

[image: cover]

 WHISPER

 Well Honed Infrastructure Software for Programming Environments and Runtimes

 2014 Team Activity Report
	

 Research centre:
 Paris - Rocquencourt

 Field: Networks, Systems and Services, Distributed Computing
Theme: Distributed Systems and middleware

 Keywords: Infrastructure Software, Operating System, Software Engineering, Safety, Proofs Of Programs

 Team Whisper

 Members

 Overall Objectives

 Research Program	Scientific Foundations
	Research direction: developing drivers using Genes
	Research direction: developing infrastructure software using Domain Specific Languages

 Application Domains	Linux
	Device Drivers

 New Software and Platforms	Platforms

 New Results	Highlights of the Year
	Lock profiling in Java servers
	Software engineering for infrastructure
software
	Bugs in Linux 2.6
	Memory Monitoring in Smart Home gateways

 Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry

 Partnerships and Cooperations	National Initiatives
	European Initiatives
	International Initiatives
	International Research Visitors

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Major publications

 	
 Publications of the year

 	
 References in notes

 Creation of the Team: 2014 May 15
Section: Members
Research Scientists
Gilles Muller [Team leader, Inria, Senior Researcher, HdR]
Julia Lawall [Inria, Senior Researcher, HdR]
Pierre-Evariste Dagand [CNRS, from Oct. 2014]
Faculty Members
Bertil Folliot [Univ. Paris VI, Professor, HdR]
Gaël Thomas [Univ. Paris VI, Associate Professor, until Sep 2014, HdR]
Engineers
Xavier Clerc [Inria]
Quentin Lambert [Inria, from Nov 2014]
PhD Students
Brice Berna [ENS Cachan]
Antoine Blin [Cifre Renault]
Florian David [Univ. Paris VI]
Lisong Guo [Inria]
Valentin Rothberg [Inria, from Oct 2014]
Peter Senna Tschudin [Inria]
Administrative Assistant
Hélène Milome [Inria]

 Overall Objectives

 	
 Overall Objectives

 Section:
 Overall Objectives

 Overall Objectives

 The focus of Whisper is on how to develop (new) and improve
(existing) infrastructure software. Infrastructure software (also
called systems software) is the software that underlies all
computing. Such software allows applications to access resources and
provides essential services such as memory management, synchronization
and inter-process interactions. Starting bottom-up from the hardware,
examples include virtual machine hypervisors, operating systems,
managed runtime environments, standard libraries, and browsers, which
amount to the new operating system layer for Internet applications.
For such software, efficiency and correctness are fundamental. Any
overhead will impact the performance of all supported
applications. Any failure will prevent the supported applications from
running correctly. Since computing now pervades our society, with few
paper backup solutions, correctness of software at all levels is
critical. Formal methods are increasingly being applied to operating
systems code in the research
community [50] , [46] , [76] .
Still, such efforts require a huge amount of manpower and a high
degree of expertise which makes this work difficult to replicate
in standard infrastructure-software development.

 In terms of methodology, Whisper is at the interface of the domains of
operating systems, software engineering and programming languages. Our
approach is to combine the study of problems in the development of
real-world infrastructure software with concepts in programming language
design and implementation, e.g., of domain-specific languages, and
knowledge of low-level system behavior. A focus of our work is on
providing support for legacy code, while taking the needs and competences
of ordinary system developers into account.

 We aim at providing solutions that can be easily learned and adopted
by system developers in the short term. Such solutions can be tools,
such as
Coccinelle [1] , [8] , [9]
for transforming C programs (see Section
	5.1.1),
or domain-specific languages such as
Devil [7] and
Bossa [6] for designing drivers and kernel
schedulers. Due to the small size of the team, Whisper will mainly
target operating system kernels and runtimes for programming
languages. We will put an emphasis on achieving measurable
improvements in performance and safety in practice, and on feeding
these improvements back to the infrastructure software developer
community.

 Research Program

 	Research Program	Scientific Foundations
	Research direction: developing drivers using Genes
	Research direction: developing infrastructure software using Domain Specific Languages

 Section:
 Research Program

 Scientific Foundations

 Program analysis

 A fundamental goal of the research in the Whisper team is to elicit and
exploit the knowledge found in existing code. To do this in a way that
scales to a large code base, systematic methods are needed to infer code
properties. We may build on either static
[39] , [41] , [42] or dynamic analysis
[58] , [60] , [65] . Static analysis consists of
approximating the behavior of the source code from the source code alone,
while dynamic analysis draws conclusions from observations of sample
executions, typically of test cases. While dynamic analysis can be more
accurate, because it has access to information about actual program
behavior, obtaining adequate test cases is difficult. This difficulty is
compounded for infrastructure software, where many, often obscure, cases
must be handled, and external effects such as timing can have a significant
impact. Thus, we expect to primarily use static analyses. Static analyses
come in a range of flavors, varying in the extent to which the analysis is
sound, i.e., the extent to which the results are guaranteed to
reflect possible run-time behaviors.

 One form of sound static analysis is abstract
interpretation [41] . In abstract interpretation, atomic
terms are interpreted as sound abstractions of their values, and operators
are interpreted as functions that soundly manipulate these abstract values.
The analysis is then performed by interpreting the program in a
compositional manner using these abstracted values and operators.
Alternatively, dataflow analysis [49] iteratively
infers connections between variable definitions and uses, in terms of local
transition rules that describe how various kinds of program constructs may
impact variable values. Schmidt has explored the relationship between
abstract interpretation and dataflow analysis [70] .
More recently, more general forms of symbolic
execution [39] have emerged as a means of understanding
complex code. In symbolic execution, concrete values are used when
available, and these are complemented by constraints that are inferred from
terms for which only partial information is available. Reasoning about
these constraints is then used to prune infeasible paths, and obtain more
precise results. A number of works apply symbolic execution to operating
systems code [36] , [37] .

 While sound approaches are guaranteed to give correct results, they
typically do not scale to the very diverse code bases that are prevalent in
infrastructure software. An important insight of Engler et
al. [44] was that valuable information could be obtained
even when sacrificing soundness, and that sacrificing soundness could make
it possible to treat software at the scales of the kernels of the Linux or
BSD operating systems. Indeed, for certain types of problems, on certain
code bases, that may mostly follow certain coding conventions, it may
mostly be safe to e.g., ignore the effects of aliases, assume that
variable values are unchanged by calls to unanalyzed functions, etc. Real
code has to be understood by developers and thus cannot be too complicated,
so such simplifying assumptions are likely to hold in practice.
Nevertheless, approaches that sacrifice soundness also require the user to
manually validate the results. Still, it is likely to be much more
efficient for the user to perform a potentially complex manual analysis in
a specific case, rather than to implement all possible required analyses
and apply them everywhere in the code base. A refinement of unsound
analysis is the CEGAR approach [40] , in which a highly
approximate analysis is complemented by a sound analysis that checks the
individual reports of the approximate analysis, and then any errors in
reasoning detected by the sound analysis are used to refine the approximate
analysis. The CEGAR approach has been applied effectively on device driver
code in tools developed at Microsoft [28] . The
environment in which the driver executes, however, is still represented by
possibly unsound approximations.

 Going further in the direction of sacrificing soundness for scalability,
the software engineering community has recently explored a number of
approaches to code understanding based on techniques developed in the areas
of natural language understanding, data mining, and information retrieval.
These approaches view code, as well as other software-reated artifacts,
such as documentation and postings on mailing lists, as bags of words
structured in various ways. Statistical methods are then used to collect
words or phrases that seem to be highly correlated, independently of the
semantics of the program constructs that connect them. The obliviousness
to program semantics can lead to many false positives (invalid
conclusions) [54] , but can also highlight trends that
are not apparent at the low level of individual program statements. We
have explored combining such statistical methods with more traditional
static analysis in identifying faults in the usage of constants in Linux
kernel code [53] .

 Domain Specific Languages

 Writing low-level infrastructure code is tedious and difficult, and
verifying it is even more so. To produce non-trivial programs, we
could benefit from moving up the abstraction stack for both
programming and proving as quickly as possible. Domain-specific
languages (DSLs), also known as little languages, are a means to
that end [5] [62] .

