

[image: cover]

 PARKAS

 Parallélisme de Kahn Synchrone

 2014 Project-Team Activity Report
	

 Research centre:
 Paris - Rocquencourt

 Field: Algorithmics, Programming, Software and Architecture
Theme: Embedded and Real-time Systems

 Keywords: Compiling, Embedded Systems, Parallelism, Programming Languages, Synchronous Languages

 Project-Team Parkas

 Members

 Overall Objectives

 Research Program	Presentation and originality
of the PARKAS team

 Application Domains	Provably safe and efficient computing systems

 New Software and Platforms	Lucid Synchrone
	ReactiveML
	Heptagon
	Lucy-n: an n-synchronous data-flow programming language
	ML-Sundials
	Zélus
	GCC
	isl
	ppcg
	Tool support for the working semanticist
	Cmmtest: a tool for hunting concurrency compiler bugs

 New Results	Highlights of the Year
	Quasi-synchrony
	Hybrid Synchronous Languages
	Fidelity in Real-Time Programming
	Mechanization of AODV loop freedom proof
	Reasoning about C11 Program Transformations
	Language design on top of JavaScript
	Tiling for Stencils
	Portable representation for polyhedral compilation
	Correct and efficient runtime systems
	A Functional Synchronous
Language with Integer Clocks

 Partnerships and Cooperations	National Initiatives
	European Initiatives
	International Initiatives
	International Research Visitors

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Publications of the year

 	
 References in notes

 Creation of the Team: 2011 April 01, updated into Project-Team: 2012 January 01
Section: Members
Research Scientists
Timothy Bourke [Inria, Starting Research position]
Albert Cohen [Inria, Senior Researcher, HdR]
Francesco Zappa Nardelli [Inria, Researcher, HdR]
Faculty Members
Marc Pouzet [Team leader, Univ. Paris VI, Professor]
Jean Vuillemin [ENS, Professor, HdR]
Engineers
Thibaut Balabonski [granted by ANR WMC, until Aug. 2014]
Jun Inoue [Inria, until Nov 2014, granted by Caisse des Dépôts et Consignations]
Adarsh Keshan [Inria, until Oct 2014, granted by Min. du Redressement Productif]
Feng Li [Inria, until Jun 2014, granted by Caisse des Dépôts et Consignations]
Mircea Namolaru [Inria, granted by Caisse des Dépôts et Consignations]
Chandan Reddy Gopal [Inria, from Mar 2014, granted by Caisse des Dépôts et Consignations]
Sven Verdoolaege [Inria, granted by Min. de l'Economie]
Zhen Zhang [Inria, granted by Min. de l'Economie]
PhD Students
Riyadh Baghdadi [ENS Paris]
Guillaume Baudart [ENS Paris]
Ulysse Beaugnon [ENS Paris, from Mar 2014]
Andi Drebes [Inria, from Oct 2014]
Camille Gallet [CEA, until Feb 2016]
Tobias Grosser [Inria, until Aug 2014, granted by Google UK Ltd]
Adrien Guatto [ENS Paris]
Nhat Minh Lê [ENS Paris]
Robin Morisset [Inria]
Post-Doctoral Fellows
Pejman Attar [Inria, until Oct 2014, granted by ANR WMC]
Michael Kruse [ENS Paris, Min. de l'Economie]
Antoine Madet [Inria, until Jun 2014, granted by Min. de l'Economie]
Administrative Assistants
Anna Bednarik [Inria, until Oct. 2014]
Assia Saadi [Inria, from Oct. 2014]
Others
Quentin Bunel [Inria, Intern, from May 2014 until Jul 2014]
Yabin Hu [China Nat. Univ. of Defense and Technology, Intern, from Jun 2014 until Aug 2014]
Abhishek Jain [Inria, Intern, from May 2014]
Vijay Keswani [Inria, Intern, from May 2014 until Jul 2014]
Siddharth Prusty [Inria, Intern, from May 2014 until Jul 2014]
Basile Clément [ENS Paris, from Mar 2014]
Louis Mandel [IBM Watson, USA]

 Overall Objectives

 	
 Overall Objectives

 Section:
 Overall Objectives

 Overall Objectives

 The goal of the project is the design, semantics and compilation of
languages for the implementation of provably safe and efficient
computing systems. We are driven by the ideal of a unique source code
used both to program and simulate a wide variety of
systems, including (1) embedded real-time controllers (e.g.,
fly-by-wire, engine control); (2) computationally intensive
applications (e.g., video); (3) the
simulation of (a possibly huge number of) embedded systems in close
interaction (e.g., simulation of electrical or sensor
networks, train tracking). All these applications share the need for
formally defined languages used both for simulation and the generation
of target code.
For that purpose, we design languages and experiment with compilers that
transform mathematical specifications of systems into target code, that
may execute on parallel (multi-core) architectures.

 Our research team draws inspiration and focus from the simplicity and
complementarity of the data-flow model of Kahn process
networks, synchronous concurrency,
and the expression of the two in functional
languages. To reach our goal, we plan to
leverage a large body of formal principles: language design,
semantics, type theory, concurrency models (including recent works on
the formalisation of relaxed memory models), synchronous circuits and
algorithms (code generation, optimization, polyhedral compilation).

 Research Program

 	Research Program	Presentation and originality
of the PARKAS team

 Section:
 Research Program

 Presentation and originality
of the PARKAS team

 Our project is founded on our expertise in three complementary
domains: (1) synchronous functional programming and its extensions
to deal with features such as communication with bounded buffers and
dynamic process creation; (2) mathematical models for synchronous
circuits; (3) compilation techniques for synchronous languages and
optimizing/parallelizing compilers.

 A strong point of the team is its experience and investment in the
development of languages and compilers. Members of the team also
have direct collaborations for several years with major industrial
companies in the field and several of our results are integrated in
successful products. Our main results are briefly summarized below.

 Synchronous functional programming

 In [30] , Paul Caspi and Marc Pouzet introduced
synchronous Kahn networks as those Kahn networks that can be
statically scheduled and executed with bounded buffers. This was the
origin of the language
Lucid Synchrone , (http://www.di.ens.fr/~pouzet/lucid-synchrone) (The
name is a reference to Lustre which stands for “Lucid Synchrone
et Temps réel”.) an ML extension of the synchronous language
Lustre with higher-order features, dedicated type systems (clock
calculus as a type system [30] , [41] ,
initialization analysis [42] and causality
analysis [44]). The language integrates original
features that are not found in other synchronous languages: such as
combinations of data flow, control flow, hierarchical automata and
signals [40] , [39] , and modular code
generation [31] , [26] .

 In 2000, Marc Pouzet started to collaborate with the SCADE team of
Esterel-Technologies on the design of a new version of
SCADE. (http://www.esterel-technologies.com/products/scade-suite/)
Several features of Lucid Synchrone are now integrated into Scade 6, which
has been distributed since 2008, including the programming
constructs merge , reset , the clock calculus and the
type system. Several results have been developed jointly with
Jean-Louis Colaço and Bruno Pagano from Esterel-Technologies,
such as ways of combining data-flow and hierarchical automata, and
techniques for their compilation, initialization analysis, etc.

 Dassault-Systèmes (Grenoble R&D center, part of
Delmia-automation) developed the language LCM , a variant of Lucid Synchrone
that is used for the simulation of factories. LCM follows closely
the principles and programming constructs of Lucid Synchrone (higher-order,
type inference, mix of data-flow and hierarchical automata). The
team in Grenoble is integrating this development into a new compiler
for the language
Modelica. (http://www.3ds.com/products/catia/portfolio/dymola/overview/)

 In parallel, the goal of ReactiveML (http://rml.lri.fr/) was
to integrate a synchronous concurrency model into an existing ML
language, with no restrictions on expressiveness, so as to program a
large class of reactive systems, including efficient simulations of
millions of communicating processes (e.g., sensor networks), video
games with many interactions, physical simulations, etc. For such
applications, the synchronous model simplifies system design and
implementation, but the expressiveness of the algorithmic part of
the language is just as essential, as is the ability to create or
stop a process dynamically.

 The development of ReactiveML was started by Louis Mandel during his PhD
thesis [55] , [53] and is ongoing. The
language extends Ocaml (More precisely a subset of Ocaml
without objects or functors.) with Esterel-like synchronous
primitives — synchronous composition, broadcast communication,
pre-emption/suspension — applying the solution of
Boussinot [27] to solve causality issues.

 Several open problems have been solved by Louis Mandel: the
interaction between ML features (higher-order) and reactive
constructs with a proper type system; efficient simulation that
avoids busy waiting. The latter problem is particularly difficult in
synchronous languages because of possible reactions to the absence
of a signal. In the ReactiveML implementation, there is no busy
waiting: inactive processes have no impact on the overall
performance. It turns out that this enables ReactiveML to simulate
millions of (logical) parallel processes and to compete with the
best event-driven simulators [56] .

 ReactiveML has been used for simulating routing protocols in ad-hoc
networks [52] and large scale sensor
networks [67] . The designer benefits from a real
programming language that gives precise control of the level of
simulation (e.g., each network layer up to the MAC layer) and
programs can be connected to models of the physical environment
programmed with Lutin [66] . ReactiveML is used since
2006 by the synchronous team at VERIMAG, Grenoble (in collaboration
with France-Telecom) for the development of low-consumption routing
protocols in sensor networks.

 Relaxing synchrony with buffer communication

 In the data-flow synchronous model, the clock calculus is a static
analysis that ensures execution in bounded memory. It checks that
the values produced by a node are instantaneously consumed by
connected nodes (synchronous constraint). To program Kahn process
networks with bounded buffers (as in video applications), it is thus
necessary to explicitly place nodes that implement buffers. The
buffers sizes and the clocks at which data must be read or written
have to be computed manually. In practice, it is done with
simulation or successive tries and errors. This task is difficult
and error prone. The aim of the n-synchronous model is to
automatically compute at compile time these values while insuring
the absence of deadlock.

