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        Overall Objectives

        The core endeavor of this team is to develop methods in control theory for finite-dimensional nonlinear systems, as well as in optimal transport,
and to be involved in applications of these techniques.
Some mathematical fields like dynamical systems and optimal transport may benefit from control theory techniques.
Our primary domain of industrial applications will be space engineering, namely designing trajectories in space mechanics using optimal control and stabilization
techniques: transfer of a satellite between two Keplerian orbits, rendez-vous problem, transfer of a satellite from the Earth to the Moon or more complicated space missions. A second
field of applications is quantum control with applications to Nuclear Magnetic Resonance and medical image processing.
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        Control Systems

        Our effort is directed toward efficient methods for the control of real (physical) systems, based on a model of the system to be controlled.
System refers to the physical plant or device, whereas model refers to a mathematical representation of it.

        We mostly investigate nonlinear systems whose nonlinearities admit a strong structure derived from physics; the
equations governing their behavior are then well known, and the modeling part consists in choosing what
phenomena are to be retained in the model used for control design, the other phenomena being treated as perturbations; a
more complete model may be used for simulations, for instance.
We focus on systems that admit a reliable finite-dimensional model, in continuous time; this means that models are
controlled ordinary differential equations, often nonlinear.

        Choosing accurate models yet simple enough to allow control design is in itself a key issue; however, modeling or identification as a theory is not per se in the scope of our project.

        The extreme generality and versatility of linear control do not contradict
the often heard sentence “most real life systems are nonlinear”.
Indeed, for many control problems, a linear model is sufficient to capture the important features for control.
The reason is that most
control objectives are local, first order variations around an operating point
or a trajectory are governed by a linear control model, and except in
degenerate situations (non-controllability of this linear
model), the local behavior of a nonlinear dynamic phenomenon is dictated by
the behavior of first order variations.
Linear control is the hard core of control theory and practice; it has been pushed to a high degree of achievement
–see for instance some classics: [48] , [37] – that leads to big successes
in industrial applications (PID, Kalman filtering, frequency domain design,
H∞ robust control, etc...).
It must be taught to future engineers, and it is still a topic of ongoing research.

        Linear control by itself however reaches its limits in some important situations:

        
          	
             Non local control objectives.
For instance, steering the system
from a region to a reasonably remote other one (path planning and optimal control); in this case, local linear
approximation cannot be sufficient.

             It is also the case when some domain of validity (e.g. stability) is prescribed and is larger than the region where the linear approximation is dominant.

          

          	
             Local control at degenerate equilibria.
Linear control yields local stabilization of an equilibrium point based on
the tangent linear approximation if the latter is controllable. When it is not,
and this occurs in some physical systems at interesting operating points,
linear control is irrelevant and specific nonlinear techniques have to be
designed.

             This is in a sense an extreme case of the second paragraph in point 1 : the region where the linear approximation is dominant vanishes.

          

          	
             Small controls. In some situations, actuators only allow a very small magnitude of the
effect of control compared to the effect of other phenomena. Then the behavior of the system without control plays a
major role and we are again outside the scope of linear control methods.

          

          	
             Local control around a trajectory.
Sometimes a trajectory has been selected (this appeals to point 1 ),
and local regulation around this reference is to be performed.
Linearization in general yields, when the trajectory
is not a single equilibrium point, a time-varying linear system.
Even if it is controllable, time-varying linear systems are not in the scope
of most classical linear control methods, and it is better to incorporate this local
regulation in the nonlinear design, all the more so as the linear approximation along optimal trajectories is, by nature, often non controllable.

          

        

        Let us discuss in more details some specific problems that we are studying or plan to study: classification and
structure of control systems in section 
	3.2 ,
optimal control, and its links with feedback, in section 
	3.3 , the problem of
optimal transport
in section 
	3.4 , and finally problems relevent to a specific class of systems where
the control is “small” in section 
	3.5 .
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        Structure of nonlinear control systems 

        In most problems, choosing the proper coordinates, or the right quantities that describe a phenomenon, sheds
light on a path to the solution. In control systems, it is often crucial to analyze the structure of the
model, deduced from physical principles, of the plant to be controlled;
this may lead to putting it via some transformations in a simpler form, or a form that is
most suitable for control design.
For instance, equivalence to a linear system may allow to use linear control; also, the so-called “flatness” property drastically simplifies path planning  [43] , [54] .

        A better understanding of the “set of nonlinear models”,
partly classifying them, has another motivation than facilitating control design for a given system and its model:
it may also be a necessary step towards a theory of “nonlinear identification” and modeling.
Linear identification is a mature area of control science;
its success is mostly due to a very fine knowledge of the structure of the class of linear models: similarly, any progress in
the understanding of the structure of the class of nonlinear models
would be a contribution to a possible theory of nonlinear
identification.

        These topics are central in control theory, but raise very difficult mathematical questions: static feedback
classification is a geometric problem which is feasible in principle, although describing invariants explicitly is
technically very difficult; and conditions for dynamic feedback equivalence and linearization raise unsolved
mathematical problems, that make one wonder about decidability (Consider the simple system with state (x,y,z)∈IR3 and two controls that reads
z˙=(y˙-zx˙)2x˙ after elimination of the controls; it is not known whether it is
equivalent to a linear system, or flat; this is because the property amounts to existence of a formula giving
the general solution as a function of two arbitrary functions of time and their derivatives up to a certain
order, but no bound on this order is known a priori, even for this very particular example.).
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        Optimal control and feedback control, stabilization

        
        Optimal control.

        Mathematically speaking, optimal control is the modern branch of the calculus of variations, rather well established and
mature  [21] , [52] , [28] , [61] .
Relying on Hamiltonian dynamics is now prevalent, instead of the standard Lagrangian formalism of the calculus of variations.
Also, coming from control engineering, constraints on the control (for instance the control is a force or a torque, which are naturally bounded) or the state (for example in the shuttle
atmospheric re-entry problem there is a constraint on the thermal flux) are imposed; the ones on the state are usual but
these on the state yield more complicated necessary optimality conditions and an increased intrinsic complexity of the optimal solutions. Also, in the modern treatment, ad-hoc numerical schemes have to be derived for effective computations of the optimal solutions.

        What makes optimal control an applied field is the necessity of computing these optimal trajectories, or rather the controls that produce these trajectories
(or, of course, close-by trajectories).
Computing a given optimal trajectory and its control as a function of time is a demanding task, with non trivial numerical difficulties: roughly speaking, the Pontryagin Maximum
Principle gives candidate optimal trajectories as solutions of a two point boundary value problem (for an ODE) which can be analyzed using mathematical tools from geometric control theory or solved numerically using shooting methods.
Obtaining the optimal synthesis
–the optimal control as a function of the state– is of course a more intricate problem  [28] , [33] .

