

[image: cover]

 PARKAS

 Synchronous Kahn Parallelism

 2013 Project-Team Activity Report
	

 Research centre:
 Paris - Rocquencourt

 Field: Algorithmics, Programming, Software and Architecture
Theme: Embedded and Real-time Systems

 Keywords: Compiling, Embedded Systems, Parallelism, Programming Languages, Synchronous Languages

 Project-Team Parkas

 Members

 Overall Objectives	Overall Objectives
	Highlights of the Year

 Research Program	Presentation and originality
of the PARKAS team

 Application Domains	Domain

 Software and Platforms	Lucid Synchrone
	ReactiveML
	Heptagon
	Lucy-n: an n-synchronous data-flow programming language
	ML-Sundials
	Zélus
	GCC
	isl
	ppcg
	Tool support for the working semanticist
	Cmmtest: a tool for hunting concurrency compiler bugs

 New Results	Reactive Programming
	n-Synchronous Languages
	Mechanization of AODV loop freedom proof
	Hybrid Synchronous Languages
	Fidelity in Real-Time Programming
	A theory of safe optimisations in the C11/C++11 memory model and applications to compiler testing
	A verified compiler for relaxed-memory concurrency
	Language design on top of JavaScript
	Tiling for iterated stencils
	Compilation for scalable on-chip parallelism
	Correct and efficient runtime systems
	Checking Synchronous Compiler Correctness

 Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry

 Partnerships and Cooperations	National Initiatives
	European Initiatives
	International Initiatives
	International Research Visitors

 Dissemination	Scientific Animation
	Teaching - Supervision - Juries

 Bibliography

 	
 Publications of the year

 	
 References in notes

 Creation of the Team: 2011 April 01, updated into Project-Team: 2012 January 01
Section: Members
Research Scientists
Timothy Bourke [Inria, Starting Research position]
Albert Cohen [Inria, Senior Researcher, HdR]
Francesco Zappa Nardelli [Inria, Researcher]
Faculty Members
Marc Pouzet [Team leader, UPMC and ENS, Professor, HdR]
Jean Vuillemin [ENS, Professor, HdR]
Louis Mandel [Univ. Paris XI, Associate Professor until Sep 2013]
Engineers
Jun Inoue [Inria, granted by Caisse des Dépôts et Consignations]
Martin Kong Moreno [Inria, granted by FP7 TERAFLUX project, from Jun 2013 until Sep 2013]
Feng Li [Inria, granted by FP7 TERAFLUX project]
Mircea Namolaru [Inria, granted by FP7 TERAFLUX project, from Oct 2013]
Antoniu Pop [Inria, granted by FP7 TERAFLUX project, until Oct 2013]
Ramakrishna Upadrasta [Inria, granted by FP7 TERAFLUX project, from Jan 2013 until Feb 2013]
PhD Students
Nhat Minh Lê [ENS Paris]
Riyadh Baghdadi [ENS Paris]
Guillaume Baudart [ENS Paris, from Sep 2013]
Camille Gallet [CEA]
Tobias Grosser [Inria, granted by Google UK Ltd]
Adrien Guatto [ENS Paris]
Léonard Gérard [Inria, granted by Caisse des Dépôts et Consignations, until Oct 2013]
Ivan Llopard [CEA]
Robin Morisset [Inria, granted by Google Inc]
Cédric Pasteur [Inria, granted by FP7 TERAFLUX project, until Nov 2013]
Jean-Yves Vet [CEA, until Aug 2013]
Post-Doctoral Fellows
Pejman Attar [Inria, granted by ANR WMC project, from Nov 2013 until Nov 2013]
Boubacar Diouf [Inria, granted by FP7 TERAFLUX project]
Antoine Madet [Inria, granted by Min. de l'Economie, from Jan 2013]
Sven Verdoolaege [ENS Paris]
Visiting Scientist
Govindarajan Ramaswamy [Inria, invited Professor, Indian Institute of Science, from May 2013 until Aug 2013]
Administrative Assistant
Assia Saadi [Inria]
Others
Guillaume Chelfi [Inria, student at Telecom ParisTech, from May 2013 until Sep 2013]
Pankaj Prateek Kewalramani [Inria, student at IIT Kanpur, India, from May 2013 until Jul 2013]
Anirudh Kumar [Inria, student at IIT Kanpur, India, from May 2013 until Jul 2013]
Pankaj More [Inria, student at IIT Kanpur, India, from May 2013 until Aug 2013]
Vincent Thiberville [Inria, student at École Polytechnique, from Apr 2013 until Jun 2013]

 Overall Objectives

 	Overall Objectives	Overall Objectives
	Highlights of the Year

 Section:
 Overall Objectives

 Overall Objectives

 The goal of the project is the design, semantics and compilation of
languages for the implementation of provably safe and efficient
computing systems. We are driven by the ideal of a unique source code
used both to program and simulate a wide variety of
systems, including (1) embedded real-time controllers (e.g.,
fly-by-wire, engine control); (2) computationally intensive
applications (e.g., video); (3) the
simulation of (a possibly huge number of) embedded systems in close
interaction (e.g., simulation of electrical or sensor
networks, train tracking). All these applications share the need for
formally defined languages used both for simulation and the generation
of target code.
For that purpose, we design languages and experiment with compilers that
transform mathematical specifications of systems into target code, that
may execute on parallel (multi-core) architectures.

 Our research team draws inspiration and focus from the simplicity and
complementarity of the data-flow model of Kahn process
networks, synchronous concurrency,
and the expression of the two in functional
languages. To reach our goal, we plan to
leverage a large body of formal principles: language design,
semantics, type theory, concurrency models (including recent works on
the formalisation of relaxed memory models), synchronous circuits and
algorithms (code generation, optimization, polyhedral compilation).

 Section:
 Overall Objectives

 Highlights of the Year

 Robin Morisset was Awarded a Google Doctoral Fellowship.

 Louis Mandel and Marc Pouzet received a reward for the
paper introducing the ReactiveML language for the first time
and presented at the French conference JFLA 2005
(“On
the occasion of this quarter century, the program committees and
steering selected four outstanding contributions from the articles
published in JFLA past decade.")

 Louis Mandel has been hired in Sept. 2014 at Collège de France, as an
Assistant Professor.

 Research Program

 	Research Program	Presentation and originality
of the PARKAS team

 Section:
 Research Program

 Presentation and originality
of the PARKAS team

 Our project is founded on our expertise in three complementary
domains: (1) synchronous functional programming and its extensions
to deal with features such as communication with bounded buffers and
dynamic process creation; (2) mathematical models for synchronous
circuits; (3) compilation techniques for synchronous languages and
optimizing/parallelizing compilers.

 A strong point of the team is its experience and investment in the
development of languages and compilers. Members of the team also
have direct collaborations for several years with major industrial
companies in the field and several of our results are integrated in
successful products. Our main results are briefly summarized below.

 Synchronous functional programming

 In [35] , Paul Caspi and Marc Pouzet introduced
synchronous Kahn networks as those Kahn networks that can be
statically scheduled and executed with bounded buffers. This was the
origin of the language
Lucid Synchrone , (http://www.di.ens.fr/~pouzet/lucid-synchrone)(The
name is a reference to Lustre which stands for “Lucid Synchrone
et Temps réel”.) an ML extension of the synchronous language
Lustre with higher-order features, dedicated type systems (clock
calculus as a type system [35] , [45] ,
initialization analysis [46] and causality
analysis [47]). The language integrates original
features that are not found in other synchronous languages: such as
combinations of data flow, control flow, hierarchical automata and
signals [44] , [43] , and modular code
generation [36] , [33] .

 In 2000, Marc Pouzet started to collaborate with the SCADE team of
Esterel-Technologies on the design of a new version of
SCADE. (http://www.esterel-technologies.com/products/scade-suite/)
Several features of Lucid Synchrone are now integrated into Scade 6, which
has been distributed since 2008, including the programming
constructs merge , reset , the clock calculus and the
type system. Several results have been developed jointly with
Jean-Louis Colaço and Bruno Pagano from Esterel-Technologies,
such as ways of combining data-flow and hierarchical automata, and
techniques for their compilation, initialization analysis, etc.

 Dassault-Systèmes (Grenoble R&D center, part of
Delmia-automation) developed the language LCM , a variant of Lucid Synchrone
that is used for the simulation of factories. LCM follows closely
the principles and programming constructs of Lucid Synchrone (higher-order,
type inference, mix of data-flow and hierarchical automata). The
team in Grenoble is integrating this development into a new compiler
for the language
Modelica. (http://www.3ds.com/products/catia/portfolio/dymola/overview/)

 In parallel, the goal of ReactiveML (http://rml.lri.fr/) was
to integrate a synchronous concurrency model into an existing ML
language, with no restrictions on expressiveness, so as to program a
large class of reactive systems, including efficient simulations of
millions of communicating processes (e.g., sensor networks), video
games with many interactions, physical simulations, etc. For such
applications, the synchronous model simplifies system design and
implementation, but the expressiveness of the algorithmic part of
the language is just as essential, as is the ability to create or
stop a process dynamically.

 The development of ReactiveML was started by Louis Mandel during his PhD
thesis [57] , [55] and is ongoing. The
language extends Ocaml (More precisely a subset of Ocaml
without objects or functors.) with Esterel-like synchronous
primitives — synchronous composition, broadcast communication,
pre-emption/suspension — applying the solution of
Boussinot [34] to solve causality issues.

 Several open problems have been solved by Louis Mandel: the
interaction between ML features (higher-order) and reactive
constructs with a proper type system; efficient simulation that
avoids busy waiting. The latter problem is particularly difficult in
synchronous languages because of possible reactions to the absence
of a signal. In the ReactiveML implementation, there is no busy
waiting: inactive processes have no impact on the overall
performance. It turns out that this enables ReactiveML to simulate
millions of (logical) parallel processes and to compete with the
best event-driven simulators [58] .

 ReactiveML has been used for simulating routing protocols in ad-hoc
networks [54] and large scale sensor
networks [68] . The designer benefits from a real
programming language that gives precise control of the level of
simulation (e.g., each network layer up to the MAC layer) and
programs can be connected to models of the physical environment
programmed with Lutin [67] . ReactiveML is used since
2006 by the synchronous team at VERIMAG, Grenoble (in collaboration
with France-Telecom) for the development of low-consumption routing
protocols in sensor networks.

