

[image: cover]

 PAREO

 Formal islands: foundations and applications

 2014 Project-Team Activity Report
	

 Research centre:
 Nancy - Grand Est

 Field: Algorithmics, Programming, Software and Architecture
Theme: Architecture, Languages and Compilation

 Keywords: Programming Languages, Compiling, Formal Methods, Type Systems, Security, Proofs Of Programs

 Project-Team Pareo

 Members

 Overall Objectives

 Research Program	Introduction
	Rule-based Programming Languages
	Rewriting Calculus

 Application Domains	Application Domains

 New Software and Platforms	ATerm
	Tom

 New Results	Static Analysis
	Termination under Strategies
	Property-based Testing
	Inductive Reasoning

 Partnerships and Cooperations	National Initiatives
	European Initiatives
	International Research Visitors

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Major publications

 	
 Publications of the year

 	
 References in notes

 Creation of the Team: 2008 January 01, updated into Project-Team: 2011 January 01, end of the Project-Team: 2014 December 31.
Section: Members
Faculty Members
Pierre-Etienne Moreau [Team leader, Univ. Lorraine, Professor, HdR]
Christophe Calvès [Univ. Lorraine, until Aug 2014]
Horatiu Cirstea [Univ. Lorraine, Professor, HdR]
Sergueï Lenglet [Univ. Lorraine, Associate Professor]
Sorin Stratulat [Univ. Lorraine, Associate Professor]
PhD Students
Jean-Christophe Bach [Univ. Lorraine, until Sep 2014]
Duc Nguyen Duy [Univ. Tech. Belfort-Montbéliard]
Amira Henaien [Univ. Lorraine]
Administrative Assistants
Laurence Benini [Inria]
Delphine Hubert [Univ. Lorraine]
Martine Kuhlmann [CNRS]
Others
Nauval Atmaja [Univ. Lorraine, from Mar 2014 until Jul 2014]
Pierre Lermusiaux [Inria, from Jun 2014 until Sep 2014]

 Overall Objectives

 	
 Overall Objectives

 Section:
 Overall Objectives

 Overall Objectives

 The PAREO team aims at designing and implementing tools for the
specification, analysis and verification of software and systems.
At the heart of our project is therefore the will to study fundamental
aspects of programming languages (logic, semantics, algorithmics,
etc.) and to make major contributions to the design of new
programming languages. An important part of our research effort will
be dedicated to the design of new fundamental concepts and tools to
analyze existing programs and systems.
To achieve this goal we focus on:

 	
 the improvement of theoretical foundations of rewriting and deduction;

 	
 the integration of the corresponding formal methods in programming
and verification environments;

 	
 the practical applications of the proposed formalisms.

 Research Program

 	Research Program	Introduction
	Rule-based Programming Languages
	Rewriting Calculus

 Section:
 Research Program

 Introduction

 It is a common claim that rewriting is ubiquitous in computer
science and mathematical logic. And indeed the rewriting concept
appears from very theoretical settings to very practical
implementations. Some extreme examples are the mail system under
Unix that uses rules in order to rewrite mail addresses in canonical
forms and the transition rules describing the
behaviors of tree automata. Rewriting is used in semantics in order
to describe the meaning of programming languages [22]
as well as in program transformations like, for example,
re-engineering of Cobol programs [31] . It is
used in order to compute, implicitly or explicitly as in Mathematica
or MuPAD, but also to perform deduction when describing by inference
rules a logic [18] , a theorem
prover [20] or a constraint
solver [21] . It is of course central
in systems making the notion of rule an explicit and first class
object, like expert systems, programming languages based on
equational logic, algebraic specifications, functional programming
and transition systems.

 In this context, the study of the theoretical foundations of
rewriting have to be continued and effective rewrite based tools
should be developed. The extensions of first-order rewriting with
higher-order and higher-dimension features are hot topics and these
research directions naturally encompass the study of the rewriting
calculus, of polygraphs and of their interaction. The usefulness of
these concepts becomes more clear when they are implemented and a
considerable effort is thus put nowadays in the development of
expressive and efficient rewrite based programming languages.

