

[image: cover]

 FORMES

 Formal Methods for Embedded Systems

 2013 Team Activity Report
	

 Research centre:
 Paris - Rocquencourt

 Field: Algorithmics, Programming, Software and Architecture
Theme: Programs, Verification and Proofs

 Keywords: Simulation, Formal Methods, Proof Theory, Proofs Of Programs, Verification

 Team Formes

 Members

 Overall Objectives	Overall Objectives
	History
	Highlights of the Year

 Research Program	Formal Proofs
	Rewriting
	Verification
	Decision Procedures
	Simulation
	Trustworthy Software

 Application Domains	Proof of Programs
	Simulation
	Certified Compilation for Embedded systems
	Distributed Systems
	Security

 Software and Platforms	CoLoR
	HOT
	Moca
	Rainbow
	CoqMT
	SimSoC
	SimSoC-Cert

 New Results	Type and rewriting theory
	Automated theorem proving
	Simulation
	Certification of a Simulator

 Partnerships and Cooperations	National Initiatives
	International Initiatives
	International Research Visitors

 Dissemination	Scientific Animation
	Teaching - Supervision - Juries

 Bibliography

 	
 Major publications

 	
 Publications of the year

 	
 References in notes

 Creation of the Team: 2009 January 01, end of the Team: 2013 December 31.
Section: Members
Research Scientists
Frédéric Blanqui [Inria Researcher, until Aug 2013, HdR]
Vania Joloboff [Inria Team Leader]
Jean-Pierre Jouannaud [Inria Senior Researcher, HdR]
Jean-François Monin [UJF delegation CNRS, until Aug 2013, HdR]
Faculty Members
Ming Gu [Tsinghua University Full Professor, China PI]
Fei He [Tsinghua University Assistant Professor]
Jianqi Li [Tsinghua University Assistant Professor]
PhD Students
Jiaxiang Liu [Tsinghua and École Polytechnique]
Kim-Quyen Ly [UJF, until Aug 2013]
Xiaomu Shi [UJF, until July 2013]
Qian Wang [Tsinghua and École Polytechnique]
Administrative Assistant
Mei Zhang [LIAMA]
Others
Shenpeng Wang [Tsinghua University Master Student, Sep. 2012-May 2013]
Antoine Rouquette [Lyon Master Student internship, Sep. 2012-Aug. 2013]

 Overall Objectives

 	Overall Objectives	Overall Objectives
	History
	Highlights of the Year

 Section:
 Overall Objectives

 Overall Objectives

 Formes stands for FORmal Methods for Embedded Systems. Formes is
aiming at making research advances towards the development of safe and
reliable embedded systems, by exploiting synergies between two
different approaches, namely (real time) hardware simulation and
formal proofs development.

 Embedded systems have become ubiquitous in our everyday life, ranging
from simple sensors to complex systems such as mobile phones, network
routers, airplane, aerospace and defense apparatus. As embedded
devices include increasingly sophisticated hardware and software, the
development of combined hardware and software has become a key to
economic success.

 The development of embedded systems uses hardware with increasing
capacities. As embedded devices include increasingly sophisticated
hardware running complex functions, the development of software for
embedded systems is becoming a critical issue for the industry. There
are often stringent time to market and quality requirements for
embedded systems manufacturers. Safety and security requirements are
satisfied by using strong validation tools and some form of formal
methods, accompanied with certification processes such as DO178 or
Common Criteria certification. These requirements for quality of
service, safety and security imply to have formally proved the
required properties of the system before it is deployed.

 Within the context described above, the Formes project aims at
addressing the challenges of embedded systems design with a new
approach, combining fast hardware simulation techniques with advanced
formal methods, in order to formally prove qualitative and
quantitative properties of the final system. This approach requires
the construction of a simulation environment and tools for the
analysis of simulation outputs and proofs of properties of the
simulated system. We therefore need to connect simulation tools with
code-analyzers and easy-to-use theorem provers for achieving the
following tasks:

 	
 Enhance the hardware simulation technologies with new techniques to
improve simulation speed, and produce program representations that are
adequate for formal analysis and proofs of the simulated programs;

 	
 Connect validation tools that can be used in conjunction with
simulation outputs that can be exploited using formal methods;

 	
 Extend and improve the theorem proving technologies and tools to
support the application to embedded software simulation.

 A main novelty of the project, besides improving the existing
technologies and tools, relies in the application itself: to combine
simulation technologies with formal methods in order to cut down the
development time for embedded software and scale up its
reliability. Apart from being a novelty, this combination is also a
necessity: proving very large code is unrealistic and will remain so
for quite some time; and relying only on simulation for assessing
critical properties of embedded systems is unrealistic as well.

 We assume that these properties can be localized in critical, but
small, parts of the code, or dedicated hardware models. This
nevertheless requires scaling up the proof activity by an order of
magnitude with respect to the size of codes and the proof development
time. We expect that it is realistic to rely on both combined. We plan
to rely on formal proofs for assessing properties of small, critical
components of the embedded system that can be analyzed independently
of the environment. We rely on formal proofs as well for assessing
correctness of the elaboration of program representation
abstractions. We rely on simulations for testing the whole embedded
system, and to formal proofs to verify the completeness of test
sets. We rely on formal proofs again for verifying the correct
functioning of our tools. Proving properties of these various
abstractions requires using a certified, interactive theorem prover.

 Section:
 Overall Objectives

 History

 The project Formes was created by union of three
different smaller groups, the origin and interests of which were somewhat
different: a group working on simulation of embedded systems at CASIA
since march 2007 under the leadership of Vania Joloboff; a second group working
on user-assisted theorem proving under the leadership of Jean-Pierre Jouannaud originated from the Inria project-teams LogiCal at
Inria-Saclay-Île-de-France and Protheo at Inria-Lorraine; and a group
working on model-checking and trustworthy computing at Tsinghua
University under the leadership of Gu Ming. The second group moved from
France to Beijing in September 2008. A previous 4 weeks visit of Jean-Pierre Jouannaud and Frédéric Blanqui in March 2008 had been used to define the new project Formes ,
and prepare its installation at Tsinghua university.

 Formes is the acronym for FORmal Methods for Embedded Systems, and
indeed we aim at combining in this project formal methods of very
different origins for analyzing embedded systems. We develop a
software SimSoC for simulating embedded systems, but we also
develop other techniques and tools in order to analyze and predict
their behavior, and that of the software running on such
systems. These techniques themselves are of different origin, and are
usually developed in different teams around the world. Verification techniques based on model checking have been
extensively and successfully used in the past to analyze hardware
systems. Decisions procedures, like SAT, are now common place to
analyze specific software applications, such as scheduling. Proof
assistants are more and more employed to carry out formal proofs
of correctness of security protocols and more generally non-trivial
pieces of software. One originality of our project is to combine
all these techniques in order to achieve our goal: to design methods
and tools allowing one to build reliable software, also called trustworthy computing. In the next sections, we describe in more
details these five areas, and their relationship to Formes .

 Section:
 Overall Objectives

 Highlights of the Year

 The project has released a new version of its SimSoC simulation software,
as an open source software release 0.8, available from
http://gforge.inria.fr/projects/simsoc/

 Research Program

 	Research Program	Formal Proofs
	Rewriting
	Verification
	Decision Procedures
	Simulation
	Trustworthy Software

 Section:
 Research Program

 Formal Proofs

 Coq [52] is one of the most popular proof assistant, in the
academia and in the industry. Based on the Calculus of Inductive
Constructions, Coq has three kinds of basic entities: objects are used
for computations (data, programs, proofs are objects); types express
properties of objects; kinds categorize types by their logical
structure. Coq's type checker can decide whether a given object
satisfies a given type, and if a given type has a logical structure
expressed by a given kind. Because it is possible to (uniformly)
define inductive types such as lists, dependent types such as
lists-of-length-n, parametric types such as lists-of-something,
inductive properties such as (evenn) for some natural number n,
etc, writing small specifications in Coq is an easy task. Writing
proofs is a harder (non automatable) task that must be done by the
user with the help of tactics. Automating proofs when possible is a
necessary step for dissemination of these techniques, as is scaling
up. These are the problems we are interested in.

