

[image: cover]

 ASCOLA

 Aspect and composition languages

 2016 Project-Team Activity Report
	

 Research centre:
 Rennes - Bretagne-Atlantique

 Field: Networks, Systems and Services, Distributed Computing
Theme: Distributed programming and Software engineering

 Computer Science and Digital Science:

 	1.1.6. - Cloud

 	1.1.8. - Security of architectures

 	1.1.13. - Virtualization

 	1.3. - Distributed Systems

 	1.6. - Green Computing

 	2.1. - Programming Languages

 	2.1.1. - Semantics of programming languages

 	2.1.2. - Object-oriented programming

 	2.1.3. - Functional programming

 	2.1.4. - Aspect-oriented programming

 	2.1.6. - Concurrent programming

 	2.1.7. - Distributed programming

 	2.1.10. - Domain-specific languages

 	2.1.11. - Proof languages

 	2.2.1. - Static analysis

 	2.4.2. - Model-checking

 	2.4.3. - Proofs

 	2.5. - Software engineering

 	2.6.2. - Middleware

 	2.6.3. - Virtual machines

 	3.1.3. - Distributed data

 	3.1.5. - Control access, privacy

 	3.1.8. - Big data (production, storage, transfer)

 	4.5. - Formal methods for security

 	4.6. - Authentication

 	4.7. - Access control

 	4.8. - Privacy-enhancing technologies

 	7.1. - Parallel and distributed algorithms

 	7.4. - Logic in Computer Science

 Other Research Topics and Application Domains:

 	3.1. - Sustainable development

 	4.5. - Energy consumption

 	4.5.1. - Green computing

 	5.1. - Factory of the future

 	6.1. - Software industry

 	6.1.1. - Software engineering

 	6.1.2. - Software evolution, maintenance

 	6.5. - Information systems

 Project-Team Ascola

 Members

 Overall Objectives	Presentation

 Research Program	Overview
	Software Composition
	Programming languages for advanced
modularization
	Distribution and Concurrency
	Security
	Green IT
	Capacity Planning for Large Scale Distributed System

 Application Domains	Enterprise Information Systems and Services
	Capacity Planning in Cloud, Fog and Edge Computing
	Pervasive Systems

 Highlights of the Year

 New Software and Platforms	CSLA
	CSQL
	EScala
	JEScala
	SimGrid
	VMPlaces
	btrCloud

 New Results	Software composition and programming languages
	Distributed programming and the Cloud

 Bilateral Contracts and Grants with Industry	Cooperation with SIGMA group

 Partnerships and Cooperations	Regional Initiatives
	National Initiatives
	European Initiatives

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Major publications

 	
 Publications of the year

 	
 References in notes

 Creation of the Project-Team: 2009 January 01
Section: Members
Research Scientists
Adrien Lebre [Inria, Researcher, on leave
from MN]
Guillaume Munch [Inria, Researcher, from
Oct 2016]
Nicolas Tabareau [Inria, Researcher]
Faculty Members
Mario Südholt [Team leader, MN, Professor, HDR]
Frederico Alvares de Oliveira Junior [MN, Associate Professor, temporary position]
Julien Cohen [Univ. Nantes, Associate Professor]
Pierre Cointe [MN, Professor, HDR]
Hélène Coullon [MN, Associate Professor, Inria chair,
from Oct 2016]
Rémi Douence [MN, Associate Professor, HDR]
Hervé Grall [MN, Associate Professor]
Thomas Ledoux [MN, Associate Professor]
Jean-Marc Menaud [MN, Professor, HDR]
Jacques Noyé [MN, Associate Professor]
Jean-Claude Royer [MN, Professor, HDR]
Engineers
Ronan-Alexandre Cherrueau [Inria, from Oct 2016]
Rémy Pottier [MN]
PhD Students
Mohamed Abderrahim [Orange Labs, granted by CIFRE]
Mohammad-Mahdi Bazm [Orange Labs, from Jul 2016]
Walid Benghabrit [ARMINES, until Sep 2016]
Paul Blouët [MN]
Simon Boulier [MN, (ASN from ENS Rennes)]
Bastien Confais [CNRS, from Oct 2016]
Ismael Cuadrado Cordero [MN]
Frédéric Dumont [EasyVirt, until Jun 2016, granted by CIFRE]
Simon Dupont [Sigma, until Apr 2016, granted by CIFRE]
Alexandre Garnier [MN, until Sep 2016]
Gaetan Gilbert [MN (ASN from ENS Lyon), from Sept 2016]
Md Sabbir Hasan [Inria, co-supervision with Prof. Pazat, Myriads team, Inria]
Yacine Hebbal [Orange Labs, granted by CIFRE]
Ambroise Lafont [MN (X Grant), from Oct 2016]
Gabriel Lewertowski [Inria, until Oct 2016]
Florent Marchand de Kerchove [MN, until Apr 2016]
Thuy Linh Nguyen [Inria]
Jonathan Pastor [MN, until March 2016]
Kevin Quirin [MN]
Post-Doctoral Fellows
Benedikt Ahrens [Inria, from May 2016]
Zakarea Al Shara [MN, from Oct 2016]
Ali Kassem [Inria]
Guillaume Le Louet [MN, until Jul 2016]
Pierre-Marie Pedrot [Inria, until Sep 2016]
Dimitri Pertin [Inria, from Oct 2016]
Anthony Simonet [Inria]
Visiting Scientists
Paige North [Inria, from Sep 2016]
Egbert Rijke [Carnegie Mellon Uni., from Jun 2016 until Jul 2016]
Administrative Assistants
Anne Claire Binétruy [Inria, (part time 30%)]
Florence Rogues [MN, (part time 30%)]
Others
Marie Delavergne [Inria, Master student, from Apr 2016 until Aug 2016]
Theo Winterhalter [ENS Cachan, Master student, from Mar 2016 until Aug 2016]