        These questions are not only academic for minimizing a cost is very relevant in many control engineering problems.
However, modern engineering textbooks in nonlinear control systems like the “best-seller” [45]  hardly mention optimal control, and rather put the emphasis on designing a feedback control,
as regular and explicit as possible, satisfying some qualitative (and extremely important!) objectives:
disturbance attenuation, decoupling, output regulation or stabilization.
Optimal control is sometimes viewed as disconnected from automatic
control... we shall come back to this unfortunate point.

        
        Feedback, control Lyapunov functions, stabilization.

        A control Lyapunov function (CLF) is a function that can be
made a Lyapunov function (roughly speaking, a function that decreases
along all trajectories, some call this an “artificial potential”)
for the closed-loop system corresponding to some feedback law.
This can be translated into a partial differential relation sometimes
called “Artstein's (in)equation”  [24] .
There is a definite parallel between a CLF for
stabilization, solution of this differential inequation on the one
hand, and the value function of an optimal control problem for the
system, solution of a HJB equation on the other hand. Now, optimal
control is a quantitative objective while stabilization is a
qualitative objective; it is not surprising that Artstein (in)equation
is very under-determined and has many more solutions than HJB
equation, and that it may (although not always) even have smooth ones.

        We have, in the team, a longstanding research record on the topic of construction of CLFs and stabilizing feedback controls.
This is all the more interesting as our line of research has been pointing in almost opposite directions.
[38] , [58] , [60]  insist on the construction of continuous feedback, hence smooth CLFs whereas, on the contrary,
[36] , [62] , [63]  proceed with a very fine study of non-smooth CLFs, yet good enough (semi-concave) that they can produce a reasonable discontinuous feedback with reasonable properties.
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        Optimal Transport

        We believe that matching optimal transport with geometric control theory is one originality of our team. We expect
interactions in both ways.

        The study of optimal mass transport problems in the Euclidean or
Riemannian setting has a long history which goes from the pioneer
works of Monge  [56]  and Kantorovitch  [49]  to the
recent revival initiated by fundamental contributions due to Brenier  [34]  and McCann  [55] .

        Th same transportation problems in the presence of
differential constraints on the set of paths —like being an admissible trajectory for a control system— is quite new. The first
contributors were Ambrosio and Rigot  [22]  who proved the
existence and uniqueness of an optimal transport map for the Monge
problem associated with the squared canonical sub-Riemannian distance on the Heisenberg groups. This
result was extended later by Agrachev and Lee  [19] , then by Figalli and
Rifford  [40]  who showed that the Ambrosio-Rigot theorem
holds indeed true on many sub-Riemannian manifolds satisfying
reasonable assumptions.
The problem of existence and uniqueness of an optimal transport map for the squared sub-Riemannian distance on a
general complete sub-Riemannian manifold remains open; it is strictly related to the regularity of the sub-Riemannian
distance in the product space, and remains a formidable challenge.
Generalized notions of Ricci curvatures (bounded from below) in metric spaces have been developed recently by Lott and
Villani  [53]  and Sturm  [67] , [68] . A pioneer work by
Juillet  [46]  captured the right notion of curvature for subriemannian metric in the Heisenberg group; Agrachev and Lee [20]  have elaborated on this work to define new notions of curvatures in three dimensional sub-Riemannian structures. The optimal transport approach happened to be very fruitful in this context. Many things remain to do in a more
general context.
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        Small controls and conservative systems, averaging

        Using averaging techniques to study small perturbations of integrable Hamiltonian systems dates back to H. Poincaré or
earlier; it gives an approximation of the (slow) evolution of quantities that are
preserved in the non-perturbed system. It is very subtle in the case of multiple periods but more elementary in the
single period case, here it boils down to taking the average of the perturbation along each periodic orbit; see for
instance [23] , [66] .

        When the “perturbation” is a control, these techniques may be used after deciding how the control will depend on
time and state and other quantities, for instance it may be used after applying the
Pontryagin Maximum Principle as in  [25] , [26] , [35] , [44] .
Without deciding the control a priori, an “average control system” may be defined as in [1] .

        The focus is then on studying into details this simpler “averaged” problem, that can often be described by a Riemannian
metric for quadratic costs or by a Finsler metric for costs like minimum time.

        This line of research stemmed out of applications to space engineering, see section 
	4.1 .
For orbit transfer in the two-body problem,
an important contribution was made by B. Bonnard, J.-B. Caillau and J. Gergaud  [26] 
in explicitly computing the solutions of the average system obtained after applying Pontryagin Maximum Principle to minimizing a quadratic integral cost; this yields an explicit
calculation of the optimal control law itself.
Studying the Finsler metric issued form the time-minimal case is in progress.
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        Space engineering, satellites, low thrust control

        Space engineering is very demanding in terms of safe and
high-performance control laws (for instance optimal in terms of fuel consumption, because only a finite amount of fuel is onborad a sattelite
for all its “life”). It is therefore prone to real industrial
collaborations.

        We are especially interested in trajectory control of space vehicles using their own propulsion devices, outside the atmosphere.
Here we discuss “non-local” control problems (in the sense of section 
	3.1  point 1 ): orbit transfer rather than station keeping; also we do not discuss attitude control.

        In the geocentric case,
a space vehicle is subject to

        - gravitational forces, from one or more central bodies (the corresponding
acceleration is denoted by F grav . below),

        - a thrust, the control, produced by a propelling
device; it is the Gu term below; assume for simplicity that control in all
directions is allowed, i.e. G is an invertible matrix

        - other “perturbating” forces (the corresponding acceleration is denoted by F2 below).

        In position-velocity coordinates, its dynamics can be written as
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        In the case of a single attracting central body (the earth) and in a geocentric frame, F grav . does not
depend on time, or consists of a main term that does not depend on time and smaller terms reflecting the action of the
moon or the sun, that depend on time.
The second term is often neglected in the design of the control at first sight; it contains terms like athmospheric drag
or solar pressure. G could also bear an explicit dependence on time (here we omit the variation of the mass, that
decreases proportionnally to ∥u∥.

        
        Low thrust

        Low thrust means that u max  is small, or more precisely that the maximum magnitude of Gu is small
with respect to the one of F grav .
(but in genral not compared to F2).
Hence the influence of the control is very weak instantaneously, and
trajectories can only be significantly modified by accumulating the effect of
this low thrust on a long time. Obviously this is possible only because the
free system is somehow conservative.
This was “abstracted” in section 
	3.5 .