 Modeling in Coq is not always as easy as argued. In Coq, a powerful,
very useful mechanism identifies expressions up to computation. For
example, identifying two lists of identical content but respective
lengths m+n and n+m is no problem if m and n are given
integers, but does not work if m and n are unknowns, since
n+m=m+n is a valid theorem of arithmetic which cannot be proved by
mere computation. It follows that the statement
reverse(l::l')=reverse(l')::reverse(l) is not typable, :: standing
for appending two lists. This problem that seemingly innocent
statements cannot be written in Coq because they do not type-check has
been considered a major open problem for years. Blanqui, Jouannaud and
Strub have recently introduced a new paradigm named Coq modulo
Theories, in which computations do not operate only on closed terms
(as are 1+2 and 2+1) but on open expressions of a decidable theory
(as is n+m=m+n in Presburger arithmetic). This work started with the
PhD thesis of Pierre-Yves Strub (The thesis was supported by
the “Fondation EADS”.) [51] . It addresses three
problems at once: decidable goals become solved automatically by a
program taken from the shelves; writing specifications and proofs
becomes easier and closer to the mathematical practice; assuming that
calls to a decision procedure return a proof certificate in case
of success, the correctness of a Coq proof now results from type
checking the proof as well as the various certificates generated along
the proof. Trusting Coq becomes incremental, resulting from trusting
each certificate checker when added in turn to Coq's kernel. The
development of this new paradigm is our first research challenge here.

 Scaling up is yet another challenge. Modeling a large, complex
software is a hard task which has been addressed within the Coq
community in two different ways. By developing a module system for Coq
in the OCaml style, which makes it possible to modularize proof
developments and hence to develop modular libraries. By developing a
methodology for modeling real programs and proving their properties
with Coq. This methodology allows to translate a JavaCard (tool
Krakatoa) or C (tool
FRAMA-C) program into an ML-like
program. The correctness of this first step is ensured by proving in
Coq verification conditions generated along the translation. The
correctness of the ML-like program annotated by the user is then done
by Coq via another tool called Why . This
methodology and the associated tools are developed by the Inria
project PROVAL in association with CEA. Part of our second challenge
is to reuse these tools to prove properties at the source code level
of programs used in an embedded application. As part of this effort,
we are interested in the development of termination tools and
automatic provers, in particular an SMT prover which is indeed
complementary of our first challenge. The second part of the challenge
is to ensure that these properties are still satisfied by the machine
code executed on the embedded CPU. Here, we are going to rely on a
different technology, certified compilers, and reuse the certified
compilers from CLight (a well-chosen subset of C) to ARM or PowerPC
developed in the COMPCERT Inria
project. We will be left with the development of certified compilers
from source languages which are frequently used for developing
embedded applications into CLight. These languages are either variants
of C, or languages for the description of automata with timers in the
case of Programmable Logic Controllers.

 Our last challenge is to rely on certified tools only. In particular,
we decided to certify in Coq all extensions of Coq developed in the
project: the core logic of CoqMT (a Calculus of Inductive
Constructions incorporating Presburger arithmetic) has been certified
with Coq. Of course, Coq itself cannot be reduced to CIC anymore,
which makes the certification of the real logic of CoqMT a
major challenge. The most critical parts of the simulator will also
be certified. As for compilers, there are two ways to certify tools:
either, the code is proved correct, or it outputs a certificate that
can be checked. The second approach demands less man-power, and has
the other advantage to be compatible with the use of tools taken from
the shelves, provided these tools are open-source since they must be
equipped with a mechanism for generating certificates. This is the
approach we will favor for the theories to be used in CoqMT, as well
as for the SMT prover to be developed. For the simulator SimSoC itself, we shall probably combine both approaches.

 Section:
 Research Program

 Rewriting

 Rewriting is at the heart of proof systems, since mathematical proofs
are made of reasonning steps, expressed by the typing rules of a given
proof system, and computational steps, expressed by its rewrite
rules. The certification of a proof system involves, in particular,
proving three main properties of its rewrite rules: subject reduction
(rewriting should preserve types), confluence (computations should be
deterministic), and termination (computations must always
terminate). The fact that falsity is not provable in a given proof
system follows from the previous properties. These meta-theoretical
proofs are indeed very complex, depending on both the typing rules and
the rewrite rules, and require expertise in both rewriting and type
theory. To maintain this combined expertise in Formes , we carry out
theoretical activities in these areas, even if they may sometimes
appear remotely connected to the mainstream of our work on the
verification of embedded systems.

 Indeed, our goal is not only to maintain our expertise, but also to
develop certification tools aiming at automating these
meta-theoretical proofs. Such tools participate to the so-called
POPLmark challenge. Building such tools requires new results allowing
to check subject-reduction, confluence and termination of higher-order
calculi that are found in proof systems like the Calculus of Inductive
Constructions on which Coq is based. Since subject-reduction is
usually easy to check and consistency follows from the others, we are
mostly interested in confluence and termination here.

 Termination is an undecidable property of rewriting, even in its
first-order incarnation. There are many (interactive) methods for
proving termination of first-order rewrite rules, but a single method
for proving termination of higher-order calculi equipped with
polymorphic types, the so-called reducibility candidates method.
Unfortunately, this method is extremely complex. The
challenge here is to provide with an easy-to-use method which uses the
reducibility candidates for its justification. Our approach is to
define an order on terms which allows to reduce the termination
property of computations to a comparison between the lefthand and
righthand sides of the rewrite rules present in the proof system. Such
an order must of course be well-founded, which should be proved thanks
to the reducibility candidates method which becomes therefore hidden
to the user who needs to carry out the comparisons only.

 Our second challende is confluence. There are two approaches here,
depending whether confluence can be proved after termination, or must
be proved before in case confluence must be used in the termination
proof (as is often the case with systems equipped with dependent
types). In the first case, we basically know how to proceed, this is
described next in the new results section. However, our results do not
cover the whole spectrum of typing disciplines as of today. The second
case is much more difficult. We have made some progress here too for
the simple case of first-order rewriting, thanks to the recent notion
of decreasing diagrams due to van
Oostrom [55] . Decreasing diagrams can be
interpreted as a way to carry out confluence proofs in the
non-terminating case in a way which mimics how they are carried out in
the terminating case. As a consequence, there should not be any
difference anymore in the future in the way confluence proofs are
carried out. This unified framework has been carried out so far for
abstract rewriting, that is for binary relations on an abstract
set. Our challenge is to extend this unified framework to concrete
rewriting, that is rewriting on terms generated by rewrite
rules. We are still far from this objective, which is a hard, but
exciting, research challenge.

 Section:
 Research Program

 Verification

 Model checking is an automatic formal verification technique
[30] . In order to apply the technique, users
have to formally specify desired properties on an abstract model of
the system under verification. Model checkers will check whether the
abstract model satisfies the given properties. If model checkers are
able to prove or disprove the properties on the abstract model, they
report the result and terminate. In practice, however, abstract models
can be extremely complicated, model checkers may not conclude with
reasonable computational resources.

 Compositional reasoning is a way to ameliorate the complexity in
abstract models [54] . Compositional
reasoning tries to prove global properties on abstract models by
establishing local properties on their components. If local properties
on components are easier to verify, compositional reasoning can
improve the capacity of model checking by local reasoning.
Experiences however suggest that local reasoning may not suffice to
establish global properties. It is rare that a global property can be
established without considering their interactions. In
assume-guarantee reasoning, model checkers try to verify local
properties under a contextual assumption of each component. If
contextual assumptions faithfully capture interactions among
components, model checkers can conclude the verification of global
properties.

 Finding contextual assumptions however is difficult and may require
clairvoyance. Interestingly, a fully automated technique for computing
contextual assumptions was proposed in [33] . The
automated technique formalizes the contextual assumption generation
problem as a learning problem. If properties and abstract models are
formalized as finite automata, then a contextual assumption is nothing
but an unknown finite automaton that characterizes the
environment. Applying a learning algorithm for finite automata, the
automated technique will generate contextual assumptions for
assume-guarantee reasoning. Experimental results show that the
automated technique can outperform a monolithic and explicit
verification algorithm.