 Overall Objectives

 	Overall Objectives	Presentation

 Section:
 Overall Objectives

 Presentation

 The research team addresses the general problem of evolving
software by developing concepts, languages, implementations and
tools for building software architectures based on components and
aspects. Its long term goal is the development of new abstractions
for the programming of software architectures, their
representation in terms of expressive programming languages and
their correct and efficient implementation.

 We pursue the following objectives:

 	
 New concepts and techniques for the compositional definition
and implementation of complex software systems, notably involving
crosscutting concerns that cannot be handled modularly using
traditional software development approaches.

 	
 New programming techniques and algorithms for resource
management in mutualized environments. We provide language
abstractions and implementation techniques for large-scale
applications in cloud- and grid-based systems, both on the level
of (service-based) applications and (virtualized)
infrastructures. We develop solutions, in particular, for the
optimization of the energy consumption in such environments (data
centers ...)

 	
 We develop new formal theories for and apply formal methods to
the correctness of software systems. We aim at developing more
powerful techniques for theorem proving and enable complex, often
dynamic, software systems to be proven correct using program
transformations and analysis techniques. We develop solutions, in
particular, for the constructive enforcement of security
properties on the level of software systems.

 Finally, we apply and validate our results based on real-world
applications from numerous domains, notably enterprise information
systems, the Cloud, and pervasive systems.

 Research Program

 	Research Program	Overview
	Software Composition
	Programming languages for advanced
modularization
	Distribution and Concurrency
	Security
	Green IT
	Capacity Planning for Large Scale Distributed System

 Section:
 Research Program

 Overview

 Since we mainly work on new concepts for the language-based
definition and implementation of complex software systems, we
first briefly introduce some basic notions and problems of
software components (understood in a broad sense, that is,
including modules, objects, architecture description languages and
services), aspects, and domain-specific languages. We conclude by
presenting the main issues related to distribution and
concurrency, in particular related to capacity planning issues
that are relevant to our work.

 Section:
 Research Program

 Software Composition

 Modules and services. The idea that building software
components,
i.e., composable prefabricated and parameterized software parts, was key
to create an effective software industry was realized very
early [72]. At that time, the scope of a component
was limited to a single procedure. In the seventies, the growing
complexity of software made it necessary to consider a new level of
structuring and programming and led to the notions of information
hiding, modules, and module interconnection
languages [79], [55]. Information hiding
promotes a black-box model of program development whereby a module
implementation, basically a collection of procedures, is strongly
encapsulated behind an interface. This makes it possible to guarantee
logical invariant properties of the data managed by the
procedures and, more generally, makes modular reasoning
possible.

 In the context of today's Internet-based information society,
components and modules have given rise to software services
whose compositions are governed by explicit orchestration or
choreography specifications that support notions of global
properties of a service-oriented architecture. These horizontal
compositions have, however, to be frequently adapted
dynamically. Dynamic adaptations, in particular in the context of
software evolution processes, often conflict with a black-box
composition model either because of the need for invasive
modifications, for instance, in order to optimize resource utilization
or modifications to the vertical compositions implementing the
high-level services.