        Why low thrust ? The common principle to all propulsion devices is to eject particles, with
some relative speed with respect to the vehicle; conservation of momentum
then induces, from the point of view of the vehicle alone, an external force, the “thrust” (and a mass decrease).
Ejecting the same mass of particles with a higher relative speed
results in a proportionally higher thrust; this relative speed (specific impulse, Isp) is a
characteristic of the engine; the higher the
Isp, the smaller the mass of particles needed for the same change in the vehicle momentum.
Engines with a higher Isp are highly desirable
because, for the same maneuvers, they reduce the mass of "fuel" to be taken
on-board the satellite, hence leaving more room (mass) for the payload.
“Classical” chemical engines use combustion to eject particles, at a somehow limited speed even with very efficient fuel;
the more recent electric engines use a magnetic field to accelerate particles and eject them at a considerably higher speed;
however electrical power is limited (solar cells), and only a small amount of particles can be accelerated per unit of time,
inducing the limitation on thrust magnitude.

        Electric engines theoretically allow many more maneuvers with the same amount of particles, with the drawback that the instant
force is very small; sophisticated control design is necessary to circumvent this drawback. High thrust engines allow simpler control procedures because they almost allow instant maneuvers (strategies consist in a few burns
at precise instants).

        
        Typical problems

        Let us mention two.

        
          	
             Orbit transfer or rendez-vous.
It is the classical problem of bringing a satellite to its operating position from the orbit where it is delivered by the launcher; for instance from a GTO orbit to the
geostationary orbit at a prescribed longitude (one says rendez-vous when the longitude, or the position on the orbit, is prescribed, and transfer if it is free). In equation
(1 ) for the dynamics, F grav . is the Newtonian gravitation force of the earth (it then does not depend on time); F2 contains all the terms coming
either from the perturbations to the Newtonian potential or from external forces like radiation pressure, and the control is usually allowed in all directions, or with some
restrictions to be made precise.

          

          	
             Three body problem.
This is about missions in the solar system leaving the region where the attraction of the earth, or another single body, is preponderant. We are then no longer in the
situation of a single central body, F grav . contains the attraction of different planets and the sun. In regions where two central bodies have an influence, say
the earth and the moon, or the sun and a planet, the term F grav . in (1 ) is the one of the restricted three body problem and dependence on time
reflects the movement of the two “big” attracting bodies.

             An issue for future experimental missions in the solar system is interplanetary flight planning with gravitational assistance.
Tackling this global problem, that even contains some combinatorial problems (itinerary), goes beyond the methodology developed here, but the above considerations are a brick
in this puzzle.

          

        

        
        Properties of the control system.

        If there are no restrictions on the thrust direction, i.e., in equation (1 ), if the control u has dimension 3 with an invertible matrix G, then the control system
is “static feedback linearizable”, and a fortiori flat, see section 
	3.2 . However, implementing the static feedback transformation would consist in using the control to
“cancel” the gravitation; this is obviously impossible since the available thrust is very small.
As mentioned in section 
	3.1 , point 3 , the problem remains fully nonlinear in spite of this “linearizable” structure (However, the linear approximation around any feasible trajectory is controllable (a periodic time-varying linear system);
optimal control problems will have no singular or abnormal trajectories.).

        
        Context for these applications

        The geographic proximity of Thales Alenia Space, in conjunction with the “Pole de compétitivité” PEGASE in PACA region is an asset for a long term collaboration between
Inria - Sophia Antipolis and Thales Alenia Space (Thales Alenia Space site located in Cannes hosts one of the very few European
facilities for assembly, integration and tests of satellites).

        B. Bonnard and J.-B. Caillau in Dijon have had a strong activity in optimal control for space, in collaboration with the
APO Team from IRIT at ENSEEIHT (Toulouse), and sometimes with EADS, for development of geometric methods in numerical algorithms.
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        Quantum Control

        These applications started by a collaboration between B. Bonnard and D. Sugny (a physicist from ICB) in the ANR project Comoc, localized mainly at the University of Dijon.
The problem was the control of the orientation of a molecule using a laser field, with a model that does take into account the dissipation due to the interaction with the
environment, molecular collisions for instance. The model is a dissipative generalization of the finite dimensional
Schrödinger equation, known as Lindblad equation.
It is a 3-dimensional system depending upon 3 parameters, yielding a very complicated optimal control problem that we have solved for prescribed boundary conditions.
In particular we have computed the minimum time control and the minimum energy control for the orientation or a
two-level system, using geometric optimal control and appropriate numerical methods (shooting and numerical continuation)  [31] , [30] .

        More recently, based on this project, we have reoriented our control activity towards Nuclear Magnetic Resonance (MNR).
In MNR medical imaging, the contrast problem is the one of designing a variation of the magnetic field with respect to
time that maximizes the difference,
on the resulting image, between two different chemical species; this is the “contrast”. This research is conducted
with Prof. S. Glaser (TU-München), whose group is performing both in vivo and in vitro experiments;
experiments using our techniques have successfully measured the improvement in contrast between materials chemical
species that have an importance in medicine, like oxygenated and de-oxygenated blood,
see  [29] ; this is however still to be investigated and improved.
The model is the Bloch equation for spin 12 particles, that can be interpreted as a sub-case of Lindblad equation
for a two-level system; the control problem to solve amounts to driving in minimum time the magnetization vector of the
spin to zero (for parameters of the system corresponding to one of the species), and generalizations where such
spin 12 particles are coupled: double spin inversion for instance.

        Note that a reference book by B. Bonnard and D. Sugny has been published on the topic  [32] .
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        Applications of optimal transport

        Optimal Transportation in general has many applications. Image processing, biology, fluid mechanics, mathematical
physics, game theory, traffic planning, financial mathematics, economics are among the most popular fields of
application of the general theory of optimal transport. Many developments have been made in all these fields recently.
Two more specific fields:

        -
In image processing, since a grey-scale image may be viewed as a measure, optimal transportation has been used because
it gives a distance between measures corresponding to the optimal cost of moving densities from one to the other, see
e.g. the work of J.-M. Morel and co-workers  [57] .

        -
In representation and approximation of
geometric shapes, say by point-cloud sampling, it is also interesting to associate a measure, rather than just a
geometric locus, to a distribution of points (this gives a small importance to exceptional “outlier” mistaken points);
this was developed in Q. Mérigot’s PhD  [59]  in the GEOMETRICA project-team.
The relevant distance between measures is again the one coming from optimal transportation.

        - A collaboration between Ludovic Rifford and Robert McCann from the University of Toronto aims at applications
of optimal transportation to the modeling of markets in economy; it was to subject of Alice Erlinger's PhD,
unfortunately interrupted.

        Applications specific to the type of costs that we consider, i.e. these coming from optimal control,
are concerned with evolutions of densities under state or velocity constraints. A fluid
motion or a crowd movement can be seen as the evolution of a density in a given space. If constraints are given on the
directions in which these densities can evolve, we are in the framework of non-holonomic transport problems.
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        Applications to some domains of mathematics. 

        Control theory (in particular thinking in terms of inputs and reachable set) has brought novel ideas and progresses to mathematics.
For instance, some problems from classical calculus of variations have been revisited in terms of optimal control and Pontryagin's Maximum Principle  [47] ; also, closed geodesics for perturbed Riemannian metrics where constructed in  [50] , [51]  using control techniques.