 Relaxing synchrony with buffer communication

 In the data-flow synchronous model, the clock calculus is a static
analysis that ensures execution in bounded memory. It checks that
the values produced by a node are instantaneously consumed by
connected nodes (synchronous constraint). To program Kahn process
networks with bounded buffers (as in video applications), it is thus
necessary to explicitly place nodes that implement buffers. The
buffers sizes and the clocks at which data must be read or written
have to be computed manually. In practice, it is done with
simulation or successive tries and errors. This task is difficult
and error prone. The aim of the n-synchronous model is to
automatically compute at compile time these values while insuring
the absence of deadlock.

 Technically, it allows processes to be composed whenever they can be
synchronized through a bounded
buffer [37] , [38] . The new flexibility is
obtained by relaxing the clock calculus by replacing the equality of
clocks by a sub-typing rule. The result is a more expressive
language which still offers the same guarantees as the original. The
first version of the model was based on clocks represented as
ultimately periodic binary words [72] . It was algorithmically
expensive and limited to periodic systems. In [41] ,
an abstraction mechanism is proposed which permits direct reasoning
on sets of clocks that are defined as a rational slope and two
shifts. An implementation of the n-synchronous model, named Lucy-n , was developed in 2009 [56] , as
was a formalization of the theory in Coq [42] . We
also worked on low-level compiler and runtime support to parallelize
the execution of relaxed synchronous systems, proposing a portable
intermediate language and runtime library called Erbium [59] .

 This work started as a collaboration between Marc Pouzet (LIP6,
Paris, then LRI and Inria Proval, Orsay), Marc Duranton (Philips
Research then NXP, Eindhoven), Albert Cohen (Inria Alchemy, Orsay)
and Christine Eisenbeis (Inria Alchemy, Orsay) on the real-time
programming of video stream applications in set-top boxes. It was
significantly extended by Louis Mandel and Florence Plateau during
her PhD thesis [62] (supervised by Marc
Pouzet and Louis Mandel). Low-level support has been investigated
with Cupertino Miranda, Philippe Dumont (Inria Alchemy, Orsay) and
Antoniu Pop (Mines ParisTech). Further directions of research and
experimentation have been and are being followed through the theses
of Léonard Gérard, Adrien Guatto and Nhat Minh Lê.

 Polyhedral compilation and optimizing compilers

 Despite decades of progress, the best parallelizing and optimizing
compilers still fail to extract parallelism and to perform the
necessary optimizations to harness multi-core processors and their
complex memory hierarchies. Polyhedral compilation aims at
facilitating the construction of more effective optimization and
parallelization algorithms. It captures the flow of data between
individual instances of statements in a loop nest, allowing to
accurately model the behavior of the program and represent complex
parallelizing and optimizing transformations. Affine
multidimensional scheduling is one of the main tools in polyhedral
compilation [48] . Albert Cohen, in collaboration with
Cédric Bastoul, Sylvain Girbal, Nicolas Vasilache, Louis-Noël
Pouchet and Konrad Trifunovic (LRI and Inria Alchemy, Orsay) has
contributed to a large number of research, development and transfer
activities in this area.

 The relation between polyhedral compilation and data-flow synchrony
has been identified through data-flow array
languages [53] , [52] , [69] , [49] and the study of the
scheduling and mapping algorithms for these languages. We would like
to deepen the exploration of this link, embedding polyhedral
techniques into the compilation flow of data-flow, relaxed
synchronous languages.

 Our previous work led to the design of a theoretical and algorithmic
framework rooted in the polyhedral model of compilation, and to the
implementation of a set of tools based on production compilers
(Open64, GCC) and source-to-source prototypes (PoCC,
http://pocc.sourceforge.net). We have shown that not only does
this framework simplify the problem of building complex loop nest
optimizations, but also that it scales to real-world
benchmarks [39] , [50] , [65] , [64] . The polyhedral model has
finally evolved into a mature, production-ready approach to solve
the challenges of maximizing the scalability and efficiency of
loop-based computations on a variety of high performance and
embedded targets.

 After an initial experiment with Open64 [40] , [39] , we
ported these techniques to GCC [63] , [71] , [70] and
LLVM [51] , applying them to
multi-level parallelization and optimization problems, including
vectorization and exploitation of thread-level
parallelism. Independently, we made significant progress in the
design of effective optimization heuristics, working on the
interactions between the semantics of the compiler's intermediate
representation and the structure of the optimization space
[65] , [64] , [66]
[2] , [5] .
These results open opportunities for complex optimizations that
target larger problems, such as the scheduling and placement of
process networks, or the offloading of computational kernels to
hardware accelerators (such as GPUs). A new framework has been
designed, centered on the Integer Set Library (isl,
http://freecode.com/projects/isl) and implemented
through multiple compiler interfaces (Graphite in GCC, Polly in
LLVM) and a source-to-source research compiler (PPCG)
[8] , [13] , [16] , [25] , [28] . This
new framework underlies our collaborative research activities in the
CARP and COPCAMS European projects, as well as emerging transfer
projects through the TETRACOM European coordination action and
bilateral industry contracts in preparation.

 Automatic compilation of high performance circuits

 For both cost and performance reasons, computing systems tightly
couple parts realized in hardware with parts realized in software.
The boundary between hardware and software keeps moving with the
underlying technology and the external economic pressure. Moreover,
thanks to FPGA technology, hardware itself has become programmable.
There is now a pressing need from industry for hardware/software
co-design, and for tools which automatically turn software code into
hardware circuits, or more usually, into hybrid code that
simultaneously targets GPUs, multiple cores, encryption ASICs, and
other specialized chips.

 Departing from customary C-to-VHDL compilation, we trust that
sharper results can be achieved from source programs that specify
bit-wise time/space behavior in a rigorous synchronous language,
rather than just the I/O behavior in some (ill-specified) subset of
C. This specification allows the designer to also program the
(asynchronous) environment in which to operate the entire system,
and to profile/measure/control each variable of the design.

 At any time, the designer can edit a single specification of the
system, from which both the software and the hardware are
automatically compiled, and guaranteed to be compatible. Once
correct (functionally and with respect to the behavioral
specification), the application can be automatically deployed (and
tested) on a hard/soft hybrid co-design support.

 Key aspects of the advocated methodology were validated by Jean
Vuillemin in the design of a PAL2HDTV video
sampler [60] , [61] . The circuit was automatically compiled from
a synchronous source specification, decorated and guided by a few
key hints to the hardware back-end, that targetted an FPGA running
at real-time video specifications: a tightly-packed highly-efficient
design at 240MHz, generated 100% automatically from the application
specification source code, and including all
run-time/debug/test/validate ancillary software. It was subsequently
commercialized on FPGA by LetItWave, and then on ASIC by Zoran. This
successful experience underlines our research perspectives on
parallel synchronous programming.

 Application Domains

 	Application Domains	Domain

 Section:
 Application Domains

 Domain

 The project addresses the design, semantics and implementation of
programming languages together with compilation techniques to develop
provably safe and efficient computing systems. Traditional
applications can be found in safety critical embedded systems with
hard real-time constraints such as avionics (e.g., fly-by-wire
command), railways (e.g., on board control, engine control), nuclear
plants (e.g., emergency control of the plant). While embedded
applications have been centralized, they are now massively parallel
and physically distributed (e.g., sensor networks, train tracking,
distributed simulation of factories) and they integrate
computationally intensive algorithms (e.g., video processing) with a
mix of hard and soft real-time constraints. Finally, systems are
heterogeneous with discrete devices communicating with physical ones
(e.g., interface between analog and digital circuits). Programming and
simulating a whole system from a unique source code, with static
guarantees on the reproducibility of simulations together with a
compiler to generate target embedded code is a scientific and
industrial challenge of great importance.

 Software and Platforms

 	Software and Platforms	Lucid Synchrone
	ReactiveML
	Heptagon
	Lucy-n: an n-synchronous data-flow programming language
	ML-Sundials
	Zélus
	GCC
	isl
	ppcg
	Tool support for the working semanticist
	Cmmtest: a tool for hunting concurrency compiler bugs

 Section:
 Software and Platforms

 Lucid Synchrone

 Participant :
	Marc Pouzet [contact] .

 Synchronous languages, type and clock inference, causality analysis,
compilation

 Lucid Synchrone is a language for the implementation
of reactive systems. It is based on the synchronous model of time as
provided by Lustre combined with features from ML languages. It
provides powerful extensions such as type and clock inference,
type-based causality and initialization analysis and allows to
arbitrarily mix data-flow systems and hierarchical automata or flows
and valued signals.

 It is distributed under binary form, at URL
http://www.di.ens.fr/~pouzet/lucid-synchrone/ .

 The language was used, from 1996 to 2006 as a laboratory to
experiment various extensions of the language Lustre. Several
programming constructs (e.g. merge, last, mix of data-flow and
control-structures like automata), type-based program analysis
(e.g., typing, clock calculus) and compilation methods, originaly
introduced in Lucid Synchrone are now integrated in the new SCADE 6
compiler developped at Esterel-Technologies and commercialized since 2008.

 Three major release of the language has been done and the current
version is V3 (dev. in 2006). As of 2013, the language is still used for
teaching and in our research but we do not develop it
anymore. Nonetheless, we have integrated several features from Lucid
Synchrone in new research prototypes described below. The Heptagon
language and compiler are a direct descendent of it. The new language
Zélus for hybrid systems modeling borrows many features
originaly introduced in Lucid Synchrone.

 Section:
 Software and Platforms

 ReactiveML

 Participants :
	Guillaume Baudart, Louis Mandel [contact] , Cédric Pasteur.

 Programming language, synchronous reactive programming, concurrent
systems, dedicated type-systems.

 ReactiveML is a programming language dedicated to the implementation
of interactive systems as found in graphical user interfaces, video
games or simulation problems. ReactiveML is based on the synchronous
reactive model due to Boussinot, embedded in an ML language (OCaml).

 The Synchronous reactive model provides synchronous parallel
composition and dynamic features like the dynamic creation of
processes. In ReactiveML, the reactive model is integrated at the
language level (not as a library) which leads to a safer and a more
natural programming paradigm.

 ReactiveML is distributed at URL http://reactiveml.org . The compiler
is distributed under the terms of the Q Public License and the library
is distributed under the terms of the GNU Library General Public
License. The development of ReactiveML started at the University
Paris 6 (from 2002 to 2006).

