

[image: cover]

 CELTIQUE

 Software certification with semantic analysis

 2015 Project-Team Activity Report
	

 Research centre:
 Rennes - Bretagne-Atlantique

 Field: Algorithmics, Programming, Software and Architecture
Theme: Proofs and Verification

 Computer Science and Digital Science:

 	2.1. - Programming Languages

 	2.1.1. - Semantics of programming languages

 	2.1.2. - Object-oriented programming

 	2.1.3. - Functional programming

 	2.1.9. - Dynamic languages

 	2.2. - Compilation

 	2.2.1. - Static analysis

 	2.2.2. - Memory models

 	2.4. - Reliability, certification

 	2.4.1. - Analysis

 	2.4.2. - Verification

 	2.4.3. - Proofs

 	4. - Security and privacy

 	4.5. - Formal methods for security

 Other Research Topics and Application Domains:

 	6.1. - Software industry

 	6.1.1. - Software engineering

 	6.6. - Embedded systems

 Project-Team Celtique

 Members

 Overall Objectives	Project overview

 Research Program	Static program analysis

 Highlights of the Year

 New Software and Platforms	JSCert
	Jacal
	Javalib
	SAWJA
	Timbuk
	CompCertSSA

 New Results	Certified compilation
	Certified Static Analyses
	Static analysis of functional programs
using tree automata and term rewriting
	Static analysis of functional specifications
	Semantics

 Partnerships and Cooperations	National Initiatives
	International Initiatives
	International Research Visitors

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Major publications

 	
 Publications of the year

 	
 References in notes

 Creation of the Project-Team: 2009 July 01
Section: Members
Research Scientists
Thomas Jensen [Team leader, Inria, Senior Researcher, HdR]
Frédéric Besson [Inria, Researcher]
Alan Schmitt [Inria, Senior Researcher, HdR]
Faculty Members
Sandrine Blazy [Univ. Rennes I, Professor, HdR]
David Cachera [Normale Sup Rennes, Associate Professor, HdR]
Delphine Demange [Univ. Rennes I, Associate Professor]
Thomas Genet [Univ. Rennes I, Associate Professor, HdR]
Barbara Kordy [INSA Rennes, Associate Professor]
David Pichardie [Normale Sup Rennes,
Professor, HdR]
Charlotte Truchet [Univ. Nantes, Associate Professor]
Engineer
Laurent Guillo [CNRS, Senior engineer]
PhD Students
Oana Andreescu [Prove & Run, granted by CIFRE]
Martin Bodin [Univ. Rennes I]
Pauline Bolignano [Prove & Run, granted by CIFRE]
David Buhler [CEA, granted by CEA]
Gurvan Cabon [Inria]
Yon Fernandez de Retana [Univ. Rennes I]
Vincent Laporte [Univ. Rennes I, until Nov 2015, granted by ANR VERASCO project]
Stéphanie Riaud [DGA-MI]
Yann Salmon [High-school teacher]
Florent Saudel [Amossys, from Nov 2015, granted by CIFRE]
Pierre Wilke [Univ. Rennes I]
Yannick Zakowski [Normale Sup Rennes]
Post-Doctoral Fellows
Petar Maksimovic [Inria, until Nov 2015]
Marek Materzok [Inria]
Administrative Assistant
Lydie Mabil [Inria]
Other
Colas Le Guernic [DGA]

 Overall Objectives

 	Overall Objectives	Project overview

 Section:
 Overall Objectives

 Project overview

 The overall goal of the Celtique project is to improve the security and
reliability of software with semantic certification that attests to
its well-behavedness. The
semantic analyses extract approximate but sound descriptions of
software behaviour from which a proof of security can be constructed.
The analyses of relevance include numerical data flow
analysis, control flow analysis for higher-order languages, alias and
points-to analysis for heap structure manipulation, and various kinds
of information flow analysis.

 To achieve this goal, the project conducts work on improving semantic
analysis techniques, as well as work on using proof assistants such as
Coq to develop and prove properties of these analyses. We are
applying such techniques to a variety of source languages, including Java, C,
and JavaScript. We also study how these techniques apply to
low-level languages, and how they can be combined with certified
compilation.

 We target three application domains: Java software for small devices
(in particular smart cards and mobile telephones), embedded C programs, and web applications.

 Celtique is a joint project with the CNRS, the University of
Rennes 1 and ENS Rennes.

 Research Program

 	Research Program	Static program analysis

 Section:
 Research Program

 Static program analysis

 Static program analysis is concerned with obtaining information about
the run-time behaviour of a program without actually running it. This
information may concern the values of variables, the relations among
them, dependencies between program values, the memory structure being
built and manipulated, the flow of control, and, for concurrent
programs, synchronisation among processes executing in parallel.
Fully automated analyses usually render approximate information about
the actual program behaviour. The analysis is correct if the
information includes all possible behaviour of a
program. Precision of an analysis is improved by reducing the amount
of information describing spurious behaviour that will never occur.

 Static analysis has traditionally found most of its applications in the area of
program optimisation where information about the
run-time behaviour can be used to transform a program so that it
performs a calculation faster and/or makes
better use of the available memory resources.
The last decade has witnessed an increasing use of static analysis in
software verification for proving invariants about programs. The
Celtique
project is mainly concerned with this
latter use. Examples of static
analysis include:

 	
 Data-flow analysis as it is used in optimising compilers for
imperative languages. The properties can either be approximations of
the values of an expression (“the value of variable 𝗑 is
greater than 0” or 𝗑 is equal to 𝗒 at this
point in the program”) or more intensional information about program
behaviour such as “this variable is not used before being re-defined”
in the classical “dead-variable” analysis [74] .

 	
 Analyses of the memory structure includes shape analysis that
aims at approximating the data structures created by a program.
Alias analysis is another data flow analysis that finds out
which variables in a program addresses the same memory location. Alias
analysis is a fundamental analysis for all kinds of programs
(imperative, object-oriented) that manipulate state, because alias
information is necessary for the precise modelling of assignments.

 	
 Control flow analysis will find a safe approximation to the
order in which the instructions of a program are executed. This is
particularly relevant in languages where parameters or functions can be
passed as arguments to other functions, making it impossible to
determine the flow of control from the program syntax alone. The same
phenomenon occurs in object-oriented languages where it is the class
of an object (rather than the static type of the variable containing
the object) that determines which method a given method invocation
will call. Control flow analysis is an example of an analysis
whose information in itself does not lead to dramatic optimisations
(although it might enable in-lining of code) but is necessary for
subsequent analyses to give precise results.

 Static analysis possesses strong semantic foundations, notably abstract
interpretation [57] , that allow to prove its correctness. The
implementation of static analyses is usually based on well-understood
constraint-solving techniques and iterative fixpoint algorithms. In
spite of the nice mathematical theory of program analysis and the
solid algorithmic techniques available one problematic issue persists,
viz., the gap between the analysis that is proved
correct on paper and the analyser that actually runs on the
machine. While this gap might be small for toy languages, it becomes
important when it comes to real-life languages for which the
implementation and maintenance of program analysis tools become a
software engineering task. A certified static analysis is an
analysis that has been formally proved correct using a
proof assistant.

 In previous work we studied the benefit of using abstract
interpretation for developing certified static analyses
[55] , [77] . The development of
certified static analysers is an ongoing activity that will be part of
the Celtique project. We use the Coq proof assistant which allows for
extracting the computational content of a constructive proof. A Caml
implementation can hence be extracted from a proof of existence, for
any program, of a correct approximation of the concrete program
semantics. We have isolated a theoretical framework based on abstract
interpretation allowing for the formal development of a broad range of
static analyses. Several case studies for the analysis of Java byte
code have been presented, notably a memory usage analysis
[56] . This work has recently found
application in the context of Proof Carrying Code
and have also been successfully applied to
particular form of static analysis based on term rewriting and tree
automata [4] .