 Technically, it allows processes to be composed whenever they can be
synchronized through a bounded
buffer [32] , [33] . The new flexibility is
obtained by relaxing the clock calculus by replacing the equality of
clocks by a sub-typing rule. The result is a more expressive
language which still offers the same guarantees as the original. The
first version of the model was based on clocks represented as
ultimately periodic binary words [73] . It was algorithmically
expensive and limited to periodic systems. In [37] ,
an abstraction mechanism is proposed which permits direct reasoning
on sets of clocks that are defined as a rational slope and two
shifts. An implementation of the n-synchronous model, named Lucy-n , was developed in 2009 [54] , as
was a formalization of the theory in Coq [38] . We
also worked on low-level compiler and runtime support to parallelize
the execution of relaxed synchronous systems, proposing a portable
intermediate language and runtime library called Erbium [57] .

 This work started as a collaboration between Marc Pouzet (LIP6,
Paris, then LRI and Inria Proval, Orsay), Marc Duranton (Philips
Research then NXP, Eindhoven), Albert Cohen (Inria Alchemy, Orsay)
and Christine Eisenbeis (Inria Alchemy, Orsay) on the real-time
programming of video stream applications in set-top boxes. It was
significantly extended by Louis Mandel and Florence Plateau during
her PhD thesis [61] (supervised by Marc
Pouzet and Louis Mandel). Low-level support has been investigated
with Cupertino Miranda, Philippe Dumont (Inria Alchemy, Orsay) and
Antoniu Pop (Mines ParisTech). Further directions of research and
experimentation have been and are being followed through the theses
of Léonard Gérard, Adrien Guatto and Nhat Minh Lê.

 Polyhedral compilation and optimizing compilers

 Despite decades of progress, the best parallelizing and optimizing
compilers still fail to extract parallelism and to perform the
necessary optimizations to harness multi-core processors and their
complex memory hierarchies. Polyhedral compilation aims at
facilitating the construction of more effective optimization and
parallelization algorithms. It captures the flow of data between
individual instances of statements in a loop nest, allowing to
accurately model the behavior of the program and represent complex
parallelizing and optimizing transformations. Affine
multidimensional scheduling is one of the main tools in polyhedral
compilation [45] . Albert Cohen, in collaboration with
Cédric Bastoul, Sylvain Girbal, Nicolas Vasilache, Louis-Noël
Pouchet and Konrad Trifunovic (LRI and Inria Alchemy, Orsay) has
contributed to a large number of research, development and transfer
activities in this area.

 The relation between polyhedral compilation and data-flow synchrony
has been identified through data-flow array
languages [51] , [50] , [68] , [46] and the study of the
scheduling and mapping algorithms for these languages. We would like
to deepen the exploration of this link, embedding polyhedral
techniques into the compilation flow of data-flow, relaxed
synchronous languages.

 Our previous work led to the design of a theoretical and algorithmic
framework rooted in the polyhedral model of compilation, and to the
implementation of a set of tools based on production compilers
(Open64, GCC) and source-to-source prototypes (PoCC,
http://pocc.sourceforge.net). We have shown that not only does
this framework simplify the problem of building complex loop nest
optimizations, but also that it scales to real-world
benchmarks [34] , [47] , [64] , [63] . The polyhedral model has
finally evolved into a mature, production-ready approach to solve
the challenges of maximizing the scalability and efficiency of
loop-based computations on a variety of high performance and
embedded targets.

 After an initial experiment with Open64 [35] , [34] , we
ported these techniques to GCC [62] , [70] , [69] and
LLVM [49] , applying them to
multi-level parallelization and optimization problems, including
vectorization and exploitation of thread-level
parallelism. Independently, we made significant progress in the
design of effective optimization heuristics, working on the
interactions between the semantics of the compiler's intermediate
representation and the structure of the optimization space
[64] , [63] , [65] , [23] , [60] .
These results open opportunities for complex optimizations that
target larger problems, such as the scheduling and placement of
process networks, or the offloading of computational kernels to
hardware accelerators (such as GPUs). A new framework has been
designed, centered on the Integer Set Library (isl,
http://freecode.com/projects/isl) and implemented
through multiple compiler interfaces (Graphite in GCC, Polly in
LLVM) and a source-to-source research compiler (PPCG)
[72] , [36] , [48] , [71] . This
new framework underlies our collaborative research activities in the
CARP and COPCAMS European projects, as well as emerging transfer
projects through the TETRACOM European coordination action and
bilateral industry contracts in preparation.

 Automatic compilation of high performance circuits

 For both cost and performance reasons, computing systems tightly
couple parts realized in hardware with parts realized in software.
The boundary between hardware and software keeps moving with the
underlying technology and the external economic pressure. Moreover,
thanks to FPGA technology, hardware itself has become programmable.
There is now a pressing need from industry for hardware/software
co-design, and for tools which automatically turn software code into
hardware circuits, or more usually, into hybrid code that
simultaneously targets GPUs, multiple cores, encryption ASICs, and
other specialized chips.

 Departing from customary C-to-VHDL compilation, we trust that
sharper results can be achieved from source programs that specify
bit-wise time/space behavior in a rigorous synchronous language,
rather than just the I/O behavior in some (ill-specified) subset of
C. This specification allows the designer to also program the
(asynchronous) environment in which to operate the entire system,
and to profile/measure/control each variable of the design.

 At any time, the designer can edit a single specification of the
system, from which both the software and the hardware are
automatically compiled, and guaranteed to be compatible. Once
correct (functionally and with respect to the behavioral
specification), the application can be automatically deployed (and
tested) on a hard/soft hybrid co-design support.

 Key aspects of the advocated methodology were validated by Jean
Vuillemin in the design of a PAL2HDTV video
sampler [58] , [59] . The circuit was automatically compiled from
a synchronous source specification, decorated and guided by a few
key hints to the hardware back-end, that targetted an FPGA running
at real-time video specifications: a tightly-packed highly-efficient
design at 240MHz, generated 100% automatically from the application
specification source code, and including all
run-time/debug/test/validate ancillary software. It was subsequently
commercialized on FPGA by LetItWave, and then on ASIC by Zoran. This
successful experience underlines our research perspectives on
parallel synchronous programming.

 Application Domains

 	Application Domains	Provably safe and efficient computing systems

 Section:
 Application Domains

 Provably safe and efficient computing systems

 The project addresses the design, semantics and implementation of
programming languages together with compilation techniques to develop
provably safe and efficient computing systems. Traditional
applications can be found in safety critical embedded systems with
hard real-time constraints such as avionics (e.g., fly-by-wire
command), railways (e.g., on board control, engine control), nuclear
plants (e.g., emergency control of the plant). While embedded
applications have been centralized, they are now massively parallel
and physically distributed (e.g., sensor networks, train tracking,
distributed simulation of factories) and they integrate
computationally intensive algorithms (e.g., video processing) with a
mix of hard and soft real-time constraints. Finally, systems are
heterogeneous with discrete devices communicating with physical ones
(e.g., interface between analog and digital circuits). Programming and
simulating a whole system from a unique source code, with static
guarantees on the reproducibility of simulations together with a
compiler to generate target embedded code is a scientific and
industrial challenge of great importance.

 New Software and Platforms

 	New Software and Platforms	Lucid Synchrone
	ReactiveML
	Heptagon
	Lucy-n: an n-synchronous data-flow programming language
	ML-Sundials
	Zélus
	GCC
	isl
	ppcg
	Tool support for the working semanticist
	Cmmtest: a tool for hunting concurrency compiler bugs

 Section:
 New Software and Platforms

 Lucid Synchrone

 Participant :
	Marc Pouzet [contact] .

 Synchronous languages, type and clock inference, causality analysis,
compilation

 Lucid Synchrone is a language for the implementation
of reactive systems. It is based on the synchronous model of time as
provided by Lustre combined with features from ML languages. It
provides powerful extensions such as type and clock inference,
type-based causality and initialization analysis and allows to
arbitrarily mix data-flow systems and hierarchical automata or flows
and valued signals.

 It is distributed under binary form, at URL
http://www.di.ens.fr/~pouzet/lucid-synchrone/ .

 The language was used, from 1996 to 2006 as a laboratory to
experiment various extensions of the language Lustre. Several
programming constructs (e.g. merge, last, mix of data-flow and
control-structures like automata), type-based program analysis
(e.g., typing, clock calculus) and compilation methods, originaly
introduced in Lucid Synchrone are now integrated in the new SCADE 6
compiler developped at Esterel-Technologies and commercialized since 2008.

 Three major release of the language has been done and the current
version is V3 (dev. in 2006). As of 2014, the language is still used for
teaching and in our research but we do not develop it
anymore. Nonetheless, we have integrated several features from Lucid
Synchrone in new research prototypes described below. The Heptagon
language and compiler are a direct descendent of it. The new language
Zélus for hybrid systems modeling borrows many features
originaly introduced in Lucid Synchrone.

 Section:
 New Software and Platforms

 ReactiveML

 Participant :
	Guillaume Baudart [contact] .

 Programming language, synchronous reactive programming, concurrent
systems, dedicated type-systems.

 With Louis Mandel (IBM Watson, USA) and Cédric Pasteur.

 ReactiveML is a programming language dedicated to the implementation
of interactive systems as found in graphical user interfaces, video
games or simulation problems. ReactiveML is based on the synchronous
reactive model due to Boussinot, embedded in an ML language (OCaml).

 The Synchronous reactive model provides synchronous parallel
composition and dynamic features like the dynamic creation of
processes. In ReactiveML, the reactive model is integrated at the
language level (not as a library) which leads to a safer and a more
natural programming paradigm.

 ReactiveML is distributed at URL http://reactiveml.org . The compiler
is distributed under the terms of the Q Public License and the library
is distributed under the terms of the GNU Library General Public
License. The development of ReactiveML started at the University
Paris 6 (from 2002 to 2006).