 The language was mainly used for the simulation of mobile ad hoc
networks at the Pierre and Marie Curie University and for the
simulation of sensor networks at France Telecom and Verimag (CNRS,
Grenoble). A new application to mixed music programming has been
developed.

 In 2013, a new web site has been developed. New programming constructs
have been added. The runtime system has been cleanup. Moreover, a new
implementation based on the PhD of Cédric Pasteur has also been
provided http://reactiveml.org/these_pasteur .

 Section:
 Software and Platforms

 Heptagon

 Participants :
	Cédric Pasteur [contact] , Brice Gelineau, Léonard Gérard, Adrien Guatto, Marc Pouzet.

 Synchronous languages, compilation, optimizing compilation,
parallel code generation, behavioral synthesis.

 Heptagon is an experimental language for the implementation of
embedded real-time reactive systems. It is developed inside the
Synchronics large-scale initiative, in collaboration with Inria
Rhones-Alpes. It is essentially a subset of Lucid Synchrone, without
type inference, type polymorphism and higher-order. It is thus a
Lustre-like language extended with hierchical automata in a form
very close to SCADE 6. The
intention for making this new language and compiler is to develop
new aggressive optimization techniques for sequential C code and
compilation methods for generating parallel code for different
platforms. This explains much of the simplifications we have made in
order to ease the development of compilation techniques.

 Some extensions have already been made, most notably automata, a
parallel code generator with Futures, support for correct and
efficient in-place array computations. It's currently used to
experiment with linear typing for arrays and also to introduce a
concept of asynchronous parallel computations. The compiler
developed in our team generates C, C++, java and VHDL code.

 Transfer activities based on our experience in Heptagon are taking
place through the “Fiabilité and Sûreté de Fonctionnement” project
at IRT SystemX, led by Alstom Transport, since 2013.

 Heptagon is jointly developed with Gwenael Delaval and Alain Girault
from the Inria POP ART team (Grenoble). Gwenael Delaval is developing
the controller synthesis tool BZR (http://bzr.inria.fr/)
above Heptagon. Both software
are distributed under a GPL licence.

 Section:
 Software and Platforms

 Lucy-n: an n-synchronous data-flow programming language

 Participants :
	Albert Cohen, Louis Mandel [contact] , Adrien Guatto, Marc Pouzet.

 Lucy-n is a language to program in the n-synchronous model. The
language is similar to Lustre with a buffer construct. The Lucy-n
compiler ensures that programs can be executed in bounded memory and
automatically computes buffer sizes. Hence this language allows to
program Kahn networks, the compiler being able to statically compute
bounds for all FIFOs in the program.

 The language compiler and associated tools are available in a binary
form at http://www.lri.fr/~mandel/lucy-n .

 In 2013, a complete re-implemtantion has been started. This new
version will take into account the new features developed during the
PhD of Adrien Guatto. Parallel code generation for this new version
also involves compilation and runtime system research in collaboration
with Nhat Minh Lê and Robin Morisset.

 Section:
 Software and Platforms

 ML-Sundials

 Participants :
	Timothy Bourke, Jun Inoue, Marc Pouzet [contact] .

 The ML-Sundials bindings allow the use of the state-of-the-art Sundials
numerical simulation library from OCaml programs (like, for instance, the
Zélus runtime). The Sundials packages includes three main components: CVODE,
IDA, and KINSOL.

 This year we redesigned and reimplemented the interface to CVODE to fix a
problem with memory leaks between OCaml and C heaps. We have submitted an
APP request for this code. The CVODE component is an important part of our
work on the Zélus programming language.

 We also developed a new interface for the IDA component, which we have
started to use in our experiments with DAEs (Modelica).

 We plan to develop an interface for the remaining KINSOL component over the
next three months and then to release the entire library under an
open-source license.

 Section:
 Software and Platforms

 Zélus

 Participants :
	Timothy Bourke, Marc Pouzet [contact] .

 Zélus is a new programming language for hybrid system modeling. It is
based on a synchronous language but extends it with Ordinary
Differential Equations (ODEs) to model continuous-time behabiors. It allows
for combining arbitrarily data-flow equations, hierarchical automata and
ODEs. The language keeps all the fundamental features
of synchronous languages: the compiler statically ensure the absence
of deadlocks and critical races; it is able to generate statically scheduled
code running in bounded time and space and a type-system is used to
distinguish discrete and logical-time signals from continuous-time ones.
The ability to combines
those features with ODEs made the language usable both for programming discrete
controllers and their physical environment.

 The Zélus implementation has two main parts: a compiler that transforms
Zélus programs into OCaml programs and a runtime library that orchestrates
compiled programs and numeric solvers. The runtime can use the Sundials
numeric solver, or custom implementations of well-known algorithms for
numerically approximating continuous dynamics.

 This year we reimplemented several basic numeric solver algorithms
after a careful analysis of the Simulink versions together with the
binding to SUNDIALS CVODE. This was necessary to enable detailed
comparsions between our tool and Simulink (the de facto
industrial standard in this domain). We also improved the algorithm
for zero-crossing detection, simplified and streamlined the
back-end interface.

 We developed several new examples to aid in the development,
debugging, and dissemination of our work together with various talks
and demonstrations. These included a simple
backhoe model (which served as a introducing example in the HSCC
paper [12]), an adaptive control example from
Astrom and Wittenmark's text, and a model of Zeno behaviour based on a
zig-zagging object (presented at Synchron).

 Zélus has been released officially in 2013 with several complete
documented examples on http://zelus.di.ens.fr . An important
software development has been done in the compiler internals during
year 2013: a new causality analysis has been designed and
implemented and a new back-end to generate efficient sequential code
for both the discrete step and the continuous step.

 Section:
 Software and Platforms

 GCC

 Participants :
	Albert Cohen [contact] , Tobias Grosser, Antoniu Pop, Feng Li, Riyadh Baghdadi, Nhat Minh Lê.

 Compilation, optimizing compilation, parallel data-flow programming
automatic parallelization, polyhedral compilation.

http://gcc.gnu.org

 Licence: GPLv3+ and LGPLv3+

 The GNU Compiler Collection includes front ends for C, C++,
Objective-C, Fortran, Java, Ada, and Go, as well as libraries for
these languages (libstdc++, libgcj,...). GCC was originally written
as the compiler for the GNU operating system. The GNU system was
developed to be 100% free software, free in the sense that it
respects the user's freedom.

 PARKAS contributes to the polyhedral compilation framework, also
known as Graphite. We also distribute an experimental branch for a
stream-programming extension of OpenMP called OpenStream (used in
numerous research activites and grants). This effort borrows key
design elements to synchronous data-flow languages.

 Tobias Grosser is one of main contributors of the Graphite
optimization pass of GCC.

 Section:
 Software and Platforms

 isl

 Participants :
	Sven Verdoolaege [contact] , Tobias Grosser, Albert Cohen.

 Presburger arithmetic, integer linear programming, polyhedral library,
automatic parallelization, polyhedral compilation.

http://freshmeat.net/projects/isl

 Licence: MIT

 isl is a library for manipulating sets and relations of integer
points bounded by linear constraints. Supported operations on sets
include intersection, union, set difference, emptiness check, convex
hull, (integer) affine hull, integer projection, transitive closure
(and over-approximation), computing the lexicographic minimum using
parametric integer programming. It includes an ILP solver based on
generalized basis reduction, and a new polyhedral code
generator. isl also supports affine transformations for polyhedral
compilation, and increasingly abstract representations to model
source and intermediate code in a polyhedral framework.

 isl has become the de-facto standard for every recent polyhedral
compilation project. Thanks to a license change from LGPL to MIT,
its adoption is also picking up in industry.

 Section:
 Software and Platforms

 ppcg

 Participants :
	Sven Verdoolaege [contact] , Tobias Grosser, Riyadh Baghdadi, Albert Cohen.

 Presburger arithmetic, integer linear programming, polyhedral library,
automatic parallelization, polyhedral compilation.

http://freshmeat.net/projects/ppcg

 Licence: MIT

 More tools are being developed, based on isl. PPCG is our
source-to-source research tool for automatic parallelization in the
polyhedral model. It serves as a test bed for many compilation
algorithms and heuristics published by our group, and is currently
the best automatic parallelizer for CUDA and OpenCL (on the
Polybench suite).

 Section:
 Software and Platforms

 Tool support for the working semanticist

 Participant :
	Francesco Zappa Nardelli [contact] .

 Languages, semantics, tool support, theorem prouvers.

 We are working on tools to support large scale semantic definitions,
for programming languages and architecture specifications. For that
we develop two complementary tools, Ott and Lem.

 Ott is a tool for writing definitions of programming languages and
calculi. It takes as input a definition of a language syntax and semantics, in
a concise and readable ASCII notation that is close to what one would
write in informal mathematics. It generates output:

 	
 a LaTeX source file that defines commands to build a typeset
version of the definition;

 	
 a Coq version of the definition;

 	
 an Isabelle version of the definition; and

 	
 a HOL version of the definition.

 Additionally, it can be run as a filter, taking a
LaTeX/Coq/Isabelle/HOL source file with embedded (symbolic) terms
of the defined language, parsing them and replacing them by typeset
terms.

 The main goal of the Ott tool is to support work on large programming
language definitions, where the scale makes it hard to keep a
definition internally consistent, and to keep a tight correspondence
between a definition and implementations. We also wish to ease rapid
prototyping work with smaller calculi, and to make it easier to
exchange definitions and definition fragments between groups. The
theorem-prover backends should enable a smooth transition between use
of informal and formal mathematics.

 Lem is a lightweight tool for writing, managing, and publishing large
scale semantic definitions. It is also intended as an intermediate
language for generating definitions from domain-specific tools, and
for porting definitions between interactive theorem proving systems
(such as Coq, HOL4, and Isabelle). As such it is a complementary tool
to Ott. Lem resembles a pure subset of Objective Caml, supporting typical
functional programming constructs, including top-level parametric
polymorphism, datatypes, records, higher-order functions, and pattern
matching. It also supports common logical mechanisms including list
and set comprehensions, universal and existential quantifiers, and
inductively defined relations. From this, Lem generates OCaml, HOL4, Coq,
and Isabelle code.

 In collaboration with Peter Sewell (Cambridge University) and Scott
Owens (University of Kent).