 Object-Oriented Programming. Classes and objects
provide another kind of software component, which makes it necessary
to distinguish between component types (classes) and component instances (objects). Indeed, unlike modules, objects can
be created dynamically. Although it is also possible to talk about
classes in terms of interfaces and implementations, the encapsulation
provided by classes is not as strong as the one provided by
modules. This is because, through the use of inheritance,
object-oriented languages put the emphasis on incremental
programming to the detriment of modular programming. This
introduces a white-box model of software development and more
flexibility is traded for safety as demonstrated by the fragile
base class issue [75].

 Architecture Description Languages.
The advent of distributed applications made it necessary to consider
more sophisticated connections between the various building blocks of
a system. The software architecture [84] of a
software system describes the system as a composition of components and connectors, where the connectors capture the
interaction protocols between the components [43]. It
also describes the rationale behind such a given architecture, linking
the properties required from the system to its implementation. Architecture Description Languages (ADLs) are languages that
support architecture-based development [73].
A number of these languages make it possible to generate executable
systems from architectural descriptions, provided implementations for
the primitive components are available. However, guaranteeing that the
implementation conforms to the architecture is an issue.

 Protocols. Today, protocols constitute a frequently used
means to precisely define, implement, and analyze contracts, notably
concerning communication and security properties, between two or more
hardware or software entities. They have been used to define
interactions between communication layers, security properties of
distributed communications, interactions between objects and
components, and business processes.

 Object interactions [77], component
interactions [90], [81] and service
orchestrations [56] are most frequently expressed in terms
of regular interaction protocols that enable basic properties,
such as compatibility, substitutability, and deadlocks between
components to be defined in terms of basic operations and closure
properties of finite-state automata. Furthermore, such properties may
be analyzed automatically using, e.g., model checking
techniques [53], [62].

 However, the limited expressive power of regular languages has led to
a number of approaches using more expressive non-regular
interaction protocols that often provide distribution-specific
abstractions, e.g., session types [66], or context-free
or turing-complete expressiveness [82], [50]. While
these protocol types allow conformance between components to be
defined (e.g., using unbounded counters), property verification can only
be performed manually or semi-automatically.

 Section:
 Research Program

 Programming languages for advanced
modularization

 The main driving force for the structuring means, such as components
and modules, is the quest for clean separation of
concerns [57] on the architectural and programming
levels. It has, however, early been noted that concern separation in
the presence of crosscutting functionalities requires specific
language and implementation level support. Techniques of so-called
computational reflection, for instance, Smith's 3-Lisp or
Kiczales's CLOS meta-object protocol [85], [69] as well
as metaprogramming techniques have been developed to cope with this
problem but proven unwieldy to use and not amenable to formalization
and property analysis due to their generality. Methods and techniques
from two fields have been particularly useful in addressing such
advanced modularization problems: Aspect-Oriented Software Development
as the field concerned with the systematic handling of modularization
issues and domain-specific languages that provide declarative and
efficient means for the definition of crosscutting functionalities.

 Aspect-Oriented Software Development [68], [41] has
emerged over the previous decade as the domain of systematic
exploration of crosscutting concerns and corresponding support
throughout the software development process. The corresponding
research efforts have resulted, in particular, in the recognition of
crosscutting as a fundamental problem of virtually any
large-scale application, and the definition and implementation of a
large number of aspect-oriented models and languages.

 However, most current aspect-oriented models, notably
AspectJ [67],
rely on pointcuts and advice defined in terms of individual execution
events. These models are subject to serious limitations concerning the
modularization of crosscutting functionalities in distributed
applications, the integration of aspects with other modularization
mechanisms such as components, and the provision of correctness
guarantees of the resulting AO applications. They do, in particular,
only permit the manipulation of distributed applications on a per-host
basis, that is, without direct expression of coordination properties
relating different distributed entities [86]. Similarly,
current approaches for the integration of aspects and (distributed)
components do not directly express interaction properties between sets
of components but rather seemingly unrelated modifications to
individual components [54]. Finally, current
formalizations of such aspect models are formulated in terms of
low-level semantic abstractions (see, e.g., Wand's et al semantics for
AspectJ [89]) and provide only limited support for the
analysis of fundamental aspect properties.

 Different approaches have been put forward to tackle these problems,
in particular, in the context of so-called stateful or
history-based aspect languages
[58], [59],
which provide pointcut and advice languages that directly express rich
relationships between execution events. Such languages have been
proposed to directly express coordination and synchronization issues
of distributed and concurrent applications
[78], [48], [61],
provide more concise formal semantics for aspects and enable analysis
of their properties
[44], [60], [58], [42].
Furthermore, first approaches for the definition of aspects over
protocols have been proposed, as well as over regular structures
[58] and non-regular
ones [88], [76], which are
helpful for the modular definition and verification of protocols over
crosscutting functionalities.