 Section:
 Research Program

 Rule-based Programming Languages

 Programming languages are formalisms used to describe programs,
applications, or software which aim to be executed on a given
hardware. In principle, any Turing complete language is sufficient
to describe the computations we want to perform. However, in
practice the choice of the programming language is important because
it helps to be effective and to improve the quality of the
software. For instance, a web application is rarely developed using
a Turing machine or assembly language. By choosing an adequate
formalism, it becomes easier to reason about the program, to
analyze, certify, transform, optimize, or compile it. The choice of
the programming language also has an impact on the quality of the
software. By providing high-level constructs as well as static
verifications, like typing, we can have an impact on the software
design, allowing more expressiveness, more modularity, and a better
reuse of code. This also improves the productivity of the
programmer, and contributes to reducing the presence of errors.

 The quality of a programming language depends on two main
factors. First, the intrinsic design, which describes the
programming model, the data model, the features provided by the
language, as well as the semantics of the constructs. The second
factor is the programmer and the application which is targeted. A
language is not necessarily good for a given application if the
concepts of the application domain cannot be easily
manipulated. Similarly, it may not be good for a given person if the
constructs provided by the language are not correctly understood by
the programmer.

 In the Pareo group we target a population of programmers interested
in improving the long-term maintainability and the quality of their
software, as well as their efficiency in implementing complex
algorithms. Our privileged domain of application is large since it
concerns the development of transformations. This ranges from
the transformation of textual or structured documents such as XML,
to the analysis and the transformation of programs and models. This
also includes the development of tools such as theorem provers,
proof assistants, or model checkers, where the transformations of
proofs and the transitions between states play a crucial role.
In that context, the expressiveness of the programming
language is important. Indeed, complex encodings into low level data
structures should be avoided, in contrast to high level notions such
as abstract types and transformation rules that should be provided.

 It is now well established that the notions of term
and rewrite rule are two universal abstractions well suited
to model tree based data types and the transformations that can be
done upon them. Over the last ten years we have developed a strong
experience in designing and programming with rule based
languages [23] , [14] , [12] .
We have introduced and studied the notion of
strategy [13] , which is a way to
control how the rules should be applied. This provides the
separation which is essential to isolate the logic and to make the
rules reusable in different contexts.

 To improve the quality of programs, it is also essential to have a
clear description of their intended behaviors. For that, the
semantics of the programming language should be formally
specified.

 There is still a lot of progress to be done in these directions. In
particular, rule based programming can be made even more expressive
by extending the existing matching algorithms to context-matching or
to new data structures such as graphs or polygraphs. New algorithms
and implementation techniques have to be found to improve the
efficiency and make the rule based programming approach effective on
large problems. Separating the rules from the control is very
important. This is done by introducing a language for describing
strategies. We still have to invent new formalisms and new strategy
primitives which are both expressive enough and theoretically well
grounded. A challenge is to find a good strategy language we can
reason about, to prove termination properties for instance.

 On the static analysis side, new formalized typing algorithms are
needed to properly integrate rule based programming into already
existing host languages such as Java. The notion of traversal
strategy merits to be better studied in order to become more
flexible and still provide a guarantee that the result of a
transformation is correctly typed.

 Section:
 Research Program

 Rewriting Calculus

 The huge diversity of the rewriting concept is obvious and when one
wants to focus on the underlying notions, it becomes quickly clear
that several technical points should be settled. For example, what
kind of objects are rewritten? Terms, graphs, strings, sets,
multisets, others? Once we have established this, what is a rewrite
rule? What is a left-hand side, a right-hand side, a condition, a
context? And then, what is the effect of a rule application? This
leads immediately to defining more technical concepts like variables
in bound or free situations, substitutions and substitution
application, matching, replacement; all notions being specific to
the kind of objects that have to be rewritten. Once this is solved
one has to understand the meaning of the application of a set of
rules on (classes of) objects. And last but not least, depending on
the intended use of rewriting, one would like to define an induced
relation, or a logic, or a calculus.

 In this very general picture, we have introduced a calculus whose main
design concept is to make all the basic ingredients of rewriting
explicit objects, in particular the notions of rule
application and result. We concentrate on
term rewriting, we introduce a very general notion of rewrite
rule and we make the rule application and result explicit
concepts. These are the basic ingredients of the rewriting-
or ρ-calculus whose originality comes from the fact that terms, rules, rule
application and application strategies are all treated
at the object level (a rule can be applied on a rule for instance).