 The success of the learning-based assume-guarantee reasoning is
however not satisfactory. Most verification tools are using implicit
algorithms. In fact, implicit representations such as Binary Decision
Diagrams can improve the capacity of model checking algorithms in
order of magnitude. Early learning-based techniques, on the
other hand, are based on the L* learning algorithm using explicit
representations. If a contextual assumption requires hundreds of
states, the learning algorithm will take too much time to infer an
assumption. Subsequently, early learning-based techniques cannot
compete with monolithic implicit verification [32] .

 We have proposed assume-guarantee reasoning with implicit learning
[29] . Our idea is to adopt an
implicit representation used in the learning-based framework. Instead
of enumerating states of contextual assumptions explicitly, our new
technique computes transition relations as an implicit representation
of contextual assumptions. Using a learning algorithm for Boolean
functions, the new technique can easily compute contextual assumptions
with thousands of states. Our preliminary experimental results show
that the implicit learning technique can outperform
interpolation-based monolithic implicit model checking in several
parametrized test cases such as synchronous bus arbiters and the MSI
cache coherence protocol.

 Learning Boolean functions can also be applied to loop invariant
inference
[40] , [41] . Suppose
that a programmer annotates a loop with pre- and post-conditions. We
would like to compute a loop invariant to verify that the annotated
loop conforms to its specification. Finding loop invariants manually
is very tedious. One makes a first guess and then iteratively refines
the guess by examining the loop body. This process is in fact very
similar to learning an unknown formula. Applying predicate abstraction
and decision procedures, a learning algorithm for Boolean functions
can infer loop invariants generated by a given set of atomic
predicates. Preliminary experimental results show that the
learning-based technique is effective for annotated loops extracted
from source codes of Linux and SPEC2000 benchmarks.

 Although implicit learning techniques have been developed for
assume-guarantee reasoning and loop invariant inference successfully,
challenges still remain. Currently, the learning algorithm is able to
infer Boolean functions over tens of Boolean variables. Contextual
assumptions over tens of Boolean variables are not enough. Ideally,
one would like to have contextual assumptions over hundreds (even
thousands) of Boolean variables. On the other hand, it is known that
learning arbitrary Boolean functions is infeasible. The scalability of
implicit learning techniques cannot be improved satisfactorily by
tuning the learning algorithm alone. Combining implicit learning with
abstraction will be essential to improve its scalability.

 Our second challenge is to extend learning-based techniques to other
computation models. In addition to finite automata, probabilistic
automata and timed automata are also widely used to specify abstract
models. Their verification problems are much more difficult than those
for finite automata. Compositional reasoning thus can improve the
capacity of model checkers more significantly. The L*
algorithm has been applied in assume-guarantee reasoning for probabilistic
automata [35] . The new technique is unfortunately
incomplete. Developing a complete learning-based assume-guarantee
reasoning technique for probabilistic automata and timed automata will
be very useful to their verification.

 Through predicate abstraction, learning Boolean functions can be very
useful in program analysis. We have successfully applied algorithmic
learning to infer both quantified and quantifier-free loop invariants
for annotated loops. Applying algorithmic learning to static analysis
or program testing will be our last challenge. In the context of
program analysis, scalability of the learning algorithm is less of an
issue. Formulas over tens of atomic predicates usually suffice to
characterize relation among program variables. On the other hand,
learning algorithms require oracles to answer queries or generate
samples. Designing such oracles necessarily requires information
extracted from program texts. How to extract information will be
essential to applying algorithmic learning in static analysis or
program testing.

 Section:
 Research Program

 Decision Procedures

 Decision procedures are of utmost importance for us, since they are at
the heart of theorem proving and verification. Research in decision
procedures started several decades ago, and are now commonly used both
in the academia and industry. A decision procedure [42]
is an algorithm which returns a correct yes/no answer to a given input
decision problem. Many real-world problems can be reduced to the
decision problems, making this technique very practical. For example,
Intel and AMD are developing solvers for their circuit verification
tools, while Microsoft is developing decision procedures for their
code analysis tools.

 Mathematical logic is the appropriate tool to formulate a decision
problem. Most decision problems are formulated as a decidable fragment
of a first-order logic interpreted in some specific domain. One such
easy and popular fragment is propositional (or Boolean) logic, to which
corresponding decision procedure is called SAT. Representing real
problems in SAT often results in awkward encodings that destroy the
logical structure of the original problem.

 A very popular, effective recent trend is Satisfiability Modulo
Theories (SMT) [53] , a general technique to solve
decision problems formulated as propositional formulas operating on
atoms in a given background theory, for example linear real
arithmetic. Existing approaches for solving SMT problems can be
classified into two categories: lazy method
[49] , and eager method
[50] . The eager method encodes an SMT
problem into an equi-satisfiable SAT problem, while the lazy method
employs different theory solvers for each theory and coordinates them
appropriately. The eager method does allow the user to express her
problem in a natural way, but does not exploit its logical structure
to speed up the computation. The lazy approach is more appealing, and
has prompted much interest in algorithms for the various background
theories important in practice.

 Our SMT solver aCiNO is based on the lazy approach. So far, it
provides with two (popular) theories only: linear real arithmetic
(LRA) and uninterpreted functions (UF). For efficiency consideration,
the solver is implemented in an incremental way. It also invokes an
online SAT solver, which is now a modified DPLL procedure, so that
recovery from conflicts is possible. Our challenge here is twofold:
first, to add other theories of interest for the project, we are
currently working on fragments of the theory of arrays
[44] , [26] . The theory of arrays is important
because of its use for expressing loop invariants in programs with
arrays, but its full first-order theory is undecidable. We are also
interested in the theory of bit vectors, very much used for hardware
verification.

 Theory solvers implement state-of-the-art algorithms,
but their sophistication makes their correct implementation a delicate
task. Moreover, SMT solvers themselves employ a quite complex
machinery, making them error prone as well (It took almost 20
years to have a correct implementation of a correct version of
Shostak's algorithm for combining decision procedures, which can be
seen as an ancestor of SMT.). We therefore strongly believe that
decision procedures, and SMT provers, should come along with a formal
assessment of their correctness. As usual, there are two ways: ensure
the correctness of an arbitrary output by proving the code, or deliver
for each input a certificate ensuring the correctness of the
corresponding output when the checker says so. Developing concise
certificates together with efficient certificate checkers for the
various decision procedures of interest and their combination with SMT
is yet another challenge which is at the heart of the project Formes .

 Section:
 Research Program

 Simulation

 The development of complex embedded systems platforms requires putting
together many hardware components, processor cores, application
specific co-processors, bus architectures, peripherals, etc. The
hardware platform of a project is seldom entirely new. In fact, in
most cases, 80 percent of the hardware components are re-used from
previous projects or simply are COTS (Commercial Off-The-Shelf)
components. There is no need to simulate in great detail these already
proven components, whereas there is a need to run fast simulation of
the software using these components.

 These requirements call for an integrated, modular simulation
environment where already proven components can be simulated quickly,
(possibly including real hardware in the loop), new components under
design can be tested more thoroughly, and the software can be tested
on the complete platform with reasonable speed.

 Modularity and fast prototyping also have become important aspects of
simulation frameworks, for investigating alternative designs with
easier re-use and integration of third party components.

 The project aims at developing such a rapid prototyping, modular
simulation platform, combining new hardware components modeling,
verification techniques, fast software simulation for proven
components, capable of running the real embedded software application
without any change.

 To fully simulate a complete hardware platform, one must simulate the
processors, the co-processors, together with the peripherals such as
network controllers, graphics controllers, USB controllers, etc. A
commonly used solution is the combination of some ISS (Instruction Set
Simulator) connected to a Hardware Description Language (HDL)
simulator which can be implemented by software or by using a FPGA
[43] simulator. These solutions tend to present slow
iteration design cycles and implementing the FPGA means the hardware
has already been designed at low level, which comes normally late in
the project and become very costly when using large FPGA
platforms. Others have implemented a co-simulation environment, using
two separate technologies, typically one using a HDL and another one
using an ISS
[36] , [38] , [48] . Some
communication and synchronization must be designed and maintained
between the two using some inter-process communication (IPC), which
slows down the process.

 The idea we pursue is to combine hardware modeling and fast simulation
into a fully integrated, software based (not using FPGA) simulation
environment, which uses a single simulation loop thanks
to Transaction Level Modeling (TLM) [28] , [19]
combined with a new ISS technology designed specifically to fit within
the TLM environment.

