. The specic issue we consider
is the simulation of turbulent transport in the core of a Tokamak plasma, for
which a 5D gyrokinetic model is generally used, where the fast gyromotion of
the particles in the strong magnetic field is averaged in order to remove the
associated fast time-scale and to reduce the dimension of 6D phase space involved in the
full Vlasov model. Very accurate schemes and efficient parallel
algorithms are required to cope with these still very costly simulations. The
presence of a strong magnetic field constrains the time scales of the particle
motion along and accross the magnetic field line, the latter being at least an
order of magnitude slower. This also has an impact on the spatial variations
of the observables. Therefore, the efficiency of the algorithm can be improved
considerably by aligning the mesh with the magnetic field lines. For this reason,
we study the behavior of semi-Lagrangian solvers in curvilinear coordinates.
Before tackling the full gyrokinetic model in a future work, we consider here
the reduced 2D Guiding-Center model. We introduce our numerical algorithm
and provide some numerical results showing its good properties.


[bookmark: uid52] Section: 
      New Results
Quasi-periodic solutions of the 2D Euler equation

In [45] , we consider the two-dimensional Euler equation with periodic boundary conditions. We construct time quasi-periodic solutions of this equation made of localized travelling profiles with compact support propagating over a stationary state depending on only one variable. The direction of propagation is orthogonal to this variable, and the support is concentrated on flat strips of the stationary state. The frequencies of the solution are given by the locally constant velocities associated with the stationary state.


[bookmark: uid53] Section: 
      New Results
Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles

This work [24]  is devoted to the numerical simulation of the Vlasov equation in the fluid limit using particles. To that purpose, we first perform a micro-macro decomposition as in [Benoune, Lemou, Mieussens, JCP 08] where asymptotic preserving schemes have been derived in the fluid limit. In [Benoune, Lemou, Mieussens, JCP 08] , a uniform grid was used to approximate both the micro and the macro part of the full distribution function. Here, we modify this approach by using a particle approximation for the kinetic (micro) part, the fluid (macro) part being always discretized by standard finite volume schemes. There are many advantages in doing so: (i) the so-obtained scheme presents a much less level of noise compared to the standard particle method; (ii) the computational cost of the micro-macro model is reduced in the fluid regime since a small number of particles is needed for the micro part; (iii) the scheme is asymptotic preserving in the sense that it is consistent with the kinetic equation in the rarefied regime and it degenerates into a uniformly (with respect to the Knudsen number) consistent (and deterministic) approximation of the limiting equation in the fluid regime.


[bookmark: uid54] Section: 
      New Results
Two-Scale Macro-Micro decomposition of the Vlasov equation with a strong magnetic field

In this paper [26] , we build a Two-Scale Macro-Micro decomposition of the Vlasov equation with a strong magnetic field. This consists in writing the solution of this equation as a sum of two oscillating functions with circonscribed oscillations. The first of these functions has a shape which is close to the shape of the Two-Scale limit of the solution and the second one is a correction built to offset this imposed shape. The aim of such a decomposition is to be the starting point for the construction of Two-Scale Asymptotic-Preserving Schemes.


[bookmark: uid55] Section: 
      New Results
A dynamic multi-scale model for transient radiative transfer calculations

In [55] , a dynamic multi-scale model which couples the transient radiative transfer equation (RTE) and the diffusion equation (DE) is proposed and validated. It is based on a domain decomposition method where the system is divided into a mesoscopic subdomain, where the RTE is solved, and a macroscopic subdomain where the DE is solved. A buffer zone is introduced between the mesoscopic and the macroscopic subdomains, as proposed by [Degond, Jin, SIAM J. Num. Anal. 05], where a coupled system of two equations, one at the mesoscopic and the other at the macroscopic scale, is solved. The DE and the RTE are coupled through the equations inside the buffer zone, instead of being coupled through a geometric interface like in standard domain decomposition methods. One main advantage is that no boundary or interface conditions are needed for the DE. The model is compared to Monte Carlo, finite volume and P1 solutions in one dimensional stationary and transient test cases, and presents promising results in terms of trade-off between accuracy and computational requirements.


[bookmark: uid56] Section: 
      New Results
Accuracy of unperturbed motion of particles in a gyrokinetic semi-Lagrangian code

Inaccurate description of the equilibrium can yield to spurious effects in gyrokinetic turbulence simulations. Also, the Vlasov solver and time integration schemes impact the conservation of physical quantities, especially in long-term simulations. Equilibrium and Vlasov solver have to be tuned in order to preserve constant states (equilibrium) and to provide good conservation property along time (mass to begin with). Several illustrative simple test cases are given in [36]  to show typical spurious effects that one can observes for poor settings. We explain why Forward Semi-Lagrangian scheme bring us some benefits. Some toroidal and cylindrical GYSELA runs are shown that use FSL.


[bookmark: uid57] Section: 
      New Results
High order Runge-Kutta-Nyström splitting methods for the Vlasov-Poisson equation

In this work [46] , we derive the order conditions for fourth order time splitting schemes in the case of the 1D Vlasov-Poisson system. Computations to obtain such conditions are motivated by the specific Poisson structure of the Vlasov-Poisson system : this structure is similar to Runge-Kutta-Nyström systems. The obtained conditions are proved to be the same as RKN conditions derived for ODE up to the fourth order. Numerical results are performed and show the benefit of using high order splitting schemes in that context.