 They represent, however, only first results and many important
questions concerning these fundamental issues remain open, in
particular, concerning the semantics foundations of AOP and the
analysis and enforcement of correctness properties governing its,
potentially highly invasive, modifications.

 Domain-specific languages (DSLs) represent domain knowledge
in terms of suitable basic language constructs and their compositions
at the language level. By trading generality for abstraction, they
enable complex relationships among domain concepts to be expressed
concisely and their properties to be expressed and formally
analyzed. DSLs have been applied to a large number of domains; they
have been particularly popular in the domain of software generation
and maintenance [74], [92].

 Many modularization techniques and tasks can be naturally expressed by
DSLs that are either specialized with respect to the type of
modularization constructs, such as a specific brand of software
component, or to the compositions that are admissible in the context
of an application domain that is targeted by a modular
implementation. Moreover, software development and evolution processes
can frequently be expressed by transformations between applications
implemented using different DSLs that represent an implementation at
different abstraction levels or different parts of one application.

 Functionalities that crosscut a component-based application, however,
complicate such a DSL-based transformational software development
process. Since such functionalities belong to another domain than that
captured by the components, different DSLs should be composed. Such
compositions (including their syntactic expression, semantics and
property analysis) have only very partially been explored until
now. Furthermore, restricted composition languages and many aspect
languages that only match execution events of a specific domain (e.g., specific file accesses in the case of security functionality) and
trigger only domain-specific actions clearly are quite similar to
DSLs but remain to be explored.

 Section:
 Research Program

 Distribution and Concurrency

 While ASCOLA does not investigate distribution and concurrency as
research domains per se (but rather from a software engineering and
modularization viewpoint), there are several specific problems and
corresponding approaches in these domains that are directly related to
its core interests that include the structuring and modularization of
large-scale distributed infrastructures and applications. These
problems include crosscutting functionalities of distributed and
concurrent systems, support for the evolution of distributed software
systems, and correctness guarantees for the resulting software systems.

 Underlying our interest in these domains is the well-known observation
that large-scale distributed applications are subject to
numerous crosscutting functionalities (such as the
transactional behavior in enterprise information systems, the
implementation of security policies, and fault recovery
strategies). These functionalities are typically partially
encapsulated in distributed infrastructures and partially handled in
an ad hoc manner by using infrastructure services at the application
level. Support for a more principled approach to the development and
evolution of distributed software systems in the presence of
crosscutting functionalities has been investigated in the field of
open adaptable middleware [49], [71]. Open
middleware design exploits the concept of reflection to provide the
desired level of configurability and openness.
However, these approaches are subject to several fundamental
problems. One important problem is their insufficient, framework-based
support that only allows partial modularization of crosscutting
functionalities.

 There has been some criticism on the use of AspectJ-like
aspect models (which middleware aspect models like that of JBoss AOP
are an instance of) for the modularization of distribution and
concurrency related concerns, in particular, for transaction
concerns [70] and the modularization of the distribution
concern itself [86]. Both criticisms are essentially grounded
in AspectJ's inability to explicitly represent sophisticated
relationships between execution events in a distributed system: such
aspects therefore cannot capture the semantic relationships that are
essential for the corresponding concerns. History-based aspects, as
those proposed by the ASCOLA project-team provide a starting point
that is not subject to this problem.

 From a point of view of language design and implementation, aspect
languages, as well as domain specific languages for distributed and
concurrent environments share many characteristics with existing
distributed languages: for instance, event monitoring is fundamental
for pointcut matching, different synchronization strategies and
strategies for code mobility [64] may be used in actions
triggered by pointcuts. However, these relationships have only been
explored to a small degree. Similarly, the formal semantics and formal
properties of aspect languages have not been studied yet for the
distributed case and only rudimentarily for the concurrent
one [44], [61].

 Section:
 Research Program

 Security

 Security properties and policies over complex service-oriented and
standalone applications become ever more important in the context of
asynchronous and decentralized communicating systems. Furthermore,
they constitute prime examples of crosscutting functionalities that
can only be modularized in highly insufficient ways with existing
programming language and service models. Security properties and
related properties, such as accountability properties, are therefore
very frequently awkward to express and difficult to analyze and
enforce (provided they can be made explicit in the first place).

 Two main issues in this space are particularly problematic from a
compositional point of view. First, information flow properties of
programming languages, such as flow properties of
Javascript [46], and service-based
systems [52] are typically specially-tailored to
specific properties, as well as difficult to express and
analyze. Second, the enforcement of security properties and security
policies, especially accountability-related
properties [80], [87], is only supported using ad hoc
means with rudimentary support for property verification.