 The most challenging way to enhance simulation speed is to simulate
the processors. Processor simulation is achieved with Instruction Set
Simulation (ISS). There are several alternatives to achieve such
simulation. In interpretive simulation, each instruction of the
target program is fetched from memory, decoded, and executed. This
method is flexible and easy to implement, but the simulation speed is
slow as it wastes a lot of time in decoding. Interpretive simulation
is used in Simplescalar [27] . Another technique to
implement a fast ISS is dynamic translation
[31] , [47] , [34] which has been favored by many
implementors [45] , [34] , [46] , [47] in
the past decade.

 With dynamic translation, the binary target instructions are fetched
from memory at run-time, like in interpretive simulation. They are
decoded on the first execution and the simulator translates these
instructions into another representation which is stored into a
cache. On further execution of the same instructions, the translated
cached version is used. Dynamic translation introduces a translation
time phase as part of the overall simulation time. But as the
resulting cached code is re-used, the translation time is amortized
over time. If the code is modified during run-time, the simulator must
invalidate the cached representation. Dynamic translation provides
much faster simulation while keeping the advantage of interpretive
simulation as it supports the simulation of programs that have either
dynamic loading or self-modifying code.

 There are many ways of translating binary code into cached data, which
each come at a price, with different trade-offs between the
translation time and the obtained speed up on cache execution. Also,
simulation speed-ups usually don't come for free: most of time there
is a trade-off between accuracy and speed.

 There are two well known variants of the dynamic translation
technology: the target code is translated either directly into machine
code for the simulation host, or into an intermediate representation,
independent from the host machine, that makes it possible to execute
the code with faster speed. Both have pros and cons.

 Processor simulation is also achieved in Virtual Machines such as QEMU
[23] and GXEMUL [37] that emulate to a large
extent the behavior of a particular hardware platform. The technique
used in QEMU is a form of dynamic translation. The target code is
translated directly into machine code using some pre-determined code
patterns that have been pre-compiled with the C compiler. Both QEMU
and GXEMUL include many device models of open-source C code, but this
code is hard to reuse. The functions that emulate device accesses do
not have the same profile. The scheduling process of the parallel
hardware entities is not specified well enough to guarantee the
compatibility between several emulators or re-usability of third-party
models using the standards from the electronics industry (e.g. IEEE
1666).

 A challenge in the development of high performance simulators is to
maintain simultaneously fast speed and simulation accuracy. In the
Formes project, we expect to develop a dynamic translation technology
satisfying the following additional objectives:

 	
 provide different levels of translation with different degrees of
accuracy so that users can choose between accurate and slow (for
debugging) or less accurate but fast simulation.

 	
 to take advantage of multi-processor simulation hosts to parallelize
the simulation;

 	
 to define intermediate representations of programs that optimize the
simulation speed and possibly provide a more convenient format for
studying properties of the simulated programs.

 Another objective of the Formes simulation is to extract information
from the simulated applications to prove properties. Running a
simulation is exercising a test case. In most cases, if a test is
failing, a bug has been found. One can use model checking tools to
generate tests that can be run on the simulator to check whether the
test fails or not on the real application. It is also a goal of
Formes simulation activity to use such formal methods tools to detect
bugs, either by generating tests, or by using formal methods tools to
analyze the results of simulation sessions.

 Section:
 Research Program

 Trustworthy Software

 Since the early days of software development, computer scientists have
been interested in designing methods for improving software
quality. Formal methods based on model checking, correctness proofs,
common criteria certification, all address this issue in their own
way. None of these methods, however, considers the trustworthiness of
a given software system as a system-level property, requiring to grasp
a given software within its environment of execution.

 The major challenge we want to address here is to provide a framework
in which to formalize the notion of trustworthiness, to evaluate the
trustworthiness of a given software, and if necessary improve it.

 To make trustworthiness a fruitful concept, our vision is to formalize
it via a hierarchy of observability and controllability degrees: the
more the software is observable and controllable, the more its
behaviors can be trusted by users. On the other hand, users from
different application domains have different expectations from the
software they use. For example, aerospace embedded software should be
safety-critical while e-commerce software should be insensitive to
attacks. As a result, trustworthiness should be domain-specific.

 A main challenge is the evaluation of trustworthiness. We believe
that users should be responsible for describing the level of
trustworthiness they need, in the form of formal requirements that the
software should satisfy. A major issue is to come up with some
predefined levels of trustworthiness for the major applicative areas.
Another is to use stepwise refinement techniques to achieve the
appropriate level of trustworthiness. These levels would then drive
the design and implementation of a software system: the objective
would be to design a model with enough details (observability) to make
it possible to check all requirements of that level.

 The other challenge is the effective integration of results obtained
from different verification methods. There are many verification
techniques, like simulation, testing, model checking and theorem
proving. These methods may operate on different models of the software
to be then executed, while trustworthiness should measure our trust in
the real software running in its real execution environment. There are
also monitoring and analysis techniques to capture the characteristics
of actual executions of the system. Integrating all the analysis in
order to decide the trustworthiness level of a software is quite a
hard task.

 Application Domains

 	Application Domains	Proof of Programs
	Simulation
	Certified Compilation for Embedded systems
	Distributed Systems
	Security

 Section:
 Application Domains

 Proof of Programs

 In many life critical application such as nuclear power or transportation,
formal proofs of programs are required, and theorem provers provide
an essential tool in that area.

 Section:
 Application Domains

 Simulation

 Simulation is relevant to most areas where complex embedded systems
are used, not only to the semiconductor industry for System-on-Chip
modeling, but also to any application where a complex hardware
platform must be assembled to run the application software. It has
applications for example in industry automation, digital TV,
telecommunications and transportation.

 Section:
 Application Domains

 Certified Compilation for Embedded systems

 Many frameworks have been designed in order to make the design and
the development of embedded systems more rigourous and secure on the
basis of some formal model. All these frameworks implicitly assume
the reliability of the translation to executable code, in
order to guarantee the verified properties in the design level are
preserved in the implementation. In other words, they rely on a
claim saying that the compilers from high level model description to
the implementation will not introduce undesired behaviors
or errors in silence. The only safe way to satisfy such a claim is
to certify correctness of the compilers, that is, to prove that the
code they produce has exactly the semantics of the source code or
model.

 Section:
 Application Domains

 Distributed Systems

 Many embedded systems run in a distributed environment.
Distributed systems raise extremely challenging issues,
both for the design and the implementation,
because decisions can be made only from a local knowledge,
which is imperfect due to communication time and unreliability
of transmissions.

 Section:
 Application Domains

 Security

 The convergence between embedded technologies and the Internet
offers many opportunities to malicious people for
breaking the privacy of consumers or of organisations.
Using cryptography is not enough for ensuring the protection of data,
because of possible flaws in protocols and interfaces,
providing opportunities for many well-known attacks.
This area is therefore an important target of formal methods.

 Software and Platforms

 	Software and Platforms	CoLoR
	HOT
	Moca
	Rainbow
	CoqMT
	SimSoC
	SimSoC-Cert

 Section:
 Software and Platforms

 CoLoR

 Participants :
	Frédéric Blanqui, Kim-Quyen Ly.

 CoLoR is a Coq library on rewriting
theory and termination of more than 83,000 lines of code
[4] . It provides definitions and
theorems for:

 	
 Mathematical structures: relations, (ordered) semi-rings.

 	
 Data structures: lists, vectors, polynomials with multiple variables,
finite multisets, matrices, finite graphs.

 	
 Term structures: strings, algebraic terms with symbols of fixed arity,
algebraic terms with varyadic symbols, pure and simply typed λ-terms.

 	
 Transformation techniques: conversion from strings to algebraic terms,
conversion from algebraic to varyadic terms, arguments filtering, rule
elimination, dependency pairs, dependency graph decomposition,
semantic labelling.

 	
 Termination criteria: polynomial interpretations, multiset ordering,
lexicographic ordering, first and higher order recursive path
ordering, matrix interpretations.

 CoLoR is distributed under the CeCILL license. It is currently
developed by Frédéric Blanqui and Kim-Quyen Ly, but various people
participated to its development since 2006.