 The λ-calculus is usually put forward as the abstract
computational model underlying functional programming. However,
modern functional programming languages have pattern-matching features
which cannot be directly expressed in the λ-calculus. To
palliate this problem,
pattern-calculi [28] , [25] , [19]
have been introduced.
The rewriting calculus is also a pattern calculus that combines the
expressiveness of pure functional calculi and algebraic term
rewriting. This calculus is designed and used for logical and
semantical purposes. It could be equipped with powerful type systems
and used for expressing the semantics of rule based as well as object
oriented languages. It allows one to naturally express exception
handling mechanisms and elaborated rewriting strategies. It can be
also extended with imperative features and cyclic data structures.

 The study of the rewriting calculus turns out to be extremely
successful in terms of fundamental results and of
applications [16] .
Different instances of this calculus together with their corresponding
type systems have been proposed and studied. The expressive power of
this calculus was illustrated by comparing it with similar formalisms
and in particular by giving a typed encoding of standard strategies
used in first-order rewriting and classical rewrite based languages
like ELAN and Tom.

 Application Domains

 	
 Application Domains

 Section:
 Application Domains

 Application Domains

 Beside the theoretical transfer that can be performed via the
cooperations or the scientific publications, an important part of
the research done in the Pareo project-team is published within
software. Tom is our flagship implementation. It is available
via the Inria Gforge (http://gforge.inria.fr) and is one of
the most visited and downloaded projects. The integration of
high-level constructs in a widely used programming language such as
Java may have an impact in the following areas:

 	
 Teaching: when (for good or bad reasons) functional
programming is not taught nor used, Tom is an interesting
alternative to exemplify the notions of abstract data type and
pattern-matching in a Java object oriented course.

 	
 Software quality: it is now well established that
functional languages such as Caml are very successful to produce
high-assurance software as well as tools used for software
certification. In the same vein, Tom is very well suited to
develop, in Java, tools such as provers, model checkers, or static
analyzers.

 	
 Symbolic transformation: the use of formal anchors makes
possible the transformation of low-level data structures such as C
structures or arrays, using a high-level formalism, namely pattern
matching, including associative matching. Tom is therefore a
natural choice each time a symbolic transformation has to be
implemented in C or Java for instance. Tom has been
successfully used to implement the Rodin simplifier, for the B
formal method.

 	
 Prototyping: by providing abstract data types, private
types, pattern matching, rules and strategies, Tom allows the
development of quite complex prototypes in a short time. When
using Java as the host-language, the full runtime library can be
used. Combined with the constructs provided by Tom, such as
strategies, this procures a tremendous advantage.

 One of the most successful transfer is certainly the use of Tom
made by Business Objects/SAP. Indeed, after benchmarking several other
rule based languages, they decided to choose Tom to implement a
part of their software.
Tom is used in Paris, Toulouse and Vancouver. The standard
representation provided by Tom is used as an exchange format by the
teams of these sites.

 New Software and Platforms

 	New Software and Platforms	ATerm
	Tom

 Section:
 New Software and Platforms

 ATerm

 Participant :
	Pierre-Etienne Moreau [correspondant] .

 ATerm (short for Annotated Term) is an abstract data type designed for
the exchange of tree-like data structures between distributed
applications.

 The ATerm library forms a comprehensive procedural interface which
enables creation and manipulation of ATerms in C and Java. The ATerm
implementation is based on maximal subterm sharing and automatic
garbage collection.

 We are involved (with the CWI) in the implementation of the Java
version, as well as in the garbage collector of the C version. The
Java version of the ATerm library is used in particular by Tom.

 The ATerm library is documented, maintained, and available at the
following address:
http://www.meta-environment.org/Meta-Environment/ATerms .

 Section:
 New Software and Platforms

 Tom

 Participants :
	Jean-Christophe Bach, Christophe Calvès, Horatiu Cirstea, Pierre-Etienne Moreau [correspondant] .

 Since 2002, we have developed a new system called Tom
[27] , presented in
[11] , [12] . This
system consists of a pattern matching compiler which is particularly
well-suited for programming various transformations on trees/terms and
XML documents. Its design follows our experiments on the efficient
compilation of rule-based systems [24] . The
main originality of this system is to be language and data-structure
independent. This means that the Tom technology can be used in a C,
C++ or Java environment. The tool can be seen as a Yacc-like compiler
translating patterns into executable pattern matching
automata. Similarly to Yacc, when a match is found, the corresponding
semantic action (a sequence of instructions written in the chosen
underlying language) is triggered and executed. Tom supports
sophisticated matching theories such as associative matching with
neutral element (also known as list-matching). This kind of matching
theory is particularly well-suited to perform list or XML based
transformations for example.