[bookmark: uid58] Section: 
      New Results
A Discontinuous Galerkin semi-Lagrangian solver for the guiding-center problem

In this paper [49] , we test an innovative numerical scheme for the simulation of the guiding-center model, of interest in the domain of plasma physics, namely for fusion devices. We propose a 1D Discontinuous Galerkin (DG) discretization, whose basis are the Lagrange polynomials interpolating the Gauss points inside each cell, coupled to a conservative semi-Lagrangian (SL) strategy. Then, we pass to the 2D setting by means of a second-order Strangsplitting strategy. In order to solve the 2D Poisson equation on the DG discretization, we adapt the spectral strategy used for equally-spaced meshes to our Gauss-point-based basis. The 1D solver is validated on a standard benchmark for the nonlinear advection; then, the 2D solver is tested against the swirling deformation ow test case; nally, we pass to the simulation of the guiding-center model, and compare our numerical results to those given by the Backward Semi-Lagrangian method.


[bookmark: uid59] Section: 
      New Results
Asymptotic preserving schemes for highly oscillatory kinetic equation

This work [48]  is devoted to the numerical simulation of a Vlasov-Poisson model describing a charged particle beam under the action of a rapidly oscillating external electric field. We construct an Asymptotic Preserving numerical scheme for this kinetic equation in the highly oscillatory limit. This scheme enables to simulate the problem without using any time step refinement technique. Moreover, since our numerical method is not based on the derivation of the simulation of asymptotic models, it works in the regime where the solution does not oscillate rapidly, and in the highly oscillatory regime as well. Our method is based on a "double-scale" reformulation of the initial equation, with the introduction of an additional periodic variable.


[bookmark: uid60] Section: 
      New Results
Asymptotic preserving schemes for the Wigner-Poisson-BGK equations in the diffusion limit

This work [47]  focusses on the numerical simulation of the Wigner-Poisson-BGK equation in the diffusion asymptotics. Our strategy is based on a ”micro-macro" decomposition, which leads to a system of equations that couple the macroscopic evolution (diffusion) to a microscopic kinetic contribution for the fluctuations. A semi-implicit discretization provides a numerical scheme which is stable with respect to the small parameter ε (mean free path) and which possesses the following properties: (i) it enjoys the asymptotic preserving property in the diffusive limit; (ii) it recovers a standard discretization of the Wigner-Poisson equation in the collisionless regime. Numerical experiments confirm the good behaviour of the numerical scheme in both regimes. The case of a spatially dependent ε(x) is also investigated.


[bookmark: uid61] Section: 
      New Results
Orbital stability of spherical galactic models

In [31] , we consider the three dimensional gravitational Vlasov Poisson
system which is a canonical model in astrophysics to describe the dynamics
of galactic clusters. A well known conjecture (Binney, Tremaine in Galactic
Dynamics, Princeton University Press, Princeton, 1987) is the stability of
spherical models which are nonincreasing radially symmetric steady states
solutions. This conjecture was proved at the linear level by several authors in
the continuation of the breakthrough work by Antonov (Sov. Astron. 4:859-867, 1961). In the previous work (Lemou et al. in A new variational approach
to the stability of gravitational systems, submitted, 2011), we derived the stability
of anisotropic models under spherically symmetric perturbations using
fundamental monotonicity properties of the Hamiltonian under suitable
generalized symmetric rearrangements first observed in the physics literature
(Lynden-Bell in Mon. Not. R. Astron. Soc. 144:189-217, 1969; Gardner in
Phys. Fluids 6:839-840, 1963; Wiechen et al. in Mon. Not. R. Astron. Soc.
223:623-646, 1988; Aly in Mon. Not. R. Astron. Soc. 241:15, 1989). In this
work, we show how this approach combined with a new generalized Antonov
type coercivity property implies the orbital stability of spherical models under
general perturbations.


[bookmark: uid62] Section: 
      New Results
Stable ground states and self-similar blow-up solutions for the gravitational Vlasov-Manev system

In this work [54] , we study the orbital stability of steady states and the
existence of blow-up self-similar solutions to the so-called Vlasov-Manev (VM)
system. This system is a kinetic model which has a similar Vlasov structure as
the classical Vlasov-Poisson system, but is coupled to a potential in -1/r-1/r2
(Manev potential) instead of the usual gravitational potential in -1/r, and in
particular the potential field does not satisfy a Poisson equation but a fractional-
Laplacian equation. We first prove the orbital stability of the ground states type
solutions which are constructed as minimizers of the Hamiltonian, following the
classical strategy: compactness of the minimizing sequences and the rigidity of
the flow. However, in driving this analysis, there are two mathematical obstacles:
the first one is related to the possible blow-up of solutions to the VM system,
which we overcome by imposing a sub-critical condition on the constraints of the
variational problem. The second difficulty (and the most important) is related to
the nature of the Euleri-Lagrange equations (fractional-Laplacian equations) to
which classical results for the Poisson equation do not extend. We overcome this
difficulty by proving the uniqueness of the minimizer under equimeasurabilty
constraints, using only the regularity of the potential and not the fractional-
Laplacian Euler-Lagrange equations itself. In the second part of this work, we
prove the existence of exact self-similar blow-up solutions to the Vlasov-Manev
equation, with initial data arbitrarily close to ground states. This construction
is based on a suitable variational problem with equimeasurability constraint.