 Section:
 Software and Platforms

 HOT

 Participant :
	Frédéric Blanqui.

 HOT is an
automated termination prover for higher-order rewrite systems based on
the notion of computability closure and size annotation
[24] . It won the 2012
competition
in the category “higher-order rewriting union beta”. The sources are
not public.

 Section:
 Software and Platforms

 Moca

 Participant :
	Frédéric Blanqui.

 Moca is a construction functions
generator for OCaml data types with
invariants.

 It allows the high-level definition and automatic management of
complex invariants for data types. In addition, it provides the
automatic generation of maximally shared values, independently or in
conjunction with the declared invariants.

 A relational data type is a concrete data type that declares
invariants or relations that are verified by its constructors. For
each relational data type definition, Moca compiles a set of
construction functions that implements the declared relations.

 Moca supports two kinds of relations:

 	
 predefined algebraic relations (such as associativity or commutativity of a
binary constructor),

 	
 user-defined rewrite rules that map some pattern of constructors and
variables to some arbitrary users defined expression.

 The properties that user-defined rules should satisfy (completeness,
termination, and confluence of the resulting term rewriting system)
must be verified by a programmer's proof before compilation. For the
predefined relations, Moca generates construction functions that allow
each equivalence class to be uniquely represented by their canonical
value.

 Moca is distributed under QPL. It is developed by Frédéric Blanqui,
Pierre Weis (EPI Pomdapi) and Richard Bonichon (CEA).

 Section:
 Software and Platforms

 Rainbow

 Participants :
	Frédéric Blanqui, Kim-Quyen Ly.

 Rainbow is a tool for
automatically verifying the correctness of termination certificates
expressed in the
CPF XML format
as used in the termination
competition . Termination
certificates are currently translated and checked in Coq by using the
CoLoR library. But a new standalone version is under development using
Coq extraction mechanism (PhD subject of Kim-Quyen Ly).

 Rainbow is distributed under the CeCILL license. It is currently
developed by Frédéric Blanqui and Kim-Quyen Ly. See the web site for
more information.

 Section:
 Software and Platforms

 CoqMT

 Participants :
	Qian Wang [correspondant] , Jean-Pierre Jouannaud.

 The proof-assistant Coq is based on a complex type theory, which
resulted from various extensions of the Calculus of Constructions
studied independently from each other. With the collaboration of Bruno
Barras, we decided to address the challenge of proving the real type
theory underlying Coq, and even, indeed, of its recent extension CoqMT
developed in Formes by Pierre-Yves Strub. To this end, we have
studied formally the theory CoqMTU, which extends the pure Calculus of
Constructions by inductive types, a predicative hierarchy of
universes, and a decidable theory T for some first-order inductive
types. Recently, we were able to announce the complete certification
of CoqMTU in Coq augmented with appropriate intuitionistic
set-theoretic axioms in order to fight Gödel's incompleteness
theorem˜[16] . As a consequence, Coq and CoqMTU are the
first proof assistants, of which consistency (relative to intuitionistic
set theory IZF augmented with the afore-mentioned axioms) is formally
entirely proved (in Coq). While previous formal proofs for Coq and
other proof assistants all assumed strong normalization, the present
one proves strong normalization thanks to the new notion of
strongly-normalizing model introduced by Bruno Barras. While
consistency is done already, decidability of type-checking in CoqMTU
remains to be done. This is a straightforward consequence for Coq, but
a non-trivial task for CoqMTU because of the interaction between
inductive types and the first-order theory T. It should however be
done by the summer of 2014. We consider this work as a major
scientific achievement of the team.

 Section:
 Software and Platforms

 SimSoC

 Participants :
	Vania Joloboff [correspondant] , Antoine Rouquette, Shenpeng Wang.

 SimSoC is an infrastructure to run simulation models which comes along
with a library of simulation models. SimSoC allows its users to
experiment various system architectures, study hardware/software
partition, and develop embedded software in a co-design environment
before the hardware is ready to be used. SimSoC aims at providing high
performance, yet accurate simulation, and provide tools to evaluate
performance and functional or non functional properties of the
simulated system.

 SimSoC is based on SystemC standard and uses Transaction Level
Modeling for interactions between the simulation models. The current
version is based on the open source libraries from the OSCI
Consortium: SystemC version 2.3 and TLM 2.0.1
[39] , [21] . Hardware components are modeled as TLM
models, and since TLM is itself based on SystemC, the simulation is
driven by the SystemC kernel. We use standard, unmodified, SystemC,
hence the simulator has a single simulation loop.

 The third open source version of SimSoC, release 0.8.0, has been
released in September 2013. It contains a full simulator for ARM (V5
and V6) and PowerPC both running at an average speed of about 100
Millions instructions per second in, and a deprecated simulator for
the MIPS architecture. SimSoC is distributed under LGPL on
Inria Gforge web site.

 Section:
 Software and Platforms

 SimSoC-Cert

 Participants :
	Frédéric Blanqui, Vania Joloboff, Jean-François Monin [correspondant] , Xiaomu Shi.

 Simulators such as SimSoC make it possible to reduce development
time and development cost, allowing for the software engineers to
run fast iterative cycles without requiring a hardware development
board. Then a critical issue is: does the simulator actually
simulate the real hardware?

 Considering only one module in SimSoC, namely the ARM simulator, it
somehow encodes the 1138 pages of the ARM reference manual in C++.
The whole simulator, which simulates ARM and PowerPC architecture,
includes about 60,000 lines of manually coded C++ code. Then,
mistakes in the hand written code are unavoidable and difficult to
find due to the complexity. From the experiments performed on
SimSoC, bugs bringing a wrong behavior were observed from time to
time but it was hard to reveal where they were. Using intensive
tests can cover most of the instructions, but still left some
untested rare cases of instructions, which lead to potential
problems.

 Therefore, a better approach is required to gain confidence in the
correctness of the simulator. Our proposal has been to certify the
ARM CPU simulator from SimSoC using formal methods. We aimed at
proving a significant part of the correctness of SimSoC in order to
support the claim that the implementation of the simulator and the
real hardware system will exhibit the same behavior.

 In addition, we developed tools that can automatically generate in
various C the core simulator, including the decoding functions and
the instruction set of the ARMv6 architecture manual
[18] (implemented by the ARM11 processor family).
The input of SimSoC-Cert is the ARMv6 architecture manual itself.

 In order to get the required flexibility and accuracy, we wanted to
experiment a direct approach based on a general proof assistant such
as Coq. Fortunately, an operational semantics formalized in Coq of
a large enough subset of the C language is available
from the CompCert project. We then decided to base our correctness
proofs on this technology. Up to our knowledge, this is the first
development of formal correctness proofs based on operational
semantics, at least at this scale.

 Based on this, we first developed simlight (8000 generated lines
of C, plus 1500 hand-written lines of C), a simulator for ARMv6
programs using no peripheral and no coprocessor. Next, we developed
simlight2, a fast ARMv6 simulator integrated inside a
SystemC/TLM module, now part of SimSoC v0.8.

 We can also generate similar programs for SH4 [20] but
this is still experimental (work done by Frédéric Tuong in 2011).

 Finally, we proved that the C code for simulating ARM instructions
in Simlight is correct with respect to the Coq model.

 New Results

 	New Results	Type and rewriting theory
	Automated theorem proving
	Simulation
	Certification of a Simulator

 Section:
 New Results

 Type and rewriting theory

 Participants :
	Frédéric Blanqui, Jean-Pierre Jouannaud, Jianqi Li, Qian Wang.

 Qian Wang and Bruno Barras have proved the strong normalization
property of CoqMTU in presence of strong elimination, a major step
towars the full certification of CoqMTU [16] .

 Jouannaud and Li have developped a new framework, Normal Abstract
Rewriting Systems (NARS), that captures all known Church-Rosser
results in presence of a termination assumption allowing to reduce
equality of terms to a simpler equality on their normal forms. This
result applies to the paticular case of higher-order rewriting for
which it solved long-standing open
problems [10] .

 Jouannaud and Liu have continued their investigation of
Church-Rosser properties of non-terminating rewrite systems
[10] , showing recently first,
that many results found in the litterature could be captured, and
generalized, by using van Oostrom's decreasing diagram technique
(accepted at Symposium on Algebraic Specifications, Kanazawa, Japan,
April 2014). The next step, which has been recently completed, is a
powerful result generalizing Knuth and Bendix confluence test to non
terminating rewrite system (submitted).