 In addition to the notion of rule, Tom offers a
sophisticated way of controlling their application: a strategy
language. Based on a clear semantics, this language allows to define
classical traversal strategies such as innermost,
outermost, etc. Moreover, Tom provides an extension of pattern matching, called
anti-pattern matching. This corresponds to a natural way to
specify complements (i.e., what should not be there to fire a
rule). Tom also supports the definition of cyclic graph
data-structures, as well as matching algorithms and rewriting rules for
term-graphs.

 Tom is documented, maintained, and available at
http://tom.loria.fr as well as at http://gforge.inria.fr/projects/tom .

 New Results

 	New Results	Static Analysis
	Termination under Strategies
	Property-based Testing
	Inductive Reasoning

 Section:
 New Results

 Static Analysis

 Participant :
	Sergueï Lenglet.

 Static Analysis for Control Operators

 Control operators, such as call/cc in Scheme or SML, allow programs to
have access and manipulate their execution context. We study the behavioral
theory of the λμ-calculus, an extension of the λ-calculus with
a control feature similar to call/cc. In [6] ,
we define an applicative bisimilarity for the λμ-calculus,
demonstrating the differences in the definitions between call-by-name and
call-by-value. We give equivalence examples to illustrate how our relations can
be used; in particular, we prove David and Py's counter-example, which cannot be
proved with the preexisting bisimilarities for the λμ-calculus. The
proofs are in the accompanying research report [8] ,
where we also define environmental bisimulations for the calculus.

 Polymorphism and Higher-order Functions for XML

 In [7] , we define a calculus with higher-order
polymorphic functions, recursive types with arrow and product type constructors
and set-theoretic type connectives (union, intersection, and negation). We study
the explicitly-typed version of the calculus in which type instantiation is
driven by explicit instantiation annotations. In particular, we define an
explicitly-typed λ-calculus with intersection types and an efficient
evaluation model for it. The work presented in this article provides the
theoretical foundations needed to design and implement higher-order polymorphic
functional languages for semi-structured data.

 Section:
 New Results

 Termination under Strategies

 Participants :
	Horatiu Cirstea, Sergueï Lenglet, Pierre-Etienne Moreau.

 Several approaches for proving the confluence and the termination of
term rewriting systems have been proposed [10] and the
corresponding techniques have been implemented in tools like
Aprove [17] and
TTT2 [26] . On the other hand, there are relatively few
works on the study of these properties in the context of strategic
rewriting and the corresponding results were generally obtained for
some specific strategies and not within a generic framework. It would
thus be interesting to reformulate these notions in the general
formalism we have previously
proposed [15] and to establish
confluence and termination conditions similar to the ones used in
standard rewriting.

 We have first focused on the termination property and we targeted the
rewriting strategies of the Tom language. We propose a direct
approach which consists in translating Tom strategies into a
rewriting system which is not guided by a given evaluation strategy
and we show that our systematic transformation preserves the
termination. This allowed us to take advantage of the termination
proof techniques available for standard rewriting and in particular to
use existing termination tools (such as Aprove and TTT2) to prove the
termination of strategic rewriting systems. The efficiency and
scalability of these latter tools has a direct impact on the
performances of our approach especially for complex strategies for
which an important number of rewrite rules could be generated. We have
nevertheless proposed a meta-level implementation of the
automatic transformation which improves significantly the performances of the
approach.
The corresponding tool is available at http://gforge.inria.fr/projects/tom .

 Section:
 New Results

 Property-based Testing

 Participants :
	Nauval Atmaja, Horatiu Cirstea, Pierre-Etienne Moreau.

 Quality is crucial for software systems and several aspects should be
taken into account. Formal verification techniques like model
checking and automated theorem proving can be used to guarantee the
correctness of finite or infinite systems. While these approaches
provide a high level of confidence they are sometimes difficult and
expensive to apply. Software testing is another approach and although
it cannot guarantee correctness it can be very efficient in finding
errors.

 We have proposed a property based testing framework for the Tom
language inspired from the ones proposed in the context of functional
programming. The previously developed tool has been improved by
integrating it in the Junit framework. The tests are thus
highly automatized and the library can be smoothly integrated in
classical IDEs. The relatively simple shrinking method which searches
a smaller counter-example starting from an initial relatively complex
one has been also improved.
The library is available at
http://gforge.inria.fr/projects/tom .

 Section:
 New Results

 Inductive Reasoning

 Participant :
	Sorin Stratulat.