[bookmark: uid63] Section: 
      New Results
Micro-macro schemes for kinetic equations including boundary layers

In this paper [53] , we introduce a new micro-macro decomposition of collisional kinetic
equations in the specific case of the diffusion limit, which naturally incorporates
the incoming boundary conditions. The idea is to write the distribution function
f in all its domain as the sum of an equilibrium adapted to the boundary (which
is not the usual equilibrium associated with f) and a remaining kinetic part.
This equilibrium is defined such that its incoming velocity moments coincide
with the incoming velocity moments of the distribution function. A consequence
of this strategy is that no artificial boundary condition is needed in the micromacro
models and the exact boundary condition on f is naturally transposed
to the macro part of the model. This method provides an “Asymptotic preserving"
numerical scheme which generates a very good approximation of the
space boundary values at the diffusive limit, without any mesh refinement in the
boundary layers. Our numerical results are in very good agreement with the
exact so-called Chandrasekhar value, which is explicitely known in some simple
cases.


[bookmark: uid64] Section: 
      New Results
Stroboscopic averaging for the nonlinear Schrödinger equation

In this paper [35] , we are concerned with an averaging procedure, -namely Stroboscopic
averaging-, for highly-oscillatory evolution equations posed in a
(possibly infinite dimensional) Banach space, typically partial differential equations (PDEs)
in a high-frequency regime where only one frequency is present. We construct a high order
averaged system whose solution remains exponentially close to the exact one over
long time intervals, possesses the same geometric properties (structure, invariants, . . . ) as
compared to the original system, and is non-oscillatory. We then apply our results to the
nonlinear Schrödinger equation on the d-dimensional torus Td, or in Rd with a harmonic
oscillator, for which we obtain a hierarchy of Hamiltonian averaged models. Our results
are illustrated numerically on several examples borrowed from the recent literature.


[bookmark: uid65] Section: 
      New Results
An asymptotic preserving scheme based on a new formulation for NLS in the semiclassical limit

In [41] , we consider the semiclassical limit for the nonlinear Schrödinger
equation. We introduce a phase/amplitude representation given by a system
similar to the hydrodynamical formulation, whose novelty consists in including
some asymptotically vanishing viscosity. We prove that the system is always
locally well-posed in a class of Sobolev spaces, and globally well-posed for a fixed
positive Planck constant in the one-dimensional case. We propose a second order
numerical scheme which is asymptotic preserving. Before singularities appear in
the limiting Euler equation, we recover the quadratic physical observables as well
as the wave function with mesh size and time step independent of the Planck
constant. This approach is also well suited to the linear Schrödinger equation.


[bookmark: uid66] Section: 
      New Results
Analysis of a large number of Markov chains competing for transitions

In [17] , we consider the behaviour of a stochastic system composed of several
identically distributed, but non independent, discrete-time absorbing
Markov chains competing at each instant for a transition. The
competition consists in determining at each instant, using a given
probability distribution, the only Markov chain allowed to make a
transition. We analyse the first time at which one of the Markov chains
reaches its absorbing state. When the number of Markov chains goes to
infinity, we analyse the asymptotic behaviour of the system for an
arbitrary probability mass function governing the competition. We give
conditions that ensure the existence of the asymptotic distribution and
we show how these results apply to cluster-based distributed storage
when the competition is handled using a geometric distribution.


[bookmark: uid67] Section: 
      New Results
High frequency behavior of the Maxwell-Bloch mdel with relaxations: convergence to the Schrödinger-rate system

We study in [20]  the Maxwell-Bloch model, which describes the propagation of a
laser through a material and the associated interaction between laser
and matter (polarization of the atoms through light propagation, photon
emission and absorption, etc.). The laser field is described through
Maxwell's equations, a classical equation, while matter is represented
at a quantum level and satisfies a quantum Liouville equation known as
the Bloch model. Coupling between laser and matter is described through a
quadratic source term in both equations. The model also takes into
account partial relaxation effects, namely the trend of matter to return
to its natural thermodynamic equilibrium. The whole system involves
6+N (N + 1)/2 unknowns, the six-dimensional electromagnetic field
plus the N (N + 1)/2 unknowns describing the state of matter, where
N is the number of atomic energy levels of the considered material. We
consider at once a high-frequency and weak coupling situation, in the
general case of anisotropic electromagnetic fields that are subject to
diffraction. Degenerate energy levels are allowed. The whole system is
stiff and involves strong nonlinearities. We show the convergence to a
nonstiff, nonlinear, coupled Schrödinger-Boltzmann model,
involving 3+N unknowns. The electromagnetic field is eventually
described through its envelope, one unknown vector in C3. It
satisfies a Schrödinger equation that takes into account
propagation and diffraction of light inside the material. Matter on the
other hand is described through a N-dimensional vector describing the
occupation numbers of each atomic level. It satisfies a Boltzmann
equation that describes the jumps of the electrons between the various
atomic energy levels, as induced by the interaction with light. The rate
of exchange between the atomic levels is proportional to the intensity
of the laser field. The whole system is the physically natural nonlinear
model. In order to provide an important and explicit example, we
completely analyze the specific (two dimensional) Transverse Magnetic
case, for which formulae turn out to be simpler. Technically speaking,
our analysis does not enter the usual mathematical framework of
geometric optics: it is more singular, and requires an ad hoc
Ansatz.