 The language was mainly used for the simulation of mobile ad hoc
networks at the Pierre and Marie Curie University and for the
simulation of sensor networks at France Telecom and Verimag (CNRS,
Grenoble). A new application to mixed music programming has been
developed.

 Section:
 New Software and Platforms

 Heptagon

 Participants :
	Adrien Guatto, Marc Pouzet [contact] .

 Synchronous languages, compilation, optimizing compilation,
parallel code generation, behavioral synthesis.

 With Cédric Pasteur, Léonard Gérard, and Brice Gelineau.

 Heptagon is an experimental language for the implementation of
embedded real-time reactive systems. It is developed inside the
Synchronics large-scale initiative, in collaboration with Inria
Rhones-Alpes. It is essentially a subset of Lucid Synchrone, without
type inference, type polymorphism and higher-order. It is thus a
Lustre-like language extended with hierchical automata in a form
very close to SCADE 6. The
intention for making this new language and compiler is to develop
new aggressive optimization techniques for sequential C code and
compilation methods for generating parallel code for different
platforms. This explains much of the simplifications we have made in
order to ease the development of compilation techniques.

 Some extensions have already been made, most notably automata, a
parallel code generator with Futures, support for correct and
efficient in-place array computations. It's currently used to
experiment with linear typing for arrays and also to introduce a
concept of asynchronous parallel computations. The compiler
developed in our team generates C, C++, java and VHDL code.

 Transfer activities based on our experience in Heptagon are taking
place through the “Fiabilité and Sûreté de Fonctionnement” project
at IRT SystemX, led by Alstom Transport, since 2013.

 Heptagon is jointly developed with Gwenael Delaval and Alain Girault
from the Inria POP ART team (Grenoble). Gwenael Delaval is developing
the controller synthesis tool BZR (http://bzr.inria.fr/)
above Heptagon. Both software
are distributed under a GPL licence.

 Section:
 New Software and Platforms

 Lucy-n: an n-synchronous data-flow programming language

 Participants :
	Albert Cohen, Adrien Guatto, Marc Pouzet.

 With Louis Mandel (IBM Watson, USA).

 Lucy-n is a language to program in the n-synchronous model. The
language is similar to Lustre with a buffer construct. The Lucy-n
compiler ensures that programs can be executed in bounded memory and
automatically computes buffer sizes. Hence this language allows to
program Kahn networks, the compiler being able to statically compute
bounds for all FIFOs in the program.

 The language compiler and associated tools are available in a binary
form at http://www.lri.fr/~mandel/lucy-n .

 In 2013, a complete re-implementation has been started. This new
version will take into account the new features developed during the
PhD of Adrien Guatto. Parallel code generation for this new version
also involves compilation and runtime system research in collaboration
with Nhat Minh Lê and Robin Morisset.

 Section:
 New Software and Platforms

 ML-Sundials

 Participants :
	Timothy Bourke, Jun Inoue, Marc Pouzet [contact] .

 Sundials/ML is a comprehensive OCaml interface to the Sundials suite of
numerical solvers (CVODE, CVODES, IDA, IDAS, KINSOL). Its structure mostly
follows that of the Sundials library, both for ease of reading the existing
documentation and for adapting existing source code, but several changes
have been made for programming convenience and to increase safety, namely:

 	
 solver sessions are mostly configured via algebraic data types rather than
multiple function calls;

 	
 errors are signalled by exceptions not return codes (also from user-supplied
callback routines);

 	
 user data is shared between callback routines via closures (partial
applications of functions);

 	
 vectors are checked for compatibility (using a combination of static and
dynamic checks); and

 	
 explicit free commands are not necessary since OCaml is a
garbage-collected language.

 OCaml versions of the standard examples usually have an overhead of about
50% compared to the original C versions, and almost never more than 100%.

 The current version of Sundials/ML comprises about 30,000 lines of OCaml
(plus 10,000 lines of api documentation) and 12,000 lines of C (plus 1000
lines of commentary). In comparison to our previous development (called
ML-Sundials), the current version includes a major rewrite of the
`nvector' interface to allow easier generalisation to parallel and
custom vectors (both of which have now been implemented), a rewrite of the
linear solver interfaces, a redesign of the linear solver interface (now
including the ability to specify linear solvers in OCaml), and the inclusion
of the CVODES and IDAS solvers.

 Sundials/ML allows the use of the state-of-the-art Sundials numerical
simulation library from OCaml programs. We use it within PARKAS for the
Zélus compiler (documented elsewhere) and our ongoing experiments with
Modelica. The binding is, however, complete and general purpose. It can
potentially replace the less complete libraries underlying three or four
open source projects.

 The Sundials/ML source code has now been released under a BSD-3 license. It
is available on github
and through
opam .

 Section:
 New Software and Platforms

 Zélus

 Participants :
	Timothy Bourke, Marc Pouzet [contact] .

 Zélus is a new programming language for hybrid system modeling. It is
based on a synchronous language but extends it with Ordinary
Differential Equations (ODEs) to model continuous-time behaviors. It allows
for combining arbitrarily data-flow equations, hierarchical automata and
ODEs. The language keeps all the fundamental features
of synchronous languages: the compiler statically ensure the absence
of deadlocks and critical races; it is able to generate statically scheduled
code running in bounded time and space and a type-system is used to
distinguish discrete and logical-time signals from continuous-time ones.
The ability to combines
those features with ODEs made the language usable both for programming discrete
controllers and their physical environment.

 The Zélus implementation has two main parts: a compiler that transforms
Zélus programs into OCaml programs and a runtime library that orchestrates
compiled programs and numeric solvers. The runtime can use the Sundials
numeric solver, or custom implementations of well-known algorithms for
numerically approximating continuous dynamics.

 This year we reimplemented several basic numeric solver algorithms
after a careful analysis of the Simulink versions together with the
binding to SUNDIALS CVODE. This was necessary to enable detailed
comparsions between our tool and Simulink (the de facto
industrial standard in this domain). We also improved the algorithm
for zero-crossing detection, simplified and streamlined the
back-end interface.

 We developed several new examples to aid in the development,
debugging, and dissemination of our work together with various talks
and demonstrations. These included a simple
backhoe model (which served as a introducing example in the HSCC
paper), an adaptive control example from
Astrom and Wittenmark's text, and a model of Zeno behaviour based on a
zig-zagging object (presented at Synchron).

 Zélus was been released officially in 2013 with several complete
documented examples on http://zelus.di.ens.fr . Work continued in
2014 with many refinements to the compilation passes. The runtime has
also been improved and simplified.

 Section:
 New Software and Platforms

 GCC

 Participants :
	Albert Cohen [contact] , Tobias Grosser, Feng Li, Riyadh Baghdadi, Nhat Minh Lê.

 Compilation, optimizing compilation, parallel data-flow programming
automatic parallelization, polyhedral compilation.

http://gcc.gnu.org

 Licence: GPLv3+ and LGPLv3+

 The GNU Compiler Collection includes front ends for C, C++,
Objective-C, Fortran, Java, Ada, and Go, as well as libraries for
these languages (libstdc++, libgcj,...). GCC was originally written
as the compiler for the GNU operating system. The GNU system was
developed to be 100% free software, free in the sense that it
respects the user's freedom.

 PARKAS contributes to the polyhedral compilation framework, also
known as Graphite. We also distribute an experimental branch for a
stream-programming extension of OpenMP called OpenStream (used in
numerous research activites and grants). This effort borrows key
design elements to synchronous data-flow languages.

 Tobias Grosser is one of main contributors of the Graphite
optimization pass of GCC.

 Section:
 New Software and Platforms

 isl

 Participants :
	Sven Verdoolaege [contact] , Tobias Grosser, Albert Cohen.

 Presburger arithmetic, integer linear programming, polyhedral library,
automatic parallelization, polyhedral compilation.

http://freshmeat.net/projects/isl

 Licence: MIT

 isl is a library for manipulating sets and relations of integer
points bounded by linear constraints. Supported operations on sets
include intersection, union, set difference, emptiness check, convex
hull, (integer) affine hull, integer projection, transitive closure
(and over-approximation), computing the lexicographic minimum using
parametric integer programming. It includes an ILP solver based on
generalized basis reduction, and a new polyhedral code
generator. isl also supports affine transformations for polyhedral
compilation, and increasingly abstract representations to model
source and intermediate code in a polyhedral framework.

 isl has become the de-facto standard for every recent polyhedral
compilation project. Thanks to a license change from LGPL to MIT,
its adoption is also picking up in industry.

 Section:
 New Software and Platforms

 ppcg

 Participants :
	Sven Verdoolaege [contact] , Tobias Grosser, Riyadh Baghdadi, Albert Cohen.

 Presburger arithmetic, integer linear programming, polyhedral library,
automatic parallelization, polyhedral compilation.

http://freshmeat.net/projects/ppcg

 Licence: MIT

 More tools are being developed, based on isl. PPCG is our
source-to-source research tool for automatic parallelization in the
polyhedral model. It serves as a test bed for many compilation
algorithms and heuristics published by our group, and is currently
the best automatic parallelizer for CUDA and OpenCL (on the
Polybench suite).

 Section:
 New Software and Platforms

 Tool support for the working semanticist

 Participants :
	Basile Clément, Francesco Zappa Nardelli [contact] .

 Languages, semantics, tool support, theorem prouvers.

 We are working on tools to support large scale semantic definitions,
for programming languages and architecture specifications. For that
we develop two complementary tools, Ott and Lem.

 Ott is a tool for writing definitions of programming languages and
calculi. It takes as input a definition of a language syntax and semantics, in
a concise and readable ASCII notation that is close to what one would
write in informal mathematics. It generates output:

 	
 a LaTeX source file that defines commands to build a typeset
version of the definition;

 	
 a Coq version of the definition;

 	
 an Isabelle version of the definition; and

 	
 a HOL version of the definition.