 Traditional approach.

 Using little languages to aid in software development is a
tried-and-trusted technique [72] by which
programmers can express high-level ideas about the system at hand and
avoid writing large quantities of formulaic C boilerplate.

 This approach is typified by the Devil language for hardware
access [7] . An OS programmer describes the
register set of a hardware device in the high-level Devil language,
which is then compiled into a library providing C functions to read
and write values from the device registers. In doing so, Devil frees
the programmer from having to write extensive bit-manipulation macros
or inline functions to map between the values the OS code deals with,
and the bit-representation used by the hardware: Devil generates code
to do this automatically.

 However, DSLs are not restricted to being “stub” compilers from
declarative specifications. The Bossa language [6]
is a prime example of a DSL involving imperative code (syntactically
close to C) while offering a high-level of abstraction. This design of
Bossa enables the developer to implement new process scheduling
policies at a level of abstraction tailored to the application domain.

 Conceptually, a DSL both abstracts away low-level details and
justifies the abstraction by its semantics. In principle, it reduces
development time by allowing the programmer to focus on high-level
abstractions. The programmer needs to write less code, in a language
with syntax and type checks adapted to the problem at hand, thus
reducing the likelihood of errors.

 Embedding DSLs.

 The idea of a DSL has yet to realize its full potential in the OS
community. Indeed, with the notable exception of interface definition
languages for remote procedure call (RPC) stubs, most OS code is still
written in a low-level language, such as C. Where DSL code generators
are used in an OS, they tend to be extremely simple in both syntax and
semantics. We conjecture that the effort to implement a given DSL
usually outweighs its benefit. We identify several serious obstacles
to using DSLs to build a modern OS: specifying what the generated code
will look like, evolving the DSL over time, debugging generated code,
implementing a bug-free code generator, and testing the DSL compiler.

 Filet-o-Fish (FoF) [3] addresses these issues by
providing a framework in which to build correct code generators from
semantic specifications. This framework is presented as a Haskell
library, enabling DSL writers to embed their languages within
Haskell. DSL compilers built using FoF are quick to write, simple, and
compact, but encode rigorous semantics for the generated code. They
allow formal proofs of the run-time behavior of generated code, and
automated testing of the code generator based on randomized inputs,
providing greater test coverage than is usually feasible in a DSL.
The use of FoF results in DSL compilers that OS developers can quickly
implement and evolve, and that generate provably correct code. FoF
has been used to build a number of domain-specific languages used in
Barrelfish, [30] an OS for heterogeneous
multicore systems developed at ETH Zurich.

 The development of an embedded DSL requires a few supporting
abstractions in the host programming language. FoF was developed in
the purely functional language Haskell, thus benefiting from the type
class mechanism for overloading, a flexible parser offering convenient
syntactic sugar, and purity enabling a more algebraic approach based
on small, composable combinators. Object-oriented languages – such as
Smalltalk [45] and its descendant
Pharo [33] – or multi-paradigm languages – such
as the Scala programming language [64] – also
offer a wide range of mechanisms enabling the development of embedded
DSLs. Perhaps suprisingly, a low-level imperative language – such as
C – can also be extended so as to enable the development of embedded
compilers [31] .

 Certifying DSLs.

 Whilst automated and interactive software verification tools are
progressively being applied to larger and larger programs, we have not
yet reached the point where large-scale, legacy software – such as
the Linux kernel – could formally be proved “correct”. DSLs enable
a pragmatic approach, by which one could realistically strengthen a
large legacy software by first narrowing down its critical
component(s) and then focus our verification efforts onto these
components.

 Dependently-typed languages, such as Coq or Idris, offer an ideal
environment for embedding DSLs [38] , [34] in
a unified framework enabling verification. Dependent types support the
type-safe embedding of object languages and Coq's mixfix notation
system enables reasonably idiomatic domain-specific concrete syntax.
Coq's powerful abstraction facilities provide a flexible framework in
which to not only implement and verify a range of domain-specific
compilers [3] , but also to combine them, and reason
about their combination.

 Working with many DSLs optimizes the “horizontal” compositionality
of systems, and favors reuse of building blocks, by contrast with the
“vertical” composition of the traditional compiler pipeline,
involving a stack of comparatively large intermediate languages that
are harder to reuse the higher one goes. The idea of building
compilers from reusable building blocks is a common one, of
course. But the interface contracts of such blocks tend to be complex,
so combinations are hard to get right. We believe that being able to
write and verify formal specifications for the pieces will make it
possible to know when components can be combined, and should help in
designing good interfaces.

 Furthermore, the fact that Coq is also a system for formalizing
mathematics enables one to establish a close, formal connection
between embedded DSLs and non-trivial domain-specific models. The
possibility of developing software in a truly “model-driven” way is
an exciting one. Following this methodology, we have implemented a
certified compiler from regular expressions to x86 machine
code [4] . Interestingly, our development
crucially relied on an existing Coq formalization, due to Braibant and
Pous, [35] of the theory of Kleene algebras.

 While these individual experiments seem to converge toward embedding
domain-specific languages in rich type theories, further experimental
validation is required. Indeed, Barrelfish is an extremely small
software compared to the Linux kernel. The challenge lies in scaling
this methodology up to large software systems. Doing so calls for a
unified platform enabling the development of a myriad of DSLs,
supporting code reuse across DSLs as well as providing support for
mechanically-verified proofs.

 Section:
 Research Program

 Research direction: developing drivers using Genes

 We believe that weaknesses of previous methods for easing device driver
development arise from an insufficient understanding of the range and scope
of driver functionality, as required by real devices and OSes. We propose
a new methodology for understanding device drivers, inspired by the
biological field of genomics. Rather than focusing on the input/output
behavior of a device, we take the radically new methodology of studying
existing device driver code itself. On the one hand, this methodology
makes it possible to identify the behaviors performed by real device
drivers, whether to support the features of the device and the OS, or to
improve properties such as safety or performance. On the other hand, this
methodology makes it possible to capture the actual patterns of code used
to implement these behaviors, raising the level of abstraction from
individual operations to collections of operations implementing a single
functionality, which we refer to as genes. Because the requirements
of the device remain fixed, regardless of the OS, we expect to find genes
with common behaviors across different OSes, even when those genes have a
different internal structure. This leads to a view of a device driver as
being constructed as a composition of genes, thus opening the door to new
methodologies to address the problems faced by real driver developers.
Among these, we have so far identified the problems of developing drivers,
porting existing drivers to other OSes, backporting existing drivers to
older OS versions, and long-term maintenance of the driver code.

 Our short term goal is to “sequence” the complete set of genes for a
set of related drivers. In the longer term, we plan to develop
methodologies based on genes for aiding in driver development and
maintenance. This work is currently financed by a grant from the
Direction Générale de l'Armement (DGA) that supports the PhD of
Peter Senna Tschudin. Valentin Rothberg's PhD is supported by an Inria
Cordi-S grant.

 Section:
 Research Program

 Research direction: developing infrastructure software using Domain Specific Languages

 We wish to pursue a declarative approach to developing
infrastructure software. Indeed, there exists a significant gap
between the high-level objectives of these systems and their
implementation in low-level, imperative programming languages. To
bridge that gap, we propose an approach based on domain-specific
languages (DSLs). By abstracting away boilerplate code, DSLs increase
the productivity of systems programmers. By providing a more
declarative language, DSLs reduce the complexity of code, thus the
likelihood of bugs.

 Traditionally, systems are built by accretion of several, independent
DSLs. For example, one might use Devil [7] to
interact with devices, Bossa [6] to implement the
scheduling policies, and Zebu [2] to
implement some networking protocols. However, much effort is duplicated in
implementing the back-ends of the individual DSLs. Our long term goal is to
design a unified framework for developing and composing DSLs, following our
work on Filet-o-Fish [3] . By providing a single conceptual
framework, we hope to amortize the development cost of a myriad of DSLs
through a principled approach to reusing and composing DSLs.