 The ASCOLA team has recently started to work on providing formal
methods, language support and implementation techniques for the
modular definition and implementation of information flow properties
as well as policy enforcement in service-oriented systems as well as,
mostly object-oriented, programming languages.

 Section:
 Research Program

 Green IT

 With the emergence of the Future Internet and the dawn of new IT
architecture and computation models such as cloud computing, the
usage of data centers (DC) as well as their power consumption
increase dramatically [51]. Besides the ecological impact [65], energy
consumption is a predominant criterion for DC providers since it
determines the daily cost of their infrastructure. As a
consequence, power management becomes one of the main challenges
for DC infrastructures and more generally for large-scale
distributed systems.

 To address this problem, we study two approaches: a workload-driven
 [47] and power-driven
one [83]. As part of the workload-driven solution, we
adapt the power consumption of the DC depending on the application
workload, and evaluate whether this workload to be more reactive. We
develop a distributed system from the system to the service-oriented
level mainly based on hardware and virtualization capabilities that is
managed in a user-transparent fashion. As part of the power-driven
approach, we address energy consumption issues through a strong
synergy inside the infrastructure software stack and more precisely
between applications and resource management systems. This approach is
characterized by adapting QoS properties aiming at the best trade-off
between cost of energy (typically from the regular electric grid), its
availability (for instance, from renewable energy), and service
degradation caused, for instance, by application reconfigurations to
jobs suspensions.

 Section:
 Research Program

 Capacity Planning for Large Scale Distributed System

 Since the last decade, cloud computing has emerged as both a new
economic model for software (provision) and as flexible tools for the
management of computing capacity [45]. Nowadays, the major cloud features
have become part of the mainstream (virtualization, storage and
software image management) and the big market players offer effective
cloud-based solutions for resource pooling. It is now possible
to deploy virtual infrastructures that involve virtual machines (VMs),
middleware, applications, and networks in such a simple manner that a
new problem has emerged since 2010: VM sprawl (virtual
machine proliferation) that consumes valuable computing, memory,
storage and energy resources, thus menacing serious resource
shortages. Scientific approaches that address VM sprawl are both
based on classical administration techniques like the lifecycle
management of a large number of VMs as well as the arbitration and the
careful management of all resources consumed and provided by the
hosting infrastructure (energy, power, computing, memory, network
etc.) [63], [91].

 The ASCOLA team investigates fundamental techniques for cloud
computing and capacity planning, from infrastructures to the
application level. Capacity planning is the process of planning for,
analyzing, sizing, managing and optimizing capacity to satisfy demand
in a timely manner and at a reasonable cost. Applied to distributed
systems like clouds, a capacity planning solution must mainly provide
the minimal set of resources necessary for the proper execution of the
applications (i.e., to ensure SLA). The main challenges in this
context are: scalability, fault tolerance and reactivity of the
solution in a large-scale distributed system, the analysis and
optimization of resources to minimize the cost (mainly costs related
to the energy consumption of datacenters), as well as the profiling
and adaptation of applications to ensure useful levels of quality of
service (throughput, response time, availability etc.).

 Our solutions are mainly based on virtualized infrastructures that we
apply from the IaaS to the SaaS levels. We are mainly concerned by
the management and the execution of the applications by harnessing
virtualization capabilities, the investigation of alternative
solutions that aim at optimizing the trade-off between performance and
energy costs of both applications and cloud resources, as well as
arbitration policies in the cloud in the presence of
energy-constrained resources.

 Application Domains

 	Application Domains	Enterprise Information Systems and Services
	Capacity Planning in Cloud, Fog and Edge Computing
	Pervasive Systems

 Section:
 Application Domains

 Enterprise Information Systems and Services

 Large IT infrastructures typically evolve by adding new
third-party or internally-developed components, but also
frequently by integrating already existing information systems.
Integration frequently requires the addition of glue code that
mediates between different software components and infrastructures
but may also consist in more invasive modifications to
implementations, in particular to implement crosscutting
functionalities. In more abstract terms, enterprise information
systems are subject to structuring problems involving horizontal
composition (composition of top-level functionalities) as well as
vertical composition (reuse and sharing of implementations among
several top-level functionalities). Moreover, information systems
have to be more and more dynamic.

 Service-Oriented Computing (SOC) that is frequently used for solving
some of the integration problems discussed above. Indeed,
service-oriented computing has two main advantages:

 	
 Loose-coupling: services are autonomous: they do not
require other services to be executed;

 	
 Ease of integration: Services communicate over standard protocols.