 Additionally, it can be run as a filter, taking a
LaTeX/Coq/Isabelle/HOL source file with embedded (symbolic) terms
of the defined language, parsing them and replacing them by typeset
terms.

 The main goal of the Ott tool is to support work on large programming
language definitions, where the scale makes it hard to keep a
definition internally consistent, and to keep a tight correspondence
between a definition and implementations. We also wish to ease rapid
prototyping work with smaller calculi, and to make it easier to
exchange definitions and definition fragments between groups. The
theorem-prover backends should enable a smooth transition between use
of informal and formal mathematics.

 Lem is a lightweight tool for writing, managing, and publishing large
scale semantic definitions. It is also intended as an intermediate
language for generating definitions from domain-specific tools, and
for porting definitions between interactive theorem proving systems
(such as Coq, HOL4, and Isabelle). As such it is a complementary tool
to Ott. Lem resembles a pure subset of Objective Caml, supporting typical
functional programming constructs, including top-level parametric
polymorphism, datatypes, records, higher-order functions, and pattern
matching. It also supports common logical mechanisms including list
and set comprehensions, universal and existential quantifiers, and
inductively defined relations. From this, Lem generates OCaml, HOL4, Coq,
and Isabelle code.

 In collaboration with Peter Sewell (Cambridge University) and Scott
Owens (University of Kent).

 The current version of Ott is about 30000 lines of OCaml. The tool is
available from http://moscova.inria.fr/~zappa/software/ott (BSD
licence). It is widely used in the scientific community.

 The development version of Lem is available from
http://www.cs.kent.ac.uk/people/staff/sao/lem/ .

 In addition to the usual bug-fixes, in 2014 we have investigated
several approaches to interactively explore a semantics definition,
with the aim of building a toolbox to debug operational semantics and
to attempt to falsify expected properties. This code is not yet released.

 Section:
 New Software and Platforms

 Cmmtest: a tool for hunting concurrency compiler bugs

 Participants :
	Francesco Zappa Nardelli [contact] , Robin Morisset, Pejman Attar.

 Languages, concurrency, memory models, C11/C++11, compiler, bugs.

 The Cmmtest tool performs random testing of C and C++ compilers
against the C11/C++11 memory model. A test case is any well-defined,
sequential C program; for each test case, cmmtest:

 	
 compiles the program using the compiler and compiler
optimisations that are being tested;

 	
 runs the compiled program in an instrumented execution environment that logs all memory accesses to global variables and synchronisations;

 	
 compares the recorded trace with a reference trace for the same program, checking if the recorded trace can be obtained from the reference trace by valid eliminations, reorderings and introductions.

 Cmmtest identified several mistaken write introductions and other
unexpected behaviours in the latest release of the gcc compiler.
These have been promptly fixed by the gcc developers.

 Cmmtest is available from
http://www.di.ens.fr/~zappa/projects/cmmtest/ and a list of bugs
reported thanks to cmmtest is available from
http://www.di.ens.fr/~zappa/projects/cmmtest/gcc-bugs.html .

 In 2014 Cmmtest has been used by the ThreadSanitizer team at Google to
debug some subtle false positive race reports, due to the compiler
introducing memory accesses.

 New Results

 	New Results	Highlights of the Year
	Quasi-synchrony
	Hybrid Synchronous Languages
	Fidelity in Real-Time Programming
	Mechanization of AODV loop freedom proof
	Reasoning about C11 Program Transformations
	Language design on top of JavaScript
	Tiling for Stencils
	Portable representation for polyhedral compilation
	Correct and efficient runtime systems
	A Functional Synchronous
Language with Integer Clocks

 Section:
 New Results

 Highlights of the Year

 The paper ReactiveML, a reactive extension to ML of Mandel and
Pouzet has been declared to be the most influential paper of
PPDP (Principles and Practice of Declaractive Programming) 2005. A
previous version of the paper, submitted to JFLA'05, has been declared
to be “une contribution marquante parmi les articles publiés aux
JFLA”.

 Section:
 New Results

 Quasi-synchrony

 Participants :
	Guillaume Baudart, Timothy Bourke, Marc Pouzet.

 We study the implementation of critical control applications on the
so-called quasi-periodic distributed architectures. These
architectures, used in civil avionics (e.g., Airbus A380), consist of
a collection of distributed processors running with
quasi-periodic clocks, that is, un-synchronized physical clocks
subject to bounded jitterring. The theory of quasi-synchrony has been
introduced by Paul Caspi in the 2000' [29] .
Loosely Time-Triggered Architectures (LTTA) denotes such architectures
with the prototocol used to implement a synchronous program on top of it.

 Over the last ten year two protocols were considered:
(1) Back-Pressure LTTA [25] based on
a acknowledgement mechanism reminiscent of elastic
circuit [43] . (2)
Time-Based
LTTA [28] which uses timing
constraints of the architecture to mimic a synchronous execution.

 During year 2014, we have entirelly reformulated the model of LTTA
using synchronous semantics and principles. Compared to previous
formalizations based on Petri
nets [24] , this new presentation is
is simpler and more uniform with the same theoretical model
used for both the application and the protocol ((1) or (2)). Moreover, it
is easier to consider mixed protocols (a whole application with part
based on time-based communication and others based on back-pressure).
Besides this, we also
proposed a new and more flexible Time-Based LTTA, allowing for
pipelining by not reconstructing global synchronization, unlike
what was done in previous Time-Based LTTA.

 Section:
 New Results

 Hybrid Synchronous Languages

 Participants :
	Guillaume Baudart, Timothy Bourke, Marc Pouzet.

 During year 2014, we mainly worked on two directions: (a)
the design and implementation of causality analysis for hybrid systems modelers;
(b) the design and implementation of a new compilation technique producing
imperative sequential code.

 This research is conducted in collaboration with Albert Benveniste and
Benoit Caillaud (Hycomes team at Inria, Rennes), Jean-Louis Colaco,
Cédric Pasteur and Bruno Pagano from the SCADE core team of
Esterel-Technologies/ANSYS.

 	Causality analysis

 	
 In this work, we address the static detection of causality
loops for a hybrid modeling language that
combines synchronous Lustre-like data-flow equations with Ordinary
Differential Equations (ODEs). We introduce the operator last(x)
for the left-limit of a signal x. This operator is used to break
causality loops and permits a uniform treatment of discrete and
continuous state variables. The semantics relies on non-standard
analysis, defining an execution as a sequence of infinitesimally small
steps. A signal is deemed causally correct when it can be
computed sequentially and only progresses by infinitesimal steps
outside of discrete events. The causality analysis takes the form of
a simple type system. In well-typed programs, signals are proved continuous
during integration.

 This analysis has been presented at [4]
and is fully implemented in the hybrid synchronous language Zélus.

 	A Synchronous-based Code Generator For Explicit
Hybrid Systems Languages

 	
 The generation of sequential code is important for simulations to be
efficient and to produce target embedded code. While sequential code
generation in hybrid modeling tools is routinely used for efficient
simulation, it is little or not used for producing target embedded
code in critical applications submitted to strong safety requirements.
This is a break in the development chain: parts of the applications
must be rewritten into either sequential or synchronous programs, and
all properties verified on the source model cannot be trusted and have
to be re-verified on the target code.

 In this work, we present a novel approach for the code generation of a
hybrid systems modeling language. By building on top of an existing
synchronous language and compiler, it reuses almost all the existing
infrastructure with only a few modifications.
Starting from an existing synchronous data-flow language extended with
Ordinary Differential Equations (ODEs), we detail the
translation to sequential code. The translation is expressed as a
sequence of source-to-source transformations. A generic intermediate
language is introduced to represent transition functions which are
turned into C code. The versatility of the compiler organisation is
illustrated by considering two classical targets: generation of
simulation code complying with the FMI standard and linking with an
off-the-shelf numerical solver (Sundials CVODE).

 This new code generation has been implemented in two different
compilers: the Zélus research prototype and the industrial SCADE Suite KCG code generator, at Esterel-Technologies/ANSYS.
Here, SCADE is conservatively extended with ODEs, following previous
works by Benveniste et al. and implemented in Zélus. In the SCADE
compiler, it was possible to reuse almost all the existing
infrastructure like static checking, intermediate languages, and
optimisations, with few modifications. The extension to account for
hybrid features represents only 5% additional lines of code, which is
surprisingly low. Moreover, the proposed language extension is
conservative in that regular synchronous functions are compiled as
before—the same synchronous code is used both for simulation and for
execution on target platforms.

 This full-scale validation confirm the interest in building a hybrid
systems modeler on top of a existing synchronous language. Moreover,
the precise definition of code generation, built on a proven compiler
infrastructure of a synchronous language avoids the rewriting of
control software and may also increase the confidence in what is
simulated.

 This work will be presented at the International Conference on
Compiler Construction (CC), in April 2015.

 Section:
 New Results

 Fidelity in Real-Time Programming

 Participants :
	Guillaume Baudart, Timothy Bourke.

 Synchronous languages are a rigorous approach to programming, analyzing, and
implementing embedded systems.
Real-time aspects are typically handled by discretizing time using either
(implicit) ticks or (explicit) named signals, and later verifying that
the (necessarily bounded) execution time of a reaction is strictly less than
the period of the fastest timing signal.
This approach has many advantages: it separates logical behaviour from
implementation concerns, yields a simple and precise programming model, and
abstracts from eventual run-time environments.
For an important subclass of embedded protocols and controllers, however,
we believe it advantageous to add constructions that deal more concretely
with real-time constraints.

 We are pursuing these ideas in the enriched timing model provided by the
Zélus programming language (detailed elsewhere). We continue to study the
extension and application of this language to the modelling, simulation,
analysis, and implementation of real-time embedded software.