[bookmark: uid68] Section: 
      New Results
Radiation condition at infinity for the high-frequency Helmholtz equation: optimality of a non-refocusing criterion

In [43] , we consider the high frequency Helmholtz equation with a variable refraction index n2(x) ([image: Im39 ${x\#8712 \#8477 ^d}$]), supplemented with a given high frequency source term supported
near the origin x = 0. A small absorption parameter αε>0 is added, which prescribes a radiation condition at infinity for the considered Helmholtz equation. The
semi-classical parameter is ε>0. We let ε and αε go to zero simultaneously. We study the question whether the prescribed radiation
condition at infinity is
satisfied uniformly along the asymptotic process ε[image: $ \rightarrow$]0. This question has been previously studied by the first author, who has proved that
the radiation condition is indeed satisfied uniformly in ε, provided the refraction index satisfies a specific non-refocusing condition. The non-refocusing condition
requires, in
essence, that the rays of geometric optics naturally associated with the high-frequency Helmholtz operator, and that are sent from the origin x = 0 at time t = 0, should not refocus at
some later time t>0 near the origin again. In the present text we show the optimality
of the above mentioned non-refocusing condition. We exhibit a refraction index which does refocus the rays of geometric optics sent from the origin near the origin again, and we
show that the limiting solution does not satisfy the natural radiation condition at infinity in that case.
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      New Results
Coexistence phenomena and global bifurcation structure in a chemostat-like model with species-dependent diffusion rates

We study in [44]  the competition of two species for a single resource in a chemostat.
In the simplest space-homogeneous situation, it is known that only one
species survives, namely the best competitor. In order to exhibit coexistence phenomena, where the two competitors are able to survive,
we consider a space dependent situation: we assume that the two species
and the resource follow a diffusion process in space, on top of the
competition process. Besides, and in order to consider the most general
case, we assume each population is associated with a distinct
diffusion constant. This is a key difficulty in our analysis: the
specific (and classical) case where all diffusion constants are equal,
leads to a particular conservation law, which in turn allows to
eliminate the resource in the equations, a fact that considerably
simplifies the analysis and the qualitative phenomena. Using the global
bifurcation theory, we prove that the underlying 2-species,
stationary, diffusive, chemostat-like model, does possess coexistence solutions, where both species survive. On top of that, we
identify the domain, in the space of the identified bifurcation
parameters, for which the system does have coexistence solutions.


[bookmark: uid70] Section: 
      New Results
Markov Chains Competing for Transitions: Application to Large-Scale Distributed Systems

In [16] , we consider the behaviour of a stochastic system composed of several
identically distributed, but non independent, discrete-time absorbing
Markov chains competing at each instant for a transition. The
competition consists in determining at each instant, using a given
probability distribution, the only Markov chain allowed to make a
transition. We analyse the first time at which one of the Markov chains
reaches its absorbing state. When the number of Markov chains goes to
infinity, we analyse the asymptotic behaviour of the system for an
arbitrary probability mass function governing the competition. We give
conditions that ensure the existence of the asymptotic distribution and
we show how these results apply to cluster-based distributed storage
when the competition is handled using a geometric distribution.


[bookmark: uid71] Section: 
      New Results
Optimized high-order splitting methods for some classes of
parabolic equations

In this paper [21] , we are concernedwith the numerical solution obtained by
splitting methods of certain parabolic partial
differential equations. Splitting schemes of order higher than two with real coefficients necessarily involve
negative coefficients. It has been demonstrated that this second-order barrier can be overcome by using
splitting methods with complex-valued coefficients (with positive real parts). In this way, methods of
orders 3 to 14 by using the Suzuki-Yoshida triple (and quadruple) jump composition procedure have
been explicitly built. Here we reconsider this technique and show that it is inherently bounded to order 14
and clearly sub-optimal with respect to error constants. As an alternative, we solve directly the algebraic
equations arising from the order conditions and construct methods of orders 6 and 8 that are the most
accurate ones available at present time, even when low accuracies are desired. We also show that, in the
general case, 14 is not an order barrier for splitting methods with complex coefficients with positive real
part by building explicitly a method of order 16 as a composition of methods of order 8.


[bookmark: uid72] Section: 
      New Results
A formal series approach to averaging: exponentially small error estimates

The techniques, based on formal series and combinatorics, used nowadays to analyze numerical integrators may be applied to perform
high-order averaging in oscillatory periodic or quasi-periodic dynamical systems. When this approach is employed, the averaged system
may be written in terms of (i) scalar coefficients that are universal, i.e. independent of the system under consideration and (ii) basis
functions that may be written in an explicit, systematic way in terms of the derivatives of the Fourier coefficients of the vector field being
averaged. The coefficients may be recursively computed in a simple fashion. We show in [22]  that this approach
may be used to obtain exponentially small error estimates, as those first derived by Neishtadt. All the constants that feature in the
estimates have a simple explicit expression.