 Decision Procedures to Prove Inductive Theorems
Without Induction

 Automated inductive reasoning for term rewriting has been extensively
studied in the literature. Classes of equations and term rewriting
systems (TRSs) with decidable inductive validity have been identified
and used to automatize the inductive reasoning.
In [9] , we give procedures for deciding the inductive
validity of equations in some standard TRSs on natural numbers and
lists. Contrary to previous decidability results, our procedures can
automatically decide without involving induction reasoning the
inductive validity of arbitrary equations for these TRSs, that is,
without imposing any syntactical restrictions on the form of
equations. We also report on the complexity of our decision
procedures. These decision procedures are implemented in our automated
provers for inductive theorems of TRSs and experiments are reported.

 Implementing Reasoning Modules in Implicit Induction
Theorem Provers

 In [30] , we detail the integration in SPIKE, an
implicit induction theorem prover, of two reasoning modules operating
over naturals combined with interpreted symbols. The first integration
schema is à la Boyer-Moore, based on the combination of a congruence
closure procedure with a decision procedure for linear arithmetic over
rationals/reals. The second follows a ‘black-box’ approach and is
based on external SMT solvers. It is shown that the two extensions
significantly increase the power of SPIKE; their performances are
compared when proving a non-trivial application.

 Building Explicit Induction Schemas for Cyclic
Induction Reasoning

 In the setting of classical first-order logic with inductive
predicates, two kinds of sequent-based induction reasoning are
distinguished: cyclic and structural. Proving their equivalence is of
great theoretical and practical interest for the automated reasoning
community. Previously, it has been shown how to transform any
structural proof developed with the LKID system into a cyclic proof
using the CLKIDω system. However, the inverse transformation
was only conjectured. In [29] , we provide a simple
procedure that performs the inverse transformation for an extension of
LKID with explicit induction rules issued from the structural analysis
of CLKIDω proofs, then establish the equivalence of the two
systems. This result is further refined for an extension of LKID with
Noetherian induction rules. We show that Noetherian induction subsumes
the two kinds of reasoning. This opens the perspective for building
new effective induction proof methods and validation techniques
supported by (higher-order) certification systems integrating the
Noetherian induction principle, like Coq.

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific events selection

 Conference program committee membership

 Horatiu Cirstea:

 	
 PC member of RuleML 2014 (International RuleML Symposium on Rule
Interchange and Applications).

 	
 Steering committee of RULE.

 Sergueï Lenglet:

 	
 PC member of WPTE'14 (Workshop on Rewriting
Techniques for Program Transformations and Evaluation)

 Pierre-Etienne Moreau:

 	
 PC member of TERMGRAPH'2014 (8th International Workshop on Computing with Terms and Graphs)

 	
 PC member of WRLA'2014 (10th International Workshop on Rewriting Logic and its Applications)

 Sorin Stratulat:

 	
 PC member of CISIS 2014 (7th International Conference on
Computational Intelligence in Security for Information Systems)

 	
 PC member of IAS 2014 (10th International Conference on
Information Assurance and Security)

 	
 PC member of SYNASC 2014 (16th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing)

 Reviewing activities

 Horatiu Cirstea:

 	
 Reviewer for ESOP'2014, ICTAC'2014, LOPSTR'2014

 Sergueï Lenglet:

 	
 Reviewer for CSL-LICS'2014, RTA-TLCA'2014, FOSSACS'2015

 Pierre-Etienne Moreau:

 	
 Reviewer for TERMGRAPH'2014, WASDETT'2014

 Journal

 Editorial board membership

 Pierre-Etienne Moreau:

 	
 Advisory Board of Science of Computer Programming, software track

 Reviewing activities

 Horatiu Cirstea:

 	
 Reviewer for Journal of Symbolic Computation

 Sergueï Lenglet:

 	
 Reviewer for Fundamenta Informaticae and HOSC (Higher-Order and
Symbolic Computation)

 Pierre-Etienne Moreau:

 	
 Reviewer for Electronic Proceedings in Theoretical Computer Science (EPTCS)

 Sorin Stratulat:

 	
 Reviewer for Journal of Symbolic Computation

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Licence: Sergueï Lenglet, teaching at IUT Charlemagne, first year and
second year students.

 	
 Licence: Horatiu Cirstea, Responsible for the first year of the Licence in
Computer Science,
Université de Lorraine.