 This year we developed three case studies: quasi-synchronous architectures
(from last year), loosely time-triggered architectures (detailed elsewhere),
and a small embedded controller. These case studies motivate and drive our
research and implicitly define the subclass of embedded systems that we aim
to treat. They have each been modelled in Zélus and can be simulated with
the existing compiler.

 We made progress on defining a subset of Zélus that is ammenable to
discretization techniques for more flexible simulation. A first version of
an appropriate algorithm has been sketched and partially implemented. Work
continues on developing it with the idea of incorporating it into the Zélus
compiler and using it to treat our case studies.

 Section:
 New Results

 Mechanization of AODV loop freedom proof

 Participant :
	Timothy Bourke.

 The Ad hoc On demand Distance Vector (AODV) routing protocol is described in
RFC3561. It allows the nodes in a Mobile Ad hoc Network (MANET) to know
where to forward messages so that they eventually reach their destinations.
The nodes of such networks are reactive systems that cooperate to
provide a global service (the sending of messages from node to node)
satisfying certain correctness properties (namely `loop freedom'—that
messages are never sent in circles).

 This year I finalized both the framework for network invariant
proofs [20] and its application to the AODV
protocol [21] and submitted them for inclusion in the
Archive of Formal Proof, an online and open-source repository of
formal developements in the Isabelle proof assistant (indexed as a journal).
I presented results on the framework at the Vienna `Summer of
Logic' [6] and my colleagues presented the
application in Sydney [5] .
Together with an intern at NICTA and Sydney, my colleagues and I made
preliminary investigations into extending the framework and model with
timing details.
A journal version of the ITP paper has been submitted.

 In collaboration with Peter Höfner (NICTA) and Robert J. van Glabbeek
(UNSW/NICTA).

 Section:
 New Results

 Reasoning about C11 Program Transformations

 Participants :
	Francesco Zappa Nardelli, Thibaut Balabonski, Robin Morisset.

 We have shown that the weak memory model introduced by the 2011 C and
C++ standards does not permit many of common source-to-source program
transformations (such as expression linearisation and "roach motel"
reordering) that modern compilers perform and that are deemed to be
correct. As such it cannot be used to define the semantics of
intermediate languages of compilers, as, for instance, LLVM aimed
to. We consider a number of possible local fixes, some strengthening
and some weakening the model. We have evaluated the proposed fixes by
determining which program transformations are valid with respect to
each of the patched models. We have provided formal Coq proofs of their
correctness or counterexamples as appropriate.

 A paper on this work has been accepted
in [13] . In collaboration with Viktor
Vafeiadis (MPI-SWS, Germany).

 Section:
 New Results

 Language design on top of JavaScript

 Participant :
	Francesco Zappa Nardelli.

 This research project aims at improving the design of the JavaScript
language. In [22] we propose a typed
extension of JavaScript combining dynamic types, concrete types and
like types to let developers pick the level of guarantee that is
appropriate for their code. We have implemented our type system and we
have explored the performance and software engineering benefits.

 With Gregor Richards and Jan Vitek (Purdue University).

 Section:
 New Results

 Tiling for Stencils

 Participants :
	Tobias Grosser, Sven Verdoolaege, Albert Cohen.

 This research project aims with optimizing time-iterated stencil operations.

 Iterative stencil computations are important in scientific computing
and more and more also in the embedded and mobile domain. Recent
publications have shown that tiling schemes that ensure concurrent
start provide efficient ways to execute these kernels. Diamond
tiling and hybrid-hexagonal tiling are two tiling schemes that
enable concurrent start. Both have different advantages: diamond
tiling has been integrated in a general purpose optimization
framework and uses a cost function to choose among tiling
hyperplanes, whereas the greater flexibility with tile sizes for
hybrid-hexagonal tiling has been exploited for effective generation
of GPU code.

 We undertook a comparative study of these two tiling approaches and
proposed a hybrid approach that combines them. We analyzed the
effects of tile size and wavefront choices on tile-level
parallelism, and formulate constraints for optimal diamond tile
shapes. We then extended, for the case of two dimensions, the diamond
tiling formulation into a hexagonal tiling one, which offers both
the flexibility of hexagonal tiling and the generality of the
original diamond tiling implementation. We also showed how to compute
tile sizes that maximize the compute-to-communication ratio, and
apply this result to compare the best achievable ratio and the
associated synchronization overhead for diamond and hexagonal
tiling.

 One particularly exciting result is the ability to apply tiling to
periodic data domains. These computations are prevalent in
computational sciences, particularly in partial differential
equation solvers. We proposed a fully automatic technique suitable
for implementation in a compiler or in a domain-specific code
generator for such computations. Dependence patterns on periodic
data domains prevent existing algorithms from finding tiling
opportunities. Our approach augments a state-of-the-art
parallelization and locality-enhancing algorithm from the polyhedral
framework to allow time-tiling of stencil computations on periodic
domains. Experimental results on the swim SPEC CPU2000fp benchmark
show a speedup of 5× and 4.2× over the highest SPEC
performance achieved by native compilers on Intel Xeon and AMD
Opteron multicore SMP systems, respectively. On other
representative stencil computations, our scheme provides performance
similar to that achieved with no periodicity, and a very high
speedup is obtained over the native compiler. We also report a mean
speedup of about 1.5× over a domain-specific stencil compiler
supporting limited cases of periodic boundary conditions.
To the best of our knowledge, it has been infeasible to manually reproduce
such optimizations on swim or any other periodic stencil,
especially on a data grid of two-dimensions or higher.

 These works resulted in a number of high-profile publications,
including a nommination for a best paper award, and culminated with
the PhD thesis defense of Tobias Grosser.

 Section:
 New Results

 Portable representation for polyhedral compilation

 Participants :
	Riyadh Baghdadi, Michael Kruse, Chandan Reddy, Tobias Grosser, Sven Verdoolaege, Albert Cohen.

 Programming accelerators such as GPUs with low-level APIs and
languages such as OpenCL and CUDA is difficult, error prone, and not
performance-portable. Automatic parallelization and domain specific
languages have been proposed to hide this complexity and to regain
some performance portability. We proposed PENCIL, a subset of GNU
C99 with specific programming rules. A compiler for a
Domain-Specific Language (DSL) may use it as a target language, a
domain expert may use it as a portable implementation language
facilitating the parallelization of real-world applications, and an
optimization expert may use PENCIL to accelerate legacy
applications.

 The design of PENCIL is simultaneously a key research result and a
milestone for parallelizing compiler engineering/design. Aspects of
its static-analysis-friendly, formal semantics are highly original,
for the language's ability to preserve expressiveness and modularity
without jeopardizing a (polyhedral) compiler's ability to perform
aggressive transformations. We validated its potential as a front-end
to a state-of-the-art polyhedral compiler, extending its
applicability to dynamic, data dependent control flow and non-affine
array accesses. We illustrated this PENCIL-enabled flow on the
generation of highly optimized OpenCL code, considering a set of
standard benchmarks (Rodinia and SHOC), image processing kernels,
and DSL embedding scenarios for linear algebra (BLAS) and signal
processing radar applications (SPEAR-DE). We ran experimental
results on a variety of platforms, including an AMD Radeon HD 5670
GPU, an Nvidia GTX470 GPU, and an ARM Mali-T604 GPU.

 This work is conducted in collaboration with partners from ARM,
RealEyes (a computer vision company) and Imperial College.

 Section:
 New Results

 Correct and efficient runtime systems

 Participants :
	Nhat Minh Lê, Robin Morisset, Adrien Guatto, Albert Cohen.

 Complementing our different compilation efforts for synchronous and
task-parallel data-flow languages, we studied the implementation of
Kahn process networks, a deterministic parallel programming model,
on shared memory multiprocessors. This model is based on a familiar
abstraction: blocking communication through bounded, in-order,
single-producer single-consumer queues.

 We proposed two novel algorithms that construct such blocking queues
on top of concurrent ring buffers and user-land scheduling
components. We implemented our algorithms in C11, taking advantage
of the relaxed memory model of the language, and prove the
correctness of this implementation.

 We used these algorithms in a complete runtime system for Kahn
process networks with applications ranging from linear algebra
kernels to stream computing. In particular, our implementations of
the Cholesky and LU factorizations outperform state-of-the-art
parallel linear algebra libraries on commodity x86 hardware.

 Section:
 New Results

 A Functional Synchronous
Language with Integer Clocks

 Participants :
	Adrien Guatto, Albert Cohen, Louis Mandel, Marc Pouzet.

 Synchronous languages in the vein of Lustre are first-order
functional languages dedicated to stream processing. Lustre
compilers use a type-like static analysis, the clock calculus, to
reject programs that cannot be implemented as finite state
machines. The broad idea is to assign to each element of a stream a
logical computation date in a global, discrete time scale. When this
analysis succeeds, the types obtained guide the code generation
phase of the compiler, which produces transition functions. In
practice, these functions consists in simple, bounded memory C code
featuring only assignments and conditional statements.

 This research work explores a variation on Lustre and its
compilation. Our proposal is twofold. First, we add a new construct
that creates a local time scale whose internal steps are invisible
from the outside. Second, we change the clock calculus to allow
several elements of a stream to be computed during the same time
step. The resulting type system comes with a soundness proof, which
relies on an elementary form of step-indexed realizability, and with
a code generation scheme adapted to the new setting, and featuring
nested loops in the target code.

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific events organisation

 General chair, scientific chair

 Albert Cohen was the general chair of PPoPP 2015, and will be the
general chair of PLDI 2017 (associated with ECRC).

 Scientific events selection

 Chair of conference program committee

 Albert Cohen was the program chair of CC 2014, the TPC chair of
the DAC 2014 ESS1 subcommittee, and the program chair of ARCS
2015.

 Member of the conference program committee

 Albert Cohen was a member of the PC of PLDI 2014, of the ERC
of PLDI 2015 and PACT 2015, of the ERC of ASPLOS 2014, PPoPP 2014
and ICS 2014.