 Frédéric Blanqui, Jean-Pierre Jouannaud and Albert Rubio (Technical
University of Catalonia) have developed a method aiming at carrying
out termination proof for higher-order calculi. CPO appears to be
the ultimate improvement of the higher-order recursive path ordering
(HORPO) [25] in the sense that this definition
captures the essence of computability arguments à la Tait
and Girard, therefore explaining the name of the improved
ordering. It has been shown that CPO allows to consider higher-order
rewrite rules in a simple type discipline with inductive types, that
most of the guards present in the recursive calls of its core
definition cannot be relaxed in any natural way without losing
well-foundedness, and that the precedence on function symbols cannot
be made more liberal anymore. This result is submitted to
journal, and has been concurrently
generalized to higher-order calculi with dependent
types by Jouannaud and Li (submitted).

 Frédéric Blanqui worked on the formalization in the
Coq proof assistant of various definitions
of the notion of α-equivalence on pure λ-terms. In
particular, he formalized and formally proved equivalent the
definitions of Church (1932), Curry and Feys (1958), Krivine (1993),
and Gabbay and Pitts (1999). This work is freely available from the
CoLoR library released on December 13th.

 Frédéric Blanqui worked with John Steinberger (Tsinghua University)
on the formal verification in Coq of proofs of theorems on coset
arrays and non-negative integer linear combinations.

 Section:
 New Results

 Automated theorem proving

 Participant :
	Kim-Quyen Ly.

 Kim-Quyen Ly extended her formally-proved (in
Coq) automated termination-certificate
(for first-order rewrite systems) verifier Rainbow for dealing with
certificates using arguments filtering [22]
and other termination techniques.

 Section:
 New Results

 Simulation

 Participants :
	Vania Joloboff, Antoine Rouquette, Shenpeng Wang.

 There exists very fast Loosely Timed simulators such as SimSoC that
can run the application software to validate its functionality and
possibly test real time software using timers. But such simulators
do not provide good enough timings to evaluate the software
performance. The idea of “Approximately Timed” simulation is to
provide a fast simulation that can be used by software developers,
and yet provide performance estimate. The goal of approximately
timed simulation is to provide estimates that are within a small
margin error from the real hardware performance, but at a simulation
speed that is an order of magnitude faster than a cycle accurate one.

 Modern processors have complex architectures. They can execute a
certain number of instructions per clock cycle. There are however
several cases where the instruction flow is disrupted, introducing
delays in the computation. In order to make an Approximately Timed
simulator, our idea is to simulate enough of the processes causing
the delays, not simulating the exact hardware processes of the
caches and pipe line and I/Os, but using a model with wich the
delays can be computed with a reasonable approximation while
maintaining fast simulation. Delays may also be related to bus
arbitration and interconnect access. These delays are beyond the
scope of our work, but can be captured by TLM (timed)
transactions. In our work, we are considering only the processor
model and we rely upon TLM interface to the interconnect for
peripheral access to provides us with timing delays.

 We have started to investigate a new approach to provide a fast
Approximately Timed ISS, that does not simulate fully the hardware,
yet provides good precision estimates, and does not use stastistical
methods. Our approach consists in developing a higher abstraction
model of the processor (than the CA models) that still executes
instructions using fast SystemC/TLM code, but in parallel maintains
some architecture state to measure the delays introduces by cache
misses and pipe line stalls, although the pipe line is not really
simulated.

 Section:
 New Results

 Certification of a Simulator

 Participants :
	Vania Joloboff, Jean-François Monin, Xiaomu Shi.

 We have developed a correctness proof of a part of the hardware
simulator SimSoC. This is not only an attempt to certify a
simulator, but also a new experiment on the certification of
non-trivial programs written in C. We have provided a formalized
representation of the ARM instruction set and addressing modes in
Coq. We also constructed a Coq representation of the ARM
simulator in C, using the abstract syntax defined in CompCert.

 From these two Coq representations, we have developed Coq proofs
to prove the correctness of the C code, using the operational
semantics of C provided by CompCert.

 During this work, we have also improved the technology available in
Coq for performing inversions, a kind of proof steps which
heavily occurs in this context.

 All of this work has been described in Xiaomu SHI PhD thesis
dissertation, presented at University of Grenoble in July 2013,
and at ITP 2013 conference[15] .

 Dissemination

 	Dissemination	Scientific Animation
	Teaching - Supervision - Juries

 Section:
 Dissemination

 Scientific Animation

 	
 Frédéric Blanqui was member of the Steering Committee of the
International Conference on Rewriting Techniques and
Applications (RTA) for 3 years until June 2013.

 	
 Frédéric Blanqui was invited to present his work on “the
formalization of λ-calculus and Tait-Girard's notion of
computability” at the 3rd Workshop on Proof Theory and
Rewriting (PR), March 2013, Kanazawa, Japan.

 	
 Vania Joloboff has organized a LIAMA Open Day in Shanghai in
May 2013, in collaboration with East China Normal University.

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Frédéric Blanqui organized a 7-days school at the Institute
of Applied Mechanics and Informatics (IAMA) of the Vietnamese
Academy of Sciences and Technology (VAST) at Ho Chi Minh City,
Vietnam, from 12 to 19 March 2013. The mornings were dedicated
to theoretical lectures introducing basic notions in mathematics
and logic for the analysis of computer programs. The afternoons
were practical sessions introducing the OCaml programming
language and the Coq proof assistant. Lecture notes are given in
[17] .

 	
 Vania Joloboff has taught simulation seminars at Shenzhen
Institutes of Advanced Technology.

 	
 Licence: Jean-François Monin, Introduction to Interactive Proof of Software, 50 hours, L3, Tsinghua University, China

 This course is expected to attract students in the Formes group via the local
PhD program; already one of them (2009) is currently a PhD student
of Jean-Pierre Jouannaud, another (2010) in is the PhD track with Gu Ming and 2 others
(2010) work with Jean-François Monin and Vania Joloboff.

 	
 Doctorate: Jean-François Monin (organizer and teacher), Coq Summer School, 30 hours,
Tsinghua University, China

 Supervision

 	
 PhD : Xiaomu Shi, “Certification of an Instruction Set
Simulator”, University of Grenoble, July 2013, [14]
Jean-François Monin, Vania Joloboff.

 	
 PhD in progress: Kim-Quyen Ly, automated formal verification
of termination certificates, October 2011, Frédéric Blanqui

 	
 PhD in progress : Jiaxiang Liu, Testing Confluence via
Critical Pairs, 2012, École Polytechnique, Jean-Pierre
Jouannaud

 	
 PhD in progress: Qian Wang, CoqMTU: a secure combination of
the Calculus of Construction, inductive types, universes and
built-in equality, 2011, École Polytechnique, Jean-Pierre Jouannaud

 Juries

 	
 Frédéric Blanqui has been in the jury of Zhiwu Xu for his
PhD on “Parametric Polymorphism for XML Processing Languages”
(directors: Giuseppe Castagna and Haiming Chen).

 	
 Frédéric Blanqui refered the habilitation thesis of René
Thiemann (Innsbrück University) on “A Formalization of
Termination Techniques in Isabelle/HOL”.

 	
 Jean-François Monin has been in the jury of Xiaomu Shi (see above).

 	
 Vania Joloboff has been in the jury of Xiaomu Shi (see above).