 	
 Licence: Pierre-Etienne Moreau, Responsible of the course “Introduction to Algorithms and Programming” (http://www.depinfonancy.net/s5/tcs13), first year at Mines-Nancy (150 students), Université de Lorraine.

 	
 Master: Horatiu Cirstea, Responsible for the Master speciality “Logiciels: Théorie, méthodes et ingénierie”,
Université de Lorraine.

 	
 Master: Pierre-Etienne Moreau, Head of the Computer Science Department at Mines Nancy,
Université de Lorraine.

 	
 Doctorate: Pierre-Etienne Moreau, Implementing Term Rewriting, International School on Rewriting, Valparaíso, Chile.

 Supervision

 	
 PhD: Jean-Christophe Bach, A formal Island for qualifiable
model transformations, Université de Lorraine, September 12th 2014,
Pierre-Etienne Moreau

 	
 PhD in progress: Duy Duc Nguyen, Aided design of multi-physics
and multi-scale systems based on asymptotic methods, Horatiu
Cirstea (co-supervised with Michel Lenczner and Federic Zamkotsian)

 	
 PhD in progress: Amira Henaien, Certification du raisonnement
formel porté sur des systèmes d’information critiques, November
2010, Sorin Stratulat (co-supervised with Maurice Margenstern)

 Juries

 Horatiu Cirstea:

 	
 PhD committee of Julien Ferté, reviewer, “Régularité et contraintes de descendance, équations algébriques+”, Marseille 2014

 	
 PhD committee of Hernan Vanzetto, examiner, “Automatisation des preuves et synthèse des types pour la théorie des ensembles dans le contexte de TLA+”, Nancy 2014

 	
 PhD committee of Bin Yang, reviewer, “Contribution to a kernel of a symbolic asymptotic modeling software”, Besançon 2014

 Pierre-Etienne Moreau:

 	
 PhD committee of Jean-Christophe Bach, superviser, “Un îlot formel pour les transformations de modèles qualifiables”, Nancy 2014

 	
 PhD committee of Faiez Zalila, reviewer, “Methods and Tools for the Integration of Formal Verification in Domain-Specific Languages”, Toulouse 2014

 	
 PhD committee of Cyrille Wiedling, examiner, “Formal Verification of Advanced Families of Security Protocols: E-Voting and APIs”, Nancy 2014

 Sorin Stratulat:

 	
 PhD committee of Abdelkader Kersani, examiner, “Preuves par
induction dans le calcul de superposition”, Grenoble 2014

 Section:
 Dissemination

 Popularization

 Jean-Christophe Bach participated to scientific mediation by proposing
several activities to demonstrate the algorithmic thinking at the
core of the Computer Science without requiring any computer or even electric
devices. These activities are the first part of the CSIRL (Computer Science
In Real Life) project which aims to popularize computer science and to
initiate children, school students and non-scientists into this domain.

 Pierre-Etienne Moreau gave two lectures about “Robotics and Programming” in
the ISN course (Informatique et Science du Numérique), in order to help
professors of “classes de terminale” to teach this discipline.
He organized a three day course about “Algorithms,
Programming and Databases” in order to help professors of “classes
préparatoires aux grandes écoles” to teach this discipline.

 Pierre-Etienne Moreau is member of the national committee for Inria
“Médiation Scientifique”. He also participated to “Fête de la Science
2014” at Mines Nancy.

 Bibliography

 Major publications by the team in recent years

 	[1]

 	E. Balland, C. Kirchner, P.-E. Moreau.
Formal Islands, in: 11th International Conference on Algebraic Methodology and Software Technology, Kuressaare, Estonia, M. Johnson, V. Vene (editors), LNCS, Springer-Verlag, jul 2006, vol. 4019, pp. 51–65.
http://www.loria.fr/~moreau/Papers/BallandKM-AMAST2006.pdf

 	[2]

 	P. Brauner, C. Houtmann, C. Kirchner.
Principles of Superdeduction, in: Twenty-Second Annual IEEE Symposium on Logic in Computer Science - LiCS 2007, Wroclaw Pologne, IEEE Computer Society, 2007.
http://dx.doi.org/10.1109/LICS.2007.37

 	[3]

 	H. Cirstea, C. Kirchner, R. Kopetz, P.-E. Moreau.
Anti-patterns for Rule-based Languages, in: Journal of Symbolic Computation, February 2010, vol. 54, no 5, pp. 523-550.