 Beyond the software engineering aspects, a unified platform brings us
closer to the implementation of mechanically-verified DSLs. Dagand's
recent work using the Coq proof assistant as an x86
macro-assembler [4] is a step in that direction,
which belongs to a larger trend of hosting DSLs in dependent type
theories [34] , [63] , [38] . A key
benefit of those approaches is to provide – by construction – a
formal, mechanized semantics to the DSLs thus developed. This
semantics offers a foundation on which to base further verification
efforts, whilst allowing interaction with non-verified code. We
advocate a methodology based on incremental, piece-wise
verification. Whilst building fully-certified systems from the
top-down is a worthwhile endeavor [50] , we wish to
explore a bottom-up approach by which one focuses first and foremost
on crucial subsystems and their associated properties.

 We plan to apply this methodology for implementing
a certified DSL for describing serializers and deserializers of binary
datastreams. This work will build on our experience in designing
Zebu [2] , a DSL for describing text-based
protocols. Inspired by our experience implementing a certified regular
expression compiler in x86 [4] , we wish to
extend Zebu to manipulate binary data. Such a DSL should require a
single description of a binary format and automatically generate a
serializer/deserializer pair. This dual approach – relating a binary
format to its semantic model – is inspired by the
Parsifal [55] and
Nail [29] format languages. A second
challenge consists in guaranteeing the functional correctness of the
serializer/deserializer pair generated by the DSL: one would wish to
prove that any serialized data can be deserialized to itself, and
conversely. The RockSalt's project [63] provides
the conceptual tools, in a somewhat simpler setting, to address this
question.

 Packet filtering is another sweet spot for DSLs.
First, one needs a DSL for specifying the filtering rules. This is
standard practice [61] . However, in our attempt to
establish the correctness of the packet filter, we will be led to
equip this DSL with a mechanized semantics, formally describing the
precise meaning of each construct of the language. Second, packet
filters are usually implemented through a matching engine that is,
essentially, a bytecode interpreter. To establish the correctness of
the packet filter, we shall then develop a mechanized semantics of
this bytecode and prove that the compilation from filtering
rules to bytecode preserves the intended semantics.
Because a packet filter lies at the entry-point of a network, safety
is crucial: we would like to guarantee that the packet filter cannot
crash and is not vulnerable to an attack. Beyond mere safety,
functional correctness is essential too: we must guarantee that the
high-level filtering rules are indeed applied as expected by the
matching engine. A loophole in the compilation could leave the network
open to an attack or prevent legitimate traffic from reaching its
destination. Finally, the safety of the packet filter cannot
be established at the expense of performance. Indeed, if the packet
filter were to become a bottleneck, the infrastructure it aimed at
protecting would easily become subject to Denial of Service (DoS)
attacks. Filtering rules should therefore be compiled efficiently: the
corresponding optimizations will have to be
verified [74] .

 Application Domains

 	Application Domains	Linux
	Device Drivers

 Section:
 Application Domains

 Linux

 Linux is an open-source operating system that is used in settings ranging
from embedded systems to supercomputers. The most recent release of the
Linux kernel, v3.17, comprises over 12 million lines of code, and supports
29 different families of CPU architectures, 73 file systems, and thousands
of device drivers. Linux is also in a rapid stage of development, with new
versions being released roughly every 2.5 months. Recent versions have
each incorporated around 13,500 commits, from around 1500 developers.
These developers have a wide range of expertise, with some providing
hundreds of patches per release, while others have contributed only one.
Overall, the Linux kernel is critical software, but software in which the
quality of the developed source code is highly variable. These features,
combined with the fact that the Linux community is open to contributions
and to the use of tools, make the Linux kernel an attractive target for
software researchers. Tools that result from research can be directly
integrated into the development of real software, where it can have a high,
visible impact.

 Starting from the work of Engler et al. [43] , numerous
research tools have been applied to the Linux kernel, typically for finding
bugs [42] , [57] , [66] , [73]
or for computing software metrics [47] , [75] . In our
work, we have studied generic C bugs in Linux code ,
bugs in function protocol usage [51] , [52] ,
issues related to the processing of bug reports [21] and
crash dumps [19] , and the problem of backporting (work in
progress), illustrating the variety of issues that can be explored on this
code base. Unique among research groups working in this area, we have
furthermore developed numerous contacts in the Linux developer community.
These contacts provide insights into the problems actually faced by
developers and serve as a means of validating the practical relevance of
our work. Section
	5.1.2 presents our dissemination efforts to the Linux
community.

 Section:
 Application Domains

 Device Drivers

 Device drivers are essential to modern computing, to provide
applications with access, via the operating system, to physical
devices such as keyboards, disks, networks, and cameras. Development
of new computing paradigms, such as the internet of things, is
hampered because device driver development is challenging and
error-prone, requiring a high level of expertise in both the targeted
OS and the specific device. Furthermore, implementing just one driver
is often not sufficient; today's computing landscape is characterized
by a number of OSes, e.g., Linux, Windows, MacOS, BSD and many
real time OSes, and each is found in a wide range of variants and
versions. All of these factors make the development, porting,
backporting, and maintenance of device drivers a critical problem for
device manufacturers, industry that requires specific devices, and
even for ordinary users.

 The last fifteen years have seen a number of approaches directed towards
easing device driver development. Réveillère, who was supervised
by G. Muller, proposes Devil [7] , a
domain-specific language for describing the low-level interface of a
device. Chipounov et al. propose
RevNic, [37] a template-based approach for
porting device drivers from one OS to another. Ryzhyk et
al. propose Termite, [67] , [68] an approach
for synthesizing device driver code from a specification of an OS and a
device. Currently, these approaches have been successfully applied to only
a small number of toy drivers. Indeed, Kadav and
Swift [48] observe that these approaches make
assumptions that are not satisfied by many drivers; for example, the
assumption that a driver involves little computation other than the direct
interaction between the OS and the device. At the same time, a number of
tools have been developed for finding bugs in driver code. These tools
include SDV, [28] Coverity [43] ,
CP-Miner, [56] PR-Miner [57] , and
Coccinelle [8] . These approaches, however, focus
on analyzing existing code, and do not provide guidelines on structuring
drivers.

 In summary, there is still a need for a methodology that first helps the
developer understand the software architecture of drivers for commonly used
operating systems, and then provides guidelines and tools for the
maintenance and the development of new drivers. Section
	3.2
describes this research direction.

 New Software and Platforms

 	New Software and Platforms	Platforms

 Section:
 New Software and Platforms

 Platforms

 Coccinelle

 Our recent research is in the area of code manipulation tools for C
code, particularly targeting Linux kernel code. This work has led to
the Coccinelle tool that we are continuing to develop. Coccinelle serves
both as a basis for our future research and the foundation of our
interaction with the Linux developer community.

 The need to find patterns of code, and potentially to transform them, is
pervasive in software development. Examples abound. When a bug is found,
it is often fruitful to see whether the same pattern occurs elsewhere in
the code. For example, the recent Heartbleed bug in OpenSSL partly
involves the same fragment of code in two separate
files. (http://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=96db902)
Likewise, when the interface of an API function changes, all of the users
of that function have to be updated to reflect the new usage requirements.
This generalizes to the case of code modernization, in which a code base
needs to be adapted to a new compiler, new libraries, or a new coding
standards. Finding patterns of code is also useful in code understanding,
e.g., to find out whether a particular function is ever called with a
particular lock held, and in software engineering research, e.g., to
understand the prevalence of various kinds of code structures, which may
then be correlated with other properties of the software. For all of these
tasks, there is a need for an easy to use tool that will allow developers
to express patterns and transformations that are relevant to their source
code, and to apply these patterns and transformations to the code
efficiently and without disrupting the overall structure of the code base.

 To meet these needs, we have developed the Coccinelle program matching and
transformation tool for C code. Coccinelle has been under development for
over 7 years, and is mature software, available in a number of Linux
distributions (Ubuntu, Debian, Fedora, etc.). Coccinelle allows matching
and transformation rules to be expressed in terms of fragments of C code,
more precisely in the form of a patch, in which code to add and
remove is highlighted by using + and - , respectively, in the
leftmost column, and other, unannotated, code fragments may be provided to
describe properties of the context. The C language is extended with a few
operators, such as metavariables, for abstracting over subterms, and a
notion of positions, which are useful for reporting bugs. The pattern
matching rules can interspersed with rules written in Python or OCaml, for
further expressiveness. The process of matching patterns against the
source code furthermore takes into account some semantic information, such
as the types of expressions and reachability in terms of a function's
(intraprocedural) control-flow graph, and thus we refer to Coccinelle
matching and transformation specifications as semantic patches.