 Marc Pouzet was a member of the PC of DAC (Design Automation
Conference) 2014, EOOLT (Equation-Based Object-Oriented Modeling
Languages and Tools) 2014, AFADL (Approches Formelles dans
l'Assistance au Développement de Logiciels) 2014.

 Francesco Zappa Nardelli was a member of the PC of PPoPP
(Principles and Practice of Concurrent Programming) 2014 and ESOP
(European symposium on programming) 2014.

 Journal

 Member of the editorial board

 Albert Cohen is an associate editor of ACM TACO and IJPP
(Springer).

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Master: A. Cohen: “Operating Systems Principles and Programming” (M1), 38h, École Polytechnique, France

 	
 Master: A. Cohen & F. Zappa Nardelli, “Semantics, languages and algorithms for multicore programming”, Lecture, 9h+14h, M2, MPRI: Ecole normale supérieure and Université Paris Diderot, France

 	
 Master : M. Pouzet & T. Bourke: “Synchronous Systems” (M2), Lectures and TDs, ENS, France

 	
 Licence: A. Cohen, “Components of a Computing System Introduction to Computer Architecture and Operating Systems” (L3), 44h, École Polytechnique, France

 	
 Licence : F. Zappa Nardelli: “Introduction à l'informatique” (L3), TDs, 40h, École Polytechnique, France

 	
 Licence : M. Pouzet: “Operating Systems” (L3), Lectures, ENS, France.

 	
 Licence : J. Vuillemin & T. Bourke, “Digital Systems”, Lectures and TDs, ENS, France

 	
 Marc Pouzet is Director of Studies for the CS department, at ENS.

 Supervision

 	
 HdR : F. Zappa Nardelli, Reasoning between programming languages and architectures, ENS, January 2014

 	
 PhD : F. Li, Compiling for a multithreaded dataflow architecture: algorithms, tools, and experience. Université Pierre et Marie Curie - Paris VI, May 2014

 	
 PhD in progress : Guillaume Baudart, 2nd year, supervised by T. Bourke and M. Pouzet

 	
 PhD in progress : Adrien Guatto, 4th year, supervised by T. Bourke and A. Cohen and M. Pouzet

 	
 PhD in progress : Robin Morisset, 2nd year, supervised by F. Zappa Nardelli

 	
 M2 Internship : Ulysse Beaugnon (MPRI), supervised by A. Cohen and M. Pouzet.

 	
 M2 Internship : Basile Clement (MPRI), supervised by A. Cohen and M. Pouzet.

 Juries

 	
 Albert Cohen was a reviewer in the PhD thesis committees of Jarryd
Beck (2015, U. New South Wales, Australia), Pranav Tendulkar (2014,
U. Grenoble), Cedric Nugteren (2014, T. U. Eindhoven, The Netherlands).

 	
 Albert Cohen was a president in the PhD thesis
committees of Sofiane Lagraa (2014, U. Grenoble), Bruno Bodin (2014,
UPMC).

 	
 Albert Cohen was examiner in the PhD thesis committee of
Victor Lomüller (2014, U. Grenoble).

 	
 Marc Pouzet was president of the Jury for the habilitation of Anne Bouillard, April 8, 2014.

 	
 Marc Pouzet was jury member of the PhD. thesis of Arlen Cox, Universtity of Colorado, Boulder, November 17, 2014.

 	
 Marc Pouzet was member of the committee for the AERES evaluation of the Lab. of SupAero (ISAE), Toulouse, Nov. 2014.

 	
 Marc Pouzet was member of the Prix de thèse du GDR GPL (Génie de la Programmation et du Logiciel).

 Section:
 Dissemination

 Popularization

 T. Bourke hosted a tutorial by Makarius Wenzel at ENS
Ulm on the Isabelle proof assistant.

 Bibliography

 Publications of the year

 Doctoral Dissertations and Habilitation Theses

 	[1]

 	F. Li.
Compiling for a multithreaded dataflow architecture : algorithms, tools, and experience, Université Pierre et Marie Curie - Paris VI, May 2014.
https://tel.archives-ouvertes.fr/tel-00992753

 	[2]

 	F. Zappa Nardelli.
Reasoning between Programming Languages and Architectures, ENS Paris - Ecole Normale Supérieure de Paris, January 2014, Habilitation à diriger des recherches.
https://hal.inria.fr/tel-01110117

 Articles in International Peer-Reviewed Journals

 	[3]

 	R. Giorgi, R. M. Badia, F. Bodin, A. Cohen, P. Evripidou, P. Faraboschi, B. Fechner, G. R. Gao, A. Garbade, R. Gayatri, S. Girbal, D. Goodman, B. Khan, S. Koliaï, J. Landwehr, N. Minh, F. Li, M. Lujàn, A. Mendelson, L. Morin, N. Navarro, T. Patejko, A. Pop, P. Trancoso, T. Ungerer, I. Watson, S. Weis, S. Zuckerman, M. Valero.
TERAFLUX: Harnessing dataflow in next generation teradevices, in: Microprocessors and Microsystems, 2014, pp. 976-990, Available online 18 April 2014. [
DOI : 10.1016/j.micpro.2014.04.001]
https://hal.inria.fr/hal-00992721

 International Conferences with Proceedings

 	[4]

 	A. Benveniste, B. Caillaud, B. Pagano, M. Pouzet.
A type-based analysis of causality loops in hybrid modelers, in: HSCC '14: International Conference on Hybrid Systems: Computation and Control, Berlin, Germany, Proceedings of the 17th international conference on Hybrid systems: computation and control (HSCC '14), ACM Press, April 2014, 13 p. [
DOI : 10.1145/2562059.2562125]
https://hal.inria.fr/hal-01093388

 	[5]

 	T. Bourke, R. J. van Glabbeek, P. Höfner.
A Mechanized Proof of Loop Freedom of the (Untimed) AODV Routing Protocol, in: ATVA 2014: Automated Technology for Verification and Analysis, Sydney, Australia, Lecture Notes in Computer Science, Springer, November 2014, vol. 8837, 17 p. [
DOI : 10.1007/978-3-319-11936-6_5]
https://hal.inria.fr/hal-01092360

 	[6]

 	T. Bourke, R. J. van Glabbeek, P. Höfner.
Showing Invariance Compositionally for a Process Algebra for Network Protocols, in: ITP 2014: Interactive Theorem Proving, Vienna, Austria, Lecture Notes in Computer Science, Springer, July 2014, vol. 8558, 16 p. [
DOI : 10.1007/978-3-319-08970-6_10]
https://hal.inria.fr/hal-01092348

 	[7]

 	A. Delpeuch, A. Preller.
From Natural Language to RDF Graphs with Pregroups, in: EACL'2014: 14th Conference of the European Chapter of the Association for Computational Linguistics, Gothenburg, Sweden, EACL, April 2014, pp. 55-62.
http://hal-lirmm.ccsd.cnrs.fr/lirmm-00992381

 	[8]

 	T. Grosser, A. Cohen, J. Holewinski, P. Sadayappan, S. Verdoolaege.
Hybrid Hexagonal/Classical Tiling for GPUs, in: Intl. Symp. on Code Generation and Optimization (CGO), Orlando, FL, United States, February 2014.
https://hal.inria.fr/hal-00911177

 	[9]

 	N. Hili, C. Fabre, S. Dupuy-Chessa, D. Rieu, I. Llopard.
Model-Based Platform Composition for Embedded System Design, in: 2014 IEEE 8th International Symposium on Embedded Multicore/Manycore SoCs, Aizu-Wakamatsu, Japan, University of Aizu, September 2014.
https://hal.inria.fr/hal-01071208

 	[10]

 	I. Llopard, A. Cohen, C. Fabre, N. Hili.
A Parallel Action Language for Embedded Applications and its Compilation Flow, in: 17th International Workshop on Software and Compilers for Embedded Systems, Sankt Goar, Germany, Proceedings of the 17th International Workshop on Software and Compilers for Embedded Systems, June 2014, pp. 118-127. [
DOI : 10.1145/2609248.2609257]
https://hal.inria.fr/hal-01001900

 	[11]

 	L. Mandel, C. Pasteur.
Reactivity of Cooperative Systems, in: Static Analysis (SAS), Munich, Germany, Lecture Notes in Computer Science, Springer, September 2014, vol. 8723, 17 p. [
DOI : 10.1007/978-3-319-10936-7_14]
https://hal.inria.fr/hal-01093169

 	[12]

 	K. Stock, M. Kong, T. Grosser, L.-N. Pouchet, F. Rastello, J. Ramanujam, P. Sadayappan.
A Framework for Enhancing Data Reuse via Associative Reordering, in: PLDI '14 - 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, Edinburgh, United Kingdom, ACM, June 2014, pp. 65-76. [
DOI : 10.1145/2594291.2594342]
https://hal.inria.fr/hal-01016093

 	[13]

 	V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, F. Zappa Nardelli.
Common compiler optimisations are invalid in the C11 memory model and what we can do about it, in: POPL 2015 - 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Mumbai, India, January 2015.
https://hal.inria.fr/hal-01089047

 	[14]

 	S. Verdoolaege, S. Guelton, T. Grosser, A. Cohen.
Schedule Trees, in: IMPACT - 4th Workshop on Polyhedral Compilation Techniques, associated with HiPEAC, Vienna, Austria, ACM, January 2014.
https://hal.inria.fr/hal-00911894

 National Conferences with Proceedings

 	[15]

 	A. Guatto, L. Mandel.
Réseaux de Kahn à rafales et horloges entières, in: JFLA 2014 - Vingt-cinquièmes Journées Francophones des Langages Applicatifs, Fréjus, France, January 2014.
https://hal.inria.fr/hal-00919281

 	[16]