 	[4]

 	C. Kirchner, R. Kopetz, P.-E. Moreau.
Anti-Pattern Matching, in: 16th European Symposium on Programming, Braga, Portugal, Lecture Notes in Computer Science, Springer, 2007, vol. 4421, pp. 110–124.
http://www.loria.fr/~moreau/Papers/KirchnerKM-2007.pdf

 Publications of the year

 Doctoral Dissertations and Habilitation Theses

 	[5]

 	J.-C. Bach.
A formal Island for qualifiable model transformations, Université de Lorraine, September 2014.
https://tel.archives-ouvertes.fr/tel-01081055

 International Conferences with Proceedings

 	[6]

 	D. Biernacki, S. Lenglet.
Applicative Bisimilarities for Call-by-Name and Call-by-Value λμ-Calculus, in: Mathematical Foundations of Programming Semantics Thirtieth Conference, Ithaca, United States, Elsevier, June 2014, vol. 308, pp. 49 - 64. [
DOI : 10.1016/j.entcs.2014.10.004]
https://hal.inria.fr/hal-01080960

 	[7]

 	G. Castagna, K. Nguyen, Z. Xu, H. Im, S. Lenglet, L. Padovani.
Polymorphic Functions with Set-Theoretic Types. Part 1: Syntax, Semantics, and Evaluation, in: POPL'14, 41th ACM Symposium on Principles of Programming Languages, San Diego, United States, January 2014, pp. 5-17. [
DOI : 10.1145/2535838.2535840]
https://hal.archives-ouvertes.fr/hal-00907166

 Internal Reports

 	[8]

 	D. Biernacki, S. Lenglet.
Sound and Complete Bisimilarities for Call-by-Name and Call-by-Value Lambda-mu Calculus, January 2014, no RR-8447.
https://hal.inria.fr/hal-00926100

 References in notes

 	[9]

 	T. Aoto, S. Stratulat.
Decision Procedures for Proving Inductive Theorems without Induction, in: 16th International Symposium on Principles and Practice of Declarative Programming (PPDP) 2014, Canterbury, United Kingdom, September 2014. [
DOI : 10.1145/2643135.2643156]
https://hal.archives-ouvertes.fr/hal-01098929

 	[10]

 	F. Baader, T. Nipkow.
Term Rewriting and All That, Cambridge University Press, 1998.

 	[11]

 	J.-C. Bach, E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, A. Reilles.
Tom Manual, LORIA, 2009, 155 p.
http://hal.inria.fr/inria-00121885/en/

 	[12]

 	E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, A. Reilles.
Tom: Piggybacking rewriting on java, in: 18th International Conference on Rewriting Techniques and Applications - (RTA), Paris, France, Lecture Notes in Computer Science, Jun 2007, vol. 4533, pp. 36–47.

 	[13]

 	P. Borovanský, C. Kirchner, H. Kirchner.
Controlling Rewriting by Rewriting, in: Proceedings of the first international workshop on rewriting logic - (WRLA), Asilomar (California), J. Meseguer (editor), Electronic Notes in Theoretical Computer Science, Sep 1996, vol. 4.

 	[14]

 	P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau.
ELAN from a rewriting logic point of view, in: Theoretical Computer Science, Jul 2002, vol. 2, no 285, pp. 155–185.

 	[15]

 	T. Bourdier, H. Cirstea, D. Dougherty, H. Kirchner.
Extensional and Intensional Strategies, in: Electronic Proceedings in Theoretical Computer Science, 2010, vol. 15, pp. 1–19.

 	[16]

 	H. Cirstea.
Le calcul de réécriture, Université Nancy II, October 2010, Habilitation à Diriger des Recherches.

 	[17]

 	C. Fuhs, J. Giesl, M. Parting, P. Schneider-Kamp, S. Swiderski.
Proving Termination by Dependency Pairs and Inductive Theorem Proving, in: J. Autom. Reasoning, 2011, vol. 47, no 2, pp. 133–160.

 	[18]

 	J.-Y. Girard, Y. Lafont, P. Taylor.
Proofs and Types, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 1989, vol. 7.

 	[19]

 	C. B. Jay, D. Kesner.
First-class patterns, in: Journal of Functional Programming, 2009, vol. 19, no 2, pp. 191–225.

 	[20]

 	J.-P. Jouannaud, H. Kirchner.
Completion of a set of rules modulo a set of Equations, in: SIAM J. of Computing, 1986, vol. 15, no 4, pp. 1155–1194.