 Coccinelle was originally motivated by the goal of modernizing Linux 2.4
drivers for use with Linux 2.6, and was originally validated on a
collection of 60 transformations that had been used in modernizing Linux
2.4 drivers [8] . Subsequent research
involving Coccinelle included a formalization of the logic underlying its
implementation [1] and a novel mechanism for
identifying API usage protocols [51] . More recently,
Coccinelle has served as a practical and flexible tool in a number of
research projects that somehow involve code understanding or
transformation. These include identifying misuses of named constants in
Linux code [53] , extracting critical sections into
procedures to allow the implementation of a centralized locking
service [59] , generating a debugging interface for
Linux driver developers [32] , detecting resource
release omission faults in Linux and other infrastructure software
[69] , and understanding the structure of device driver code in
our current DrGene project [71] .

 Throughout the development of Coccinelle, we have also emphasized contact
with the developer community, particularly the developers of the Linux
kernel. We submitted the first patches to the Linux kernel based on
Coccinelle in 2007. Since then, over 2000 patches have been accepted into
the Linux kernel based on the use of Coccinelle, including around 700 by
around 90 developers from outside our research group. Over 40 semantic
patches are available in the Linux kernel source code itself, with
appropriate infrastructure for developers to apply these semantic patches to
their code within the normal make process. Many of these semantic
are also included in a 0-day build-testing system for Linux patches
maintained by Intel. (E.g.,
http://comments.gmane.org/gmane.linux.kernel.kbuild/269) Julia Lawall was
invited to the Linux Kernel Summit as a core attendee (invitation only) in
2010 and 2014, and has been invited to the internal 2014 SUSE Labs
Conference. She has also presented Coccinelle at developer events such as
LinuxCon Europe, Kernel Recipes (Paris), FOSDEM (Brussels), and RTWLS, and
has supervised a summer intern financed by the Linux Foundation, as part of
the GNOME Foundation's Outreach Program for Women.

 Finally, we are aware of several companies that use Coccinelle for
modernizing code bases. These include Metaware in Paris, with whom we have
had a 5-month contract in 2013-2014 for the customization and maintenance
of Coccinelle. We hope to be able to organize other such contracts in the
future.

 Better Linux

 Over the past few years, Julia Lawall and Gilles Muller have designed and
developed of a number of tools such as Coccinelle,
Diagnosys [32] [31] and
Hector [69] , to improve the process of developing and
maintaining systems code. The BtrLinux action aims to increase the
visibility of these tools, and to highlight Inria's potential contributions
to the open source community. We will develop a web site https://BtrLinux.inria.fr , to centralize the dissemination of the tools, collect
documentation, and collect results. This action is supported by Inria by
the means of a young engineer (ADT), Quentin Lambert.
In the case of Coccinelle, we will focus on enhancing its visibility
and its dissemination, by using it to find and fix faults in Linux
kernel code, and by submitting the resulting patches to the Linux
maintainers. We now present the other tools considered in the BtrLinux
action in more detail.

 Diagnosys is a hybrid static and dynamic analysis tool that first collects
information about Linux kernel APIs that may be misused, and then uses this
information to generate wrapper functions that systematically log at
runtime any API invocations or return values that may reflect such
misuse. A developer can then use a specific make-like command to build an
executable driver that transparently uses these wrapper functions. At
runtime, the wrappers write log messages into a crash resilient region of
memory that the developer can inspect after any crash. Diagnosys is
complementary to Coccinelle in the kind of information that it provides to
developers. While Coccinelle directly returns a report for every rule match
across the code base, often including false positives that have to be
manually isolated by the developer, Diagnosys only reports on conditions
that occur in the actual execution of the code. Diagnosys thus produces
less information, but the information produced is more relevant to the
particular problem currently confronting the developer. As such, it is well
suited to the case of initial code development, where the code is changing
frequently, and the developer wants to debug a specific problem, rather
than ensuring that the complete code base is fault free. Diagnosys is a
complete functioning system, but it needs to be kept up to date with
changes in the kernel API functions. As part of the BtrLinux action, we
will regularly run the scripts that collect information about how to create
the wrappers, and then validate and make public the results.

 Hector addresses the problem of leaking resources in error-handling code.
Releasing resources when they are no longer needed is critical, so that
adequate resources remain available over the long execution periods
characteristic of systems software. Indeed, when resource leaks accumulate,
they can cause unexpected resource unavailability, and even single leaks
can put the system into an inconsistent state that can cause crashes and
open the door to possible attacks. Nevertheless, developers often forget
to release resources, because doing so often does not make any direct
contribution to a program's functionality. A major challenge in detecting
resource-release omission faults is to know when resource release is
required. Indeed, the C language does not provide any built-in support for
resource management, and thus resource acquisition and release are
typically implemented using ad hoc operations that are, at best, only known
to core developers. Previous work has focused on mining sequences of such
functions that are used frequently across a code
base, [44] , [57] but these approaches have very high
rates of false negatives and false positives. [54] We
have proposed Hector, a static analysis tool that finds resource-release
omission faults based on inconsistencies in the operations performed within
a single function, rather than on usage frequency. This strategy allows
Hector to have a low false positive rate, of 23% in our experiments, while
still being able to find hundreds of faults in Linux and other systems.

 Hector was developed as part of the PhD thesis of Suman Saha and was
presented at DSN 2013, where it received the William C. Carter award for
the best student paper. Hector is complementary to Coccinelle, in that it
has a more restricted scope, focusing on only one type of fault, but it
uses a more precise static analysis, tailored for this type of fault, to
ensure a low false positive rate. Hector, like Coccinelle, is also
complementary to Diagnosys, in that it exhaustively reports on faults in a
code base, rather than only those relevant to a particular execution, and
is thus better suited for use by experienced developers of relatively
stable software. Over 70 patches have been accepted into Linux based on
the results of Hector. The current implementation, however, is somewhat in
a state of disarray. As part of the BtrLinux action, we will first return
the code to working condition and then actively use it to find faults in
Linux. Based on these results, we will either submit appropriate patches to
the Linux developers or notify the relevant developer when the
corresponding fix is not clear.

 New Results

 	New Results	Highlights of the Year
	Lock profiling in Java servers
	Software engineering for infrastructure
software
	Bugs in Linux 2.6
	Memory Monitoring in Smart Home gateways

 Section:
 New Results
Highlights of the Year
The paper “Faults in Linux 2.6” was published in the ACM journal
Transactions on Computer Systems in June 2014
. It has been downloaded from the ACM
digital library almost 300 times since then. The paper was reviewed
in the Linux Weekly News, in the German professional IT website
golem.de, and was the subject of an invited presentation at a joint
session of the Linux Kernel Summit and LinuxCon North America.
Julia Lawall was invited to the 2014 Linux Kernel Summit, an
invitation-only meeting of core Linux developers. She was subsequently
invited to participate in the plenary Linux Kernel Developer Panel at
LinuxCon Europe, with 2000 attendees.
Julia Lawall was invited to give a keynote at the conference Modularity
(formerly AOSD) on her work on Coccinelle [17] .
Best Paper Award :
[15] Faults in Linux 2.6 in ACM Transactions on Computer Systems.
N. Palix, G. Thomas, S. Saha, C. Calvès, G. Muller, J. L. Lawall.