 Our current work is based on the following observation: similar to
other compositional structuring mechanisms, SOAs are subject to the
problem of crosscutting functionalities, that is, functionalities
that are scattered and tangled over large parts of the architecture
and the underlying implementation. Security functionalities, such as
access control and monitoring for intrusion detection, are a prime
example of such a functionality in that it is not possible to
modularize security issues in a well-separated module. Aspect-Oriented
Software Development is precisely an application-structuring method
that addresses in a systemic way the problem of the lack of
modularization facilities for crosscutting functionalities.

 We are considering solutions to secure SOAs by providing an
aspect-oriented structuring and programming model that allows security
functionalities to be modularized. Two levels of research have been
identified:

 	
 Service level: as services can be composed to build processes,
aspect weaving will deal with the orchestration and the choreography
of services.

 	
 Implementation level: as services are abstractly specified,
aspect weaving will require to extend service interfaces in order to
describe the effects of the executed services on the sensitive
resources they control.

 In 2015, we have published results on constructive mechanisms for
security and accountability properties in service-based systems as
well as results on service provisioning problems, in particular,
service interoperability and mediation. Furthermore, we take part in
the European project A4Cloud on accountability challenges, that is,
the responsible stewardship of third-party data and computations,
see Sec. 9.3.

 Section:
 Application Domains

 Capacity Planning in Cloud, Fog and Edge Computing

 Cloud and more recently Fog and Edge computing platforms aim at
delivering large capacities of computing power. These capacities can
be used to improve performance (for scientific applications) or
availability (e.g., for Internet services hosted by datacenters). These
distributed infrastructures consist of a group of coupled computers
that work together and may be spread across a LAN (cluster), across a
the Internet (Fog/Edge). Due to their large
scale, these architectures require permanent adaptation, from the
application to the system level and call for automation of the corresponding
adaptation processes.
We focus on self-configuration and self-optimization functionalities
across the whole software stack: from the lower levels (systems
mechanisms such as distributed file systems for instance) to the
higher ones (i.e. the applications themselves such as clustered
servers or scientific applications).

 In 2015, we have proposed VMPlaces, a dedicated framework to evaluate
and compare VM placement algorithms. Globally the framework is
composed of two major components: the injector and the VM placement
algorithm. The injector constitutes the generic part of the framework
(i.e. the one you can directly use) while the VM placement algorithm
is the component a user wants to study (or compare with other existing
algorithms), see Sec. 7.2.

 In the energy field, we have designed a set of techniques, named
Optiplace, for cloud management with flexible power models through
constraint programming. OptiPlace supports external models, named
views. Specifically, we have developed a power view, based on generic
server models, to define and reduce the power consumption of a
datacenter's physical servers. We have shown that OptiPlace behaves at
least as good as our previous system, Entropy, requiring as low as
half the time to find a solution for the constrained-based placement
of tasks for large datacenters.

 Section:
 Application Domains

 Pervasive Systems

 Pervasive systems are another class of systems raising
interesting challenges in terms of software structuring. Such
systems are highly concurrent and distributed. Moreover, they
assume a high-level of mobility and context-aware interactions
between numerous and heterogeneous devices (laptops, PDAs,
smartphones, cameras, electronic appliances...).
Programming such systems requires proper support for handling
various interfering concerns like software customization and
evolution, security, privacy, context-awareness...
Additionally, service composition occurs spontaneously at
runtime.

 Like Pervasive systems, Internet of Things is a major theme of these last ten years.
Many research works has been led on the whole chain, from communicating sensors to big data management, through communication middlewares.
Few of these works have addressed the problem of gathered data access.

 The more a sensor networks senses various data, the more the users panel is heterogeneous.
Such an heterogeneity leads to a major problem about data modeling: for each user, to aim at precisely addressing his needs and his needs only; ie to avoid a data representation which would overwhelm the user with all the data sensed from the network, regardless if he needs it or not.
To leverage this issue, we have proposed a multitree modeling for sensor networks which addresses each of these specific usages.With this modeling comes a domain specific language (DSL) which allows users to manipulate, parse and aggregate information from the sensors.

 In 2014, we have extended the language EScala, which integrates
reactive programming through events with aspect-oriented and
object-oriented mechanisms.

 Highlights of the Year

 	
 Highlights of the Year

 Section:
 Highlights of the Year

 Highlights of the Year

 This year the team has produced major results in the domains of
the foundations of computer science as well as capacity management
for large-scale distributed software systems.

 Concerning the foundations of computer science, we have presented
new results on the provably correct execution of programs that are
only partially typed [22] and generalized
the use of dependent types with side
effects [26].