[bookmark: uid73] Section: 
      New Results
Higher-order averaging, formal series and numerical integration II: the quasi-periodic case

The paper [23]  considers non-autonomous oscillatory systems of ordinary differential equations with d>1 non-
resonant constant frequencies. Formal series like those used nowadays to analyze the properties of numerical integrators are employed
to construct higher-order averaged systems and the required changes of variables. With the new approach, the averaged system and the
change of variables consist of vector-valued functions that may be written down immediately and scalar coefficients that are universal in
the sense that they do not depend on the specific system being averaged and may therefore be computed once and for all. The new
method may be applied to obtain a variety of averaged systems. In particular we study the quasi-stroboscopic averaged system
characterized by the property that the true oscillatory solution and the averaged solution coincide at the initial time. We show that quasi-
stroboscopic averaging is a geometric procedure because it is independent of the particular choice of co-ordinates used to write the
given system. As a consequence, quasi-stroboscopic averaging of a canonical Hamiltonian (resp. of a divergence-free) system results in
a canonical (resp. in a divergence-free) averaged system. We also study the averaging of a family of near-integrable systems where our
approach may be used to construct explicitly d formal first integrals for both the given system and its quasi-stroboscopic averaged
version. As an application we construct three first integrals of a system that arises as a nonlinear perturbation of five coupled harmonic
oscillators with one slow frequency and four resonant fast frequencies.


[bookmark: uid74] Section: 
      New Results
Existence of densities for the 3D Navier-Stokes equations driven by Gaussian noise

We prove in [50]  three results on the existence of densities for the laws of finite dimensional functionals of the
solutions of the stochastic Navier-Stokes equations in dimension 3. In particular, under very mild assumptions on the noise, we prove that
finite dimensional projections of the solutions have densities with respect to the Lebesgue measure which have some smoothness when
measured in a Besov space. This is proved thanks to a new argument inspired by an idea introduced in Fournier and Printems (2010).


[bookmark: uid75] Section: 
      New Results
Diffusion limit for a stochastic kinetic problem

We study in [30]  the limit of a kinetic evolution equation involving a small parameter and perturbed by a
smooth random term which also involves the small parameter. Generalizing the classical method of perturbed test functions, we show the
convergence to the solution of a stochastic diffusion equation.


[bookmark: uid76] Section: 
      New Results
Global Existence and Regularity for the 3D Stochastic Primitive Equations of the Ocean and
Atmosphere with Multiplicative White Noise

The Primitive Equations are a basic model in the study of large scale Oceanic and Atmospheric dynamics. These systems form the
analytical core of the most advanced General Circulation Models. For this reason and due to their challenging nonlinear and anisotropic
structure the Primitive Equations have recently received considerable attention from the mathematical community. In view of the complex
multi-scale nature of the earth's climate system, many uncertainties appear that should be accounted for in the basic dynamical models of
atmospheric and oceanic processes. In the climate community stochastic methods have come into extensive use in this connection. For
this reason there has appeared a need to further develop the foundations of nonlinear stochastic partial differential equations in
connection with the Primitive Equations and more generally. In this work [29]  we study a stochastic version of
the Primitive Equations. We establish the global existence of strong, pathwise solutions for these equations in dimension 3 for the case of
a nonlinear multiplicative noise. The proof makes use of anisotropic estimates, Lp_tLq_x estimates on the pressure and
stopping time arguments.


[bookmark: uid77] Section: 
      New Results
Weak backward error analysis for SDEs

We consider in [28]  numerical approximations of stochastic differential equations by the Euler method. In the
case where the SDE is elliptic or hypoelliptic, we show a weak backward error analysis result in the sense that the generator associated
with the numerical solution coincides with the solution of a modified Kolmogorov equation up to high order terms with respect to the
stepsize. This implies that every invariant measure of the numerical scheme is close to a modified invariant measure obtained by
asymptotic expansion. Moreover, we prove that, up to negligible terms, the dynamic associated with the Euler scheme is exponentially
mixing.


[bookmark: uid78] Section: 
      New Results
Convergence of stochastic gene networks to hybrid piecewise deterministic processes

In [27] , we study the asymptotic behavior of multiscale stochastic gene networks using weak limits of Markov jump
processes. Depending on the time and concentration scales of the system we distinguish four types of limits: continuous piecewise
deterministic processes (PDP) with switching, PDP with jumps in the continuous variables, averaged PDP, and PDP with singular
switching. We justify rigorously the convergence for the four types of limits. The convergence results can be used to simplify the
stochastic dynamics of gene network models arising in molecular biology.


[bookmark: uid79] Section: 
      New Results
Exponential mixing of the 3D stochastic Navier-Stokes equations driven by mildly degenerate
noises

In [15] , we prove the strong Feller property and exponential mixing for 3D stochastic Navier-Stokes equation
driven by mildly degenerate noises (i.e. all but finitely many Fourier modes are forced) via Kolmogorov equation approach.