 Section:
 New Results

 Lock profiling in Java servers

 Today, Java is regularly used to implement large multi-threaded
server-class applications that use locks to protect access to shared data.
However, understanding the impact of locks on the performance of a system
is complex, and thus the use of locks can impede the progress of threads on
configurations that were not anticipated by the developer, during specific
phases of the execution. In our paper, “Continuously Measuring Critical
Section Pressure with the Free-Lunch Profiler” [26] ,
presented at OOPSLA 2014, we propose Free Lunch, a new lock profiler for
Java application servers, specifically designed to identify, in-vivo,
phases where the progress of the threads is impeded by a lock. Free Lunch
is designed around a new metric, critical section pressure (CSP),
which directly correlates the progress of the threads to each of the locks.
Using Free Lunch, we have identified phases of high CSP, which were hidden
with other lock profilers, in the distributed Cassandra NoSQL database and
in several applications from the DaCapo 9.12, the SPECjvm2008 and the
SPECjbb2005 benchmark suites. Our evaluation of Free Lunch shows that
its overhead is never greater than 6%, making it suitable for in-vivo use.

 Section:
 New Results

 Software engineering for infrastructure
software

 A kernel oops is an error report that logs the status of the Linux kernel
at the time of a crash. Such a report can provide valuable first-hand
information for a Linux kernel maintainer to conduct postmortem
debugging. Recently, a repository has been created that systematically
collects kernel oopses from Linux users. However, debugging based on only
the information in a kernel oops is difficult. In a paper published at MSR
[19] , we consider the initial problem of finding the
offending line, i.e., the line of source code that incurs the crash. For
this, we propose a novel algorithm based on approximate sequence matching,
as used in bioinformatics, to automatically pinpoint the offending line
based on information about nearby machine-code instructions, as found in a
kernel oops. Our algorithm achieves 92% accuracy compared to 26% for the
traditional approach of using only the oops instruction pointer.

 2014 was the second year of a two-year cooperation between Julia Lawall and
David Lo of Singapore Management University, as part of the Merlion
cooperation grant program of the Insitut Français. This cooperation
resulted in four papers: two on word similarity
[22] , [27] , one on bug localization
[24] , and one on an empirical study of testing
practices in open source software [20] . As an
offshoot of this work, Julia Lawall worked with the PhD student Ripon Saha
of UT Austin and his advisors on the topic of assessing the effectiveness
of a state-of-the-art bug localization technique on C programs as compared
to Java programs [21] . This work built on the C parser
developed for Coccinelle.

 Finally, with colleagues from Aalborg University and with Nicolas Palix of
Grenoble, Julia Lawall published an article in Science of Computer
Programming assessing the applicability of Coccinelle to checking the
coding style guidelines of the CERT C Secure Coding Standard
[14] .

 Section:
 New Results

 Bugs in Linux 2.6

 In August 2011, Linux entered its third decade. Ten years before, Chou et
al. published a study of faults found by applying a static analyzer to
Linux versions 1.0 through 2.4.1. A major result of their work was that the
drivers directory contained up to 7 times more of certain kinds of faults
than other directories. This result inspired numerous efforts on improving
the reliability of driver code. Today, Linux is used in a wider range of
environments, provides a wider range of services, and has adopted a new
development and release model. What has been the impact of these changes on
code quality? To answer this question, in an article published in ACM TOCS,
we have transported Chou et al.'s experiments to all versions of Linux 2.6;
released between 2003 and 2011. We find that Linux has more than doubled in
size during this period, but the number of faults per line of code has been
decreasing. Moreover, the fault rate of drivers is now below that of other
directories, such as arch. These results can guide further development and
research efforts for the decade to come. To allow updating these results as
Linux evolves, we define our experimental protocol and make our checkers
available.

 Section:
 New Results

 Memory Monitoring in Smart Home gateways

 Smart Home market players aim to deploy component-based and
service-oriented applications from untrusted third party providers on
a single OSGi execution environment. This creates the risk of resource
abuse by buggy and malicious applications, which raises the need for
resource monitoring mechanisms. Existing resource monitoring solutions
either are too intrusive or fail to identify the relevant resource
consumer in numerous multi-tenant situations. In our paper “Memory
Monitoring in a Multi-tenant OSGi Execution Environment”
[16] , presented at CBSE 2014, we propose a
system to monitor the memory consumed by each tenant, while allowing
them to continue communicating directly to render services. We propose
a solution based on a list of configurable resource accounting rules
between tenants, which is far less intrusive than existing OSGi
monitoring systems. We modified an experimental Java Virtual Machine
in order to provide the memory monitoring features for the
multi-tenant OSGi environment. Our evaluation of the memory monitoring
mechanism on the DaCapo benchmarks shows an overhead below 46%. This
work has been done as part of the PhD of Koutheir Attouchi
[10] who was supported by a CIFRE grant with
Orange Labs.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry

 Section:
 Bilateral Contracts and Grants with Industry

 Bilateral Contracts with Industry

 A 5-month contract with the company Metaware to provide support for
Metaware's use of Coccinelle ended in February 2014. This contract
resulted in numerous improvements in Coccinelle of interest to the general
Coccinelle user community, including better handling of declarations
involving multiple variables and better pretty printing of the gernated
code.

 The PhD of Koutheir Attouchi [10] on managing
resources in the context of Smart Home gateway was supported by a
CIFRE grant with Orange Labs.

 Together with Julien Sopena from REGAL, we are collaborating with
Renault, in the context of the PhD of Antoine Blin (CIFRE), on
hierarchical scheduling in multicore platforms for real-time embedded
systems. This work is a dissemination of our previous research on the
Bossa domain-specific language [6] .

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific events organisation

 Member of the organizing committee

 Julia Lawall was a member of the SIGPLAN Executive Committee, which
supervises the organization of the various conferences sponsored by
SIGPLAN, as well as other SIGPLAN activities.

 Gilles Muller is a member of the steering committee of the EuroSys conference.

 Scientific events selection

 Member of the conference program committee

 Gilles Muller was a PC member for the conferences VEE, TRIOS, for the workshop APSYS and for the jury of the best EuroSys PhD (Roger Needham award).

 Julia Lawall was a PC member for the conferences Modularity and ICDCS.

 Pierre-Évariste Dagand was a PC member for WGP 2014, the workshop
on generic programming.

 Journal

 Member of the editorial board

 Julia Lawall: Higher-Order and Symbolic Computation, Science of Computer
Programming.

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 Supervision

 	
 PhD : Koutheir Attouchi, Managing Resource Sharing Conflicts in an Open Embedded Software Environment, Université Pierre et Marie Curie, 11 juillet 2014, Gilles Muller et Gaël Thomas, CIFRE Orange

 	
 PhD : Jean-Pierre Lozi, Towards more scalable mutual exclusion for multicore architectures, Université Pierre et Marie Curie, 16 juillet 2014, Gilles Muller et Gaël Thomas

 	
 PhD : Lisong Guo,
Boost the Reliability of the Linux Kernel:
Debugging Kernel Oopses, Université Pierre et Marie Curie, 18 décembre
2014, Julia Lawall et Gilles Muller

 	
 PhD in progress : Florian David, A profiler for locks in Java servers, octobre 2011, Gilles Muller et Gaël Thomas

 	
 PhD in progress : Peter Senna Tschudin, Développement Rapide de
Pilotes de Périphériques, mai 2014, Julia Lawall et Gilles Muller

 	
 PhD in progress : Valentin Rothberg, Exploration de la génétique
des pilotes périphériques,
octobre 2014, Julia Lawall et Gilles Muller

 	
 PhD in progress : Antoine Blin, Execution of real-time applications on a small multicore embedded system, avril 2012, Gilles Muller et Julien Sopena (Regal), CIFRE Renault

 Juries

 	
 Gilles Muller:

 	
 HDR: David Bromberg (University of Bordeaux, reviewer),
Michaël Hauspie (reviewer).

 	
 PhD: Jigar Solanki (University of Bordeaux, rapporteur), Pierre-Louis Aublin (University of Grenoble, reviewer), Baptiste Lepers (University of Grenoble), Etienne Millon (University of Pierre et Marie Curie, President)

 	
 Julia Lawall:

 	
 HDR: David Bromberg (University of Bordeaux, reviewer), Nicolas
Anquetil (University of Lille).

 	
 PhD: Alexandre Lissy (University of Tours, reviewer), Lucia
(Singapore Management University)

 Section:
 Dissemination

 Popularization

 Julia Lawall presented a tutorial on Coccinelle at ENS (Masters students),
the IT University of Copenhagen (PhD students), at the Suse Labs conference
(developers), at LinuxCon Europe (developers), and at Middleware (PhD
students and researchers).