 Static analysis of Java

 Precise context-sensitive control-flow analysis is a fundamental
prerequisite for precisely analysing Java programs.
Bacon and Sweeney's Rapid Type Analysis (RTA) [48] is a
scalable algorithm for constructing an initial call-graph of the
program. Tip and Palsberg [80] have proposed a variety of
more precise but scalable call graph construction algorithms
e.g., MTA, FTA, XTA which accuracy is between RTA and 0'CFA.
All those analyses are not context-sensitive. As early as 1991,
Palsberg and Schwartzbach [75] , [76] proposed a theoretical
parametric framework for typing object-oriented programs in a
context-sensitive way. In their setting, context-sensitivity is
obtained by explicit code duplication and typing amounts to analysing
the expanded code in a context-insensitive manner. The framework
accommodates for both call-contexts and allocation-contexts.

 To assess the respective merits of different instantiations, scalable
implementations are needed. For Cecil and Java programs, Grove
et al., [64] , [63] have explored the algorithmic design
space of contexts for benchmarks of significant size.
Later on, Milanova et. al., [71] have
evaluated, for Java programs, a notion of context called
object-sensitivity which abstracts the call-context by the
abstraction of the this pointer. More recently, Lhotak and
Hendren [69] have extended the empiric
evaluation of object-sensitivity using a BDD implementation allowing
to cope with benchmarks otherwise out-of-scope.
Besson and Jensen [53] proposed to use datalog
in order to specify context-sensitive analyses. Whaley and
Lam [81] have implemented a context-sensitive
analysis using a BDD-based datalog implementation.

 Control-flow analyses are a prerequisite for other analyses. For instance, the
security analyses of Livshits and Lam [70] and
the race analysis of Naik, Aiken [72] and
Whaley [73] both heavily rely on the precision of a
control-flow analysis.

 Control-flow analysis allows to statically prove the absence of
certain run-time errors such as "message not understood" or cast
exceptions. Yet it does not tackle the problem of "null pointers".
Fahnrich and Leino [60] propose a type-system for
checking that after object creation fields are non-null. Hubert,
Jensen and Pichardie have formalised the type-system and derived a
type-inference algorithm computing the most precise
typing [67] . The
proposed technique has been implemented in a tool called
NIT [66] . Null pointer
detection is also done by bug-detection tools such as
FindBugs [66] . The main difference is that the
approach of findbugs is neither sound nor complete but effective in
practice.

 Quantitative aspects of static analysis

 Static analyses yield qualitative results, in the sense that they
compute a safe over-approximation of the concrete semantics of a
program, w.r.t. an order provided by the abstract domain structure.
Quantitative aspects of static analysis are two-sided: on one hand,
one may want to express and verify (compute) quantitative
properties of programs that are not captured by usual semantics, such
as time, memory, or energy consumption; on the other hand, there is a
deep interest in quantifying the precision of an analysis, in order to
tune the balance between complexity of the analysis and accuracy of
its result.

 The term of quantitative analysis is often related to probabilistic
models for abstract computation devices such as timed automata or
process algebras. In the field of programming languages which is more
specifically addressed by the Celtique project, several approaches have
been proposed for quantifying resource usage: a non-exhaustive list
includes memory usage analysis based on specific type
systems [65] , [47] , linear logic approaches to
implicit computational complexity [49] , cost
model for Java byte code [46] based on size relation inference,
and WCET computation by abstract interpretation based loop bound
interval analysis techniques [58] .

 We have proposed an original approach for designing
static analyses computing program costs: inspired from a probabilistic
approach [78] , a quantitative operational semantics
for expressing the cost of execution of a program has been
defined. Semantics is seen as a linear operator over a dioid structure
similar to a vector space. The notion of long-run cost is particularly
interesting in the context of embedded software, since it provides an
approximation of the asymptotic behaviour of a program in terms of
computation cost. As for classical static analysis, an abstraction
mechanism allows to effectively compute an over-approximation of the
semntics, both in terms of costs and of accessible
states [54] . An example of cache miss analysis has
been developed within this framework [79] .

 Certified static analysis

 In spite of the nice mathematical theory of program analysis (notably
abstract interpretation) and the solid algorithmic
techniques available one problematic issue persists, viz., the
gap between the analysis that is proved correct on paper and
the analyser that actually runs on the machine. While this gap might
be small for toy languages, it becomes important when it comes to
real-life languages for which the implementation and maintenance of
program analysis tools become a software engineering task.

 A certified static analysis is an analysis whose implementation
has been formally proved correct using a proof assistant. Such
analysis can be developed in a proof assistant like Coq [45]
by programming the analyser inside the assistant and formally proving
its correctness. The Coq extraction mechanism then allows for
extracting a Caml implementation of the analyser. The feasibility of
this approach has been demonstrated
in [6] .

 We also develop this technique through certified reachability analysis over term
rewriting systems.
Term rewriting systems are a very general, simple and convenient
formal model for a large variety of computing systems. For
instance, it is a very simple way to describe deduction systems, functions,
parallel processes or state transition systems where rewriting models
respectively deduction, evaluation, progression or transitions. Furthermore
rewriting can model every combination of them (for instance two
parallel processes running functional programs).

 Depending on the computing system modelled using rewriting,
reachability (and unreachability) permits to achieve some verifications on
the system: respectively prove that a deduction is feasible, prove
that a function call evaluates to a particular value, show that a
process configuration may occur, or that a state is reachable from
the initial state. As a consequence, reachability analysis has several applications in
equational proofs used in the theorem provers or in the proof
assistants as well as in verification where term rewriting systems can
be used to model programs.

 For proving unreachability, i.e. safety properties, we already have some
results based on the over-approximation of the set of reachable
terms [61] , [62] . We defined a simple and efficient
algorithm [59]
for computing exactly the set of reachable terms, when it is regular,
and construct an over-approximation otherwise. This algorithm consists of
a completion of a tree automaton, taking advantage
of the ability of tree automata to finitely represent infinite sets of
reachable terms.

 To certify the corresponding analysis, we have defined a checker
guaranteeing that a tree automaton is a valid fixpoint of the completion
algorithm. This consists in showing that for all term recognised by a tree
automaton all his rewrites are also recognised by the same tree automaton. This
checker has been formally defined in Coq and an efficient Ocaml implementation
has been automatically extracted [4] . This checker is now
used to certify all analysis results produced by the regular completion tool as
well as the optimised version of [50] .

 Highlights of the Year

 	
 Highlights of the Year

 Section:
 Highlights of the Year

 Highlights of the Year

 Awards

 Alan Schmitt has received the 2015 Most Influential POPL Paper Award for the
2005 paper “Combinators for Bi-Directional Tree Transformations: A Linguistic
Approach to the View Update Problem”
[8] .

 New Software and Platforms

 	New Software and Platforms	JSCert
	Jacal
	Javalib
	SAWJA
	Timbuk
	CompCertSSA

 Section:
 New Software and Platforms

 JSCert

 Certified JavaScript

 Functional Description

 The JSCert project aims to really understand JavaScript. JSCert itself is
a mechanised specification of JavaScript, written in the Coq proof assistant,
which closely follows the ECMAScript 5 English standard. JSRef is a reference
interpreter for JavaScript in OCaml , which has been proved correct with
respect to JSCert and tested with the Test 262 test suite.

 	
 Participants: Martin Bodin and Alan Schmitt

 	
 Partner: Imperial College London

 	
 Contact: Alan Schmitt

 	
 URL: http://jscert.org/

 Section:
 New Software and Platforms

 Jacal

 JAvaCard AnaLyseur

 Keywords: JavaCard - Certification - Static program analysis - AFSCM

 Functional Description

 Jacal is a JAvaCard AnaLyseur developed on top of the SAWJA platform. This
software verifies automatically that Javacard programs conform with the security
guidelines issued by the AFSCM (Association Française du Sans Contact
Mobile). Jacal is based on the theory of abstract interpretation and combines
several object-oriented and numeric analyses to automatically infer
sophisticated invariants about the program behaviour. The result of the analysis
is thereafter harvest to check that it is sufficient to ensure the desired
security properties.

 	
 Participants: Delphine Demange, David Pichardie, Thomas Jensen and Frédéric Besson

 	
 Contact: Thomas Jensen

 Section:
 New Software and Platforms

 Javalib

 Functional Description

 Javalib is an efficient library to parse Java .class files into OCaml data structures, thus enabling the OCaml programmer to extract information from class files, to manipulate and to generate valid .class files.