 The current version of Ott is about 30000 lines of OCaml. The tool is
available from http://moscova.inria.fr/~zappa/software/ott (BSD
licence). It is widely used in the scientific community. In 2013 we
implemented several bug-fixes, we kept the theorem prouver backends
up-to date with the prover evolution, and we have been working toward
a closer integration with the Lem tool.

 The development version of Lem is available from
http://www.cs.kent.ac.uk/people/staff/sao/lem/ .

 Section:
 Software and Platforms

 Cmmtest: a tool for hunting concurrency compiler bugs

 Participants :
	Francesco Zappa Nardelli [contact] , Robin Morisset, Pankaj More, Anirudh Kumar, Pankaj Prateek Kewalramani, Pejman Attar.

 Languages, concurrency, memory models, C11/C++11, compiler, bugs.

 The cmmtest tool performs random testing of C and C++ compilers
against the C11/C++11 memory model. A test case is any well-defined,
sequential C program; for each test case, cmmtest:

 	
 compiles the program using the compiler and compiler
optimisations that are being tested;

 	
 runs the compiled program in an instrumented execution environment that logs all memory accesses to global variables and synchronisations;

 	
 compares the recorded trace with a reference trace for the same program, checking if the recorded trace can be obtained from the reference trace by valid eliminations, reorderings and introductions.

 Cmmtest identified several mistaken write introductions and other
unexpected behaviours in the latest release of the gcc compiler.
These have been promptly fixed by the gcc developers.

 Cmmtest is available from
http://www.di.ens.fr/~zappa/projects/cmmtest/ and a list of bugs
reported thanks to cmmtest is available from
http://www.di.ens.fr/~zappa/projects/cmmtest/gcc-bugs.html .

 New Results

 	New Results	Reactive Programming
	n-Synchronous Languages
	Mechanization of AODV loop freedom proof
	Hybrid Synchronous Languages
	Fidelity in Real-Time Programming
	A theory of safe optimisations in the C11/C++11 memory model and applications to compiler testing
	A verified compiler for relaxed-memory concurrency
	Language design on top of JavaScript
	Tiling for iterated stencils
	Compilation for scalable on-chip parallelism
	Correct and efficient runtime systems
	Checking Synchronous Compiler Correctness

 Section:
 New Results

 Reactive Programming

 Participants :
	Guillaume Baudart, Louis Mandel, Cédric Pasteur, Marc Pouzet.

 ReactiveML is an extension of OCaml with synchronous concurrency,
based on synchronous parallel composition and broadcast of
signals. The goal is to provide a general model of deterministic
concurrency inside a general purpose functional language to program
reactive systems. It is particularly suited to program discrete
simulations, for instance of sensor networks.

 One of the current focus of the research is being able to simulate
huge systems, composed of millions of agents, by extending the current
purely sequential implementation in order to be able to take advantage
of multi-core and distributed architectures. This goal has led to the
introduction of a new programming construct, reactive domain,
which allows to define local time scales. These domains help for the
distribution of the code but also increase the expressiveness of the
language. In particular, it allows to do time refinement. A paper on
this new construct and the related static analysis has been
published [20] . An extended version is
under submission.

 We continued the work on a new reactivity analysis which ensures that
a process can not prevent the other ones to from executing. This
analysis has published in [19] . An English
version is under submission.

 The runtime of ReactiveML has been cleanup and a multi-threaded
implementation has been developed. A paper describing this new
implementation will be published in [27] .

 All these novelties has been described precisely in the PhD thesis of
Cédric Pasteur [1] .

 During the year, ReactiveML has also bee applied to mixed
music. Mixed music is about live musicians interacting with
electronic parts which are controlled by a computer during the
performance. It allows composers to use and combine traditional
instruments with complex synthesized sounds and other electronic
devices. There are several languages dedicated to the writing of mixed
music scores. Among them, the Antescofo language coupled with an
advanced score follower allows a composer to manage the reactive
aspects of musical performances: how electronic parts interact with a
musician. However these domain specific languages do not offer the
expressiveness of functional programming.

 We defined a synchronous semantics for the core language of Antescofo
and an alternative implementation based on an embedding inside
ReactiveML [9] . The
semantics reduces to a few rules, is mathematically precise and leads
to an interpretor of only a few hundred lines. The efficiency of this
interpretor compares well with that of the actual implementation: on
all musical pieces we have tested, response times have been less than
the reaction time of the human ear. Moreover, this approach offers to
the composer recursion, higher order, inductive types, as well as a
simple way to program complex reactive behaviors thanks to the
synchronous model of concurrency on which ReactiveML is
built [10] .

 Section:
 New Results

 n-Synchronous Languages

 Participants :
	Albert Cohen, Adrien Guatto, Louis Mandel, Marc Pouzet.

 Synchronous programming languages in the vein of Lustre were designed
for critical real-time systems. They are, however, not that well
adapted to embedded applications with more pressing computational
needs, since the generated code will usually not contain loops or
arrays.

 An essential task of a Lustre compiler is to determine whether a
program can be executed within bounded memory. This process is called
the "clock calculus", and consists in mapping every item of each
program stream to a logical date in a global, discrete time scale. For
a given stream, the mapping itself is called a "clock", and is a
strictly increasing function from stream positions to natural numbers
representing ticks: two items cannot be computed at the same time. In
practice, this function is represented as an infinite binary stream
where the boolean bi denotes presence (or absence) in the
corresponding data stream at the i-th instant.

 In recent work, Guatto, Cohen, Mandel and Pouzet considered the
extension of the Lustre and Lucid Synchrone clock calculus to allow
computing several values instantaneously. This simple idea has a deep
impact on all aspects of the language: - its denotational semantics
has to account for bursts of values; - the clock calculus now features
integers rather than booleans: each integer denotes the size of the
burst at the corresponding instant; - causality analysis has to take
bursts into account when rejecting self-referential programs; - the
code generation process translates bursts to arrays and clocks to
counted loops.

 A prototype implementation exploiting this idea and generating C code
with loops is underway and a paper describing the base of the clock
calculus will be published [26] .

 This work extends nicely the n-synchronous model that introduced a way to
compose streams which have almost the same clock and can be
synchronized through the use of a finite buffer.

 Section:
 New Results

 Mechanization of AODV loop freedom proof

 Participant :
	Timothy Bourke.

 The Ad hoc On demand Distance Vector (AODV) routing protocol is described in
RFC3561. It allows the nodes in a Mobile Ad hoc Network (MANET) to know
where to forward messages so that they eventually reach their destinations.
The nodes of such networks are reactive systems that cooperate to
provide a global service (the sending of messages from node to node)
satisfying certain correctness properties (namely `loop freedom'—that
messages are never sent in circles).

 We have mechanized an existing formal but pen-and-paper proof of loop
freedom of AODV in the interactive theorem prover Isabelle/HOL. While the
process algebra model and the fine details of the original proof are quite
formal, the structure of the proof is much less so. This necessitated the
development of new framework elements and techniques in Isabelle. In
particular, we adapted standard theory on inductive assertions to show
invariants over individual reactive nodes and introduced machinery for
assume/guarantee reasoning to lift these invariants to networks of
communicating processes. While the original proof reasoned informally over
traces, the mechanized proof is purely based on invariant reasoning, i.e.,
on reasoning over pairs of reachable states. Our combination of techniques
works very well and is likely useful for modelling and verifying similar
protocols in an interactive theorem prover.

 We are currently finalising a paper describing this work for submission in
January.

 In collaboration with Peter Hofner (NICTA) and Robert J. van Glabbeek
(UNSW/NICTA).

 Section:
 New Results

 Hybrid Synchronous Languages

 Participants :
	Timothy Bourke, Jun Inoue, Antoine Madet, Marc Pouzet.

 During year 2013, we mainly worked on three directions: (a) the
treatment of DAEs; (b) the design and implementation of a causality analysis
for hybrid systems modelers; (c) the study of numerical techniques for
non-smooth dynamical systems.

 	DAEs

 	
 As part of our participation in the European project MODRIO and
SYS2SOFT projects, we have been developing a prototype for simulating
DAE (Differential-Algebraic Equations) systems. DAEs are the basis of
the language Modelica and their interaction with discrete features —
in particular the novel ones introduced in 2012, like hierarchical
automata and clocks — raise difficult semantical and compilation
issues. The goal is to precisely define the interaction between
synchronous programming constructs and DAEs, in term of semantics and
compilation. One strong difficulty at the moment is that existing
techniques (index reduction, dymmy derivative) are not modular and
force, either to (a) write an interpretor where index reduction is
done dynamically every time a mode change occurs or (b) statically
enumerate all the modes, performing index reduction for every of
those. While the first technique is too slow in practice (and it is
not used in the most advanced Modelica compiler), the second one may
explode in practice (putting n two-state automata in parallel lead
to 2n states to be enumerated). During year 2013, we have investigated a
new approach for index reduction.

 Work to-date has focused on implementing standard algorithms from the
literature (notably Pantelides, Dummy Derivatives, Dynamic State Selection).
Despite the importance of these algorithms to tools like Modelica, we found
that important implementation details and “tricks” are not always well
documented.

 This work is developed hand-in-hand with the interface to the Sundials IDA
solver.

 	Causality Analysis

 	
 We have designed a causality analysis for a
language that mix stream equations, hierarchical automata and ODEs
and implemented it in the Zélus compiler. Its purpose is to give a
sufficient condition for a hybrid program can be turned into
statically scheduled code. Moreover, the analysis ensures that
absence of discontinuities outside of declared zero-crossing
events. This result is novel and the proof deeply rely on
the use of non standard analysis introduced in our previous
works. This new result has been accepted for publication at HSCC 2014.

 	Non Smooth Dynamical Systems

 	
 In parallel, we collaborate with Bernard Brogliato and Vincent Acary
(Inria team BIBOP, Grenoble) on non smooth dynamical systems. Beside
general-purpose techniques for solving DAEs and implemented in
Modelica compilers, there exist dedicated methods for systems with a
lot of discontinuities and contacts (in mechanical system, electrical
analogous circuits, etc.). They are far more efficient and numerically
accurate than general-purpose techniques when the number of contact is
important (e.g., transient in electrical circuits, a bag of
marbles). They are based on a time stepping execution and do not have
to stop at every zero-crossing event. The combination of those
techniques with event detection ones (as used in the Simulink tool) is
largely unknown. We are currently inverstigating the extension of our
previous work to take Brogliato and Acary techniques into
account. This is a novel but promising direction of research for the
year to come.