 Bibliography

 Major publications by the team in recent years

 	[1]

 	J. Brunel, D. Doligez, R. R. Hansen, J. L. Lawall, G. Muller.
A foundation for flow-based program matching using temporal logic and model checking, in: POPL, Savannah, GA, USA, ACM, January 2009, pp. 114–126.

 	[2]

 	L. Burgy, L. Réveillère, J. L. Lawall, G. Muller.
Zebu: A Language-Based Approach for Network Protocol Message Processing, in: IEEE Trans. Software Eng., 2011, vol. 37, no 4, pp. 575-591.

 	[3]

 	P.-É. Dagand, A. Baumann, T. Roscoe.
Filet-o-Fish: practical and dependable domain-specific languages for OS development, in: Programming Languages and Operating Systems (PLOS), 2009, pp. 51–55.

 	[4]

 	A. Kennedy, N. Benton, J. B. Jensen, P.-É. Dagand.
Coq: The World's Best Macro Assembler?, in: PPDP, Madrid, Spain, ACM, 2013, pp. 13–24.

 	[5]

 	G. Muller, C. Consel, R. Marlet, L. P. Barreto, F. Mérillon, L. Réveillère.
Towards Robust OSes for Appliances: A New Approach Based on Domain-specific Languages, in: Proceedings of the 9th Workshop on ACM SIGOPS European Workshop: Beyond the PC: New Challenges for the Operating System, Kolding, Denmark, 2000, pp. 19–24.

 	[6]

 	G. Muller, J. L. Lawall, H. Duchesne.
A Framework for Simplifying the Development of Kernel Schedulers: Design and Performance Evaluation, in: HASE - High Assurance Systems Engineering Conference, Heidelberg, Germany, IEEE, October 2005, pp. 56–65.

 	[7]

 	F. Mérillon, L. Réveillère, C. Consel, R. Marlet, G. Muller.
Devil: An IDL for hardware programming, in: Proceedings of the Fourth Symposium on Operating Systems Design and Implementation (OSDI), San Diego, California, USENIX Association, October 2000, pp. 17–30.

 	[8]

 	Y. Padioleau, J. L. Lawall, R. R. Hansen, G. Muller.
Documenting and Automating Collateral Evolutions in Linux Device Drivers, in: EuroSys, Glasgow, Scotland, March 2008, pp. 247–260.

 	[9]

 	N. Palix, G. Thomas, S. Saha, C. Calvès, J. L. Lawall, G. Muller.
Faults in Linux: Ten Years Later, in: ASPLOS, Newport Beach, CA, USA, ACM, March 2011, pp. 305–318.

 Publications of the year

 Doctoral Dissertations and Habilitation Theses

 	[10]

 	K. Attouchi.
Managing Resource Sharing Conflicts in an Open Embedded Software Environment, Université Pierre et Marie Curie, July 2014.
https://hal.archives-ouvertes.fr/tel-01088028

 	[11]

 	L. Guo.
Boost the Reliability of the Linux Kernel: Debugging Kernel Oopses, UPMC, Paris Sorbonne, December 2014.
https://hal.inria.fr/tel-01096662

 	[12]

 	J.-P. Lozi.
Towards more scalable mutual exclusion for multicore architectures, Université Pierre et Marie Curie - Paris VI, July 2014.
https://tel.archives-ouvertes.fr/tel-01067244

 Articles in International Peer-Reviewed Journals

 	[13]

 	T. F. Bissyandé, L. Réveillère, J. Lawall, G. Muller.
Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel, in: Automated Software Engineering, May 2014, pp. 1-39. [
DOI : 10.1007/s10515-014-0152-4]
https://hal.archives-ouvertes.fr/hal-00992283

 	[14]

 	M. C. Olesen, R. R. Hansen, J. L. Lawall, N. Palix.
Coccinelle: Tool support for automated CERT C Secure Coding Standard certification, in: Science of Computer Programming, October 2014, vol. 91, no B, pp. 141–160.
https://hal.inria.fr/hal-01096185

 	[15]

 	Best Paper
N. Palix, G. Thomas, S. Saha, C. Calvès, G. Muller, J. L. Lawall.
Faults in Linux 2.6, in: ACM Transactions on Computer Systems, June 2014, vol. 32, no 2, pp. 1–40. [
DOI : 10.1145/2619090]
https://hal.archives-ouvertes.fr/hal-01022704

 Invited Conferences

 	[16]

 	K. Attouchi, G. Thomas, A. Bottaro, G. Muller.
Memory Monitoring in a Multi-tenant OSGi Execution Environment, in: CBSE '14 -17th international ACM Sigsoft symposium on Component-based software engineering, Marcq-en-Baroeul, France, ACM, June 2014. [
DOI : 10.1145/2602458.2602467]
https://hal.archives-ouvertes.fr/hal-01080634

 	[17]

 	J. L. Lawall.
Coccinelle: reducing the barriers to modularization in a large C code base, in: MODULARITY - 13th International Conference on Modularity, Lugano, Switzerland, W. Binder, E. Ernst, A. Peternier, R. Hirschfeld (editors), ACM, April 2014, pp. 5-6. [
DOI : 10.1145/2584469.2584661]
https://hal.inria.fr/hal-01001894

 International Conferences with Proceedings

 	[18]

 	F. David, G. Thomas, J. Lawall, G. Muller.
Continuously Measuring Critical Section Pressure with the Free-Lunch Profiler, in: OOPSLA 2014, Portland, Oregon, United States, ACM, October 2014. [
DOI : 10.1145/2660193.2660210]
https://hal.inria.fr/hal-01080277

 	[19]

 	L. Guo, J. Lawall, G. Muller.
Oops! Where did that code snippet come from?, in: 11th Working Conference on Mining Software Repositories, Hyderabad, India, P. T. Devanbu, S. Kim, M. Pinzger (editors), ACM, May 2014, pp. 52-61. [
DOI : 10.1145/2597073.2597094]
https://hal.inria.fr/hal-01001878

 	[20]

 	K. Pavneet Singh, F. Thung, D. Lo, J. Lawall.
 An Empirical Study on the Adequacy of Testing in Open Source Projects, in: 21st Asia-Pacific Software Engineering Conference, Jeju, South Korea, December 2014.
https://hal.inria.fr/hal-01096132

 	[21]

 	R. k. Saha, J. L. Lawall, S. Khurshid, D. E. Perry.
On the Effectiveness of Information Retrieval Based Bug Localization for C Programs, in: ICSME 2014 - 30th International Conference on Software Maintenance and Evolution, Victoria, Canada, IEEE, September 2014, pp. 161-170. [
DOI : 10.1109/ICSME.2014.38]
https://hal.inria.fr/hal-01086082

 	[22]

 	Y. Tian, D. Lo, J. Lawall.
Automated construction of a software-specific word similarity database, in: 2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering, CSMR-WCRE, Antwerp, Belgium, IEEE, February 2014, pp. 44-53.
https://hal.inria.fr/hal-01086077

 	[23]

 	Y. Tian, D. Lo, J. Lawall.
SEWordSim: software-specific word similarity database, in: ICSE'14 - 36th International Conference on Software Engineering, Companion Proceedings, Hyderabad, India, P. Jalote, L. C. Briand, A. van der Hoek (editors), ACM/IEEE, June 2014, pp. 568-571. [
DOI : 10.1145/2591062.2591071]
https://hal.inria.fr/hal-01001892

 	[24]

 	S. Wang, D. Lo, J. Lawall.
Compositional Vector Space Models for Improved Bug Localization, in: 30th International Conference on Software Maintenance and Evolution, Victoria, Canada, IEEE, September 2014, pp. 171-180.
https://hal.inria.fr/hal-01086084

 Internal Reports

 	[25]

 	K. Attouchi, G. Thomas, A. Bottaro, J. L. Lawall, G. Muller.
Incinerator - Eliminating Stale References in Dynamic OSGi Applications, Inria, February 2014, no RR-8485, 22 p.
https://hal.inria.fr/hal-00952327

 	[26]

 	F. David, G. Thomas, J. Lawall, G. Muller.
Continuously Measuring Critical Section Pressure with the Free Lunch Profiler, Inria Whisper, March 2014, no RR-8486, 24 p.
https://hal.inria.fr/hal-00957154

 Other Publications

 	[27]

 	Y. Tian, D. Lo, J. Lawall.
SEWordSim: software-specific word similarity database, ACM, May 2014, pp. 568-571, ICSE Companion 2014 - Companion Proceedings of the 36th International Conference on Software Engineering . [
DOI : 10.1145/2591062.2591071]
https://hal.inria.fr/hal-01086079

 References in notes

 	[28]

 	T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K. Rajamani, A. Ustuner.
Thorough Static Analysis of Device Drivers, in: EuroSys, 2006, pp. 73–85.