 As to distributed systems, we have introduced a new cloud model
that provides QoS-levels and SLA as first-class citizens of
cloud-based systems [19]. Furthermore, we
have provided new mechanisms for the privacy-preserving storage of
data of a user over clouds managed by different cloud
providers [30].

 New Software and Platforms

 	New Software and Platforms	CSLA
	CSQL
	EScala
	JEScala
	SimGrid
	VMPlaces
	btrCloud

 Section:
 New Software and Platforms

 CSLA

 Cloud Service Level Agreement language

 Keywords: Cloud computing - Service-level agreement - Elasticity

 Functional Description

 CSLA, the Cloud Service Level Agreement language, allows the definition of SLA properties for arbitrary Cloud services (XaaS). CSLA addresses QoS uncertainty in unpredictable and dynamic environment and provides a cost model of Cloud computing. Besides the standard formal definition of contracts – comprising validity, parties, services definition and guarantees/violations – CSLA is enriched with features, such as QoS degradation and an advanced penalty model, thus introducing fine-grained language support for Cloud elasticity management.

 	
 Participants: Thomas Ledoux and Yousri Kouki

 	
 Contact: Thomas Ledoux

 	
 URL: http://www.emn.fr/z-info/csla/

 Section:
 New Software and Platforms

 CSQL

 Cryptographic Composition for Query Language

 Scientific Description

 C2QL is a compositional language of security techniques for
information privacy in the cloud. A cloud service can use security
techniques to ensure information privacy. These techniques protect
privacy by converting the client’s personal data into unintelligible
text. But they also cause the loss of some functionalities of the
service. As a solution, CSQL permits to compose security techniques to
ensure information privacy without the loss of functionalities. But,
the composition makes the writing of programs more intricate. To help
the programmer, C2QL defines a query language for the definition of
cloud services that enforces information privacy with the composition
of security techniques. This language comes with a set of algebraic
laws to, systematically, transform a local service without protection
into its cloud equivalent that is protected by composition.

 Functional Description

 C2QL is implemented in Idris, a functional language of the Haskell
family. The implementation harnesses the Idris dependant type system
to ensure the correct composition of security mechanisms and provides
a transformation of the implementation into a π-calculus. This
transformation serves two purposes. First, it makes the distribution
explicit, showing how a computation is distributed over SaaS, PaaS and
client applications. Then, it helps defining an encoding into ProVerif
to check that the service preserves the privacy of its clients.

 	
 Participants: Ronan-Alexandre Cherrueau, Rémi Douence, Mario Südholt

 	
 Contact: Ronan-Alexandre Cherrueau

 	
 URL: https://github.com/rcherrueau/C2QL

 Section:
 New Software and Platforms

 EScala

 Scientific Description

 EScala extends the idea of events as object members, as realized by C# events, with the possibility to define events declaratively by expressions over other events. The occurrences of an event can be defined by various set operations, such as union, intersection and difference, applied on the occurrences of other events. Events can be filtered by arbitrary conditions, the data attached to the events can be transformed by arbitrary functions. Event expressions make it possible to define events in terms of other events, at the lowest level relying on primitive events.

 Functional Description

 EScala is an extension of Scala programming language with support for events as attributes of objects. The support for events in EScala, combine the ideas of event-driven, aspect-oriented and functional-reactive programming.

 	
 Participants: Jacques Noyé and Jurgen Van Ham

 	
 Contact: Jurgen Van Ham

 	
 URL: http://www.stg.tu-darmstadt.de/research/escala/index.en.jsp

 Section:
 New Software and Platforms

 JEScala

 Functional Description

 JEScala extends EScala with support for concurrent programming. Events can be declared as asynchronous so that their handling takes place concurrently. A new composition operator, the join operator, inspired by the join calculus, can also be used to synchronize the concurrent activities created by asynchronous events and communicate between them.

 	
 Participants: Jurgen Van Ham and Jacques Noyé

 	
 Contact: Jurgen Van Ham

 	
 URL: http://www.stg.tu-darmstadt.de/research/jescala_menu/index.en.jsp

 Section:
 New Software and Platforms

 SimGrid

 Scientific Instrument for the study of Large-Scale Distributed Systems

 Keywords: Large-scale Emulators - Grid Computing - Distributed Applications

 Functional Description

 SimGrid is a toolkit that provides core functionalities for the simulation of distributed applications in heterogeneous distributed environments. The simulation engine uses algorithmic and implementation techniques toward the fast simulation of large systems on a single machine. The models are theoretically grounded and experimentally validated. The results are reproducible, enabling better scientific practices.