        The work in progress  [39]  is definitely in this line, applying
techniques from control to construct some perturbations under constraints of Hamiltonian systems to solve longstanding
open questions in the field of dynamical systems.
Also, in  [65] , L. Rifford and R. Ruggiero applied successfully geometric control techniques to obtain genericity properties for Hamiltonian systems.
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        Hampath

        Participants :
	Jean-Baptiste Caillau, Olivier Cots [corresponding participant] , Joseph Gergaud.

        Hampath is a software developped to solve optimal control problems but also to study Hamiltonian flow.
It has been developped since 2009 by members of the APO team from Institut de Recherche en Informatique de Toulouse, jointly with colleagues from the Université de Bourgogne. It is now updated with McTAO team members.
See more on http://cots.perso.math.cnrs.fr/hampath/ .
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        Optimal control for quantum systems: the contrast problem in NMR

        These studies aim at optimizing the contrast in Nuclear Magnetic Resonance imaging using advanced optimal control.
As said in section 
	4.2 , our work on this problem is based on experiments conducted in
Prof. S. Glaser in Munich, see [29] .

        
        Theoretical aspects

        Participants :
	Bernard Bonnard, John Marriott, Monique Chyba [University of Hawaii] , Gautier Picot [University of Hawaii] , Olivier Cots, Jean-Baptiste Caillau.

        This is done in collaboration with University of Hawaii, and deals with many theoretical aspects of the contrast problem in NMR: analysis of the optimal flow [5] , feedback classification in relation with the relaxation times of the species [10] , [4] .
John Marriott defended his PhD thesis on this topic, on August 28, 2013.

        
        Numerical aspects

        Participants :
	Bernard Bonnard, Jean-Baptiste Caillau, Olivier Cots, Mathieu Claeys [LAAS CNRS, Toulouse] , Pierre Martinon [COMMANDS team, Inria] .

        We performed, in a collaboration with Pierre Martinon (COMMANDS team, Inria) and Mathieu Claeys (LAAS CNRS,
Toulouse), a thorough comparison of the various available numerical
methods in optimal control on this important physical problem.
Direct and indirect methods (implemented in the Bocop  and
Hampath  sofwares) were tested in the contrast problem, and LMI
techniques were used to obtain global bounds on the extremum (in the contrast problem there are many local optima and
the global optimality is a complicated issue).
This successful collaboration is accounted for in [15]  and was presented at the CDC conference [12] 
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        Conjugate and cut loci computations and applications

        Participants :
	Bernard Bonnard, Olivier Cots, Jean-Baptiste Caillau.

        One of the most important results obtained by B. Bonnard and his collaborators concern the explicit computations of
conjugate and cut loci on surfaces. This has obvious applications in optimal control to compute the global optimum;
it is also relevent in optimal transport where regularity
properties of the transport map in the Monge problem is related to convexity properties of the tangent injectivity domains.

        In [3] , we complete the previous results obtained in [27]  (we bring them
from ellipsoids to general revolutions surfaces).

        The conjugate and cut loci in
Serret-Andoyer metrics and dynamics of spin particles with Ising coupling are analized in [7] ,
this is a first step towards the computation
of conjugate and cut loci on left invariant Riemannian and sub Riemannian metrics in S0(3) with applications for instance to the
attitude control problem of a spacecraft.

        An analysis of
singular metrics on revolution surfaces, motivated by the average orbital transfer problem when the
thrust direction is restricted, is proposed in [2] .

        Finally, [8]  determines cut and conjugate loci in an enegy minimizing problem that is related
to the quantum systems mentionned in the first paragraph of section 
	4.2 .
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      New Results

        Averaging in control

        Participants :
	Bernard Bonnard, Helen-Clare Henninger, Jean-Baptiste Pomet.

        A paper on the construction and properties of an “average control system” [1]  appeared this
year, it is based on Alex Bombrun's doctoral work (2007).
It connects solutions of highly oscillating
control systems to those of an average
control system, when the frequency of oscillation goes high. It also gives a better ground to averaging for minimum time.

        This average system in the case of minimum time for low thrust orbit transfer in the two body problem is currently being
explored, in particular the study of its inherent singularities.
In [16]  we give some properties of this system, like geodesic convexity, and compare it with the one obtained for minimum energy, and
Helen Henninger's PhD aims at going further in this direction and then apply this local study to real missions,
possibly in a three-body environment.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Results

        Optimal transport

        Participants :
	Ludovic Rifford, Alice Erlinger, Alessio Figalli [U. of Texas at Austin, USA] , Thomas Gallouet [Inria, SIMPAF team] , Bernard Bonnard, Jean-Baptiste Caillau, Lionel Jassionesse, Robert Mc Cann [U. of Toronto] .

        
          	
             The very general condition for continuity of the transport map given in [41]  motivated
exploration of conditions for convexity of the tangent injectivity domain [42] ,
[3] .
Lionel Jassionnesse's PhD is in part devoted to Ma-Trudinger-Wang tensor that also plays an important role in this
matter.
Ludovic Rifford has an ongoing collaboration with Alession Figalli and Thomas Gallouet on the link between this MTW
tansor and the convexity of injectivity domains; They already improved a result by Loeper and Villani (the preprint
“Ma-Trudinger-Wang condition vs. convexity of injectivity domains” is available from the authors) and aim at
proving a conjecture due to Villani, that would hold in the case of anlaytic surfaces.

          

          	
             The goal of Alice Erlinger's PhD, joint with University of Toronto, is to explore Optimal Transport's application to modeling
in economics. She unfortunately stopped her PhD, but some results have already been obtained.

          

        

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Results

        Applications of control methods to dynamical systems

        Participants :
	Gonzalo Contreras, Alessio Figalli, Ayadi Lazrag, Ludovic Rifford, Raffael Ruggiero.

        Ludovic Rifford and collaborators have been applying with success, techniques from geometric control theory to open
problems in dynamical systems, mostly on genericity properties and using controllability methods to build suitable
perturbations.

        This has been applied to closing geodesics [64] .
Ayadi Lazrag's PhD also deals with such problems; applying techniques close to these in
[65] , one goal is to establish a version of Francks' lemma for geodesic flows and to apply this to
persitence problems. The approach relies on control theory results, with order 2 conditions.
See [18]  and another preprint (“Franks' lemma for C2-Mañé perturbations of Riemannian metrics
and applications to persistence” by Lazrag, Rifford and Ruggiero, available from the authors).

        In [17] , a non trivial conjecture on generic hyperbolicity of the so-called Aubry set of a
Hamiltonian is solved on compact surfaces and in the C2 topology (for genericity).
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        Section: 
      Bilateral Contracts and Grants with Industry

        Thales Alenia Space - Inria

        “Transfert orbital dans le problème des deux et trois corps avec la technique de propulsion faible”.