 	[29]

 	J. Bangert, N. Zeldovich.
Nail: A Practical Tool for Parsing and Generating Data Formats, in: 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI), October 2014, pp. 615–628.

 	[30]

 	A. Baumann, P. Barham, P.-É. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, A. Singhania.
The multikernel: A new OS architecture for scalable multicore systems, in: SOSP, 2009, pp. 29–44.

 	[31]

 	T. F. Bissyandé, L. Réveillère, J. L. Lawall, Y.-D. Bromberg, G. Muller.
Implementing an embedded compiler using program transformation rules, in: Software: Practice and Experience, 2013.

 	[32]

 	T. F. Bissyandé, L. Réveillère, J. L. Lawall, G. Muller.
Diagnosys: automatic generation of a debugging interface to the Linux kernel, in: IEEE/ACM International Conference on Automated Software Engineering (ASE), 2012, pp. 60–69.

 	[33]

 	A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet.
Pharo by Example, Square Bracket Associates, 2010.

 	[34]

 	E. Brady, K. Hammond.
Resource-Safe Systems Programming with Embedded Domain Specific Languages, in: 14th International Symposium on Practical Aspects of Declarative Languages (PADL), LNCS, Springer, 2012, vol. 7149, pp. 242–257.

 	[35]

 	T. Braibant, D. Pous.
An Efficient Coq Tactic for Deciding Kleene Algebras, in: 1st International Conference on Interactive Theorem Proving (ITP), LNCS, Springer, 2010, vol. 6172, pp. 163–178.

 	[36]

 	C. Cadar, D. Dunbar, D. R. Engler.
KLEE: Unassisted and Automatic Generation of High-Coverage Tests for Complex Systems Programs, in: OSDI, 2008, pp. 209–224.

 	[37]

 	V. Chipounov, G. Candea.
Reverse Engineering of Binary Device Drivers with RevNIC, in: EuroSys, 2010, pp. 167–180.

 	[38]

 	A. Chlipala.
The Bedrock Structured Programming System: Combining Generative Metaprogramming and Hoare Logic in an Extensible Program Verifier, in: ICFP, 2013, pp. 391–402.

 	[39]

 	L. A. Clarke.
A system to generate test data and symbolically execute programs, in: IEEE Transactions on Software Engineering, 1976, vol. 2, no 3, pp. 215–222.

 	[40]

 	E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith.
Counterexample-guided abstraction refinement for symbolic model checking, in: J. ACM, 2003, vol. 50, no 5, pp. 752–794.

 	[41]

 	P. Cousot, R. Cousot.
Abstract Interpretation: Past, Present and Future, in: CSL-LICS, 2014, pp. 2:1–2:10.

 	[42]

 	I. Dillig, T. Dillig, A. Aiken.
Sound, complete and scalable path-sensitive analysis, in: PLDI, June 2008, pp. 270–280.

 	[43]

 	D. R. Engler, B. Chelf, A. Chou, S. Hallem.
Checking System Rules Using System-Specific, Programmer-Written Compiler Extensions, in: OSDI, 2000, pp. 1–16.

 	[44]

 	D. R. Engler, D. Y. Chen, A. Chou, B. Chelf.
Bugs as Deviant Behavior: A General Approach to Inferring Errors in Systems Code, in: SOSP, 2001, pp. 57–72.

 	[45]

 	A. Goldberg, D. Robson.
Smalltalk-80: The Language and Its Implementation, Addison-Wesley, 1983.

 	[46]

 	L. Gu, A. Vaynberg, B. Ford, Z. Shao, D. Costanzo.
CertiKOS: A Certified Kernel for Secure Cloud Computing, in: Proceedings of the Second Asia-Pacific Workshop on Systems (APSys), 2011, pp. 3:1–3:5.

 	[47]

 	A. Israeli, D. G. Feitelson.
The Linux kernel as a case study in software evolution, in: Journal of Systems and Software, 2010, vol. 83, no 3, pp. 485–501.

 	[48]

 	A. Kadav, M. M. Swift.
Understanding modern device drivers, in: ASPLOS, 2012, pp. 87–98.

 	[49]

 	G. A. Kildall.
A Unified Approach to Global Program Optimization, in: POPL, 1973, pp. 194–206.

 	[50]

 	G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, S. Winwood.
seL4: formal verification of an OS kernel, in: SOSP, 2009, pp. 207–220.

 	[51]

 	J. L. Lawall, J. Brunel, N. Palix, R. R. Hansen, H. Stuart, G. Muller.
WYSIWIB: Exploiting fine-grained program structure in a scriptable API-usage protocol-finding process, in: Software, Practice Experience, 2013, vol. 43, no 1, pp. 67–92.

 	[52]

 	J. L. Lawall, B. Laurie, R. R. Hansen, N. Palix, G. Muller.
Finding Error Handling Bugs in OpenSSL using Coccinelle, in: Proceeding of the 8th European Dependable Computing Conference (EDCC), Valencia, Spain, April 2010, pp. 191–196.

 	[53]

 	J. L. Lawall, D. Lo.
An automated approach for finding variable-constant pairing bugs, in: 25th IEEE/ACM International Conference on Automated Software Engineering, Antwerp, Belgium, September 2010, pp. 103–112.

 	[54]

 	C. Le Goues, W. Weimer.
Specification Mining with Few False Positives, in: TACAS, York, UK, Lecture Notes in Computer Science, March 2009, vol. 5505, pp. 292–306.

 	[55]

 	O. Levillain.
Parsifal: a Pragmatic Solution to the Binary Parsing Problem, in: LangSec Workshop at IEEE Security & Privacy, May 2014.

 	[56]

 	Z. Li, S. Lu, S. Myagmar, Y. Zhou.
CP-Miner: A Tool for Finding Copy-paste and Related Bugs in Operating System Code, in: OSDI, 2004, pp. 289–302.

 	[57]

 	Z. Li, Y. Zhou.
PR-Miner: automatically extracting implicit programming rules and detecting violations in large software code, in: Proceedings of the 10th European Software Engineering Conference, 2005, pp. 306–315.

 	[58]

 	D. Lo, S. Khoo.
SMArTIC: towards building an accurate, robust and scalable specification miner, in: FSE, 2006, pp. 265–275.

 	[59]

 	J.-P. Lozi, F. David, G. Thomas, J. L. Lawall, G. Muller.
Remote Core Locking: migrating critical-section execution to improve the performance of multithreaded applications, in: USENIX Annual Technical Conference, Boston, MA, USA, June 2012, pp. 65–76.

 	[60]

 	S. Lu, S. Park, Y. Zhou.
Finding Atomicity-Violation Bugs through Unserializable Interleaving Testing, in: IEEE Transactions on Software Engineering, 2012, vol. 38, no 4, pp. 844–860.

 	[61]

 	S. McCanne, V. Jacobson.
The BSD Packet Filter: A New Architecture for User-level Packet Capture, in: USENIX Winter, 1993, pp. 259–269.

 	[62]

 	M. Mernik, J. Heering, A. M. Sloane.
When and How to Develop Domain-specific Languages, in: ACM Comput. Surv., December 2005, vol. 37, no 4, pp. 316–344.
http://dx.doi.org/10.1145/1118890.1118892

 	[63]

 	G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, E. Gan.
RockSalt: better, faster, stronger SFI for the x86, in: PLDI, 2012, pp. 395-404.