 Bibliography

 Major publications by the team in recent years

 	[1]

 	B. Barras, J.-P. Jouannaud, P.-Y. Strub, Q. Wang.
CoqMTU: a higher-order type theory with a predicative hierarchy of universes parametrized by a decidable first-order theory, in: Twenty-Sixth Annual IEEE Symposium on "Logic in Computer Science" - LICS 2011, Toronto, Canada, 2011, This research is sponsored by NSFC Program (No.91018015) and 973 Program (No.2010CB328003) of China.
http://hal.inria.fr/inria-00583136

 	[2]

 	F. Blanqui.
Definitions by rewriting in the Calculus of Constructions, in: Mathematical Structures in Computer Science, 2005, vol. 15, no 1, pp. 37-92. [
DOI : 10.1017/S0960129504004426]
http://hal.inria.fr/inria-00105648/en/

 	[3]

 	F. Blanqui, C. Helmstetter, V. Joloboff, J.-F. Monin, X. Shi.
Designing a CPU model: from a pseudo-formal document to fast code, in: 3rd Workshop on: Rapid Simulation and Performance Evaluation: Methods and Tools, Grèce Heraklion, 2011, Best paper award.
http://hal.inria.fr/inria-00546228/en/

 	[4]

 	F. Blanqui, A. Koprowski.
CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates, in: Mathematical Structures in Computer Science, 2011, vol. 21, no 4, pp. 827-859.
http://hal.inria.fr/inria-00543157/en/

 	[5]

 	F. Blanqui, J.-P. Jouannaud, P.-Y. Strub.
From formal proofs to mathematical proofs: a safe, incremental way for building in first-order decision procedures, in: 5th IFIP International Conference on Theoretical Computer Science - TCS 2008, Milan Italie, IFIP, 2008, vol. 273. [
DOI : 10.1007/978-0-387-09680-3_24]
http://hal.inria.fr/inria-00275382/en/

 	[6]

 	B. Bérard, L. Fribourg, F. Klay, J.-F. Monin.
A compared study of two correctness proofs for the standardized algorithm of ABR conformance, in: Formal Methods in System Design, january 2003.

 	[7]

 	B. Delsart, V. Joloboff, E. Paire.
JCOD: A Lightweight Modular Compilation Technology for Embedded Java, in: Second International Conference on Embedded Software, Lecture Notes in Computer Science, Springer-Verlag, 2002, vol. 2491, pp. 197–212, ISBN 3-540-44307-X.

 	[8]

 	F. He, X. Song, M. Gu, J. Sun.
Heuristic-Guided Abstraction Refinement, in: Computer Journal, May 2009, vol. 52, no 3, pp. 280-287.

 	[9]

 	J.-P. Jouannaud, J.-Q. Li.
Church-Rosser Properties of Normal Rewriting, in: Computer Science Logic, Fontainebleau, France, P. Cégielsky, A. Durand (editors), LIPIcs, Dagstuhl Publishing, September 2012, vol. 16, pp. 350-365. [
DOI : 10.4230/LIPIcs.CSL.2012.i]
http://hal.inria.fr/hal-00730271

 	[10]

 	J.-P. Jouannaud, J. Liu.
From diagrammatic confluence to modularity, in: Theor. Comput. Sci., 2012, vol. 464, pp. 20-34.

 	[11]

 	J.-P. Jouannaud, A. Rubio.
Polymorphic Higher-Order Recursive Path Orderings, in: Journal of the ACM, 2007, vol. 54, no 1, pp. 1-48.

 	[12]

 	J.-P. Jouannaud, V. van Oostrom.
Diagrammatic Confluence and Completion, in: International Conference in Automata, Languages and Programming, Grèce Rhodes, W. Thomas (editor), Springer Berlin/Heidelberg, 2009, vol. 2.
http://hal.inria.fr/inria-00436070/en/

 	[13]

 	X. Shi, J.-F. Monin, F. Tuong, F. Blanqui.
First Steps towards the Certification of an ARM Simulator Using Compcert, in: Certified Proofs and Programs - First International Conference, Kenting, Taiwan, J.-P. Jouannaud, Z. Shao (editors), LNCS, Springer, December 7-9 2011, vol. 7086, pp. 346-361.

 Publications of the year

 Doctoral Dissertations and Habilitation Theses

 	[14]

 	X. Shi.
Certification of an Instruction Set Simulator, Université de Grenoble, July 2013.
http://hal.inria.fr/tel-00937524

 International Conferences with Proceedings

 	[15]

 	J.-F. Monin, X. Shi.
Handcrafted Inversions Made Operational on Operational Semantics, in: ITP 2013 - 4th International Conference Interactive Theorem Proving, Rennes, France, S. Blazy, C. Paulin-Mohring, D. Pichardie (editors), LNCS - Lecture Notes in Computer Science, Springer, July 2013, vol. 7998, pp. 338-353. [
DOI : 10.1007/978-3-642-39634-2_25]
http://hal.inria.fr/hal-00937168

 	[16]

 	Q. Wang, B. Barras.
Semantics of Intensional Type Theory extended with Decidable Equational Theories, in: Computer Science Logic 2013, Dagstuhl, Germany, S. R. D. Rocca (editor), Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, August 2013, vol. 23, pp. 653–667. [
DOI : 10.4230/LIPIcs.CSL.2013.653]
http://hal.inria.fr/hal-00937197

 Other Publications

 	[17]

 	F. Blanqui.
Elements of mathematics and logic for computer program analysis, March 2013, 37 p.
http://hal.inria.fr/cel-00934160

 References in notes

 	[18]

 	ARM Architecture Reference Manual DDI 0100I, ARM, 2005.

 	[19]

 	F. Ghenassia (editor)
Transaction-Level Modeling with SystemC. TLM Concepts and Applications for Embedded Systems, Springer, June 2005, ISBN 0-387-26232-6.

 	[20]

 	Software Manual, Renesas 32-Bit RISC Microcomputer SuperHTM RISC engine Family, Renesas, 2006.

 	[21]

 	OSCI SystemC TLM 2.0.1, Open SystemC Initiative, 2009.
http://www.systemc.org/

 	[22]

 	T. Arts, J. Giesl.
Termination of Term Rewriting Using Dependency Pairs, in: Theoretical Computer Science, 2000, vol. 236, pp. 133-178.

 	[23]

 	F. Bellard.
QEMU, A Fast And Portable Dynamic Translator, in: USENIX Annual Technical Conference, Philadelphia, PA, USA, 2005.

 	[24]

 	F. Blanqui.
Terminaison des systèmes de réécriture d'ordre supérieur basée sur la notion de clôture de calculabilité, Université Paris-Diderot - Paris VII, July 2012, HDR.
http://tel.archives-ouvertes.fr/tel-00724233

 	[25]

 	F. Blanqui, J.-P. Jouannaud, A. Rubio.
The Computability Path Ordering: the End of a Quest, in: Proceedings of the 22nd International Conference on Computer Science Logic, Lecture Notes in Computer Science 5213, 2008, Invited paper.

 	[26]

 	A. R. Bradley, Z. Manna, H. B. Sipma.
What's decidable about arrays, in: VMCAI '06, E. A. Emerson, K. S. Namjoshi (editors), LNCS, Springer, 2006, vol. 3855, pp. 427–442.

 	[27]

 	D. Burger, T. M. Austin.
The SimpleScalar tool set, version 2.0, in: SIGARCH Comput. Archit. News, 1997, vol. 25, no 3, pp. 13–25.
http://doi.acm.org/10.1145/268806.268810

 	[28]

 	L. Cai, D. Gajski.
Transaction level modeling: an overview, in: CODES+ISSS '03: Proceedings of the 1st IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis, New York, NY, USA, ACM Press, 2003, pp. 19–24.
http://doi.acm.org/10.1145/944645.944651

 	[29]

 	Y.-F. Chen, E. Clarke, A. Farzan, M.-H. Tsai, Y.-K. Tsay, B.-Y. Wang.
Automated Assume-Guarantee Reasoning through Implicit Learning, in: Computer Aided Verification, Royaume-Uni Edinburgh, 2010.
http://hal.inria.fr/inria-00496949/en/

 	[30]

 	E. Clarke, O. Grumberg, D. A. Peled.
Model Checking, The MIT Press, Cambridge, Massachusetts, 1999.

 	[31]

 	B. Cmelik, D. Keppel.
Shade: a fast instruction-set simulator for execution profiling, in: SIGMETRICS Perform. Eval. Rev., 1994, vol. 22, no 1, pp. 128–137.
http://doi.acm.org/10.1145/183019.183032

 	[32]

 	J. M. Cobleigh, G. S. Avrunin, L. A. Clarke.
Breaking Up is Hard to do: An Evaluation of Automated Assume-Guarantee Reasoning, in: ACM Trans. Software Engineering Methodology, 2008, vol. 17, no 2.