[bookmark: uid80] Section: 
      New Results
Existence and stability of solitons for fully discrete approximations of the nonlinear Schrödinger
equation

In [40]  we study the long time behavior of a discrete approximation in time and space of the cubic nonlinear
Schrödinger equation on the real line. More precisely, we consider a symplectic time splitting integrator applied to a discrete nonlinear
Schrödinger equation with additional Dirichlet boundary conditions on a large interval. We give conditions ensuring the existence of a
numerical soliton which is close in energy norm to the continuous soliton. Such result is valid under a CFL condition between the time
and space stepsizes. Furthermore we prove that if the initial datum is symmetric and close to the continuous soliton, then the associated
numerical solution remains close to the orbit of the continuous soliton for very long times.


[bookmark: uid81] Section: 
      New Results
Fast Weak-Kam Integrators

We consider in [42]  a numerical scheme for Hamilton-Jacobi equations based on a direct discretization of the
Lax-Oleinik semi-group. We prove that this method is convergent with respect to the time and space stepsizes provided the solution is
Lipschitz, and give an error estimate. Moreover, we prove that the numerical scheme is a geometric integrator satisfying a discrete
weak-KAM theorem which allows to control its long time behavior. Taking advantage of a fast algorithm for computing min-plus
convolutions based on the decomposition of the function into concave and convex parts, we show that the numerical scheme can be
implemented in a very efficient way.


[bookmark: uid82] Section: 
      New Results
Sparse spectral approximations for computing polynomial functionals

In [51] , we give a new fast method for evaluating spectral approximations of nonlinear polynomial functionals. We
prove that the new algorithm is convergent if the functions considered are smooth enough, under a general assumption on the spectral
eigenfunctions that turns out to be satisfied in many cases, including the Fourier and Hermite basis.
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[bookmark: uid108] Visits of International Scientists



		[bookmark: uid109] Mechthild Thalhammer, University of Innsbrück, one week





		[bookmark: uid110] Yong Zhang, University of Vienna, three weeks








[bookmark: uid111] Visits to International Teams



		[bookmark: uid112] G. Vilmart: EPF Lausanne (Switzerland), invitation by Assyr Abdulle in
the chair of numerical analysis and computational mathematics, several
1-2 weeks visits (totalizing 3 months).
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		[bookmark: uid110] Mechthild Thalhammer, University of Innsbrück, one week





		[bookmark: uid111] Yong Zhang, University of Vienna, three weeks
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[bookmark: uid113] Visits to International Teams



		[bookmark: uid114] G. Vilmart: EPF Lausanne (Switzerland), invitation by Assyr Abdulle in
the chair of numerical analysis and computational mathematics, several
1-2 weeks visits (totalizing 3 months).
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[bookmark: uid105] Participation In International Programs


[bookmark: uid106] ANR Programme blanc international (BLAN) LODIQUAS 2012-2015

Participants :
      François Castella, Philippe Chartier, Florian Méhats, Mohammed Lemou.


Leaders: N. Mauser (Univ. Vienna) and F. Castella (IPSO).


The project, entitled "LODIQUAS" (for: Low DImensional QUANtum Systems), received fundings for 4 postdocs (48 months) and one pre-doc (36 months). The whole project involves the following rechearchers :


Norbert Mauser (Vienna),
Erich Gornik (Vienna),
Mechthild Thalhammer (Innsbruck),
Christoph Naegerl (Innsbruck),
Joerg Schmiedmayer (Vienna),
Hans-Peter Stimming (Vienna).


Francois Castella (IPSO),
Florian Mehats (IPSO),
Francis Nier (Rennes),
Raymond El Hajj (Rennes),
Mohammed Lemou (IPSO),
Claudia Negulsecu (Toulouse),
Fanny Delebecque (Toulouse),
Stephane Descombes (Nice),
Philippe Chartier (IPSO),
Christophe Besse (Lille),