 	[64]

 	M. Odersky, T. Rompf.
Unifying functional and object-oriented programming with Scala, in: Commun. ACM, 2014, vol. 57, no 4, pp. 76–86.

 	[65]

 	T. Reps, T. Ball, M. Das, J. Larus.
The Use of Program Profiling for Software Maintenance with Applications to the Year 2000 Problem, in: ESEC/FSE, 1997, pp. 432–449.

 	[66]

 	C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-Dusseau, A. C. Arpaci-Dusseau.
Error propagation analysis for file systems, in: PLDI, Dublin, Ireland, ACM, June 2009, pp. 270–280.

 	[67]

 	L. Ryzhyk, P. Chubb, I. Kuz, E. Le Sueur, G. Heiser.
Automatic device driver synthesis with Termite, in: SOSP, 2009, pp. 73–86.

 	[68]

 	L. Ryzhyk, A. Walker, J. Keys, A. Legg, A. Raghunath, M. Stumm, M. Vij.
User-Guided Device Driver Synthesis, in: OSDI, 2014, pp. 661–676.

 	[69]

 	S. Saha, J.-P. Lozi, G. Thomas, J. L. Lawall, G. Muller.
Hector: Detecting Resource-Release Omission Faults in error-handling code for systems software, in: 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), June 2013, pp. 1–12.

 	[70]

 	D. A. Schmidt.
Data Flow Analysis is Model Checking of Abstract Interpretations, in: POPL, 1998, pp. 38–48.

 	[71]

 	P. Senna Tschudin, L. Réveillère, L. Jiang, D. Lo, J. L. Lawall, G. Muller.
Understanding the Genetic Makeup of Linux Device Drivers, in: PLOS, November 2013.

 	[72]

 	M. Shapiro.
Purpose-built languages, in: Commun. ACM, 2009, vol. 52, no 4, pp. 36–41.

 	[73]

 	R. Tartler, D. Lohmann, J. Sincero, W. Schröder-Preikschat.
Feature consistency in compile-time-configurable system software: facing the Linux 10,000 feature problem, in: EuroSys, 2011, pp. 47–60.

 	[74]

 	J.-B. Tristan, X. Leroy.
Formal verification of translation validators: a case study on instruction scheduling optimizations, in: POPL, 2008, pp. 17–27.

 	[75]

 	W. Wang, M. Godfrey.
A Study of Cloning in the Linux SCSI Drivers, in: Source Code Analysis and Manipulation (SCAM), IEEE, 2011.

 	[76]

 	J. Yang, C. Hawblitzel.
Safe to the Last Instruction: Automated Verification of a Type-safe Operating System, in: PLDI, 2010, pp. 99–110.

 OEBPS/uid54.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Participation In other International Programs

 Julia Lawall obtained the renewal of a Merlion collaboration grant, started
in 2013, for collaboration with David Lo of Singapore Management
University. This collaboration resulted in a two-week visit of Julia
Lawall to Singapore Management University, a one-week visit of David Lo to
the Whisper team, and a two-week visit of Lo's PhD student Ferdian Thung to
the Whisper team. It also resulted in four publications during 2014
[27] , [22] , [24] , [20] .

OEBPS/uid31.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 ANR

 		
 InfraJVM - (2012 - 2015)

 		
 Members: LIP6 (Regal-Whisper), Ecole des Mines de Nantes (Constraint), IRISA (Triskell), LaBRI (LSR).

 		
 Coordinator: Gaël Thomas

 		
 Whisper members: Julia Lawall, Gilles Muller

 		
 Funding: ANR Infra, 202 000 euros.

 		
 Objectives: The design of the Java Virtual Machine(JVM) was last
revised in 1999, at atime when a single program running on a
uniprocessor desktop machine was the norm. Today's computing
environment, however, is radically different, being characterized by
many different kinds of computing devices, which are often mobile and
which need to interact within the context of a single
application. Supporting such applications, involving multiple mutually
untrusted devices, requires resource management and scheduling
strategies that were not planned for in the 1999 JVM design. The goal
of InfraJVM is to design strategies that can meet the needs of such
applications and that provide the good performance that is required in
an MRE.

 		
 Chronos network, Time and Events in Computer Science, Control Theory, Signal Processing, Computer Music, and Computational Neurosciences and Biology

 		
 Coordinator: Gerard Berry

 		
 Whisper member: Gilles Muller

 		
 Funding: ANR 2014, Défi “Société de l'information
et de la communication”.

 The Chronos interdisciplinary network aims at placing in close contact
and cooperation researchers of a variety of scientific fields:
computer science, control theory, signal processing, computer music,
neurosciences, and computational biology. The scientific object of
study will be the understanding, modeling, and handling of time- and
event-based computation across the fields.

 Chronos will work by organizing a regular global seminar on subjects
ranging from open questions to concrete solutions in the research
fields, workshops gathering subsets of the Chronos researchers to
address specific issues more deeply, a final public symposium
presenting the main contributions and results, and an associated
compendium.

 Multicore Inria Project Lab

 The Multicore IPL is an Inria initiative led by Gilles Muller, whose goal
is to develop techniques for being able to deploy parallel programs on
heterogeneous multicore machines while preserving scalability and
performance. The IPL brings together researchers from the ALF, Algorille,
CAMUS, Compsys, DALI, REGAL, Runtime and Whisper Inria Teams. These
connections provide access to a diversity of expertise on open source
development and parallel computing, respectively. In this context, we are
working with Jens Gustedt of Inria Lorraine and on developing a domain-specific
language that eases programming with the ordered read-write lock (ORWL)
execution model. The goal of this work is to provide a single execution
model for parallel programs and allow them to be deployed on multicore
machines with varying architectures.

OEBPS/uid56.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits of International Scientists

 Internships

 Julia Lawall supervised the remote internships of Himangi Saraogi (summer
2014) and Tapasweni Pathak (winter 2014, in progress) as part of the Gnome
Outreach Program for Women (OPW). Both interns carried out projects
related to Coccinelle and the Linux kernel. Julia Lawall has taken over
the responsability for the coordination of the Linux kernel's participation
in the OPW program in winter 2014.

 Julia Lawall also supervised the internship of the undergraduate student
(L2) Chi Pham from the University of Copenhagen. Pham developed a tool for
transforming Coccinelle semantic patches to make them suitable for
inclusion in the Linux kernel.

OEBPS/international.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid44.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 Collaborations in European Programs, except FP7 & H2020

 		
 Program: COST Action IC1001

 		
 Project acronym: Euro-TM

 		
 Project title: Transactional Memories: Foundations, Algorithms, Tools, and Applications

 		
 Duration: 2011 - 2014

 		
 Coordinator: Dr. Paolo Romano (INESC)

 		
 Whisper member: Gilles Muller, leader of the working group on Hardware's & Operating System's Supports

 		
 Other partners: Austria, Czech Republic, Denmark, France, Germany, Greece, Israel, Italy, Norway, Poland, Portugal, Serbia, Spain, Sweden, Switzerland, Turkey, United Kingdom.

 		
 Abstract: Parallel programming (PP) used to be an area once
confined to a few niches, such as scientific and high-performance
computing applications. However, with the proliferation of multicore
processors, and the emergence of new, inherently parallel and
distributed deployment platforms, such as those provided by cloud
computing, parallel programming has definitely become a mainstream
concern. Transactional Memories(TMs) answer the need to find a better
programming model for PP, capable of boosting developer's productivity
and allowing ordinary programmers to unleash the power of parallel and
distributed architectures avoiding the pitfalls of manual, lock based
synchronization. It is therefore no surprise that TM has been subject
to intense research in the last years. This Action aims at
consolidating European research on this important field, by
coordinating the European research groups working on the development
of complementary, interdisciplinary aspects of Transactional Memories,
including theoretical foundations, algorithms, hardware and operating
system support, language integration and development tools, and
applications.

OEBPS/IMG/iTunesArtwork.png
Activity Report 2014
Project-Team Whisper

Well Honed
Infrastructure Software
for Programming
Environments and
Runtimes

IN COLLABORATION WITH: Laboratoire dinformatique de Parls 6 (LIP6)