 	[21]

 	J.-P. Jouannaud, C. Kirchner.
Solving equations in abstract algebras: a rule-based survey of unification, in: Computational Logic. Essays in honor of Alan Robinson, Cambridge (MA, USA), J.-L. Lassez, G. Plotkin (editors), The MIT press, 1991, chap. 8, pp. 257–321.

 	[22]

 	G. Kahn.
Natural Semantics, Inria Sophia-Antipolis, feb 1987, no 601.

 	[23]

 	C. Kirchner, H. Kirchner, M. Vittek.
Designing Constraint Logic Programming Languages using Computational Systems, in: Proc. 2nd CCL Workshop, La Escala (Spain), F. Orejas (editor), Sep 1993.

 	[24]

 	H. Kirchner, P.-E. Moreau.
Promoting Rewriting to a Programming Language: A Compiler for Non-Deterministic Rewrite Programs in Associative-Commutative Theories, in: Journal of Functional Programming, 2001, vol. 11, no 2, pp. 207–251.
http://www.loria.fr/~moreau/Papers/jfp.ps.gz

 	[25]

 	J. W. Klop, V. van Oostrom, R. de Vrijer.
Lambda calculus with patterns, in: Theor. Comput. Sci., 2008, vol. 398, no 1-3, pp. 16–31.

 	[26]

 	M. Korp, C. Sternagel, H. Zankl, A. Middeldorp.
Tyrolean Termination Tool 2, in: RTA, 2009, pp. 295–304.

 	[27]

 	P.-E. Moreau, C. Ringeissen, M. Vittek.
A Pattern Matching Compiler for Multiple Target Languages, in: 12th Conference on Compiler Construction - (CC), G. Hedin (editor), Lecture Notes in Computer Science, Springer-Verlag, May 2003, vol. 2622, pp. 61–76.

 	[28]

 	S. Peyton-Jones.
The implementation of functional programming languages, Prentice-Hall, 1987.

 	[29]

 	S. Stratulat.
Building explicit induction schemas for cyclic induction reasoning, January 2014.
https://hal.archives-ouvertes.fr/hal-00956769

 	[30]

 	S. Stratulat.
Implementing Reasoning Modules in Implicit Induction Theorem Provers, in: International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2014), Timisoara, Romania, September 2014.
https://hal.archives-ouvertes.fr/hal-01098933

 	[31]

 	M. van den Brand, A. van Deursen, P. Klint, S. Klusener, E. A. van der Meulen.
Industrial Applications of ASF+SDF, in: AMAST '96, M. Wirsing, M. Nivat (editors), Lecture Notes in Computer Science, Springer-Verlag, 1996, vol. 1101, pp. 9–18.

 OEBPS/uid32.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 Collaborations in European Programs, except FP7 & H2020

 		
 Program: PHC Polonium

 		
 Project title: Expressing concurrency through control operators

 		
 Duration: January 2015 - December 2016

 		
 Coordinator: Sergueï Lenglet

 		
 Other partner: Institute of Computer Science, University of
Wrocław, Poland

 		
 Abstract: The goal of this project is to explore the interplay between concurrency,
continuations, and control operators at a fundamental level. We do not restrict
ourselves to a specific programming language, but we use more general and well
established formal models, namely process calculi (such as the π-calculus)
for concurrency, and the λ-calculus (a model of sequential functional
programming) for continuations and control operators. We want to find new
connections between concurrency and control operators, and especially new ways
of implementing concurrent and distributed programs with the help of control
operators.

OEBPS/uid31.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 We participate in the “Logic and Complexity” part of the GDR–IM (CNRS
Research Group on Mathematical Computer Science), in the projects “Logic,
Algebra and Computation” (mixing algebraic and logical systems) and “Geometry
of Computation” (using geometrical and topological methods in computer
science).

 We are also involved in the GDR-GPL (CNRS Research Network on Software
Engineering), as a member of the FORWAL group and member of the Scientific Board
of the GDR.

OEBPS/contrats.html

OEBPS/international.html

OEBPS/uid40.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits of International Scientists

 Internships

 Nauval Atmaja

 		
 Subject: Property Based Testing

 		
 Date: from Feb 2014 until Jun 2014

 		
 Institution: Erasmus Mundus MSc in Dependable Software Systems

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/IMG/iTunesArtwork.png
Activity Report 2014
Project-Team Pareo

Formal islands:
foundations and
applications

IN COLLABORATION WITH: Laboratoire lorrain de recherche en informatique et ses applications (LORI