The expected scientific and technological progress brought by the present project are as
follows. “Quantum technology" as the application of quantum effects in macroscopic devices has an increasing importance, not only for
far future goals like the “quantum computer", but already now or in the near future. The present project is mainly concerned with the
mathematical and numerical analysis of these objects, in conjunction with experimental physicists. On the side of fermions quantum
electronic structures like resonant tunnelling diodes show well studied “non classical effects" like a negative differential resistance that
are exploited for novel devices. On the side of bosons the creation and manipulation of Bose Einstein Condensates (the first creation of
BECs by Ketterle et al merited a Nobel prize) has become a standard technique that allows to study fundamental quantum concepts like
matter-wave duality with increasingly large objects and advanced quantum effects like decoherence, thermalization, quantum chaos.
In state-of-the?art experiments e.g. with ultracold atoms in optical lattices the bosonic or fermionic nature of quantum objects can change
and it makes a lot of sense to treat the models in parallel in the development of mathematical methods. The experimental progress in
these fields is spectacular, but the mathematical modelling and analysis as well as the numerical simulation are lagging behind. Low
dimensional models are mostly introduced in a heuristic way and there is also a need for systematic derivations and comparison with the
3-d models. To close the gap is a main goal of this project that aims to deliver reliable tools and programme packages for the numerical
simulation of different classes of quantum systems modelled by partial differential equation of NLS type. Virtually all participants have a
strong track record of international collaboration, they grew up with the concept of the “European Research Area" where science knows
no boundaries and scientists used to work in different countries, as it was the case in a pronounced way in mathematics and in quantum
physics in the thirties of the last century. The Pre- and Post-Docs to be funded by this project will be trained in this spirit of mobility
between scientific fields and between places.
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follows. “Quantum technology" as the application of quantum effects in macroscopic devices has an increasing importance, not only for
far future goals like the “quantum computer", but already now or in the near future. The present project is mainly concerned with the
mathematical and numerical analysis of these objects, in conjunction with experimental physicists. On the side of fermions quantum
electronic structures like resonant tunnelling diodes show well studied “non classical effects" like a negative differential resistance that
are exploited for novel devices. On the side of bosons the creation and manipulation of Bose Einstein Condensates (the first creation of
BECs by Ketterle et al merited a Nobel prize) has become a standard technique that allows to study fundamental quantum concepts like
matter-wave duality with increasingly large objects and advanced quantum effects like decoherence, thermalization, quantum chaos.
In state-of-the?art experiments e.g. with ultracold atoms in optical lattices the bosonic or fermionic nature of quantum objects can change
and it makes a lot of sense to treat the models in parallel in the development of mathematical methods. The experimental progress in
these fields is spectacular, but the mathematical modelling and analysis as well as the numerical simulation are lagging behind. Low
dimensional models are mostly introduced in a heuristic way and there is also a need for systematic derivations and comparison with the
3-d models. To close the gap is a main goal of this project that aims to deliver reliable tools and programme packages for the numerical
simulation of different classes of quantum systems modelled by partial differential equation of NLS type. Virtually all participants have a
strong track record of international collaboration, they grew up with the concept of the “European Research Area" where science knows
no boundaries and scientists used to work in different countries, as it was the case in a pronounced way in mathematics and in quantum
physics in the thirties of the last century. The Pre- and Post-Docs to be funded by this project will be trained in this spirit of mobility
between scientific fields and between places.
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[bookmark: uid117] Editorial activities



		[bookmark: uid118] P. Chartier is member of the editorial board of “M2AN"





		[bookmark: uid119] P. Chartier is member of the editorial board of “ESAIM Proceedings"





		[bookmark: uid120] P. Chartier is member of the editorial board of “Mathematical Analysis"





		[bookmark: uid121] N. Crouseilles is member of the editorial board of "International Journal of Analysis" http://www.hindawi.com/journals/analysis/ 





		[bookmark: uid122] A. Debussche is member of the editorial board of “SINUM"





		[bookmark: uid123] A. Debussche is member of the editorial board of “Differential and Integral Equations"





		[bookmark: uid124] A. Debussche is a member of the editorial board of “Potential Analysis"





		[bookmark: uid125] A. Debussche is a member of the editorial board of “ESAIM Proceeding"





		[bookmark: uid126] A. Debussche is a member of the editorial board of the collection “Mathématiques & Applications" edited by Springer





		[bookmark: uid127] A. Debussche is the editor in chief of “Stochastic Partial Differential Equations: Analysis
and Conputations"





		[bookmark: uid128] M. Lemou is associate editor of “Annales de la faculté de Toulouse"








[bookmark: uid129] Conference and workshop organization



		[bookmark: uid130] P. Chartier, A. Debussche and E. Faou were members of the programm committee of DD21: 21th International Conference on Domain Decomposition Methods, 25-29 June 2012, Rennes, France.





		[bookmark: uid131] N. Crouseilles was member of the organization committee of the workshop WASPs 20-26 may 2012
http://www.math.univ-toulouse.fr/~cnegules/WAPs2012.html 





		[bookmark: uid132] A. Debussche organizes the semester "Perspectives in Analysis and Probability"
to be held in Rennes in 2013. Among others, there will be two international conferences,
3 workshops and 1 summer school.








[bookmark: uid133] Administrative activities



		[bookmark: uid134] P. Chartier is member of the bureau of the Comité des Projets at Inria-Rennes.





		[bookmark: uid135] M. Lemou is partly in charge of the Master 2





		[bookmark: uid136] M. Lemou is member of the scientific committee of the Lebesgue Center (Labex)





		[bookmark: uid137] F. Méhats is member of the CNU, Section 26.





		[bookmark: uid138] F. Méhats is the head of the numerical analysis department of IRMAR.





		[bookmark: uid139] A. Debussche is member of the board of directors of the ENS Cachan.





		[bookmark: uid140] A. Debussche is member of the Executive Board of the Lebesgue Center, Labex funded
by the french government.








[bookmark: uid141] Talks in seminars and conferences, mini-courses



		[bookmark: uid142] P. Chartier was plenary speaker at the Tenth International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2012) in honor of Gerhard Wanner, Greece, September 19-25, 2012.





		[bookmark: uid143] P. Chartier was plenary speaker at the Workshop INNOVATIVE TIME INTEGRATION, Innsbruck, Austria, May 13-16, 2012.





		[bookmark: uid144] E. Faou was plenary speaker at the conference NUMDIFF13 (september 2012), Halle, Germany.





		[bookmark: uid145] E. Faou gave a lecture at the Winter School “Dynamics and PDEs", Saint-Etienne de Tinée.