        This contract started October, 2012 for 3 years.
It partially supports Helen Heninger's PhD.

        The goal is to improve transfer strategies for guidance of a spacecraft in the gravitation field of one central body
(the two-body problem) or two celestial bodies (three-body problem).


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Bilateral Contracts and Grants with Industry

        CNES - Inria - UMB

        This three year contract will formally start in 2014, but discussion and preliminary work started in 2013.

        It involves CNES and McTAO both through Inria and through Université de Bourgogne.
It concerns averaging techniques in orbit transfers around the earth while taking into acount many perturbation of the main
force (gravity for the earth considered as circular).
The objective is to validate numerically and theoretically the approximations made by using averaging, and to propose
methods that refine the approximation.
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        Section: 
      Dissemination

        Scientific Animation

        
        Editorial service

        Ludovic Rifford belongs to the editorial board of Journal of Dynamical and Control Systems and Discrete and Continuous Dynamical Systems-A.

        All members of the team are active reviewers in journals of the field.

        
        Seminars

        The team organized two one-day seminars http://nolot.perso.math.cnrs.fr/JourneesControleTransport.html  on optimal
control and optimal transport:

        
          	
             February 13 in Dijon. Speakers: F. Chazal, B. Bonnard, G. Carlier, E. Trélat.

          

          	
             June 4 in Nice. Speakers: S. Rigot, Q. Mérigot, M. Mirrahimi, A. Farres.

          

        

        
        Conference organization

        A two days conference was organized September 6 to 7 (co-organisers: Monique Chyba and Bernard Bonnard), on
“Control and Observation of Nonlinear Control Systems with Application to Medicine” at the University of Hawaii.
It was supported by supported by a NSF grant and by the Engineering Department (P.E. Crouch); it followed J. Marriott's
PhD defense.

        Jean-Baptiste Caillau organized a mini-symposium on Optimization in aeronautics and space machanics in the SMAI annual
congress in Seignosse, France.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Dissemination

        Community service within Inria

        J.-B. Pomet is the president of the “Comité de Suivi Doctoral”, and in charge of “formation par la
recherche”. This includes organising local visits for students, organising PhD candidates selection, managing PhD
students working at Inria Sophia (that are from two different “écoles doctorales” from Université de Nice, not
counting these in Montpellier).

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Dissemination

        Teaching - Supervision - Juries

        
        Teaching

        
          	
             Jean-Baptiste Caillau, Contrôle optimal : introduction au cas déterministe en dimension
finie, 15 hours, 7ème école d’été de Peyresq en traitement du signal et des images (http://www.gretsi.fr/peyresq13/cours.php ).

          

          	
             Jean-Baptiste Caillau, Introduction to optimal control and application to space
mechanics, 15 hours, Gravasco trimester, Institut Henri Poincaré, France (http://uma.ensta-paristech.fr/conf/gravasco/P1a.html ).

          

        

        
        Supervision

        
          	
             PhD: John Marriott, Geometric Optimal Control with an Application to Imaging in Nuclear Magnetic Resonance,
University of Hawaii, defended september 5, 2013, advisors: Monique Chyba and Bernard Bonnard.

          

          	
             PhD in progress: Alice Erlinger, subject: Economics and Optimal Transport, Université de Nice
Sophia Antipolis, started october, 2012, advisor: Ludovic Rifford. She unfortunately decided to stop in 2013, within
her first year.

          

          	
             PhD in progress: Helen Heninger, subject: Étude des solutions du transfert orbital avec poussée faible dans le probleme des deux ou trois corps, Université de Nice Sophia Antipolis, started october, 2012, advisors: Bernard Bonnard and
Jean-Baptiste Pomet.

          

          	
             PhD in progress: Ayadi Lazrag, subject: Control methods in dynamical systems, Université de Nice Sophia Antipolis, started october, 2011, advisor: Ludovic Rifford.

          

          	
             PhD in progress: Lionel Jassionnesse, subject: Lieu conjugés et de coupure pour des métriques de
Liouville et applications, Université de Bourgogne, started october, 2010,
advisor: Bernard Bonnard.

          

          	
             PhD in progress: Jérémy Rouot, subject: Moyennisation en contrôle et en contrôle optimal, effet des perturbations non périodiques, Université de Nice Sophia Antipolis, started october, 2013,
advisors: Bernard Bonnard and Jean-Baptiste Pomet.

          

          	


          	
             MSc: Jasseur Abidi, Optimisation d'une commande appliquée à un satellite, Ensta ParisTech, supervisors: Jean-Baptiste Caillau and Jean-Baptiste Pomet.

          

        

        
        Juries

        
          	
             Jean-Baptiste Caillau was in the jury of X. Dupuis (Ecole Polytechnique, PhD) as President and in the jury of T. Bayen
(university of Montpellier, HDR) as a referee.

          

        

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Dissemination

        Popularization

        Jean-Baptiste Caillau: “Mathematics for planet Earth 2013”:
http://mpt2013.fr/tout-autour-de-la-terre/ ,
http://mpt2013.fr/de-la-terre-a-la-lune/ ,
http://mpt2013.fr/tout-autour-de-la-terre-2nde-partie/ .

      

      
      

      
    

  
    
    
      
      
      

      
      
         Bibliography

        
          
            Publications of the year
          
          Articles in International Peer-Reviewed Journals

          
            	[1]

            	A. Bombrun, J.-B. Pomet.
The averaged control system of fast oscillating control systems, in: SIAM Journal on Control and Optimization,  2013, vol. 51, no 3, pp. 2280-2305. [  
DOI : 10.1137/11085791X ]
http://hal.inria.fr/hal-00648330

            	[2]

            	B. Bonnard, J.-B. Caillau.
Metrics with equatorial singularities on the sphere, in: Ann. Mat. Pura Appl.,  2014, (to appear). [  
DOI : 10.1007/s10231-013-0333-y ]
http://hal.inria.fr/hal-00319299

            	[3]

            	B. Bonnard, J.-B. Caillau, G. Janin.
Conjugate-cut loci and injectivity domains on two-spheres of revolution, in: ESAIM Control Optim. and Calc. Var.,  2013, vol. 19, no 2, pp. 533-554.
http://hal.inria.fr/hal-00802078

            	[4]

            	B. Bonnard, M. Chyba, J. Marriott.
Feedback equivalence and the contrast problem in nuclear magnetic resonance imaging, in: Pacific Journal of Optimization,  2013, vol. 9, pp. 635-650.
http://hal.inria.fr/hal-00939498

            	[5]

            	B. Bonnard, M. Chyba, J. Marriott.
Singular Trajectories and the Contrast Imaging Problem in Nuclear Magnetic Resonance, in: SIAM Journal on Control and Optimization,  2013, vol. 51, no 2, pp. 1325-1349. [  
DOI : 10.1137/110833427 ]
http://hal.inria.fr/hal-00939496