 	L. Mandel, C. Pasteur.
Exécution efficace de programmes ReactiveML, in: JFLA 2014 - Vingt-cinquièmes Journées Francophones des Langages Applicatifs, Fréjus, France, January 2014.
https://hal.inria.fr/hal-00919271

 Internal Reports

 	[17]

 	G. Baudart, A. Benveniste, A. Bouillard, P. Caspi.
A Unifying View of Loosely Time-Triggered Architectures, March 2014, no RR-8494, 14 p.
https://hal.inria.fr/hal-00955496

 	[18]

 	A. Benveniste, T. Bourke, B. Caillaud, M. Pouzet.
On the index of multi-mode DAE Systems (also called Hybrid DAE Systems), Inria ; ENS, November 2014, no RR-8630, 30 p.
https://hal.inria.fr/hal-01084069

 	[19]

 	L. Mandel, C. Pasteur.
Reactivity of Cooperative Systems: Application to ReactiveML – extended version, June 2014, no RR-8549, 29 p.
https://hal.inria.fr/hal-01010349

 Other Publications

 	[20]

 	T. Bourke.
Mechanization of the Algebra for Wireless Networks (AWN), August 2014, 186 p, Entry in the Archive of Formal Proofs (ISSN: 2150-914x).
https://hal.inria.fr/hal-01104031

 	[21]

 	T. Bourke, P. Höfner.
Loop freedom of the (untimed) AODV routing protocol, October 2014, 496 p, Entry in the Archive of Formal Proofs (ISSN: 2150-914x).
https://hal.inria.fr/hal-01104033

 	[22]

 	G. Richards, F. Zappa Nardelli, J. Vitek.
Concrete Types for JavaScript, 2014, forthcoming.
https://hal.inria.fr/hal-00909092

 References in notes

 	[23]

 	R. Baghdadi, A. Cohen, S. Verdoolaege, K. Trifunović.
Improved Loop Tiling based on the Removal of Spurious False Dependences, in: ACM Transactions on Architecture and Code Optimization, 2013, vol. 9, no 4, Selected for presentation at the HiPEAC 2013 Conf. [
DOI : 10.1145/2400682.2400711]
https://hal.inria.fr/hal-00786674

 	[24]

 	A. Benveniste, A. Bouillard, P. Caspi.
A unifying view of loosely time-triggered architectures, in: EMSOFT, 2010, pp. 189–198.

 	[25]

 	A. Benveniste, P. Caspi, M. Di Natale, C. Pinello, A. Sangiovanni-Vincentelli, S. Tripakis.
Loosely time-triggered architectures based on communication-by-sampling, in: EMSOFT, 2007, pp. 231–239.

 	[26]

 	D. Biernacki, J.-L. Colaço, G. Hamon, M. Pouzet.
Clock-directed Modular Code Generation of Synchronous Data-flow Languages, in: ACM International Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), Tucson, Arizona, June 2008.

 	[27]

 	F. Boussinot, R. de Simone.
The SL synchronous language, in: IEEE Transaction on Software Engineering, 1996.

 	[28]

 	P. Caspi, A. Benveniste.
Time-robust discrete control over networked loosely time-triggered architectures, in: CDC, 2008, pp. 3595–3600.

 	[29]

 	P. Caspi.
The Quasi-Synchronous Approach to Distributed Control Systems, VERIMAG, Crysis Project, May 2000, no CMA/009931, The Cooking Book.

 	[30]

 	P. Caspi, M. Pouzet.
Synchronous Kahn Networks, in: ACM SIGPLAN International Conference on Functional Programming (ICFP), Philadelphia, Pensylvania, May 1996.

 	[31]

 	P. Caspi, M. Pouzet.
A Co-iterative Characterization of Synchronous Stream Functions, in: Coalgebraic Methods in Computer Science (CMCS'98), Electronic Notes in Theoretical Computer Science, March 1998, Extended version available as a VERIMAG tech. report no. 97–07.

 	[32]

 	A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, M. Pouzet.
Synchroning Periodic Clocks, in: ACM International Conference on Embedded Software (EMSOFT'05), Jersey city, New Jersey, USA, September 2005.

 	[33]

 	A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, M. Pouzet.
N-Synchronous Kahn Networks: a Relaxed Model of Synchrony for Real-Time Systems, in: ACM International Conference on Principles of Programming Languages (POPL'06), Charleston, South Carolina, USA, January 2006.

 	[34]

 	A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, N. Vasilache.
Facilitating the Search for Compositions of Program Transformations, in: Intl. Conf. on Supercomputing (ICS'05), Boston, Massachusetts, June 2005, pp. 151–160.

 	[35]

 	A. Cohen, S. Girbal, O. Temam.
A Polyhedral Approach to Ease the Composition of Program Transformations, in: Euro-Par'04, Pisa, Italy, LNCS, Springer-Verlag, August 2004, no 3149, pp. 292–303.

 	[36]

 	A. Cohen, T. Grosser, P. H. J. Kelly, J. Ramanujam, P. Sadayappan, S. Verdoolaege.
Split Tiling for GPUs: Automatic Parallelization Using Trapezoidal Tiles to Reconcile Parallelism and Locality, avoiding Divergence and Load Imbalance, in: GPGPU 6 - Sixth Workshop on General Purpose Processing Using GPUs, Houston, United States, March 2013.
https://hal.inria.fr/hal-00786812

 	[37]

 	A. Cohen, L. Mandel, F. Plateau, M. Pouzet.
Abstraction of Clocks in Synchronous Data-flow Systems, in: The Sixth ASIAN Symposium on Programming Languages and Systems (APLAS), Bangalore, India, December 2008.

 	[38]

 	A. Cohen, L. Mandel, F. Plateau, M. Pouzet.
Relaxing Synchronous Composition with Clock Abstraction, 2009, Workshop on Hardware Design using Functional languages (HFL 09) - ETAPS.
http://hal.inria.fr/hal-00645333

 	[39]

 	J.-L. Colaço, G. Hamon, M. Pouzet.
Mixing Signals and Modes in Synchronous Data-flow Systems, in: ACM International Conference on Embedded Software (EMSOFT'06), Seoul, South Korea, October 2006.

 	[40]

 	J.-L. Colaço, B. Pagano, M. Pouzet.
A Conservative Extension of Synchronous Data-flow with State Machines, in: ACM International Conference on Embedded Software (EMSOFT'05), Jersey city, New Jersey, USA, September 2005.

 	[41]

 	J.-L. Colaço, M. Pouzet.
Clocks as First Class Abstract Types, in: Third International Conference on Embedded Software (EMSOFT'03), Philadelphia, Pennsylvania, USA, october 2003.

 	[42]

 	J.-L. Colaço, M. Pouzet.
Type-based Initialization Analysis of a Synchronous Data-flow Language, in: International Journal on Software Tools for Technology Transfer (STTT), August 2004, vol. 6, no 3, pp. 245–255.

 	[43]

 	J. Cortadella, M. Kishinevsky.
Synchronous Elastic Circuits with Early Evaluation and Token Counterflow, in: DAC, 2007, pp. 416-419.

 	[44]

 	P. Cuoq, M. Pouzet.
Modular Causality in a Synchronous Stream Language, in: European Symposium on Programming (ESOP'01), Genova, Italy, April 2001.

 	[45]

 	P. Feautrier.
Some Efficient Solutions to the Affine Scheduling Problem, Part II, multidimensional time, in: Intl. J. of Parallel Programming, December 1992, vol. 21, no 6, pp. 389-420, See also Part I, one dimensional time, 21(5):315–348.

 	[46]

 	A. Gamatié, E. Rutten, H. Yu, P. Boulet, J.-L. Dekeyser.
Synchronous Modeling and Analysis of Data Intensive Applications, in: EURASIP Journal on Embedded Systems, 2008.

 	[47]

 	S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, O. Temam.
Semi-Automatic Composition of Loop Transformations for Deep Parallelism and Memory Hierarchies, in: Intl. J. of Parallel Programming, June 2006, vol. 34, no 3, pp. 261–317, Special issue on Microgrids.

 	[48]

 	T. Grosser, A. Cohen, J. Holewinski, P. Sadayappan, S. Verdoolaege.
Hybrid Hexagonal/Classical Tiling for GPUs, in: Intl. Symp. on Code Generation and Optimization (CGO), Orlando, FL, United States, February 2014.
https://hal.inria.fr/hal-00911177

 	[49]

 	T. Grosser, A. Größlinger, C. Lengauer.
Polly - Performing Polyhedral Optimizations on a Low-Level Intermediate Representation, in: Parallel Processing Letters, 2012, vol. 22, no 4.

 	[50]

 	A.-C. Guillou, F. Quilleré, P. Quinton, S. Rajopadhye, T. Risset.
Hardware Design Methodology with the Alpha Language, in: FDL'01, Lyon, France, September 2001.

 	[51]

 	H. Leverge, C. Mauras, P. Quinton.
The Alpha language and its use for the design of systolic arrays, in: J. of VLSI Signal Processing, 1991, vol. 3, pp. 173–182.

 	[52]

 	L. Mandel, F. Benbadis.
Simulation of Mobile Ad hoc Network Protocols in ReactiveML, in: Proceedings of Synchronous Languages, Applications, and Programming (SLAP'05), Edinburgh, Scotland, Electronic Notes in Theoretical Computer Science, April 2005, Workshop ETAPS 2005.

 	[53]

 	L. Mandel.
Conception, Sémantique et Implantation de ReactiveML : un langage à la ML pour la programmation réactive, Université Paris 6, 2006.

 	[54]

 	L. Mandel, F. Plateau, M. Pouzet.
Lucy-n: a n-Synchronous Extension of Lustre, in: 10th International Conference on Mathematics of Program Construction (MPC'10), Manoir St-Castin, Québec, Canada, Springer LNCS, June 2010.

 	[55]

 	L. Mandel, M. Pouzet.
ReactiveML, a Reactive Extension to ML, in: ACM International Conference on Principles and Practice of Declarative Programming (PPDP), Lisboa, July 2005.