 	
 Participants: Frédéric Besson, David Pichardie and Laurent Guillo

 	
 Contact: David Pichardie

 	
 URL: http://sawja.inria.fr/

 Section:
 New Software and Platforms

 SAWJA

 Static Analysis Workshop for Java

 Keywords: Security - Software - Code review

 Functional Description

 Sawja is a library written in OCaml, relying on Javalib to provide a high level representation of Java bytecode programs. It name comes from Static Analysis Workshop for JAva. Whereas Javalib is dedicated to isolated classes, Sawja handles bytecode programs with their class hierarchy and with control flow algorithms.

 Moreover, Sawja provides some stackless intermediate representations of code, called JBir and A3Bir. The transformation algorithm, common to these representations, has been formalized and proved to be semantics-preserving.

 	
 Participants: Frédéric Besson, David Pichardie and Laurent Guillo

 	
 Contact: Frédéric Besson

 	
 URL: http://sawja.inria.fr/

 Section:
 New Software and Platforms

 Timbuk

 Keywords: Demonstration - Ocaml - Vérification de programmes - Tree Automata

 Functional Description

 Timbuk is a collection of tools for achieving proofs of reachability over Term Rewriting Systems and for manipulating Tree Automata (bottom-up non-deterministic finite tree automata)

 	
 Participant: Thomas Genet

 	
 Contact: Thomas Genet

 	
 URL: http://www.irisa.fr/celtique/genet/timbuk/

 Section:
 New Software and Platforms

 CompCertSSA

 Keywords: Verified compilation - Single Static Assignment
form - Optimization - Coq - OCaml

 Functional Description

 CompCertSSA is built on top of the C CompCert verified compiler, by
adding a SSA-based middle-end (conversion to SSA, SSA-based
optimizations, destruction of SSA). It is verified in the Coq proof
assistant.

 	
 Participant: Delphine Demange, David Pichardie, Yon
Fernandez de Retana, Leo Stefanesco

 	
 Contact: Delphine Demange

 	
 URL: http://compcertssa.gforge.inria.fr/

 New Results

 	New Results	Certified compilation
	Certified Static Analyses
	Static analysis of functional programs
using tree automata and term rewriting
	Static analysis of functional specifications
	Semantics

 Section:
 New Results

 Certified compilation

 We thrive at improving the technology of certified compilation. Our work
builds on the infrastructure provided by the CompCert compiler.
We are working both at improving the guarantees provided by certified compilation
and at formalising state-of-the-art optimisation techniques.

 Safer CompCert

 Participants :
	Sandrine Blazy, Frédéric Besson, Pierre Wilke.

 The CompCert compiler is proved with respect to an abstract semantics.
In previous work [52] , we propose a more concrete
memory model for the CompCert compiler [68] .
This model gives a semantics to more programs and lift the assumption about an
infinite memory. This model makes CompCert safer because more programs are
captured by the soundness theorem of CompCert and because it allows to reason
about memory consumption.

 We are investigating the consequences this model on different compiler passes
of CompCert [32] . As a sanity check, we prove formally
that the existing memory model is an abstraction of our more concrete model
thus validating formally the soundness of CompCert’s abstract semantics of
pointers. We have also port the front-end of the compiler to our new
semantics and are working on the compiler back-end.

 Verification of optimization techniques

 Participants :
	Sandrine Blazy, Delphine Demange, Yon Fernandez de Retana, David Pichardie.

 The CompCert compiler foregoes using SSA, an intermediate
representation employed by many compilers that enables writing
simpler, faster optimizers. In previous
work [51] , we have proposed a formally
verified SSA-based middle-end for CompCert, addressing two problems
raised by Leroy in 2009: giving an intuitive formal semantics to
SSA, and leveraging its global properties to reason locally about
program optimizations. Since then, we have studied in more depth
the SSA-based optimization techniques with the objective to make the
middle-end more realistic, in terms of the efficiency of
optimizations, and to rationalize the way the correctness proofs of
optimizations are conducted and structured.

 First, we have studied in [34] the problem of a
verified, yet efficient (i.e. as implemented in production
compilers) technique for testing the dominance relation between two
nodes in a control flow graph. We propose a formally verified
validator of untrusted dominator trees, on top of which we implement
and prove correct a fast dominance test.

 Second, in [20] , we implement and verify two
prevailing SSA optimizations (Sparse Conditional Constant
Propagation and Global Value Numbering), conducting the proofs in a
unique and common sparse optimization proof framework, factoring out
many of the dominance-based reasoning steps required in proofs of
SSA-based optimizations. Our experimental evaluations indicate both
a better precision, and a significant compilation time speedup.

 Finally, we have studied (paper under review at the international
conference Compiler Construction 2016) the destruction of the SSA
form (i.e. at the exit point of the middle-end), a problem that has
remained a difficult problem, even in a non-verified environment. We
formally defined and proved the properties of the generation of
Conventional SSA (CSSA) which make its destruction simple to
implement and prove. We implemented and proved correct a coalescing
destruction of CSSA, à la Boissinot et al., where variables can be
coalesced according to a refined notion of interference. Our
CSSA-based, coalescing destruction allows us to coalesce more than
99% of introduced copies, on average, and leads to encouraging
results concerning spilling and reloading during post-SSA
allocation.

 Section:
 New Results

 Certified Static Analyses

 Certified Analyses for JavaScript

 Participants :
	Martin Bodin, Thomas Jensen, Alan Schmitt.

 We have continued our work on the certification of analyses for JavaScript
by developing a systematic way to build certified abstract interpreters
from big-step semantics using the Coq proof assistant. We based our
approach on Schmidt’s abstract interpretation principles for natural
semantics, and used a pretty-big-step (PBS) semantics, a semantic format
proposed by Charguéraud. We proposed a systematic representation of the PBS
format and implemented it in Coq. We then showed how the semantic rules can
be abstracted in a methodical fashion, independently of the chosen abstract
domain, to produce a set of abstract inference rules that specify an
abstract interpreter. We proved the correctness of the abstract interpreter
in Coq once and for all, under the assumption that abstract operations
faithfully respect the concrete ones. We finally showed how to define
correct-by-construction analyses: their correction amounts to proving they
belong to the abstract semantics. This work has been published at CPP
2015 [19] .

 In addition, we have worked on hybrid typing of information flow for
JavaScript, in collaboration with José Fragoso Santos and Tamara Rezk at
Inria Sophia-Antipolis. Our analysis combined static and dynamic typing in
order to avoid rejecting programs due to imprecise typing information. This
work has been published at TGC 2015 [21] .

 Certified Analyses for safety-critical C programs

 Participants :
	Sandrine Blazy, Vincent Laporte, David Pichardie.

 We designed and proved sound, using the Coq proof assistant, a
static analyzer, Verasco [26] , based on
abstract interpretation for most of the ISO C 1999 language
(excluding recursion and dynamic allocation). Verasco establishes
the absence of run-time errors in the analyzed programs. It enjoys
a modular architecture that supports the extensible combination of
multiple abstract domains, both relational and non-relational.
Verasco integrates with the CompCert formally-verified C compiler so
that not only the soundness of the analysis results is guaranteed
with mathematical certitude, but also the fact that these guarantees
carry over to the compiled code.

 Certified Analyses for binary codes

 Participants :
	Sandrine Blazy, Vincent Laporte, David Pichardie.

 Static analysis of binary code is challenging for several
reasons. In particular, standard static analysis techniques operate
over control flow graphs, which are not available when dealing with
self-modifying programs which can modify their own code at runtime.
We formalized in the Coq proof assistant some key abstract
interpretation techniques that automatically extract memory safety
properties and control flow graphs from binary
code [13] , and operate over a small subset of
the x86 assembly. Our analyzer is formally proved correct and has
been run on several self-modifying challenges, provided by Cai et
al. in their PLDI 2007 paper. This an extended version of out ITP
2014 paper.

 Section:
 New Results

 Static analysis of functional programs
using tree automata and term rewriting

 Participants :
	Thomas Genet, Yann Salmon.