		[bookmark: uid146] G. Vilmart was keynote speaker at the Special session on "Algebraic
structures in numerical analysis of differential equations", Universitad
Jaume I (IMAC), Castellon (Spain), May 2012.





		[bookmark: uid147] A. Debussche was plenary speaker at the conference “Recent Developments in Stochastic Analysis", EPFL Lausanne, february 2012.





		[bookmark: uid148] A. Debussche was plenary speaker at the conference “Stochastic Analysis and Stochastic PDEs ", University of Warwick, april 2012





		[bookmark: uid149] A. Debussche was plenary speaker at the conference “NASPDE12 - Numerical Analysis of Stochastic PDEs", University of Warwick, june 2012





		[bookmark: uid150] A. Debussche was plenary speaker at the conference “Stochastic Partial Differential Equations (SPDEs) Follow-up Meeting " in Cambridge, september 2012.
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[bookmark: uid152] Teaching



		[bookmark: uid153] Licence : P. Chartier, “Equations différentielles", 36, L3, ENS Cachan-Bruz





		[bookmark: uid154] Master : N. Crouseilles, "Numerical methods for kinetic equations", 18H, M2, University of Rennes 1





		[bookmark: uid155] Master: E. Faou, “Modélisation et analyse numérique des EDPs", ENS Paris, in collaboration with D. Lannes





		[bookmark: uid156] Master 1 and 2: M. Lemou, “Equations elliptiques" and “Equations hyperboliques"






[bookmark: uid157] Supervision



		[bookmark: uid158] PhD : Charles-Edouard Bréhier, “Analyse numérique d'EDP stochastiques hautement oscillantes", defended the 27th of november 2012 (supervised by A. Debussche et E. Faou).






[bookmark: uid159] Juries



		[bookmark: uid160] Nicolas Crouseilles: member of the PhD-jury of A. Crestetto, 4 october, 2012 (Strasbourg).





		[bookmark: uid161] A. Debussche was member of the jury for Yohann Offret (PhD, Rennes, juin 2012), Florent Barret (Hdr, Ecole Polytechnique, juillet 2012), Maxime Gazeau (PhD, Ecole Polytechnique, octobre 2012), Bruno Saussereau (Hdr, Besancon, novembre 2012)





		[bookmark: uid162] M. Lemou was member of the jury for E. Franck (PhD, Paris 6) and S. Soulaiman (PhD, IRMAR).
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S. Fiorelli-Vilmart and G. Vilmart, Les planètes tournent-elles rond?, submitted for publication in
“Interstices" Theme 2012-2013 “Invariants et similitudes" of TIPE in preparatory classes.
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[bookmark: uid95] FP7 Projects


[bookmark: uid96]  http://www.irisa.fr/ipso/perso/faou/geopardi.html  Geopardi



		[bookmark: uid97] Title: Geometric Partial Differential Equations





		[bookmark: uid98] Type: IDEAS ()





		[bookmark: uid99] Instrument: ERC Starting Grant (Starting)





		[bookmark: uid100] Duration: September 2011 - August 2016





		[bookmark: uid101] Coordinator: Inria
(France)





		[bookmark: uid102] See also:  http://www.irisa.fr/ipso/perso/faou/geopardi.html 





		[bookmark: uid103] Abstract: The goal is to develop new numerical methods for the approximation of evolution equations possessing strong geometric properties such as Hamiltonian systems or stochastic differential equations. Use intensive numerical simulations to discover and analyze new nonlinear phenomena.
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(France)
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		[bookmark: uid104] Abstract: The goal is to develop new numerical methods for the approximation of evolution equations possessing strong geometric properties such as Hamiltonian systems or stochastic differential equations. Use intensive numerical simulations to discover and analyze new nonlinear phenomena.
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[bookmark: uid86] ANR Programme blanc (BLAN) MEGAS: 2009-2012

Participants :
      François Castella, Philippe Chartier, Arnaud Debussche, Erwan Faou.


Geometric methods and sampling: application to molecular simulation. The project was financed for
3 years, coordinated by Tony Lelièvre and has gathered the following teams and persons:



		[bookmark: uid87] Team of Eric Cancès at CERMICS





		[bookmark: uid88] Team IPSO





		[bookmark: uid89] Mathias Rousset from Inria Lille





		[bookmark: uid90] Christophe Chipot, from the CNRS in Nancy.







P. Chartier was the coordinator for IPSO.



[bookmark: uid91] ANR Programme blanc GYPSI: 2010-2014

Participant :
      Nicolas Crouseilles.


Leader: Ph. Gendrih.


The full description is available at https://sites.google.com/site/anrgypsi/ 



[bookmark: uid92] ANR Programme blanc E2T2: 2010-2014

Participant :
      Nicolas Crouseilles.


Leader: P. Beyer



[bookmark: uid93] ANR Programme blanc STOSYMAP

Participant :
      Arnaud Debussche.


Leader: A. Shirikyan,
The full description is available at http://shirikyan.u-cergy.fr/stosymap.html 



[bookmark: uid94] Inria Large scale initiative FUSION

Participant :
      Nicolas Crouseilles.


Leader: E. Sonnendrücker. The full description is available at
http://www-math.u-strasbg.fr/ae_fusion 
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