            	[6]

            	B. Bonnard, O. Cots.
Geometric numerical methods and results in the control imaging problem in nuclear magnetic resonance, in: Mathematical Models and Methods in Applied Sciences,  2014, vol. 24, no 1. [  
DOI : 10.1142/S0218202513500504 ]
http://hal.inria.fr/hal-00939153

            	[7]

            	B. Bonnard, O. Cots, J.-B. Pomet, N. Shcherbakova.
Riemannian metrics on 2d-manifolds related to the euler-poinsot rigid body motion, in: ESAIM Control Optim. Calc. Var.,  2014, to appear.
http://hal.inria.fr/hal-00918587

            	[8]

            	B. Bonnard, O. Cots, N. Shcherbakova.
Energy Minimization Problem in Two-Level Dissipative Quantum Control: Meridian Case, in: Journal of Mathematical Sciences,  2013, vol. 195, no 3, pp. 311-335. [  
DOI : 10.1007/s10958-013-1582-4 ]
http://hal.inria.fr/hal-00939131

            	[9]

            	B. Bonnard, O. Cots, N. Shcherbakova.
The Serret-Andoyer Riemannian metric and Euler-Poinsot rigid body motion, in: Mathematical Control and Related Fields,  2013, vol. vol. 3, pp. 287-302. [  
DOI : 10.3934/mcrf.2013.3.287 ]
http://hal.inria.fr/hal-00908905

            	[10]

            	B. Bonnard, A. Jacquemard, M. Chyba, J. Marriott.
Algebraic geometric classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance, in: Mathematical Control and Related Fields,  2013, vol. 3, no 4, pp. 397-432. [  
DOI : 10.3934/mcrf.2013.3.397 ]
http://hal.inria.fr/hal-00939495

            	[11]

            	L. Rifford.
Ricci curvature in Carnot groups, in: Mathematical Control and Related Fields,  2013, vol. 3, no 4, 467 p.
http://hal.inria.fr/hal-00923326

          

          International Conferences with Proceedings

          
            	[12]

            	B. Bonnard, M. Claeys, O. Cots, P. Martinon.
Comparison of Numerical Methods in the Contrast Imaging Problem in NMR, in: 52nd IEEE Conference on Decision and Control, Firenze, Italy, December 2013.
http://hal.inria.fr/hal-00800436

            	[13]

            	B. Bonnard, O. Cots, N. Shcherbakova.
Riemannian metrics on 2D manifolds related to the Euler-Poinsot rigid body problem, in: CDC - 52-nd IEEE Conference on Control Decis., Florence, Italy,  2013.
http://hal.inria.fr/hal-00925078

          

          Other Publications

          
            	[14]

            	B. Bonnard, M. Chyba.
Two applications of geometric optimal control to the dynamics of spin particle,  2013, To appear in a volume of "Math and Industry", Springer-Verlag.
http://hal.inria.fr/hal-00956828

            	[15]

            	B. Bonnard, M. Claeys, O. Cots, P. Martinon.
Geometric and numerical methods in the contrast imaging problem in nuclear magnetic resonance, September 2013.
http://hal.inria.fr/hal-00867753

            	[16]

            	B. Bonnard, H. Henninger, J. Nemcova, J.-B. Pomet.
Time Versus Energy in the Averaged Optimal Coplanar Kepler Transfer towards Circular Orbits,  2013, Submitted to Acta Applicandae Mathematicae.
http://hal.inria.fr/hal-00918633

            	[17]

            	G. Contreras, A. Figalli, L. Rifford.
Generic hyperbolicity of Aubry sets on surfaces,  2013.
http://hal.inria.fr/hal-00935976

            	[18]

            	A. Lazrag.
A geometric control proof of linear Franks' lemma for geodesic flows,  2014.
http://hal.inria.fr/hal-00939982

          

          
            References in notes
          
          
            	[19]

            	A. Agrachev, P. W. Y. Lee.
Optimal transportation under nonholonomic constraints, in: Trans. Amer. Math. Soc.,  2009, vol. 361, no 11, pp. 6019–6047.
http://dx.doi.org/10.1090/S0002-9947-09-04813-2

            	[20]

            	A. Agrachev, P. W. Y. Lee.
Generalized Ricci Curvature Bounds for Three Dimensional Contact Subriemannian manifold, arXiv,  2011, no arXiv:0903.2550 [math.DG], 3rd version.
http://arxiv.org/abs/0903.2550

            	[21]

            	A. Agrachev, Y. L. Sachkov.
Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin,  2004, vol. 87, xiv+412 p, Control Theory and Optimization, II.

            	[22]

            	L. Ambrosio, S. Rigot.
Optimal mass transportation in the Heisenberg group, in: J. Funct. Anal.,  2004, vol. 208, no 2, pp. 261–301.
http://dx.doi.org/10.1016/S0022-1236(03)00019-3

            	[23]

            	V. I. Arnold.
Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 2nd, Springer-Verlag, New York,  1989, vol. 60, xvi+508 p, Translated from the Russian by K. Vogtmann and A. Weinstein.

            	[24]

            	Z. Artstein.
Stabilization with relaxed control, in: Nonlinear Analysis TMA, November 1983, vol. 7, no 11, pp. 1163-1173.

            	[25]

            	B. Bonnard, J.-B. Caillau.
Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust, in: Ann. Inst. H. Poincaré Anal. Non Linéaire,  2007, vol. 24, no 3, pp. 395–411.

            	[26]

            	B. Bonnard, J.-B. Caillau.
Geodesic flow of the averaged controlled Kepler equation, in: Forum Mathematicum, September 2009, vol. 21, no 5, pp. 797–814.
http://dx.doi.org/10.1515/FORUM.2009.038

            	[27]

            	B. Bonnard, J.-B. Caillau, L. Rifford.
Convexity of injectivity domains on the ellipsoid of revolution: the oblate case, in: C. R. Math. Acad. Sci. Paris,  2010, vol. 348, no 23-24, pp. 1315–1318.
http://dx.doi.org/10.1016/j.crma.2010.10.036

            	[28]

            	B. Bonnard, M. Chyba.
Singular trajectories and their role in control theory, Mathématiques & Applications, Springer-Verlag, Berlin,  2003, vol. 40, xvi+357 p.