 We develop a specific theory and the related tools for analyzing programs whose
semantics is defined using term rewriting systems. The analysis principle is
based on regular approximations of infinite sets of terms reachable by
rewriting. The tools we develop use, so-called, Tree Automata Completion to
compute a tree automaton recognizing a superset of all reachable terms. This
over-approximation is then used to prove properties on the program by showing
that some “bad” terms, encoding dangerous or problematic configurations, are
not in the superset and thus not reachable. This is a specific form of,
so-called, Regular Tree Model Checking. Now, we aim at applying this technique to the
static analysis of programming languages whose semantics is based on terms,
like functional programming languages. We already shown that static analysis of
first order functional programs with a call-by-value evaluation strategy can be
automated using tree automata completion [22] . This is the
subject of the PhD thesis Yann Salmon has
defended [11] . Now, one of the objective is to lift those
results to the static analysis of higher-order functions.

 Section:
 New Results

 Static analysis of functional specifications

 Participants :
	Thomas Jensen, Oana Andreescu.

 We have developed a static dependency analysis for a strongly typed,
high-level functional specifications written in a specification
formalism developed by the SME Prove & Run. In the context of
interactive formal verification of complex systems, much effort is
spent on proving the preservation of the system invariants. However,
most operations have a localized effect on the system, which only
really impacts few invariants at the same time. Identifying those
invariants that are unaffected by an operation can substantially ease
the proof burden for the programmer. Our dependency analysis computes
a conservative approximation of the input fragments on which the
operations depend. It is a flow-sensitive interprocedural analysis
that handles arrays, structures and variant data types. We have
validated the scalability of the analysis to complex transition
systems by applying it to a functional specification of the MINIX
operating system. This work was reported in
[25] .

 Section:
 New Results

 Semantics

 Energy-valued semantics

 Participant :
	David Cachera.

 We develop a *-continuous Kleene ω-algebra of real-time
energy functions [36] . Together with
corresponding automata, these can be used to model systems which can
consume and regain energy (or other types of resources) depending on
available time. Using recent results on *-continuous Kleene
ω-algebras and computability of certain manipulations on
real-time energy functions, it follows that reachability and
Büchi acceptance in real-time energy automata can be decided in
a static way which only involves manipulations of real-time energy
functions. This works opens the way to static analysis techniques
for energy-valued semantics of real-time systems.

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific events organisation

 Static Analysis Symposium 2015, Saint-Malo, September 2015.

 Scientific events selection

 Chair of conference program committees

 SAS 2015 (Static Analysis Symposium) was chaired by Sandrine Blazy and Thomas Jensen

 Member of the conference program committees

 	
 FORTE 2015 (International Conference on Formal Techniques for Distributed Objects, Components and Systems): Alan Schmitt

 	
 CoqPL 2016 (International Workshop on Coq for PL): Alan Schmitt

 	
 POPL 2015 (Symposium on Principles of Programming
Languages): David Pichardie (Program Committee) and Delphine
Demange (External Review Committee)

 	
 ESOP 2015 (European Symposium on Programming) : Delphine Demange

 	
 JFLA 2015 (Journées Francophones des Langages Applicatifs) :
Delphine Demange

 	
 OCaml workshop 2015: Sandrine Blazy

 	
 AFADL 2015 (Approches Formelles dans l'Assistance au
Développement de Logiciels) : Sandrine Blazy

 	
 ITP 2015 (Interactive Theorem Proving): Sandrine Blazy

 	
 CPP 2016 (Certified Proofs and Programs): Sandrine Blazy

 	
 IFIP SEC 2015: Thomas Jensen

 Reviewer

 	
 CONCUR 2015 (International Conference on Concurrency Theory): Alan Schmitt

 	
 FOSSACS 2016 (International Conference on Foundations of Software Science and Computation Structures): Alan Schmitt

 	
 ITP 2015 (International Conference on Interactive Theorem Proving) : Delphine Demange

 	
 ATVA 2015 (13th International Symposium on Automated
Technology for Verification and Analysis) : Sandrine Blazy

 	
 ESOP 2015 (European Symposium on Programming): Thomas Jensen.

 Journal

 Reviewer - Reviewing activities

 	
 Applied Mathematics & Information Sciences: Alan Schmitt

 	
 Formal Aspects of Computing: Alan Schmitt, Thomas Jensen

 	
 International Journal of Computer Mathematics: Alan Schmitt

 	
 Journal of Automated Reasoning: Sandrine Blazy, David Pichardie

 	
 Journal of Computer Security : Sandrine Blazy

 Invited talks

 	
 Sandrine Blazy: Formal verification of compilers and static
analyzers, PLMW@POPL 2015 (Programming Languages Mentoring
Workshop)

 	
 Thomas Jensen: Integrating formal verification within
programming languages. Seminar Collège de France, October
2015.

 Scientific expertise

 	
 Sandrine Blazy: expertise of 2 projects for FNR (Luxemburg)

 	
 Thomas Jensen, expertise of ANR AAP general, short proposals

 Research administration

 	
 Thomas Jensen is head of the NUMERIC department at
University of Bretagne-Loire

 	
 Thomas Jensen is managing the “Security” track of ANR
Comin Labs.

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Licence: Thomas Genet, Software Engineering, 58h, L2, Université
de Rennes 1 / Istic, France

 	
 Licence: Delphine Demange, Software Engineering, 40h, L2,
Université de Rennes 1 / Istic, France

 	
 Licence: Delphine Demange, Functional Programming, 70h, L1,
Université de Rennes 1 / Istic, France

 	
 Licence : Alan Schmitt, Programmation Fonctionnelle, 39h, L3,
Insa Rennes, France

 	
 Licence : David Pichardie, Algorithms, 36h, L3, ENS Rennes,
France

 	
 Licence : David Cachera, Logic, 36h, L3, ENS Rennes,
France

 	
 Licence : Sandrine Blazy, Functional programming, 30h, L3, Université Rennes 1
France

 	
 Master : Thomas Genet, Formal Design and Verification, 108h, M1,
Université de Rennes 1 / Istic, France

 	
 Master : Thomas Genet, Cryptographic Protocols, 24h, M2,
Université de Rennes 1 / Istic, France

 	
 Master : David Cachera, Semantics of Programming Languages, 36h, M1, Université Rennes 1, France

 	
 Master : Frédéric Besson, Compilation, 50h, M1, Insa Rennes,
France

 	
 Master : Sandrine Blazy, Méthodes Formelles pour le développement
de logiciels sûrs, 53h, M1, Rennes 1, France

 	
 Master : Alan Schmitt, Méthodes Formelles pour le développement
de logiciels sûrs, 25h, M1, Rennes 1, France

 	
 Master : David Pichardie, Mechanized Semantics, 15h, M2,
Université Rennes 1, France

 	
 Master : Sandrine Blazy, Mechanized Semantics, 15h, M2,
Université Rennes 1, France

 	
 Master : Sandrine Blazy, Software vulnerabilities, 38h, M2,
Université Rennes 1, France

 	
 Master : Delphine Demange, Software Security, 9h, M2, Université
Rennes 1, France

 	
 Master : Thomas Jensen, Program Analysis and Software Security, 39h, M2, Université Rennes 1, France

 Supervision

 	
 PhD in progress : Martin Bodin, Certified Analyses of JavaScript, 1st
september 2012, Thomas Jensen and Alan Schmitt

 	
 PhD in progress : Gurvan Cabon, Analyse non locale certifiée en
JavaScript grâce à une sémantique annotée, 1st september 2015, Alan Schmitt

 	
 PhD in progress : Yon Fernandez De Retana, Verified Optimising
Compiler for high-level languages, 1st september 2015, Delphine
Demange and David Pichardie

 	
 PhD in progress : Yannick Zakowski, Programs Logics for
Concurrency, 1st september 2014, David Pichardie and David Cachera

 	
 PhD in progress : Florent Saudel, Vulnerability discovery, November 2015, Sandrine Blazy, Frédéric Besson and Frédéric Guihéry (Amossys)

 	
 PhD in progress: David Bühler, Communication between
analyses by deductive verification and abstract
interpretation, November 2013, Sandrine Blazy and Boris
Yakobowski (CEA)

 	
 PhD in progress: Pierre Wilke, Low-level memory models for
compilers and static analysers, 1st august 2013, Sandrine Blazy and
Frédéric Besson

 	
 PhD in progress: Oana Andreescu, Static analysis and automated
program proving, 1st September 2013, Thomas Jensen

 	
 PhD in progress: Pauline Bolignano, Modeling and abstraction of
system software, 1st November 2013, Thomas Jensen

 	
 PhD: Yann Salmon, Reachability for Term Rewriting
Systems under Strategies, defended Dec 2015, Thomas Genet

 	
 PhD: Vincent Laporte, Verified static analyses for low-level languages, defended Nov 2015, Sandrine Blazy and David Pichardie

 	
 PhD: Stéphanie Riaud, Data obfuscation for protecting programs against dynamic analysis, defended Dec 2015, Sandrine Blazy

 Juries

 	
 Alan Schmitt, jury member (reviewer) for the PhD defense of Burak Ekici,
December 2015, Université Grenoble Alpes

 	
 David Pichardie, jury member (chair) for the PhD defense of Mounir Assaf,
May 2015, University Rennes 1, France.