 In this research activity, we develop the new language Zélus used as
a laboratory for experimenting novel programming constructs and
compilation techniques. It serves to illustrate our research as Lucid
Synchrone did in the past.

 In collaboration with Benoit Caillaud and Albert Benveniste of the Inria
HYCOMES team.

 Section:
 New Results

 Fidelity in Real-Time Programming

 Participants :
	Timothy Bourke, Guillaume Baudart.

 We are close to completing a careful analysis of literature related to the
quasi-synchronous model for real-time, distributed systems. We have extended
existing results by increasing their precision, providing detailed proofs,
and simplifying protocol descriptions. The work to-date is documented in a
draft document which we expect will eventually become a technical report or
journal article.

 Quasi-synchronous architectures, sometimes termed Loosely Time-Triggered
Architectures (LTTAs), are ubiquitious in the development of distributed,
real-time systems. They represent a broad class of systems whose modelling
and programming mixes elements of discrete time, physical time, and a notion
of approximation. We expect that addressing these elements—in the Zélus
programming language—will lead to insights and advances in a broader
ambition to program in physical time.

 Section:
 New Results

 A theory of safe optimisations in the C11/C++11 memory model and applications to compiler testing

 Participants :
	Francesco Zappa Nardelli, Robin Morisset.

 Compilers sometimes generate correct sequential code but break the
concurrency memory model of the programming language: these subtle
compiler bugs are observable only when the miscompiled functions
interact with concurrent contexts, making them particularly hard to
detect. In this work we design a strategy to reduce the hard problem
of hunting concurrency compiler bugs to differential testing of
sequential code and build a tool that puts this strategy to work. Our
first contribution is a theory of sound optimisations in the C11/C++11
memory model, covering most of the optimisations we have observed in
real compilers and validating the claim that common compiler
optisations are sound in the C11/C++11 memory model. Our second
contribution is to show how, building on this theory, concurrency
compiler bugs can be identified by comparing the memory trace of
compiled code against a reference memory trace for the source
code. Our tool identified several mistaken write introductions and
other unexpected behaviours in the latest release of the gcc compiler.

 A paper on this work has been accepted in [22] .

 Section:
 New Results

 A verified compiler for relaxed-memory concurrency

 Participant :
	Francesco Zappa Nardelli.

 We studied the semantic design and verified compilation of a C-like
programming language for concurrent shared-memory computation above
x86 multiprocessors. The design of such a language is made
surprisingly subtle by several factors: the relaxed-memory behaviour
of the hardware, the effects of compiler optimisation on concurrent
code, the need to support high-performance concurrent algorithms, and
the desire for a reasonably simple programming model. In turn, this
complexity makes verified (or verifying) compilation both essential
and challenging. This project started in 2010. In 2013 an article,
describing the correctness proof of all the phases of our CompCertTSO
compiler (including experimental fence eliminations), appeared in the
Journal of the ACM [7] .

 In collaboration with Jaroslav Sevcik (U. Cambridge), Viktor Vafeiadis (MPI-SWS), Suresh Jagannathan (Purdue U.), Peter Sewell (U. Cambridge).

 Section:
 New Results

 Language design on top of JavaScript

 Participant :
	Francesco Zappa Nardelli.

 This research project aims at improving the design of the JavaScript
language. In [23] we present a security
infrastructure which allows users and content providers to specify
access control policies over subsets of a JavaScript program by
leveraging the con- cept of delimited histories with revocation. We
implement our proposal in WebKit and evaluate it with three policies
on 50 widely used websites with no changes to their JavaScript code
and report performance overheads and violations.
In [32] we propose a typed extension of
JavaScript combining dynamic types, concrete types and like types to
let developers pick the level of guarantee that is appropriate for
their code. We have implemented our type system and we report on
performance and software engineering benefits.

 With Gregor Richards and Jan Vitek (Purdue University).

 Section:
 New Results

 Tiling for iterated stencils

 Participants :
	Tobias Grosser, Sven Verdoolaege, Albert Cohen.

 Time-tiling is necessary for the efficient execution of iterative
stencil computations. Classical hyper-rectangular tiles cannot be
used due to the combination of backward and forward dependences
along space dimensions. Existing techniques trade temporal data
reuse for inefficiencies in other areas, such as load imbalance,
redundant computations, or increased control flow overhead,
therefore making it challenging for use with GPUs.

 We proposed a time-tiling method for iterative stencil computations
on GPUs. Our method is the first tiling algorithm solving the
following constraints simultaneously: it does not involve redundant
computations, it favors coalesced global-memory accesses, data reuse
in local/shared-memory or cache, avoidance of thread divergence, and
concurrency, combining hexagonal tile shapes along the time and one
spatial dimension with classical tiling along the other spatial
dimensions. Hexagonal tiles expose multi-level parallelism as well
as data reuse. Experimental results demonstrate significant
performance improvements over existing stencil compilers.

 Part of this work also involved our colleagues from the POLYFLOW
associate-team at the Indian Institute of Science, Bangalore, India.

 Section:
 New Results

 Compilation for scalable on-chip parallelism

 Participants :
	Antoniu Pop, Feng Li, Sven Verdoolaege, Govindarajan Ramaswamy, Albert Cohen.

 Task-parallel programming models are getting increasingly popular.
Many of them provide expressive mechanisms for inter-task
synchronization. For example, OpenMP 4.0 will integrate data-driven
execution semantics derived from the StarSs research
language. Compared to data-parallel and fork-join models of
parallelism, the advanced features being introduced into
task-parallel models in turn enable improved scalability through
load balancing, memory latency mitigation, mitigation of the
pressure on memory bandwidth, and as a side effect, reduced power
consumption.

 We developed a systematic approach to compile a loop
nest into concurrent, dependent tasks. We formulated a partitioning
scheme based on the tile-to-tile dependences, represented as affine
polyhedra. This scheme ensures at compilation time that tasks
belonging to the same class have the same, fully explicit incoming
and outgoing dependence patterns. This alleviates the burden of a
full-blown dependence resolver to track the readiness of tasks at
run time. We evaluated our approach and algorithms in the PPCG
compiler, targeting OpenStream, our experimental data-flow
task-parallel language with explicit inter-task dependences and a
lightweight runtime. Experimental results demonstrate the
effectiveness of the approach.

 Part of this work also involved our colleagues from the POLYFLOW
associate-team at the Indian Institute of Science, Bangalore, India.

 Section:
 New Results

 Correct and efficient runtime systems

 Participants :
	Nhat Minh Lê, Robin Morisset, Adrien Guatto, Antoniu Pop, Francesco Zappa Nardelli, Albert Cohen.

 User-space scheduling and concurrent first-in first-out queues are two
essential building blocks of parallel programming runtimes. They are, however,
rarely used together since typical schedulers are oblivious to the ordering
constraints introduced by buffered communication.

 Chase and Lev's concurrent deque is a key data structure in
shared-memory parallel programming and plays an essential role in
work-stealing schedulers. We provided the first correctness proof of
an optimized implementation of Chase and Lev's deque on top of the
POWER and ARM architectures: these provide very relaxed memory
models, which we exploit to improve performance but considerably
complicate the reasoning. We also studied an optimized x86 and a
portable C11 implementation, conducting systematic experiments to
evaluate the impact of memory barrier optimizations. Our results
demonstrate the benefits of hand tuning the deque code when running
on top of relaxed memory models.

 Based on this early success, we started working on a more global
solution using a new lock-free algorithm for stalling and waking-up
tasks in a user-space scheduler according to changes in the state of
the corresponding queues. The algorithm is portable and correct,
since it is written and proven against the C11 memory model.
We showed through experiments that it can serve as a keystone to
efficient parallel runtime systems.

 These efforts underline the parallelizing compilation research for
n-synchronous languages, and the scalable parallel execution of
OpenStream.

 Section:
 New Results

 Checking Synchronous Compiler Correctness

 Participants :
	Francesco Zappa Nardelli, Guillaume Chelfi, Marc Pouzet.

 During year 2013, we have worked on the use of formal verification
of compilation steps in the compiler of a Lustre-like synchronous language. Two
main directions has been taken:

 	
 The use of SMT-based k-induction techniques to verify the
correctness of the successive steps of a synchronous compiler. We
used the tool KIND developed by Cesare Tinelli (Iowa state Univ.)
and applied it to the Heptagon compiler. The compiler does several
source-to-source transformations upto sequential code and KIND was
used to verify the equivalence between those successive steps. We
came to the conclusion that for most programs, equivalence checking
fails unless extra traceability information is added by the
compiler.

 	
 The development of a dedicated verification technique to prove
the equivalence between a Lustre program and its sequential implementation.
We plan to pursue this work during year 2014. Cesare Tinelli will
be visiting professor for a month during June 2014.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry

 Section:
 Bilateral Contracts and Grants with Industry

 Bilateral Contracts with Industry

 	
 Kalray 20K grant including the donation of an MPPA Developer
workstation (with MPPA 256 accelerator) and support for a
short-term research project (2 months of postdoc).

 	
 Google Doctoral Fellowships of Tobias Grosser and Robin
Morisset.

 Dissemination

 	Dissemination	Scientific Animation
	Teaching - Supervision - Juries

 Section:
 Dissemination

 Scientific Animation

 	
 Albert Cohen was the program chair of CC 2014, the TPC chair
of the DAC 2013 and 2014 ESS1 subcommittees, and the co-Program
Chair of the APPT 2013 bi-annual Symposium on Advanced Parallel
Processing Technology. Albert Cohen was also a member of the PC of
PLDI 2014, and a member of the ERC of ASPLOS 2014, PPoPP 2014 and
ICS 2014. Albert Cohen also participated to the PC of the IMPACT
and HiRES workshops associated with HiPEAC 2014.

 	
 Albert Cohen is an associate editor of ACM TACO and IJPP (Springer).

 	
 Albert Cohen will be the general chair of PPoPP 2015.

 	
 Albert Cohen was the sponsor chair for the HiPEAC 2013 and
HiPEAC 2014 conference, and will serve as the exhibit and sponsor
chair for HiPEAC 2015.

 	
 Marc Pouzet was a member of the PC of DAC 2014, AFADL 2014,
MSR 2013, RTNS 2013, DATE 2013.