            	[29]

            	B. Bonnard, O. Cots, S. J. Glaser, M. Lapert, D. Sugny, Y. Zhang.
Geometric Optimal Control of the Contrast Imaging Problem in Nuclear Magnetic Resonance, in: IEEE Transactions on Automatic Control, August 2012, vol. 57, no 8, pp. 1957-1969. [  
DOI : 10.1109/TAC.2012.2195859 ]
http://hal.archives-ouvertes.fr/hal-00750032/

            	[30]

            	B. Bonnard, N. Shcherbakova, D. Sugny.
The smooth continuation method in optimal control with an application to quantum systems, in: ESAIM Control Optim. Calc. Var.,  2011, vol. 17, no 1, pp. 267–292.
http://dx.doi.org/10.1051/cocv/2010004

            	[31]

            	B. Bonnard, D. Sugny.
Time-minimal control of dissipative two-level quantum systems: the integrable case, in: SIAM J. Control Optim.,  2009, vol. 48, no 3, pp. 1289–1308.
http://dx.doi.org/10.1137/080717043

            	[32]

            	B. Bonnard, D. Sugny.
Optimal control with applications in space and quantum dynamics, vol. 5 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences, Springfield, MO,  2012, xvi+283 p.

            	[33]

            	U. Boscain, B. Piccoli.
Optimal syntheses for control systems on 2-D manifolds, Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Berlin,  2004, vol. 43, xiv+261 p.

            	[34]

            	Y. Brenier.
Polar factorization and monotone rearrangement of vector-valued functions, in: Comm. Pure Appl. Math.,  1991, vol. 44, no 4, pp. 375–417.
http://dx.doi.org/10.1002/cpa.3160440402

            	[35]

            	F. Chaplais.
Averaging and deterministic optimal control, in: SIAM J. Control Optim.,  1987, vol. 25, no 3, pp. 767–780.

            	[36]

            	F. H. Clarke, Y. S. Ledyaev, L. Rifford, R. J. Stern.
Feedback stabilization and Lyapunov functions, in: SIAM J. Control Optim.,  2000, vol. 39, no 1, pp. 25–48.
http://dx.doi.org/10.1137/S0363012999352297

            	[37]

            	J. C. Doyle, B. A. Francis, A. R. Tannenbaum.
Feedback control theory, Macmillan Publishing Company, New York,  1992, xii+227 p.

            	[38]

            	L. Faubourg, J.-B. Pomet.
Control Lyapunov functions for homogeneous "Jurdjevic-Quinn” systems, in: ESAIM Control Optim. Calc. Var.,  2000, vol. 5, pp. 293-311.
http://www.edpsciences.org/cocv/

            	[39]

            	A. Figalli, L. Rifford.
Closing Aubry sets, under preparation.

            	[40]

            	A. Figalli, L. Rifford.
Mass transportation on sub-Riemannian manifolds, in: Geom. Funct. Anal.,  2010, vol. 20, no 1, pp. 124–159.
http://dx.doi.org/10.1007/s00039-010-0053-z

            	[41]

            	A. Figalli, L. Rifford, C. Villani.
Tangent cut loci on surfaces, in: Differential Geom. Appl.,  2011, vol. 29, no 2, pp. 154–159.

            	[42]

            	A. Figalli, L. Rifford, C. Villani.
Nearly round spheres look convex, in: Amer. J. Math.,  2012, vol. 134, no 1, pp. 109–139.
http://dx.doi.org/10.1353/ajm.2012.0000

            	[43]

            	M. Fliess, J. Lévine, P. Martin, P. Rouchon.
Flatness and Defect of Nonlinear Systems: Introductory Theory and Examples, in: Internat. J. Control,  1995, vol. 61, no 6, pp. 1327-1361.
http://citeseer.uark.edu:8080/citeseerx/viewdoc/summary?doi=10.1.1.66.8871

            	[44]

            	S. Geffroy.
Généralisation des techniques de moyennation en contrôle optimal - Application aux problèmes de rendez-vous orbitaux en poussée faible, Institut National Polytechnique de Toulouse, Toulouse, France, October 1997.

            	[45]

            	A. Isidori.
Nonlinear Control Systems, Comm. in Control Engineering, 3rd, Springer-Verlag,  1995.

            	[46]

            	N. Juillet.
Geometric inequalities and generalized Ricci bounds in the Heisenberg group, in: Int. Math. Res. Not. IMRN,  2009, vol. 13, pp. 2347–2373.

            	[47]

            	V. Jurdjevic.
Non-Euclidean elastica, in: Amer. J. Math.,  1995, vol. 117, no 1, pp. 93–124.
http://dx.doi.org/10.2307/2375037

            	[48]

            	T. Kailath.
Linear systems, Information and System Sciences, Prentice-Hall Inc., Englewood Cliffs, N.J.,  1980.

            	[49]

            	L. V. Kantorovich.
On a problem of Monge, in: Uspekhi mat. Nauka,  1948, vol. 3, pp. 225–226, English translation in J. Math. Sci. (N. Y.) 133 (2006), 1383–1383.
http://dx.doi.org/10.1007/s10958-006-0050-9

            	[50]

            	W. Klingenberg.
Lectures on closed geodesics, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin,  1978, vol. 230, x+227 p.

            	[51]

            	W. Klingenberg, F. Takens.
Generic properties of geodesic flows, in: Math. Ann.,  1972, vol. 197, pp. 323–334.

            	[52]

            	E. B. Lee, L. Markus.
Foundations of optimal control theory, John Wiley & Sons Inc., New York,  1967.

            	[53]

            	J. Lott, C. Villani.
Ricci curvature for metric-measure spaces via optimal transport, in: Ann. of Math. (2),  2009, vol. 169, no 3, pp. 903–991.
http://dx.doi.org/10.4007/annals.2009.169.903

            	[54]

            	P. Martin, R. M. Murray, P. Rouchon.
Flat systems, in: Mathematical control theory, Part 1, 2 (Trieste, 2001), ICTP Lect. Notes, VIII, Abdus Salam Int. Cent. Theoret. Phys., Trieste,  2002, pp. 705–768.
http://users.ictp.it/~pub_off/lectures/lns008/Rouchon/Rouchon.pdf

            	[55]

            	R. J. McCann.
Polar factorization of maps on Riemannian manifolds, in: Geom. Funct. Anal.,  2001, vol. 11, no 3, pp. 589–608.
http://dx.doi.org/10.1007/PL00001679

            	[56]

            	G. Monge.
Mémoire sur la théorie des déblais et des remblais, in: Histoire de l'Académie Royale des Sciences,  1781, pp. 666-704.
http://gallica.bnf.fr/ark:/12148/bpt6k35800.image.f796

            	[57]

            	J.-M. Morel, F. Santambrogio.
Comparison of distances between measures, in: Appl. Math. Lett.,  2007, vol. 20, no 4, pp. 427–432.
http://dx.doi.org/10.1016/j.aml.2006.05.009

            	[58]

            	P. Morin, J.-B. Pomet, C. Samson.
Design of Homogeneous Time-Varying Stabilizing Control Laws for Driftless Controllable Systems Via Oscillatory Approximation of Lie Brackets in Closed Loop, in: SIAM J. Control Optim.,  1999, vol. 38, no 1, pp. 22-49.
http://dx.doi.org/10.1137/S0363012997315427

            	[59]

            	Q. Mérigot.
Détection de structure géométrique dans les nuages de points, Univ. de Nice Sophia Antipolis,  2009.
http://tel.archives-ouvertes.fr/tel-00443038/

            	[60]

            	J.-B. Pomet.
Explicit Design of Time-Varying Stabilizing Control Laws for a Class of Controllable Systems without Drift, in: Syst. & Control Lett.,  1992, vol. 18, pp. 147-158.