 	
 David Pichardie, jury member (reviewer) for the PhD defense of Bogdan Mihaila,
January 2015, Technische Universität München, Germany.

 	
 Sandrine Blazy, jury member for the PhD defense of Alexis Fouilhé, October 2015, Grenoble University, France

 	
 Sandrine Blazy, jury member for the PhD defense of Zakaria Chihani, November 2015, Ecole Polytechnique, France.

 	
 Sandrine Blazy, jury member for the PhD defense of Lourdes del
Carmen Gonzalez Huesca, November2015, Paris Diderot University,
France.

 	
 Thomas Jensen, jury member for the PhD defense of Magnus Madsen,
May 2015, Aarhus University, Denmark.

 	
 Thomas Jensen, jury member for the PhD defense of Clémentine
Maurice, EURECOM, France.

 	
 Alan Schmitt, jury member for the selection of Inria CR (researcher)
candidates, March and April 2015, Inria, Rennes, France.

 	
 Delphine Demange, jury member for the selection of a Maître de
Conférences at University Paris Diderot (Paris 7) / LIAFA+PPS, May
2015, Paris, France.

 	
 Sandrine Blazy, jury member for the selection of a Maître de
Conférences at University of Nancy, May 2015, Nancy, France.

 	
 Sandrine Blazy, jury member for the selection of a Maître de
Conférences at University of Rennes 1, May 2015, Rennes, France.

 	
 Sandrine Blazy, jury member for the selection of a professor at University of Brest, May 2015, Brest, France.

 	
 Delphine Demange, jury member of the Gilles Kahn PhD award committee, December 2015, Inria Paris - Rocquencourt

 Section:
 Dissemination

 Popularization

 	
 IRISA 40th anniversary Open House - Recreational workshop
(interactive demonstration) on the problem of functional correctness
of programs, its importance in the field of critical software, and
formal proof of correctness : Thomas Genet, Delphine Demange,
Pauline Bolignano, Yannick Zakowski. Inria Convention centre, Inria
Rennes - Bretagne Atlantique. Rennes, France. December 2015.

 	
 Talk “Bug, Virus, Intrusion, Pirates... So many threats and no defense?
Yes... maths.”, Thomas Genet, given two times in high schools close to
Rennes.

 	
 Two short tutorials. One for Isabelle/HOL [41] and
one for SPAN+AVISPA [42] .

 Bibliography

 Major publications by the team in recent years

 	[1]

 	F. Besson, N. Bielova, T. Jensen.
Hybrid Information Flow Monitoring Against Web Tracking, in: CSF - 2013 IEEE 26th Computer Security Foundations Symposium, New Orleans, United States, 2013. [
DOI : 10.1109/CSF.2013.23]
http://hal.inria.fr/hal-00924138

 	[2]

 	F. Besson, T. Jensen, D. Pichardie.
Proof-Carrying Code from Certified Abstract Interpretation to Fixpoint Compression, in: Theoretical Computer Science, 2006, vol. 364, no 3, pp. 273–291.

 	[3]

 	M. Bodin, A. Charguéraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene, A. Schmitt, G. Smith.
A Trusted Mechanised JavaScript Specification, in: POPL 2014 - 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, United States, November 2013.
http://hal.inria.fr/hal-00910135

 	[4]

 	B. Boyer, T. Genet, T. Jensen.
Certifying a Tree Automata Completion Checker, in: 4th International Joint Conference, IJCAR 2008, Lectures Notes in Computer Science, Springer-Verlag, 2008, vol. 5195, pp. 347–362.

 	[5]

 	D. Cachera, T. Jensen, A. Jobin, P. Sotin.
Long-Run Cost Analysis by Approximation of Linear Operators over Dioids, in: Mathematical Structures in Computer Science, 2010, vol. 20, no 4, pp. 589-624.

 	[6]

 	D. Cachera, T. Jensen, D. Pichardie, V. Rusu.
Extracting a Data Flow Analyser in Constructive Logic, in: Theoretical Computer Science, 2005, vol. 342, no 1, pp. 56–78.

 	[7]

 	D. Demange, V. Laporte, L. Zhao, D. Pichardie, S. Jagannathan, J. Vitek.
Plan B: A Buffered Memory Model for Java, in: Proc. of the 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2013, Rome, Italy, ACM, 2013.
http://hal.inria.fr/hal-00924716

 	[8]

 	J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, A. Schmitt.
Combinators for Bi-Directional Tree Transformations: A Linguistic Approach to the View Update Problem, in: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages, Long Beach, CA, USA, 2005, pp. 233–246, Most Influential POPL Paper Award, 2015. Extended version available as University of Pennsylvania technical report MS-CIS-03-08. Earlier version presented at the Workshop on Programming Language Technologies for XML (PLAN-X), 2004.

 	[9]

 	T. Genet, V. Rusu.
Equational Approximations for Tree Automata Completion, in: Journal of Symbolic Computation, 2010, vol. 45(5):574-597, May 2010, no 5, pp. 574-597.

 	[10]

 	L. Hubert, T. Jensen, V. Monfort, D. Pichardie.
Enforcing Secure Object Initialization in Java, in: 15th European Symposium on Research in Computer Security (ESORICS), Lecture Notes in Computer Science, Springer, 2010, vol. 6345, pp. 101-115.

 Publications of the year

 Doctoral Dissertations and Habilitation Theses

 	[11]

 	Y. Salmon.
Reachability Analysis for Functional Programs with call-by-value evaluation strategy, Université de Rennes 1, December 2015.
https://hal.inria.fr/tel-01250252

 Articles in International Peer-Reviewed Journals

 	[12]

 	S. Blazy, D. Bühler, B. Yakobowski.
Improving static analyses of C programs with conditional predicates, in: Science of Computer Programming, January 2016, Accepted manuscript. Available online 30 November 2015.Extended version of the FMICS 2014 paper.
https://hal.inria.fr/hal-01242077

 	[13]

 	S. Blazy, V. Laporte, D. Pichardie.
Verified Abstract Interpretation Techniques for Disassembling Low-level Self-modifying Code, in: Journal of Automated Reasoning, 2016, Version étendue de l'article de la conférence ITP 2014, accepté pour publication.
https://hal.inria.fr/hal-01243700

 	[14]

 	T. Genet.
Termination criteria for tree automata completion, in: Journal of Logic and Algebraic Methods in Programming, 2016, vol. 85, Issue 1, part 1, pp. 3-33. [
DOI : 10.1016/j.jlamp.2015.05.003]
https://hal.inria.fr/hal-01194533

 	[15]

 	P. Genevès, N. Layaïda, A. Schmitt, N. Gesbert.
Efficiently Deciding µ-calculus with Converse over Finite Trees, in: ACM Transactions on Computational Logic, March 2015, vol. 16, no 2, 41 p. [
DOI : 10.1145/2724712]
https://hal.inria.fr/hal-00868722

 	[16]

 	B. Marinkovic, V. Ciancaglini, Z. Ognjanovic, P. Glavan, L. Liquori, P. Maksimovic.
Analyzing the exhaustiveness of the synapse protocol, in: Peer-to-Peer Networking and Applications, Springer, July 2015, vol. 8, no 5, pp. 793–806. [
DOI : 10.1007/s12083-014-0293-z]
https://hal.inria.fr/hal-01146050