 	[33]

 	J. M. Cobleigh, D. Giannakopoulou, C. S. Păsăreanu.
Learning Assumptions for Compositional Verification, in: TACAS, H. Garavel, J. Hatcliff (editors), Lecture Notes in Computer Science, Springer Verlag, 2003, vol. 2619, pp. 331–346.

 	[34]

 	J. D'Errico, W. Qin.
Constructing portable compiled instruction-set simulators: an ADL-driven approach, in: DATE '06: Proceedings of the conference on Design, automation and test in Europe, 3001 Leuven, Belgium, Belgium, European Design and Automation Association, 2006, pp. 112–117.

 	[35]

 	L. Feng, M. Kwiatkowska, D. Parker.
Compositional Verification of Probabilistic Systems using Learning, in: QEST, G. Ciardo, R. Segal (editors), IEEE CS Press, 2010.

 	[36]

 	F. Fummi, G. Perbellini, M. Loghi, M. Poncino.
ISS-centric modular HW/SW co-simulation, in: ACM Great Lakes Symposium on VLSI, 2006, pp. 31-36.

 	[37]

 	A. Gavare.
GXemul Documentation, 2007.
http://gxemul.sourceforge.net/gxemul-stable/doc/index.html

 	[38]

 	P. Gerin, S. Yoo, G. Nicolescu, A. A. Jerraya.
Scalable and flexible cosimulation of SoC designs with heterogeneous multi-processor target architectures, in: ASP-DAC '01: Asia South Pacific Design Automation Conference, ACM, 2001, pp. 63–68.

 	[39]

 	IEEE.
IEEE Standard 1666 - SystemC Language Reference Manual, IEEE, 2006.

 	[40]

 	Y. Jung, S. Kong, B.-Y. Wang, K. Yi.
Deriving Invariants by Algorithmic Learning, Decision Procedures, and Predicate Abstraction, in: Verification, Model Checking, and Abstract Interpretation, Espagne Madrid, 2010.
http://hal.inria.fr/inria-00517257/en/

 	[41]

 	S. Kong, Y. Jung, C. David, B.-Y. Wang, K. Yi.
Automatically Inferring Quantified Loop Invariants by Algorithmic Learning from Simple Templates, in: ASIAN Symposium on Programming Languages and Systems, Chine Shanghai, K. Ueda (editor), 2010.
http://hal.inria.fr/inria-00515166/en/

 	[42]

 	D. Kroening, O. Strichman.
Decision Procedures: An Algorithmic Point of View, Springer, 2008, ISBN-10: 3540741046.

 	[43]

 	M. Meerwein, C. Baumgartner, T. Wieja, W. Glauert.
Embedded systems verification with FGPA-enhanced in-circuit emulator, in: ISSS '00: Proceedings of the 13th international symposium on System synthesis, Washington, DC, USA, IEEE Computer Society, 2000, pp. 143–148.
http://doi.acm.org/10.1145/501790.501821

 	[44]

 	G. Nelson.
Techniques for program verification, Stanford University, Stanford, CA, USA, 1980.

 	[45]

 	A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, A. Hoffmann.
A universal technique for fast and flexible instruction-set architecture simulation, in: DAC '02: Proceedings of the 39th conference on Design automation, New York, NY, USA, ACM, 2002, pp. 22–27.
http://doi.acm.org/10.1145/513918.513927

 	[46]

 	M. Poncino, J. Zhu.
DynamoSim: a trace-based dynamically compiled instruction set simulator, in: ICCAD '04: Proceedings of the 2004 IEEE/ACM International conference on Computer-aided design, Washington, DC, USA, IEEE Computer Society, 2004, pp. 131–136.
http://dx.doi.org/10.1109/ICCAD.2004.1382557

 	[47]

 	M. Reshadi, P. Mishra, N. Dutt.
Instruction set compiled simulation: a technique for fast and flexible instruction set simulation, in: DAC '03: Proceedings of the 40th conference on Design automation, New York, NY, USA, ACM, 2003, pp. 758–763.
http://doi.acm.org/10.1145/775832.776026

 	[48]

 	P. Schaumont, D. Ching, I. Verbauwhede.
An interactive codesign environment for domain-specific coprocessors, in: ACM Trans. Des. Autom. Electron. Syst., 2006, vol. 11, no 1, pp. 70–87.
http://doi.acm.org/10.1145/1124713.1124719

 	[49]

 	R. Sebastiani.
Lazy satisfiability modulo theories, in: Journal on Satisfiability, Boolean Modeling and Computation, 2007, vol. 3, no 3-4, pp. 141–224.

 	[50]

 	H. Sheini, K. Sakallah.
From propositional satisfiability to satisfiability modulo theories, in: Theory and Applications of Satisfiability Testing-SAT 2006, 2006, pp. 1–9.

 	[51]

 	P.-Y. Strub.
Type Theory and Decision Procedures, École Polytechnique, July 2008.

 	[52]

 	Coq. D. Team.
The Coq Reference Manual, Version 8.2, Inria Rocquencourt, France, 2008.
http://coq.inria.fr/

 	[53]

 	L. de Moura, B. Dutertre, N. Shankar.
A tutorial on satisfiability modulo theories, in: CAV'07: Proceedings of the 19th international conference on Computer aided verification, Berlin, Heidelberg, Springer-Verlag, 2007, pp. 20–36.

 	[54]

 	W.-P. de Roever, F. de Boer, U. Hanneman, J. Hooman, Y. Lakhnech, M. Poel, J. Zwiers.
Concurrency Verification: Introduction to Compositional and Noncompositional Methods, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 2001, no 54.

 	[55]

 	V. van Oostrom.
Confluence by Decreasing Diagrams, in: RTA, A. Voronkov (editor), Lecture Notes in Computer Science, Springer, 2008, vol. 5117, pp. 306-320.

 OEBPS/uid51.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Inria International Partners

 Declared Inria International Partners

 The FORMES project has been held since the beginning at
Tsinghua University, Beijing, China. Tsinghua University is a
founding member of LIAMA laboratory.

 Informal International Partners

 The FORMES project has also collaborated with:

 		
 Pr John Koo at Shenzhen Institute of Advanced Technology, until
August 2013.

 		
 the Institute of Software of the Chinese Academy of Science
where Frédéric Blanqui has been kindly hosted between July 2012 and
August 2013.

 Inria International Labs

 FORMES is one of the LIAMA projects.

 Participation In other International Programs

 LIAMA is a member of the AURA network: Association of Units of Research in Asia.

OEBPS/contrats.html

OEBPS/uid59.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits of International Scientists

 FORMES project member Jean-Pierre Jouannaud organized jointly with Pr
Ming Gu the LIAMA-Tsinghua Software Day, where the following scientists
reported on their research:

 		
 Pr Edmund Clarke, from Carnegie Mellon.

 		
 Erik Hagersten from University of Uppsala.

 		
 Marc Pouzet from University Pierre et Marie Curie.

 Internships

 		

 Jiaxiang Liu

 		
 Subject: Diagramatic Confluence,

 		
 Date: from Jul 2013 to Dec 2013,

 		
 Institution: Ecole Polytechnique

 		

 Antoine Rouquette

 		
 Subject: Upgrade of SimSoC simulator,

 		
 Date: from September 2012 to August 2013,

 		
 Institution: Shenzhen Institutes of Advanced Technology

 		

 Shenpeng Wang

 		
 Subject: Approximately Timed Simulation of PowerPC e200z,

 		
 Date: from March 2012 to May 2013,

 		
 Institutions: Tsinghua University and Shenzhen Institutes of Advanced Technology

OEBPS/international.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid48.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 Tsinghua Grant

 contract: Tsinghua National Laboratory for Information Science and
Technology, Cross-discipline Foundation grant 2011-9

 title: An Intensional Logical Framework and Its Implementation

 Participants: Jean-Pierre Jouannaud, Jianqi Li

 duration: 2011 - 2012

 Amount: 100,000 RMB

 NSFC Grant

 contract: National Science Foundation of China grant 61272002

 title: The meta-theories of higher-order rewriting and their proof
automation: toward the next generation theorem prover

 PIs: Jean-Pierre Jouannaud, Jianqi Li

 duration: 2013-2016

 Amount: 600,000 RMB

OEBPS/IMG/iTunesArtwork.png
Activity Report 2013
Project-Team Formes

Formal Methods for
Embedded Systems