 	
 Marc Pouzet manages with Catherine Dubois (ENSIIE, Evry, France) the
GDR (“Groupe de Recherche”) TLP (“Types, Langages et Preuves”)
du CNRS (“Centre National de Recherche Scientifique”). Two one-day seminars
are organised every year.

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Licence: T. Bourke & J. Vuillemin, “Digital Systems”, 64h, L3, Ecole normale supérieure, France

 	
 Licence: L. Mandel, “Systèmes”, 42h, L3, Université Pars-Sud 11, France

 	
 Licence: L. Mandel & M. Pouzet, “Systèmes et réseaux”, 24h+24h, L3, Ecole normale supérieure, France

 	
 Licence: L. Mandel, “Langages de programmation et compilation”, 24h, L3, Ecole normale supérieure, France

 	
 Master: L. Mandel & M. Pouzet, “Synchronous Systems”, 8h+16h, M2, MPRI: Ecole normale supérieure and Université Paris Diderot, France

 	
 Master: A. Cohen & F. Zappa Nardelli, “Semantics, languages and algorithms for multicore programming”, 9h+14h, M2, MPRI: Ecole normale supérieure and Université Paris Diderot, France

 	
 Licence: “Components of a Computing System Introduction to Computer Architecture and Operating Systems” (L3), A. Cohen (44h), École Polytechnique, France

 	
 Master 1 École Polytechnique: “Operating Systems
Principles and Programming” (M1), A. Cohen (38h), École Polytechnique, France

 	
 Marc Pouzet is supervising the national entry exam in computer
science for École normale supérieure.

 	
 Marc Pouzet is director of studies (“Directeur des études”) for
the CS department of École normale supérieure.

 Supervision

 	
 PhD : Léonard Gérard, Programmer le parallélisme
avec des futures en Heptagon un langage synchrone flot de
données et étude des réseaux de Kahn en vue d'une
compilation synchrone, Université Paris-Sud 11, Orsay. Soutenue le
25 septembre 2013, au LRI, à Orsay.

 	
 PhD : Cédric Pasteur, Raffinement temporel et exécution parallèle dans un langage synchrone fonctionnel, Université Pierre et Marie Curie (UPMC), soutenue le 26 novembre 2013, au Collège de France. Encadrants: Louis Mandel et Marc Pouzet.

 	
 PhD in progress : Guillaume Baudart, Real-time fidelity in Quasi-synchronous Systems, Start: 1/10/2013, Timothy Bourke and Marc Pouzet

 	
 PhD in progress : Robin Morisset, Compiler Optimisations and Concurrency, 1/10/2013, F. Zappa Nardelli

 Juries

 	
 Albert Cohen was the president of the Habilitation Thesis
committee of Fabien Coelho, MINES ParisTech.

 	
 Albert Cohen was the president of the PhD thesis committee of
Bruno Bodin, UPMC (CIFRE Kalray).

 	
 Albert Cohen was a reviewer for the PhD thesis of Martin
Schindewolf at the Karlsruhe Institute of Technology.

 	
 Albert Cohen was a reviewer for the PhD thesis of Daniel Cordes
at TU Dortmund.

 	
 Albert Cohen was a reviewer for the PhD thesis of Yuriy
Kashnikov, UVSQ.

 	
 Albert Cohen was an examiner in the PhD thesis committee of
Thomas Preud'Homme, UPMC.

 	
 Marc Pouzet was a reviewer for the PhD thesis of Boris Golden, École
Polytechnique.

 	
 Marc Pouzet was a reviewer for the PhD thesis of Gideon Smeding, Université de Grenoble.

 	
 Albert Cohen was a member of a hiring committee for
professors at the University of Strasbourg.

 	
 Albert Cohen was a member of a hiring committee for
assistant professors (“maître de conférences”) at the University
Claude Bernard de Lyon.

 Bibliography

 Publications of the year

 Doctoral Dissertations and Habilitation Theses

 	[1]

 	C. Pasteur.
Raffinement temporel et exécution parallèle dans un langage synchrone fonctionnel, Université Pierre et Marie Curie - Paris VI, November 2013.
http://hal.inria.fr/tel-00934919

 Articles in International Peer-Reviewed Journals

 	[2]

 	R. Baghdadi, A. Cohen, S. Verdoolaege, K. Trifunović.
Improved Loop Tiling based on the Removal of Spurious False Dependences, in: ACM Transactions on Architecture and Code Optimization, 2013, vol. 9, no 4, Selected for presentation at the HiPEAC 2013 Conf.. [
DOI : 10.1145/2400682.2400711]
http://hal.inria.fr/hal-00786674

 	[3]

 	T. Bourke, A. Sowmya.
Analyzing an Embedded Sensor with Timed Automata in Uppaal, in: ACM Transactions in Embedded Computing Systems, December 2013, vol. 13, no 3, pp. 44-1–44-26. [
DOI : 10.1145/2539036.2539040]
http://hal.inria.fr/hal-00909062

 	[4]

 	B. Diouf, C. Hantaş, A. Cohen, Ö. Özturk, J. Palsberg.
A Decoupled Local Memory Allocator, in: ACM Transactions on Architecture and Code Optimization, 2013, vol. 9, no 4, Selected for presentation at the HiPEAC 2013 Conf.. [
DOI : 10.1145/2400682.2400693]
http://hal.inria.fr/hal-00786676

 	[5]

 	E. Park, J. Cavazos, L.-N. Pouchet, C. Bastoul, A. Cohen, P. Sadayappan.
Predictive Modeling in a Polyhedral Optimization Space, in: International Journal of Parallel Programming, 2013, vol. 41, no 5, pp. 704–750. [
DOI : 10.1007/s10766-013-0241-1]
http://hal.inria.fr/hal-00918653

 	[6]

 	A. Pop, A. Cohen.
OpenStream: Expressiveness and Data-Flow Compilation of OpenMP Streaming Programs, in: ACM Transactions on Architecture and Code Optimization, 2013, vol. 9, no 4, Selected for presentation at the HiPEAC 2013 Conf.. [
DOI : 10.1145/2400682.2400712]
http://hal.inria.fr/hal-00786675

 	[7]

 	J. Sevcik, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, P. Sewell.
CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency, in: Journal of the ACM, 2013, vol. 60, no 3, 22 p. [
DOI : 10.1145/2487241.2487248]
http://hal.inria.fr/hal-00909076

 	[8]

 	S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez, C. Tenllado, F. Catthoor.
Polyhedral Parallel Code Generation for CUDA, in: ACM Transactions on Architecture and Code Optimization, 2013, vol. 9, no 4, Selected for presentation at the HiPEAC 2013 Conf.. [
DOI : 10.1145/2400682.2400713]
http://hal.inria.fr/hal-00786677

 International Conferences with Proceedings

 	[9]

 	G. Baudart, L. Mandel, F. Jacquemard, M. Pouzet.
A Synchronous Embedding of Antescofo, a Domain-Specific Language for Interactive Mixed Music, in: EMSOFT 2013 - 13th International Conference on Embedded Software, Montreal, Canada, September 2013.
http://hal.inria.fr/hal-00850299

 	[10]

 	G. Baudart, L. Mandel, M. Pouzet.
Programming Mixed Music in ReactiveML, in: FARM '13 - ACM SIGPLAN Workshop on Functional Art, Music, Modeling and Design, Boston, United States, ACM, September 2013, pp. 11-22. [
DOI : 10.1145/2505341.2505344]
http://hal.inria.fr/hal-00850294

 	[11]

 	A. Benveniste, T. Bourke, B. Caillaud, B. Pagano, M. Pouzet.
A Type-based Analysis of Causality Loops in Hybrid Systems Modelers, in: 17th International Conference on Hybrid Systems: Computation and Control (HSCC 2014), Berlin, Germany, April 2014.
http://hal.inria.fr/hal-00939947

 	[12]

 	T. Bourke, M. Pouzet.
Zélus: A Synchronous Language with ODEs, in: HSCC - 16th International Conference on Hybrid systems: computation and control, Philadelphia, United States, C. Belta, F. Ivančić (editors), ACM, April 2013, pp. 113-118. [
DOI : 10.1145/2461328.2461348]
http://hal.inria.fr/hal-00909029

 	[13]

 	A. Cohen, T. Grosser, P. H. J. Kelly, J. Ramanujam, P. Sadayappan, S. Verdoolaege.
Split Tiling for GPUs: Automatic Parallelization Using Trapezoidal Tiles to Reconcile Parallelism and Locality, avoiding Divergence and Load Imbalance, in: GPGPU 6 - Sixth Workshop on General Purpose Processing Using GPUs, Houston, United States, 2013.
http://hal.inria.fr/hal-00786812

 	[14]

 	C. Couvreur, P. Avasare, F. Broekaert, A. Cohen.
Two-layer Run-Time Power Management for embedded heterogeneous multi-core platforms, in: DATE 13 - Workshop on Designing for Embedded Parallel Computing Platforms: Architectures, Design Tools, and Applications, Grenoble, France, 2013, 1 p.
http://hal.inria.fr/hal-00911895

 	[15]

 	B. Diouf, A. Cohen, F. Rastello.
A Polynomial Spilling Heuristic: Layered Allocation, in: CGO 2013 - International Symposium on Code Generation and Optimization, Shenzhen, China, IEEE, 2013. [
DOI : 10.1109/CGO.2013.6495005]
http://hal.inria.fr/hal-00911887

 	[16]

 	T. Grosser, A. Cohen, J. Holewinski, P. Sadayappan, S. Verdoolaege.
Hybrid Hexagonal/Classical Tiling for GPUs, in: Intl. Symp. on Code Generation and Optimization (CGO), Orlando, FL, United States, 2014.
http://hal.inria.fr/hal-00911177

 	[17]

 	I. Llopard, A. Cohen, C. Fabre, J. Martin, H.-P. Charles, C. Bernard.
Code Generation for an Application-Specific VLIW Processor With Clustered, Addressable Register Files, in: ODES'13 - 10th Workshop on Optimizations for DSP and Embedded Systems, associated with CGO, Shenzhen, China, ACM, 2013, pp. 11-19. [
DOI : 10.1145/2443608.2443612]
http://hal.inria.fr/hal-00911896

 	[18]