 International Conferences with Proceedings

 	[17]

 	S. Blazy, A. Maroneze, D. Pichardie.
Verified Validation of Program Slicing, in: CPP 2015 : Conference on Certified Programs and Proofs, Mumbai, India, 2015, pp. 109-117. [
DOI : 10.1145/2676724.2693169]
https://hal.inria.fr/hal-01110821

 	[18]

 	S. Blazy, A. Trieu.
Formal Verification of Control-flow Graph Flattening, in: Certified Proofs and Programs (CPP 2016), Saint-Petersburg, United States, ACM (editor), January 2016, 12 p, A paraître.
https://hal.inria.fr/hal-01242063

 	[19]

 	M. Bodin, T. Jensen, A. Schmitt.
Certified Abstract Interpretation with Pretty-Big-Step Semantics, in: Certified Programs and Proofs (CPP 2015), Mumbai, India, January 2015. [
DOI : 10.1145/2676724.2693174]
https://hal.inria.fr/hal-01111588

 	[20]

 	D. Demange, D. Pichardie, L. Stefanesco.
Verifying Fast and Sparse SSA-based Optimizations in Coq, in: 24th International Conference on Compiler Construction, CC 2015, London, United Kingdom, 2015.
https://hal.inria.fr/hal-01110779

 	[21]

 	J. Fragoso Santos, T. Jensen, T. Rezk, A. Schmitt.
Hybrid Typing of Secure Information Flow in a JavaScript-like Language, in: International Symposium on Trustworthy Global Computing - (TGC 2015), Madrid, Spain, August 2015.
https://hal.archives-ouvertes.fr/hal-01243029

 	[22]

 	T. Genet, Y. Salmon.
Reachability Analysis of Innermost Rewriting, in: RTA, Warshaw, Poland, 2015, pp. 1-17. [
DOI : 10.4230/LIPIcs.RTA.2015.x]
https://hal.inria.fr/hal-01194530

 	[23]

 	P. Genevès, A. Schmitt.
Expressive Logical Combinators for Free, in: International Joint Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina, July 2015.
https://hal.inria.fr/hal-00868724

 	[24]

 	F. Honsell, L. Liquori, P. Maksimovic, I. Scagnetto.
Gluing together Proof Environments: Canonical extensions of LF Type Theories featuring Locks , in: LFMTP'15. 9th International Workshop on Logical Frameworks and Meta-languages, Berlin, Germany, Berlin, Germany, August 2015, vol. Electronic Proceedings in Theoretical Computer Science (EPTCS). [
DOI : 10.4204/EPTCS.185.1]
https://hal.archives-ouvertes.fr/hal-01170029

 	[25]

 	T. Jensen, S. Lescuyer, A. Oana.
Dependency Analysis of Functional Specifications with Algebraic Data Structures, in: 17th International Conference on Formal Engineering Methods, ICFEM 2015, Paris, France, Springer LNCS, Springer Verlag, November 2015, vol. 9407, 18 p. [
DOI : 10.1007/978-3-319-25423-4_8]
https://hal.inria.fr/hal-01243002

 	[26]

 	J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, D. Pichardie.
A formally-verified C static analyzer, in: POPL 2015: 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Mumbai, India, ACM, January 2015, pp. 247-259. [
DOI : 10.1145/2676726.2676966]
https://hal.inria.fr/hal-01078386

 	[27]

 	B. Kordy, R. Jhawar, S. Mauw, S. Radomirovic, R. Trujillo-Rasua.
Attack Trees with Sequential Conjunction, in: IFIP SEC 2015 - International Conference on ICT Systems Security and Privacy Protection, Hamburg, Germany, H. Federrath, D. Gollmann (editors), Springer, May 2015, vol. IFIP Advances in Information and Communication Technology, no 455, pp. 339-353. [
DOI : 10.1007/978-3-319-18467-8_23]
https://hal.inria.fr/hal-01197256

 	[28]

 	P. Maksimovic, A. Schmitt.
HOCore in Coq, in: The 6th conference on Interactive Theorem Proving - (ITP 2015), Nanjing, China, Springer, August 2015, vol. 9236. [
DOI : 10.1007/978-3-319-22102-1_19]
https://hal.archives-ouvertes.fr/hal-01243017

 National Conferences with Proceedings

 	[29]

 	M. Escarrá, M. Petar, A. Schmitt.
HOCore in Coq, in: Vingt-sixièmes Journées Francophones des Langages Applicatifs (JFLA 2015), Le Val d'Ajol, France, D. Baelde, J. Alglave (editors), January 2015.
https://hal.inria.fr/hal-01099130

 Conferences without Proceedings

 	[30]

 	R. Andriatsimandefitra Ratsisahanana, T. Genet, L. Guillo, J.-F. Lalande, D. Pichardie, V. Viet Triem Tong.
Kharon : Découvrir, comprendre et reconnaître des malware Android par suivi de flux d'information, in: Rendez-vous de la Recherche et de l'Enseignement de la Sécurité des Systèmes d'Information, Troyes, France, May 2015.
https://hal.inria.fr/hal-01154368

 	[31]

 	A. BART, C. Truchet, E. Monfroy.
Verifying a Real-Time Language with Constraints, in: 27th IEEE International Conference on Tools with Artificial Intelligence, Vietri sul Mare, Italy, 2015.
https://hal.archives-ouvertes.fr/hal-01234188

 	[32]

 	F. Besson, S. Blazy, P. Wilke.
A Concrete Memory Model for CompCert, in: ITP 2015 : 6th International Conference on Interactive Theorem Proving, Nanjing, China, Springer (editor), August 2015, vol. Lecture Notes in Computer Science (LNCS), no 9236, pp. 67-83. [
DOI : 10.1007/978-3-319-22102-1_5]
https://hal.inria.fr/hal-01194549

 	[33]

 	S. Blazy.
Formal verification of compilers and static analyzers. , in: PLMW@POPL 2015 - Programming Languages Mentoring Workshop, Mumbai, India, January 2015.
https://hal.inria.fr/hal-01242094

 	[34]

 	S. Blazy, D. Demange, D. Pichardie.
Validating Dominator Trees for a Fast, Verified Dominance Test, in: Interactive Theorem Proving, Nanjing, China, Springer (editor), August 2015, vol. Lecture Notes in Computer Science (LNCS), no 9236. [
DOI : 10.1007/978-3-319-22102-1_6]
https://hal.inria.fr/hal-01193281

 	[35]

 	S. Blazy, S. Riaud, T. Sirvent.
Data Tainting and Obfuscation: Improving Plausibility of Incorrect Taint, in: Source Code Analysis and Manipulation (SCAM), Bremen, Germany, IEEE (editor), September 2015.
https://hal.inria.fr/hal-01193286

 	[36]

 	D. Cachera, U. Fahrenberg, A. Legay.
An ω-Algebra for Real-Time Energy Problems, in: 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Bengaluru, India, December 2015.
https://hal.inria.fr/hal-01237667

 	[37]

 	T. Genet, B. Kordy, A. Vansyngel.
Vers un outil de vérification formelle légere pour OCaml, in: AFADL, Bordeaux, France, 2015, 6 p.
https://hal.inria.fr/hal-01194538

 	[38]

 	S. Lenglet, A. Schmitt.
Howe's Method for Contextual Semantics , in: CONCUR 2015 26th International Conference on Concurrency Theory, Madrid, Spain, September 2015. [
DOI : 10.4230/LIPIcs.CONCUR.2015.212]
https://hal.inria.fr/hal-01192699

 	[39]

 	X. Leroy, S. Blazy, D. Kästner, B. Schommer, M. Pister, C. Ferdinand.
CompCert - A Formally Verified Optimizing Compiler, in: ERTS 2016: Embedded Real Time Software and Systems, 8th European Congress, Toulouse, France, SEE, January 2016.
https://hal.inria.fr/hal-01238879

 Scientific Books (or Scientific Book chapters)

 	[40]

 	T. J. Sandrine Blazy (editor)
Static Analysis Symposium - 22nd International Symposium, SAS 2015, Saint-Malo, France, September 9-11, 2015. Proceedings, Springer, Saint-Malo, France, August 2015, vol. Lecture Notes in Computer Science (LNCS), no 9291, 335 p.
https://hal.inria.fr/hal-01194558