            	[61]

            	L. S. Pontryagin, V. G. Boltjanskiĭ, R. V. Gamkrelidze, E. Mitchenko.
Théorie mathématique des processus optimaux, Editions MIR, Moscou,  1974.

            	[62]

            	L. Rifford.
On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients, in: ESAIM Control Optim. Calc. Var.,  2001, vol. 6, pp. 593–611.
http://dx.doi.org/10.1051/cocv:2001124

            	[63]

            	L. Rifford.
On the existence of local smooth repulsive stabilizing feedbacks in dimension three, in: J. Differential Equations,  2006, vol. 226, no 2, pp. 429–500.
http://dx.doi.org/10.1016/j.jde.2005.10.017

            	[64]

            	L. Rifford.
Closing Geodesics in C1 Topology, in: J. Differential Geom.,  2012, vol. 91, pp. 361-381.
http://projecteuclid.org/euclid.jdg/1349292669

            	[65]

            	L. Rifford, R. O. Ruggiero.
Generic Properties of Closed Orbits of Hamiltonian Flows from Mañé's Viewpoint, in: International Mathematics Research Notices,  2012. [  
DOI : 10.1093/imrn/rnr231 ]
http://imrn.oxfordjournals.org/content/early/2011/12/14/imrn.rnr231.abstract

            	[66]

            	J. A. Sanders, F. Verhulst.
Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, Springer-Verlag,  1985, vol. 56.

            	[67]

            	K.-T. Sturm.
On the geometry of metric measure spaces. I, in: Acta Math.,  2006, vol. 196, no 1, pp. 65–131.
http://dx.doi.org/10.1007/s11511-006-0002-8

            	[68]

            	K.-T. Sturm.
On the geometry of metric measure spaces. II, in: Acta Math.,  2006, vol. 196, no 1, pp. 133–177.
http://dx.doi.org/10.1007/s11511-006-0003-7

          

        

      

      
      

      
    

  OEBPS/uid51.html

    
    
      
      
      

      
      
        
        Section: 
      Partnerships and Cooperations


        European Initiatives


        
        FP7 Projects


        Jean-Baptiste Caillau is a member of the SADCO network (FP7-PEOPLE-2010-ITN, grant no. 264735-SADCO), cf. http://itn-sadco.inria.fr .


        
        Collaborations with Major European Organizations


        
          		
             Technische Universität München, Department of Chemistry (Germany).


          


          		
             The applications of optimal control to MNR (see sections 
	4.2 ) are conducted
with the group of Prof. Steffen Glaser in Munich.
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        International Initiatives


        
          		
             University of Hawaii, Department of Mathematics (U. S. A.)


          


          		
             There is a long term collaboration on optimal control and control of quantum systems, see mostly
section 
	6.1.1 .
Besides, Gautier Picot, a former Phd student from Dijon has a temporary position at the Math Department and collaborates
with M. Chyba and G. Patterson (second Phd student from M. Chyba) in relation with the Laboratoire d'Astronomie de
Paris, to apply the Hampath code to make rendez-vous with quasi-asteroids entering in the solar system near the
L1-Lagrange point, in the continuation of the work developed by G. Picot and B. Daoud.
This collaboration is very active and has to be emphasized.


          


          		



          		
             University of Toronto, Department of Mathematics (Canada)


          


          		
             Optimal Transport. Alice Erlinger's PhD is co-supervised by Ludovic Rifford and John Mc Cann from
University of Toronto. See section 
	6.4 .
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        International Research Visitors


        
        Visits of International Scientists


        Alessio Figalli, from University of Texas at Austin, visited twice, for a total of slightly more than a month.


        
        Visits to International Teams


        There is a strong collaboration with the control group in the University of Hawaii around M. Chyba.
B. Bonnard visited the group twice in 2012-2013 (a total of 3 months).
The purpose of the collaboration is to study the aspects of the contrast problem in Nuclear Magnetic Resonance, see
section 
	6.1.1 .


        Ludovic Rifford was invited to the program “Optimal Transport: Geometry and Dynamics”
(http://www.msri.org/programs/277 ) from august to December at MSRI, Berkeley, USA.


        Bernard Bonnard was invited ot the Japanese forum “Math-for-Industry” 2013 on
The Impact of Applications on Mathematics,
November 4 to 8, 2013, Fukuoka. See http://fmi2013.imi.kyushu-u.ac.jp/ .
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        National Initiatives


        
        IMB - Université de Bourgogne, Dijon


        The team is officially a common team with University of Nice, but also has very strong links with Université de
Bourgogne and IMB (Institute of Mathematics in Burgundy).
Bernard Bonnard is currently on leave from Université de Bourgogne; Jean-Baptiste Caillau collaborates actively with us;
there is also an active common seminar http://math.unice.fr/~rifford/publis/Journee_McTAO/J_McTAO.html  .


        A formal convention between Inria and Université de Bourgogne is planned for 2014. It will make the IMB control team a part of McTAO.


        
        GCM (ANR project)


        This is a four year project ending in 2013, on Geometric Control Methods, Sub-Riemannian Geometry and Applications.
It is organized in four “poles” and gathers people from Université du Sud Toulon-Var, Université de Bourgogne (Dijon), École Polytechnique (Paris),
Nancy-Université, Université Joseph Fourier (Grenoble 1), Université Paris Sud, ParisTech ENSTA and Université Nice
Sophia-Antipolis. Bernard Bonnard, Jean-Baptiste Caillau and Ludovic Rifford (leader of one pole) are members of this project.
More details on the site;
http://www-fourier.ujf-grenoble.fr/~charlot/GCM.html .


        
        Others


        Bernard Bonnard and Ludovic Rifford participate in the GDR MOA, a CNRS network on Mathematics of Optimization and Applications.
http://gdrmoa.univ-perp.fr/ .


        Jean-Baptiste Caillau is in the board of governors of the group SMAI-MODE (http://smai.emath.fr/spip.php?article338 ).


        Jean-Baptiste Caillau is a member of the Centre de Compétences Techniques (CCT) Mécanique orbitale du CNES


        Jean-Baptiste Caillau is the corresponding member in Dijon for the Labex AMIES (http://www.agence-maths-entreprises.fr/ ).
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        Regional Initiatives


        The “région” Provence Alpes Côte d'Azur (PACA) partially supports Helen Heninger's PhD . The other part comes from Thales Alenia
space, see section 
	7.1 .


        The “région” Provence Alpes Côte d'Azur (PACA) partially supports Jérémy Rouot's PhD.
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