 	N. M. Lê, A. Pop, A. Cohen, F. Zappa Nardelli.
Correct and Efficient Work-Stealing for Weak Memory Models, in: PPoPP '13 - Proceedings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel programming, Shenzhen, China, February 2013, pp. 69-80. [
DOI : 10.1145/2442516.2442524]
http://hal.inria.fr/hal-00802885

 	[19]

 	L. Mandel, C. Pasteur.
Réactivité des systèmes coopératifs : le cas de ReactiveML, in: JFLA - Journées francophones des langages applicatifs, Aussois, France, D. Pous, C. Tasson (editors), Damien Pous and Christine Tasson, February 2013.
http://hal.inria.fr/hal-00779789

 	[20]

 	L. Mandel, C. Pasteur, M. Pouzet.
Time Refinement in a Functional Synchronous Language, in: PPDP '13 - 15th ACM SIGPLAN International Symposium on Principles and Practice of Declarative Programming, Madrid, Spain, ACM, September 2013, pp. 169-180. [
DOI : 10.1145/2505879.2505904]
http://hal.inria.fr/hal-00850290

 	[21]

 	N. Minh, A. Guatto, A. Cohen, A. Pop.
Correct and Efficient Bounded FIFO Queues, in: SBAC-PAD 2013 : International Symposium on Computer Architecture and High Performance Computing, Porto de Galinhas, Brazil, IEEE, 2013.
http://hal.inria.fr/hal-00911893

 	[22]

 	R. Morisset, P. Pawan, F. Zappa Nardelli.
Compiler testing via a theory of sound optimisations in the C11/C++11 memory model, in: PLDI'13 - 34th ACM SIGPLAN conference on Programming language design and implementation, Seattle, WA, United States, ACM, 2013, pp. 187-196. [
DOI : 10.1145/2491956.2491967]
http://hal.inria.fr/hal-00909083

 	[23]

 	G. Richards, C. Hammer, F. Zappa Nardelli, S. Jagannathan, J. Vitek.
Flexible access control for JavaScript, in: OOPSLA'13 - CM SIGPLAN international conference on Object oriented programming systems languages & applications, Indianapolis, IN, United States, ACM, 2013, pp. 305-322. [
DOI : 10.1145/2509136.2509542]
http://hal.inria.fr/hal-00909080

 	[24]

 	R. Upadrasta, A. Cohen.
Sub-polyhedral scheduling using (unit-)two-variable-per-inequality polyhedra, in: POPL'13 - 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, Rome, Italy, ACM, 2013, pp. 483-496. [
DOI : 10.1145/2429069.2429127]
http://hal.inria.fr/hal-00911888

 	[25]

 	S. Verdoolaege, S. Guelton, T. Grosser, A. Cohen.
Schedule Trees, in: IMPACT - 4th Workshop on Polyhedral Compilation Techniques, associated with HiPEAC, Vienna, Austria, ACM, 2014.
http://hal.inria.fr/hal-00911894

 National Conferences with Proceedings

 	[26]

 	A. Guatto, L. Mandel.
Réseaux de Kahn à rafales et horloges entières, in: JFLA 2014 - Vingt-cinquièmes Journées Francophones des Langages Applicatifs, Fréjus, France, January 2014.
http://hal.inria.fr/hal-00919281

 	[27]

 	L. Mandel, C. Pasteur.
Exécution efficace de programmes ReactiveML, in: JFLA 2014 - Vingt-cinquièmes Journées Francophones des Langages Applicatifs, Fréjus, France, January 2014.
http://hal.inria.fr/hal-00919271

 Internal Reports

 	[28]

 	T. Grosser, S. Verdoolaege, A. Cohen, P. Sadayappan.
The Promises of Hybrid Hexagonal/Classical Tiling for GPU, Inria, July 2013, no RR-8339.
http://hal.inria.fr/hal-00848691

 	[29]

 	N. M. Lê, A. Guatto, A. Cohen, A. Pop.
Correct and Efficient Bounded FIFO Queues, Inria, September 2013, no RR-8365.
http://hal.inria.fr/hal-00862450

 Other Publications

 	[30]

 	A. Benveniste, T. Bourke, B. Caillaud, B. Pagano, M. Pouzet.
A Type-Based Analysis of Causality Loops In Hybrid Systems Modelers, December 2013, Deliverable D3.1_1 v 1.0 of the Sys2soft collaborative project "Physics Aware Software".
http://hal.inria.fr/hal-00938866

 	[31]

 	A. Benveniste, T. Bourke, B. Caillaud, M. Pouzet.
Semantics of multi-mode DAE systems, August 2013, Deliverable D.4.1.1 of the ITEA2 Modrio collaborative project.
http://hal.inria.fr/hal-00938891

 	[32]

 	G. Richards, F. Zappa Nardelli, C. Rouleau, J. Vitek.
Types You Can Count On: Like Types for JavaScript, 2013, Submitted.
http://hal.inria.fr/hal-00909092

 References in notes

 	[33]

 	D. Biernacki, J.-L. Colaço, G. Hamon, M. Pouzet.
Clock-directed Modular Code Generation of Synchronous Data-flow Languages, in: ACM International Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), Tucson, Arizona, June 2008.

 	[34]

 	F. Boussinot, R. de Simone.
The SL synchronous language, in: IEEE Transaction on Software Engineering, 1996.

 	[35]

 	P. Caspi, M. Pouzet.
Synchronous Kahn Networks, in: ACM SIGPLAN International Conference on Functional Programming (ICFP), Philadelphia, Pensylvania, May 1996.

 	[36]

 	P. Caspi, M. Pouzet.
A Co-iterative Characterization of Synchronous Stream Functions, in: Coalgebraic Methods in Computer Science (CMCS'98), Electronic Notes in Theoretical Computer Science, March 1998, Extended version available as a VERIMAG tech. report no. 97–07 at www.lri.fr/∼pouzet.

 	[37]

 	A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, M. Pouzet.
Synchroning Periodic Clocks, in: ACM International Conference on Embedded Software (EMSOFT'05), Jersey city, New Jersey, USA, September 2005.

 	[38]

 	A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, M. Pouzet.
N-Synchronous Kahn Networks: a Relaxed Model of Synchrony for Real-Time Systems, in: ACM International Conference on Principles of Programming Languages (POPL'06), Charleston, South Carolina, USA, January 2006.

 	[39]

 	A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, N. Vasilache.
Facilitating the Search for Compositions of Program Transformations, in: Intl. Conf. on Supercomputing (ICS'05), Boston, Massachusetts, June 2005, pp. 151–160.

 	[40]

 	A. Cohen, S. Girbal, O. Temam.
A Polyhedral Approach to Ease the Composition of Program Transformations, in: Euro-Par'04, Pisa, Italy, LNCS, Springer-Verlag, August 2004, no 3149, pp. 292–303.

 	[41]

 	A. Cohen, L. Mandel, F. Plateau, M. Pouzet.
Abstraction of Clocks in Synchronous Data-flow Systems, in: The Sixth ASIAN Symposium on Programming Languages and Systems (APLAS), Bangalore, India, December 2008.

 	[42]

 	A. Cohen, L. Mandel, F. Plateau, M. Pouzet.
Relaxing Synchronous Composition with Clock Abstraction, 2009, Workshop on Hardware Design using Functional languages (HFL 09) - ETAPS.
http://hal.inria.fr/hal-00645333

 	[43]

 	J.-L. Colaço, G. Hamon, M. Pouzet.
Mixing Signals and Modes in Synchronous Data-flow Systems, in: ACM International Conference on Embedded Software (EMSOFT'06), Seoul, South Korea, October 2006.

 	[44]

 	J.-L. Colaço, B. Pagano, M. Pouzet.
A Conservative Extension of Synchronous Data-flow with State Machines, in: ACM International Conference on Embedded Software (EMSOFT'05), Jersey city, New Jersey, USA, September 2005.

 	[45]

 	J.-L. Colaço, M. Pouzet.
Clocks as First Class Abstract Types, in: Third International Conference on Embedded Software (EMSOFT'03), Philadelphia, Pennsylvania, USA, october 2003.

 	[46]

 	J.-L. Colaço, M. Pouzet.
Type-based Initialization Analysis of a Synchronous Data-flow Language, in: International Journal on Software Tools for Technology Transfer (STTT), August 2004, vol. 6, no 3, pp. 245–255.

 	[47]

 	P. Cuoq, M. Pouzet.
Modular Causality in a Synchronous Stream Language, in: European Symposium on Programming (ESOP'01), Genova, Italy, April 2001.

 	[48]

 	P. Feautrier.
Some Efficient Solutions to the Affine Scheduling Problem, Part II, multidimensional time, in: Intl. J. of Parallel Programming, December 1992, vol. 21, no 6, pp. 389-420, See also Part I, one dimensional time, 21(5):315–348.

 	[49]

 	A. Gamatié, E. Rutten, H. Yu, P. Boulet, J.-L. Dekeyser.
Synchronous Modeling and Analysis of Data Intensive Applications, in: EURASIP Journal on Embedded Systems, 2008.

 	[50]

 	S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, O. Temam.
Semi-Automatic Composition of Loop Transformations for Deep Parallelism and Memory Hierarchies, in: Intl. J. of Parallel Programming, June 2006, vol. 34, no 3, pp. 261–317, Special issue on Microgrids.

 	[51]

 	T. Grosser, A. Größlinger, C. Lengauer.
Polly - Performing Polyhedral Optimizations on a Low-Level Intermediate Representation, in: Parallel Processing Letters, 2012, vol. 22, no 4.

 	[52]

 	A.-C. Guillou, F. Quilleré, P. Quinton, S. Rajopadhye, T. Risset.
Hardware Design Methodology with the Alpha Language, in: FDL'01, Lyon, France, September 2001.

 	[53]

 	H. Leverge, C. Mauras, P. Quinton.
The Alpha language and its use for the design of systolic arrays, in: J. of VLSI Signal Processing, 1991, vol. 3, pp. 173–182.

 	[54]

 	L. Mandel, F. Benbadis.
Simulation of Mobile Ad hoc Network Protocols in ReactiveML, in: Proceedings of Synchronous Languages, Applications, and Programming (SLAP'05), Edinburgh, Scotland, Electronic Notes in Theoretical Computer Science, April 2005, Workshop ETAPS 2005.

 	[55]

 	L. Mandel.
Conception, Sémantique et Implantation de ReactiveML : un langage à la ML pour la programmation réactive, Université Paris 6, 2006.