 Internal Reports

 	[41]

 	T. Genet.
A Short Isabelle/HOL Tutorial for the Functional Programmer, IRISA, 2015.
https://hal.inria.fr/hal-01208577

 	[42]

 	T. Genet.
A Short SPAN+AVISPA Tutorial, IRISA, October 2015.
https://hal.inria.fr/hal-01213074

 	[43]

 	S. Lenglet, A. Schmitt.
Howe's Method for Contextual Semantics, Inria, June 2015, no RR-8750, 31 p.
https://hal.inria.fr/hal-01168865

 Other Publications

 	[44]

 	F. Honsell, L. Liquori, P. Maksimovic, I. Scagnetto.
LLFP : A Logical Framework for modeling External Evidence, Side Conditions, and Proof Irrelevance using Monads, January 2015, working paper or preprint. [
DOI : 10.4204/EPTCS.185.1]
https://hal.inria.fr/hal-01146059

 References in notes

 	[45]

 	The Coq Proof Assistant, 2009.
http://coq.inria.fr/

 	[46]

 	E. Albert, P. Arenas, S. Genaim, G. Puebla, D. Zanardini.
COSTA: Design and Implementation of a Cost and Termination Analyzer for Java Bytecode, in: FMCO, 2007, pp. 113-132.

 	[47]

 	D. Aspinall, L. Beringer, M. Hofmann, Hans-Wolfgang. Loidl, A. Momigliano.
A Program Logic for Resource Verification, in: In Proceedings of the 17th International Conference on Theorem Proving in Higher-Order Logics, (TPHOLs 2004), volume 3223 of LNCS, Springer, 2004, pp. 34–49.

 	[48]

 	D. F. Bacon, P. F. Sweeney.
Fast Static Analysis of C++ Virtual Function Calls, in: OOPSLA'96, 1996, pp. 324-341.

 	[49]

 	P. Baillot, P. Coppola, U. D. Lago.
Light Logics and Optimal Reduction: Completeness and Complexity, in: LICS, 2007, pp. 421-430.

 	[50]

 	E. Balland, Y. Boichut, T. Genet, P.-E. Moreau.
Towards an Efficient Implementation of Tree Automata Completion, in: Algebraic Methodology and Software Technology, 12th International Conference, AMAST 2008, Lectures Notes in Computer Science, Springer-Verlag, 2008, vol. 5140, pp. 67-82.

 	[51]

 	G. Barthe, D. Demange, D. Pichardie.
Formal Verification of an SSA-based Middle-end for CompCert, in: ACM Transactions on Programming Languages and Systems (TOPLAS), 2014, 35 p.
https://hal.inria.fr/hal-01097677

 	[52]

 	F. Besson, S. Blazy, P. Wilke.
A Precise and Abstract Memory Model for C Using Symbolic Values, in: 12th Asian Symposium on Programming Languages and Systems (APLAS 2014), Singapore, Singapore, LNCS, Springer, 2014, vol. 8858, pp. 449 - 468. [
DOI : 10.1007/978-3-319-12736-1_24]
https://hal.inria.fr/hal-01093312

 	[53]

 	F. Besson, T. Jensen.
Modular Class Analysis with DATALOG, in: SAS'2003, 2003, pp. 19-36.

 	[54]

 	D. Cachera, T. Jensen, A. Jobin, P. Sotin.
Long-Run Cost Analysis by Approximation of Linear Operators over Dioids, in: Algebraic Methodology and Software Technology, 12th International Conference, AMAST 2008, Lectures Notes in Computer Science, Springer-Verlag, 2008, vol. 5140, pp. 122-138.

 	[55]

 	D. Cachera, T. Jensen, D. Pichardie, V. Rusu.
Extracting a Data Flow Analyser in Constructive Logic, in: Theoretical Computer Science, 2005, vol. 342, no 1, pp. 56–78.

 	[56]

 	D. Cachera, T. Jensen, D. Pichardie, G. Schneider.
Certified Memory Usage Analysis, in: Proc. of 13th International Symposium on Formal Methods (FM'05), LNCS, Springer-Verlag, 2005.

 	[57]

 	P. Cousot, R. Cousot.
Abstract Interpretation: a Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints, in: Proc. of POPL'77, 1977, pp. 238–252.

 	[58]

 	A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, B. Lisper.
Loop Bound Analysis based on a Combination of Program Slicing, Abstract Interpretation, and Invariant Analysis, in: Seventh International Workshop on Worst-Case Execution Time Analysis, (WCET'2007), July 2007.
http://www.mrtc.mdh.se/index.php?choice=publications&id=1317

 	[59]

 	G. Feuillade, T. Genet, V. Viet Triem Tong.
Reachability Analysis over Term Rewriting Systems, in: Journal of Automated Reasoning, 2004, vol. 33, no 3–4, pp. 341–383.

 	[60]

 	M. Fähndrich, K. R. M. Leino.
Declaring and checking non-null types in an object-oriented language, in: OOPSLA, 2003, pp. 302-312.

 	[61]

 	T. Genet.
Decidable Approximations of Sets of Descendants and Sets of Normal forms, in: RTA'98, LNCS, Springer, 1998, vol. 1379, pp. 151–165.

 	[62]

 	T. Genet, V. Viet Triem Tong.
Reachability Analysis of Term Rewriting Systems with Timbuk, in: LPAR'01, LNAI, Springer, 2001, vol. 2250, pp. 691-702.

 	[63]

 	D. Grove, C. Chambers.
A framework for call graph construction algorithms, in: Toplas, 2001, vol. 23, no 6, pp. 685–746.

 	[64]

 	D. Grove, G. DeFouw, J. Dean, C. Chambers.
Call graph construction in object-oriented languages, in: ACM SIGPLAN Notices, 1997, vol. 32, no 10, pp. 108–124.

 	[65]

 	M. Hofmann, S. Jost.
Static prediction of heap space usage for first-order functional programs, in: POPL, 2003, pp. 185-197.

 	[66]

 	L. Hubert.
A Non-Null annotation inferencer for Java bytecode, in: Proc. of the Workshop on Program Analysis for Software Tools and Engineering (PASTE'08), ACM, 2008.

 	[67]

 	L. Hubert, T. Jensen, D. Pichardie.
Semantic foundations and inference of non-null annotations, in: Proc. of the 10th International Conference on Formal Methods for Open Object-based Distributed Systems (FMOODS'08), Lecture Notes in Computer Science, Springer-Verlag, 2008, vol. 5051, pp. 132-149.

 	[68]

 	X. Leroy.
A formally verified compiler back-end, in: Journal of Automated Reasoning, December 2009, vol. 43, no 4, pp. 363-446. [
DOI : 10.1007/s10817-009-9155-4]
https://hal.inria.fr/inria-00360768

 	[69]

 	O. Lhoták, L. J. Hendren.
Evaluating the benefits of context-sensitive points-to analysis using a BDD-based implementation, in: ACM Trans. Softw. Eng. Methodol., 2008, vol. 18, no 1.

 	[70]

 	V. B. Livshits, M. S. Lam.
Finding Security Errors in Java Programs with Static Analysis, in: Proc. of the 14th Usenix Security Symposium, 2005, pp. 271–286.

 	[71]

 	A. Milanova, A. Rountev, B. G. Ryder.
Parameterized object sensitivity for points-to analysis for Java, in: ACM Trans. Softw. Eng. Methodol., 2005, vol. 14, no 1, pp. 1–41.

 	[72]

 	M. Naik, A. Aiken.
Conditional must not aliasing for static race detection, in: POPL'07, ACM, 2007, pp. 327-338.

 	[73]

 	M. Naik, A. Aiken, J. Whaley.
Effective static race detection for Java, in: PLDI'2006, ACM, 2006, pp. 308-319.

 	[74]

 	F. Nielson, H. Nielson, C. Hankin.
Principles of Program Analysis, Springer, 1999.

 	[75]

 	J. Palsberg, M. Schwartzbach.
Object-Oriented Type Inference, in: OOPSLA'91, 1991, pp. 146-161.

 	[76]

 	J. Palsberg, M. Schwartzbach.
Object-Oriented Type Systems, John Wiley & Sons, 1994.

 	[77]

 	D. Pichardie.
Interprétation abstraite en logique intuitionniste : extraction d'analyseurs Java certiés, Université Rennes 1, Rennes, France, dec 2005.