 	[56]

 	F. Maraninchi, N. Berthier, O. Bezet, G. Funchal.
Writing Simulators with Synchronous Languages, 2008, Synchron 2008: International Open Workshop on Synchronous Programming.

 	[57]

 	C. Miranda, A. Pop, P. Dumont, A. Cohen, M. Duranton.
Erbium: A Deterministic, Concurrent Intermediate Representation to Map Data-Flow Tasks to Scalable, Persistent Streaming Processes, in: Intl. Conf. on Compilers Architectures and Synthesis for Embedded Systems (CASES'10), October 2010.

 	[58]

 	J.-B. Note, M. Shand, J. Vuillemin.
Realtime video pixel matching, in: International Conference on Field Programmable Logic and Applications, 2006, pp. 507 – 512.

 	[59]

 	J.-B. Note, J. Vuillemin.
Towards automatically compiling efficient FPGA hardware, in: International Workshop on Design and Functional Languages, IEEE, 2007, pp. 115 – 124.

 	[60]

 	E. Park, J. Cavazos, L.-N. Pouchet, C. Bastoul, A. Cohen, P. Sadayappan.
Predictive Modeling in a Polyhedral Optimization Space, in: International Journal of Parallel Programming, 2013, vol. 41, no 5, pp. 704–750. [
DOI : 10.1007/s10766-013-0241-1]
https://hal.inria.fr/hal-00918653

 	[61]

 	F. Plateau.
Modèle n-synchrone pour la programmation de réseaux de Kahn à mémoire bornée, Université Paris-Sud 11, Orsay, France, 6 janvier 2010.
https://www.lri.fr/~mandel/lucy-n/~plateau/these/

 	[62]

 	S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.-A. Silber, N. Vasilache.
GRAPHITE: Loop Optimizations Based on the Polyhedral Model for GCC, in: Proc. of the 4þ GCC Developper's Summit, Ottawa, Canada, June 2006.

 	[63]

 	L.-N. Pouchet, C. Bastoul, A. Cohen, J. Cavazos.
Iterative Optimization in the Polyhedral Model: Part II, Multidimensional Time, in: ACM Conf. on Programming Language Design and Implementation (PLDI'08), Tucson, Arizona, June 2008.

 	[64]

 	L.-N. Pouchet, C. Bastoul, A. Cohen, N. Vasilache.
Iterative Optimization in the Polyhedral Model: Part I, One-Dimensional Time, in: Intl. Symp. on Code Generation and Optimization (CGO'07), San Jose, California, March 2007.

 	[65]

 	L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, P. Sadayappan.
Combined Iterative and Model-driven Optimization in an Automatic Parallelization Framework, in: ACM Supercomputing Conf. (SC'10), New Orleans, Lousiana, November 2010, 11 p.

 	[66]

 	P. Raymond, Y. Roux, E. Jahier.
Lutin: a language for specifying and executing reactive scenarios, in: EURASIP Journal on Embedded Systems, 2008, vol. 2008, Article ID 753821.

 	[67]

 	L. Samper, F. Maraninchi, L. Mounier, L. Mandel.
GLONEMO: Global and Accurate Formal Models for the Analysis of Ad hoc Sensor Networks, in: Proceedings of the First International Conference on Integrated Internet Ad hoc and Sensor Networks (InterSense'06), Nice, France, May 2006.

 	[68]

 	J. Soula, P. Marquet, J.-L. Dekeyser, A. Demeure.
Compilation principle of a specification language dedicated to signal processing, in: Intl. Conf. on Parallel Computing Technologies, Novosibirsk, Russia, LNCS, Springer-Verlag, September 2001, vol. 2127, pp. 358–370.

 	[69]

 	K. Trifunović, A. Cohen, D. Edelsohn, F. Li, T. Grosser, H. Jagasia, R. Ladelski, S. Pop, J. Sjödin, R. Upadrasta.
GRAPHITE Two Years After: First Lessons Learned From Real-World Polyhedral Compilation, in: GCC Research Opportunities Workshop (GROW'10), Pisa, Italy, January 2010.

 	[70]

 	K. Trifunović, D. Nuzman, A. Cohen, A. Zaks, I. Rosen.
Polyhedral-Model Guided Loop-Nest Auto-Vectorization, in: Parallel Architectures and Compilation Techniques (PACT'09), Raleigh, North Carolina, September 2009.

 	[71]

 	S. Verdoolaege, S. Guelton, T. Grosser, A. Cohen.
Schedule Trees, in: IMPACT - 4th Workshop on Polyhedral Compilation Techniques, associated with HiPEAC, Vienna, Austria, ACM, January 2014.
https://hal.inria.fr/hal-00911894

 	[72]

 	S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez, C. Tenllado, F. Catthoor.
Polyhedral Parallel Code Generation for CUDA, in: ACM Transactions on Architecture and Code Optimization, 2013, vol. 9, no 4, Selected for presentation at the HiPEAC 2013 Conf.. [
DOI : 10.1145/2400682.2400713]
https://hal.inria.fr/hal-00786677

 	[73]

 	J. Vuillemin.
On Circuits and Numbers, Digital, Paris Research Laboratory, 1993.

 OEBPS/contrats.html

OEBPS/international.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid98.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits of International Scientists

 		
 Prof. Cesare Tinelli, was invited by ENS in the PARKAS team.

 		
 Date: June 2014 (one month)

 		
 Institution: Iowa State University, USA.

 Internships

 		
 Siddharth Prusty Siddharth

 		
 Date: May 2014 - Jul 2014

 		
 Institution: IITK (India)

 		
 Vijay Keswani Vijay

 		
 Date: May 2014 - Jul 2014

 		
 Institution: IITK (India)

 		
 Quentin Bunel

 		
 Date: May 2014 - Jul 2014

 		
 Institution: UPMC (France)

 		
 Abhishek Jain

 		
 Date: May 2014 - Jul 2014 and Dec 2014 - Jan 2015

 		
 Institution: IITD (India)

 		
 Yabin Hu

 		
 Date: Jun 2014 - Jul 2014

 		
 Institution: China Nat. Univ. of Defense and Technology (China)

OEBPS/uid53.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 ANR

 ANR WMC project (program “jeunes chercheuses, jeunes chercheurs”),
2012–2016, 200 Keuros. F. Zappa Nardelli is the main investigator.

 ANR Boole project (program “action blanche”), 2009-2014.

 ANR CAFEIN, 2013-2015. Marc Pouzet.

 Investissements d'avenir

 Sys2Soft contract (Briques Génériques du Logiciel
Embarqué). Partenaire principal: Dassault-Systèmes, etc. Inria
contacts are Benoit Caillaud (HYCOMES, Rennes) and Marc Pouzet
(PARKAS, Paris).

 ManycoreLabs contract (Briques Génériques du Logiciel
Embarqué). Partenaire principal: Kalray. Inria contacts are Albert
Cohen (PARKAS, Paris), Alain Darte (COMPSYS, Lyon), Fabrice Rastello
(CORSE, Grenoble).

 Others

 Marc Pouzet is scientific advisor for the Esterel-Technologies/ANSYS company.

OEBPS/uid57.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 FP7 & H2020 Projects

 COPCAMS

 		
 Type: ARTEMIS JU

 		
 Defi: NC

 		
 Instrument: ASP

 		
 Objectif: NC

 		
 Duration: April 2013 - March 2016

 		
 Coordinator: Christian Fabre

 		
 Partner: CEA LETI, Grenoble, France

 		
 Inria contact: Albert Cohen

 		
 Abstract: Cognitive cameras on manycore platforms

 EMC2

 		
 Type: ARTEMIS JU

 		
 Defi: NC

 		
 Instrument: AIPP

 		
 Objectif: NC

 		
 Duration: April 2014 - March 2917

 		
 Coordinator: Werner Weber

 		
 Partner: Infineon, Munich ,Germany

 		
 Inria contact: Albert Cohen

 		
 Abstract: Embedded multicrical systems on multicores

 ITEA2

 		
 Type: ITEA2

 		
 Defi: NC

 		
 Instrument: NC

 		
 Objectif: NC

 		
 Duration: September 2012 - November 2015

 		
 Coordinator: Daniel Bouskela (EDF)

 		
 Partner: Dassault-Systèmes, EDF, Modelon, DLR (Germany)

 		
 Inria contact: Benoit Caillaud, Marc Pouzet

 		
 Abstract: Model Driven Physical Systems Operation

OEBPS/uid89.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Inria Associate Teams

 POLYFLOW

 		
 Title: Polyhedral Compilation for Data-Flow Programming Languages

 		
 International Partner (Institution - Laboratory - Researcher):

 		
 IISc Bangalore (INDE)

 		
 Duration: 2013 - 2015/12

 		
 See also: http://polyflow.gforge.inria.fr

 		
 Polyhedral techniques for program transformation are now used in
several proprietary and open source compilers. However, most of the
research on polyhedral compilation has focused on imperative languages
such as C, where computation is specified in terms of statements with
zero or more nested loops and other control structures around them.
Graphical data-flow languages, where there is no notion of statements
or a schedule specifying their relative execution order, have so far
not been studied using a powerful transformation or optimization
approach. These languages are extremely popular in system analysis,
modeling and design, in embedded reactive control. They also underline
the construction of many domain-specific languages and compiler
intermediate representations. The copy and execution semantics of
data-flow languages impose a different set of challenges. We plan to
bridge this gap by studying techniques that could enable extraction of
a polyhedral representation from data-flow programs, transform them,
and synthesize them from their equivalent polyhedral representation.

OEBPS/IMG/iTunesArtwork.png
Activity Report 2014
Project-Team Parkas

Parallélisme de Kahn
Synchrone

IN COLLABORATION WITH: Département dinformatique de [Ecole Normale Supérieure