 	[56]

 	L. Mandel, F. Plateau, M. Pouzet.
Lucy-n: a n-Synchronous Extension of Lustre, in: 10th International Conference on Mathematics of Program Construction (MPC'10), Manoir St-Castin, Québec, Canada, Springer LNCS, June 2010.

 	[57]

 	L. Mandel, M. Pouzet.
ReactiveML, a Reactive Extension to ML, in: ACM International Conference on Principles and Practice of Declarative Programming (PPDP), Lisboa, July 2005.

 	[58]

 	F. Maraninchi, N. Berthier, O. Bezet, G. Funchal.
Writing Simulators with Synchronous Languages, 2008, Synchron 2008: International Open Workshop on Synchronous Programming.

 	[59]

 	C. Miranda, A. Pop, P. Dumont, A. Cohen, M. Duranton.
Erbium: A Deterministic, Concurrent Intermediate Representation to Map Data-Flow Tasks to Scalable, Persistent Streaming Processes, in: Intl. Conf. on Compilers Architectures and Synthesis for Embedded Systems (CASES'10), October 2010.

 	[60]

 	J.-B. Note, M. Shand, J. Vuillemin.
Realtime video pixel matching, in: International Conference on Field Programmable Logic and Applications, 2006, pp. 507 – 512.

 	[61]

 	J.-B. Note, J. Vuillemin.
Towards automatically compiling efficient FPGA hardware, in: International Workshop on Design and Functional Languages, IEEE, 2007, pp. 115 – 124.

 	[62]

 	F. Plateau.
Modèle n-synchrone pour la programmation de réseaux de Kahn à mémoire bornée, Université Paris-Sud 11, Orsay, France, 6 janvier 2010.
https://www.lri.fr/~mandel/lucy-n/~plateau/these/

 	[63]

 	S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.-A. Silber, N. Vasilache.
GRAPHITE: Loop Optimizations Based on the Polyhedral Model for GCC, in: Proc. of the 4þ GCC Developper's Summit, Ottawa, Canada, June 2006.

 	[64]

 	L.-N. Pouchet, C. Bastoul, A. Cohen, J. Cavazos.
Iterative Optimization in the Polyhedral Model: Part II, Multidimensional Time, in: ACM Conf. on Programming Language Design and Implementation (PLDI'08), Tucson, Arizona, June 2008.

 	[65]

 	L.-N. Pouchet, C. Bastoul, A. Cohen, N. Vasilache.
Iterative Optimization in the Polyhedral Model: Part I, One-Dimensional Time, in: Intl. Symp. on Code Generation and Optimization (CGO'07), San Jose, California, March 2007.

 	[66]

 	L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, P. Sadayappan.
Combined Iterative and Model-driven Optimization in an Automatic Parallelization Framework, in: ACM Supercomputing Conf. (SC'10), New Orleans, Lousiana, November 2010, 11 p.

 	[67]

 	P. Raymond, Y. Roux, E. Jahier.
Lutin: a language for specifying and executing reactive scenarios, in: EURASIP Journal on Embedded Systems, 2008, vol. 2008, Article ID 753821.

 	[68]

 	L. Samper, F. Maraninchi, L. Mounier, L. Mandel.
GLONEMO: Global and Accurate Formal Models for the Analysis of Ad hoc Sensor Networks, in: Proceedings of the First International Conference on Integrated Internet Ad hoc and Sensor Networks (InterSense'06), Nice, France, May 2006.

 	[69]

 	J. Soula, P. Marquet, J.-L. Dekeyser, A. Demeure.
Compilation principle of a specification language dedicated to signal processing, in: Intl. Conf. on Parallel Computing Technologies, Novosibirsk, Russia, LNCS, Springer-Verlag, September 2001, vol. 2127, pp. 358–370.

 	[70]

 	K. Trifunović, A. Cohen, D. Edelsohn, F. Li, T. Grosser, H. Jagasia, R. Ladelski, S. Pop, J. Sjödin, R. Upadrasta.
GRAPHITE Two Years After: First Lessons Learned From Real-World Polyhedral Compilation, in: GCC Research Opportunities Workshop (GROW'10), Pisa, Italy, January 2010.

 	[71]

 	K. Trifunović, D. Nuzman, A. Cohen, A. Zaks, I. Rosen.
Polyhedral-Model Guided Loop-Nest Auto-Vectorization, in: Parallel Architectures and Compilation Techniques (PACT'09), Raleigh, North Carolina, September 2009.

 	[72]

 	J. Vuillemin.
On Circuits and Numbers, Digital, Paris Research Laboratory, 1993.

 OEBPS/international.html

OEBPS/uid62.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 FP7 Projects

 TETRACOM

 		
 Type: CAPACITIES

 		
 Defi: Alternative Paths to Components and Systems

 		
 Instrument: Coordination and Support Action

 		
 Objectif: Advanced Computing, embedded and Control systems

 		
 Duration: September 2013 – August 2016

 		
 Coordinator: Rainer Leupers

 		
 Partner: RWTH Aachen (Germany)

 		
 Inria contact: Albert Cohen

 		
 Abstract: coordination action to support bilateral technology
transfer partnerships (TTPs); prototype of future H2020 transfer
instruments.

 COPCAMS

 		
 Type: ARTEMIS

 		
 Defi: Alternative Paths to Components and Systems

 		
 Instrument: ASP

 		
 Objectif: NC

 		
 Duration: April 2013 – March 2016

 		
 Coordinator: Christian Fabre

 		
 Partner: CEA Leti (Grenoble)

 		
 Inria contact: Albert Cohen

 		
 Abstract: cognitive/smart cameras enabled by hardware
accelerators, including manycore processors (STHORM platform of ST)
and GPUs.

 Collaborations in European Programs, except FP7

 MODRIO

 		
 Duration: December 2012 - December 2014

 		
 Coordinator: EDF

 		
 Partner: Dassault-Systèmes, EDF, Institut Francais du Pétrole,
DLR (Munich, Germany), LMS-Imagine, Inria.

 		
 Inria contact: Benoit Caillaud (HYCOMES, Rennes);
Marc Pouzet (PARKAS, Paris)

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid100.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits of International Scientists

 We have regular invited professors in the PARKAS team:

 		
 In 2012, one month (June/July), Prof. Stephen Edwards (Columbia Univ.,
New York, USA).

 		
 In 2013, one month (June), Prof. Mary Sheeran from (Chalmers Univ., Sweden).

 Internships

 Pankaj Prateek, Anirudh Kumar, and Pankaj More, students at IIT
Kanpur, India, worked in the Parkas team under the supervision of
Francesco Zappa Nardelli from 4th May, 2013 to 23 July, 2013.

 Guillaume Chelfi, student at Telecom Paris and the MPRI program,
under the supervision of
Francesco Zappa Nardelli and Marc Pouzet, from 1st of March, 2013, to 31st July,
2013. Guillaume Chelfi worked on the formal verification of
the translation of synchronous programs to sequential code.

 Louis Mandel supervised the 5-months MPRI Internship of Louis Jachiet
from April to August. Louis Jachiet worked on the static scheduling of
ReactiveML programs.

 Albert Cohen supervised the 3-months Internship of Vincent
Thiberville, 3rd year student at École Polytechnique, from April to
June. Vincent conducted experimental studies and proposed enhanced
methods to support array-based computations in the Heptagon
synchronous language.

 Visits to International Teams

 October, Louis Mandel spent 2 weeks in the team of Vijay Saraswat at
IBM T.J. Watson. He worked on the type system of the X10 language.

OEBPS/uid90.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Inria Associate Teams

 POLYFLOW

 		
 Title: Polyhedral Compilation for Data-Flow Programming Languages

 		
 Inria principal investigator: Albert Cohen

 		
 International Partner (Institution - Laboratory - Researcher):

 		
 IISc Bangalore (India)
- Department of Computer Science and Automation - Albert Cohen

 		
 Duration: 2013 - 2016

 		
 See also: http://polyflow.gforge.inria.fr

 		
 Polyhedral techniques for program transformation are now used in
several proprietary and open source compilers. However, most of the
research on polyhedral compilation has focused on imperative languages
such as C, where computation is specified in terms of statements with
zero or more nested loops and other control structures around them.
Graphical data-flow languages, where there is no notion of statements
or a schedule specifying their relative execution order, have so far
not been studied using a powerful transformation or optimization
approach. These languages are extremely popular in system analysis,
modeling and design, in embedded reactive control. They also underline
the construction of many domain-specific languages and compiler
intermediate representations. The copy and execution semantics of
data-flow languages impose a different set of challenges. We plan to
bridge this gap by studying techniques that could enable extraction of
a polyhedral representation from data-flow programs, transform them,
and synthesize them from their equivalent polyhedral representation.

OEBPS/uid57.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 ANR

 ANR WMC project (program “jeunes chercheuses, jeunes chercheurs”),
2012–2016, 200 Keuros. F. Zappa Nardelli is the main investigator.

 ANR Boole project (program “action blanche”), 2009-2014.

 ANR Partout (program “defis”), 2009-2012. Louis Mandel and Marc Pouzet.

 ANR CAFEIN, 2013-2015. Marc Pouzet.

 Action d'envergure Synchronics, 2008-2012. The action was driven by Alain Girault
(Inria, PopArt, Grenoble) and Marc Pouzet (Inria, Parkas, Paris-Rocquencourt), to
focus on “langages for embedded systems”. This has been instrumental in driving
our new research on hybrid system modelers.

 Competitivity Clusters

 FUI project OpenGPU, 2008–2012.

 Investissements d'avenir

 Sys2Soft contract (Briques Génériques du Logiciel
Embarqué). Partenaire principal: Dassault-Systèmes, etc. Inria
contacts are Benoit Caillaud (HYCOMES, Rennes) and Marc Pouzet
(PARKAS, Paris).

 ManycoreLabs contract (Briques Génériques du Logiciel
Embarqué). Partenaire principal: Kalray. Inria contacts are Albert
Cohen (PARKAS, Paris) and Alain Darte (COMPSYS, Lyon).

 Others

 Marc Pouzet is scientific advisor for the Esterel-Technologies/ANSYS company.

OEBPS/IMG/iTunesArtwork.png
Activity Report 2013
Project-Team Parkas

Synchronous Kahn
Parallelism

IN COLLABORATION WITH: Département d'informatique de Icole Normale Supérieure