 	[78]

 	A. D. Pierro, H. Wiklicky.
Operator Algebras and the Operational Semantics of Probabilistic Languages, in: Electr. Notes Theor. Comput. Sci., 2006, vol. 161, pp. 131-150.

 	[79]

 	P. Sotin, D. Cachera, T. Jensen.
Quantitative Static Analysis over semirings: analysing cache behaviour for Java Card, in: 4th International Workshop on Quantitative Aspects of Programming Languages (QAPL 2006), Electronic Notes in Theoretical Computer Science, Elsevier, 2006, vol. 164, pp. 153-167.

 	[80]

 	F. Tip, J. Palsberg.
Scalable propagation-based call graph construction algorithms, in: OOPSLA, 2000, pp. 281-293.

 	[81]

 	J. Whaley, M. S. Lam.
Cloning-based context-sensitive pointer alias analysis using binary decision diagrams, in: PLDI '04, ACM, 2004, pp. 131–144.

 OEBPS/uid73.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits to International Teams

 Sabbatical programme

 		
 Jensen Thomas

 		
 Date: Sep 2014 - Aug 2015

 		
 Institution: University
of Copenhagen (Denmark)

 Research stays abroad

 Martin Bodin visited the Department of Computing at Imperial College
London for three months.

OEBPS/uid53.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 The ANR VERASCO project

 Participants :
	Sandrine Blazy, Delphine Demange, Vincent Laporte, David Pichardie.

 Static program analysis, Certified static analysis

 The VERASCO project (2012–2015) is funded by the call ISN 2011, a
program of the Agence Nationale de la Recherche. It investigates the
formal verification of static analyzers and of compilers, two families
of tools that play a crucial role in the development and validation of
critical embedded software.
It is a joint project with the Inria teams
Abstraction , Gallium , The VERIMAG laboratory and the Airbus company.

 The ANR AnaStaSec project

 Participants :
	Frédéric Besson, Sandrine Blazy, Thomas Jensen.

 Static program analysis, Security, Secure compilation

 The AnaStaSec project (2015–2018) aims at ensuring security properties of
embedded critical systems using static analysis and security enhancing compiler
techniques. The case studies are airborne embedded software with ground
communication capabilities. The Celtique project focuses on software fault
isolation which is a compiler technology to ensure
by construction a strong segregation of tasks.

 This is a joint project with the Inria teams Antique and Prosecco ,
CEA-LIST, TrustInSoft, AMOSSYS and Airbus Group.

 The ANR Binsec project

 Participants :
	Frédéric Besson, Sandrine Blazy, Pierre Wilke.

 Binary code, Static program analysis

 The Binsec project (2013–2017) is founded by the call ISN 2012, a
program of the Agence Nationale de la Recherche.
The goal of the BINSEC project is to develop static analysis techniques and tools for
performing automatic security analyses of binary code.
We target two main applicative domains: vulnerability analysis and virus detection.

 Binsec is a joint project with the Inria Carte team, CEA LIS , Verimag and
EADS IW .

 The ANR MALTHY project

 Participant :
	David Cachera.

 The MALTHY project, funded by ANR in the program INS 2013, aims at
advancing the state-of-the-art in real-time and hybrid model checking
by applying advanced methods and tools from linear algebra and
algebraic geometry.
MALTHY is coordinated by VERIMAG, involving
CEA-LIST, Inria Rennes (Estasys and Celtique),
Inria Saclay (MAXPLUS) and VISEO/Object Direct.

 The ANR AJACS project

 Participants :
	Martin Bodin, Gurvan Cabon, Thomas Jensen, Alan Schmitt.

 The goal of the AJACS project is to
provide strong security and privacy guarantees on the client side for
web application scripts. To this end, we propose to define a
mechanized semantics of the full JavaScript language, the most widely
used language for the Web. We then propose to develop and prove
correct analyses for JavaScript programs, in particular information
flow analyses that guarantee no secret information is leaked to
malicious parties. The definition of sub-languages of JavaScript, with
certified compilation techniques targeting them, will allow us to
derive more precise analyses. Finally, we propose to design and
certify security and privacy enforcement mechanisms for web
applications, including the APIs used to program real-world
applications.

 The project partners include the following Inria teams: Celtique,
Indes, Prosecco, and Toccata; it also involves researchers from
Imperial College as external collaborators. The project runs from
December 2014 to June 2018.

 The ANR DISCOVER project

 Participants :
	Sandrine Blazy, Delphine Demange, Thomas Jensen, David Pichardie, Yon Fernandez de Retana.

 The DISCOVER project project aims at
leveraging recent foundational work on formal verification and proof
assistants to design, implement and verify compilation techniques used
for high-level concurrent and managed programming languages. The
ultimate goal of DISCOVER is to devise new formalisms and proof
techniques able to scale to the mechanized correctness proof of a
compiler involving a rich class of optimizations, leading to efficient
and scalable applications, written in higher-level languages than
those currently handled by cutting-edge verified compilers.

 In the light of recent work in optimizations techniques used in
production compilers of high-level languages, control-flow-graph based
intermediate representations seems too rigid. Indeed, the analyses and
optimizations in these compilers work on more abstract
representations, where programs are represented with data and control
dependencies. The most representative representation is the
sea-of-nodes form, used in the Java Hotspot Server Compiler, and which
is the rationale behind the highly relaxed definition of the Java
memory model. DISCOVER proposes to tackle the problem of verified
compilation for shared-memory concurrency with a resolute
language-based approach, and to investigate the formalization of
adequate program intermediate representations and associated
correctness proof techniques.

 The project runs from October 2014 to September 2018.

 Labex COMIN Labs Seccloud project

 Participants :
	Frédéric Besson, Thomas Jensen, Alan Schmitt, Thomas Genet, Martin Bodin, Gurvan Cabon.

 The SecCloud project, started in 2012, will provide a comprehensive
language-based approach to the definition, analysis and implementation
of secure applications developed using Javascript and similar
languages. Our high level objectives is to enhance the security of
devices (PCs, smartphones, ect.) on which Javascript applications can
be downloaded, hence on client-side security in the context of the
Cloud. We will achieve this by focusing on three related issues:
declarative security properties and policies for client-side
applications, static and dynamic analysis of web scripting programming
languages, and multi-level information flow monitoring.

 This is a joint project with Supelec Rennes and Ecole des Mines de Nantes.

OEBPS/contrats.html

OEBPS/international.html

OEBPS/domaine.html

OEBPS/uid61.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Inria Associate Teams not involved in an Inria International Labs

 JCERT

 		
 Title: Verified Compilation of Concurrent Managed Languages

 		
 International Partner (Institution - Laboratory - Researcher):

 		
 Purdue University (United States) - Suresh Jagannathan

 		
 Start year: 2014

 		
 See also: http://www.irisa.fr/celtique/ea/jcert/

 		
 Safety-critical applications demand rigorous, unambiguous
guarantees on program correctness. While a combination of testing
and manual inspection is typically used for this purpose, bugs
latent in other components of the software stack, especially the
compiler and the runtime system, can invalidate these hard-won
guarantees. To address such concerns, additional laborious
techniques such as manual code reviews of generated assembly code
are required by certification agencies. Significant restrictions
are imposed on compiler optimizations that can be performed, and
the scope of runtime and operating system services that can be
utilized. To alleviate this burden, the JCert project is
implementing a verified compiler and runtime for managed concurrent
languages like Java or C#.

 Inria International Partners

 Declared Inria International Partners

 Professor Philippa Gardner, Imperial College, UK, since December 2015.

 Informal International Partners

 Alan Schmitt is part of a Polonium Hubert Curien Partnership (PHC)
with the University of Wrocław. This partnership is lead by Sergueï
Lenglet, from Loria, Nancy, France.

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/IMG/iTunesArtwork.png
Activity Report 2015
Project-Team Celtique

Software certification
with semantic analysis

IN COLLABORATION WITH: Institut e recherche en informatique et systemes aléatoires (IRISA)