 Its models of networks, CPUs and disks are adapted to (Data)Grids, P2P, Clouds, Clusters and HPC, allowing multi-domain studies. It can be used either to simulate algorithms and prototypes of applications, or to emulate real MPI applications through the virtualization of their communication, or to formally assess algorithms and applications that can run in the framework.

 The formal verification module explores all possible message interleavings in the application, searching for states violating the provided properties. We recently added the ability to assess liveness properties over arbitrary and legacy codes, thanks to a system-level introspection tool that provides a finely detailed view of the running application to the model checker. This can for example be leveraged to verify both safety or liveness properties, on arbitrary MPI code written in C/C++/Fortran.

 	
 Participants: Frederic Suter, Martin Quinson, Arnaud Legrand, Takahiro Hirofuchi, Adrien Lebre, Jonathan Pastor, Mario Sudholt, Luka Stanisic, Augustin Degomme, Jean Marc Vincent, Florence Perronnin and Jonathan Rouzaud-Cornabas

 	
 Partners: CNRS - ENS Rennes - Université de Nancy

 	
 Contact: Martin Quinson

 	
 URL: http://simgrid.gforge.inria.fr/

 Section:
 New Software and Platforms

 VMPlaces

 Functional Description

 VMPlaces is a dedicated framework to evaluate and compare VM placement algorithms.
This framework is composed of two major components: the injector and the VM placement algorithm. The injector is the generic part of the framework (i.e. the one you can directly use) while the VM placement algorithm is the part you want to study (or compare with available algorithms). Currently, the VMPlaceS is released with three algorithms:

 Entropy, a centralized approach using a constraint programming approach to solve the placement/reconfiguration VM problem

 Snooze, a hierarchical approach where each manager of a group invokes Entropy to solve the placement/reconfiguration VM problem. Note that in the original implementation of Snooze, it is using a specific heuristic to solve the placement/reconfiguration VM problem. As the sake of simplicity, we have simply reused the entropy scheduling code.

 DVMS, a distributed approach that dynamically partitions the system and invokes Entropy on each partition.

 	
 Participants: Takahiro Hirofuchi, Adrien Lebre, Jonathan Pastor, Flavien Quesnel and Mario Sudholt

 	
 Contact: Adrien Lebre

 	
 URL: http://beyondtheclouds.github.io/VMPlaceS/

 Section:
 New Software and Platforms

 btrCloud

 Keywords: Cloud computing - Virtualization - Grid - Energy - Orchestration - Autonomic system - Placement - Cluster - Data center - Scheduler

 Functional Description

 Orchestration, virtualization, energy, autonomic system, placement, cloud computing, cluster, data center, scheduler, grid

 btrCloud is a virtual machine manager for clusters and provides a complete solution for the management and optimization of virtualized data centers. btrCloud (acronym of better cloud) is composed of three parts.

 The analysis function enables operatives and people in charge to monitor and analyze how a data-center works - be it on a daily basis, on the long run, or in order to predict future trends. This feature includes boards for performance evaluation and analysis as well as trends estimation.

 btrCloud, by the integration of btrScript, provides (semi-)automated VM lifecycle management, including provisioning, resource pool management, VM tracking, cost accounting, and scheduled deprovisioning. Key features include a thin client interface, template-based provisioning, approval workflows, and policy-based VM placement.

 Finally, several kinds of optimizations are currently available, such
as energy and load balancing. The former can help save up to around
20% of the data-center energy consumption. The latter provides
optimized quality of service properties for applications that are
hosted in the virtualized datacenters.

 	
 Participants: Guillaume Le Louet, Frederic Dumont and Jean-Marc Menaud

 	
 Contact: Jean-Marc Menaud

 	
 URL: http://www.btrcloud.org/btrCloud/index_EN.html

 New Results

 	New Results	Software composition and programming languages
	Distributed programming and the Cloud

 Section:
 New Results

 Software composition and programming languages

 Participants :
	Walid Benghrabit, Ronan-Alexandre Cherrueau, Rémi Douence, Hervé Grall, Florent Marchand de Kerchove de Denterghem, Jacques Noyé, Jean-Claude Royer, Mario Südholt.

 This year we have published a number of new results in the domains of
software composition and programming languages that range from
pragmatic ones like modularity issues to formal studies in the domain
of dependent type theory via static analysis and formal verification.

 Formal Methods, logics and type theory

 Concerning verification and formal semantics, we have defined the
semantics of our dependent interoperability framework and we propose
the notion the partial type equivalences as a key feature. We have
also studied proofs in dependent type theory and synthesized
call-by-value and call-by-name translations.

 Verified Dependent Interoperability.

 Full-spectrum dependent types promise to enable the development of
correct-by-construction software. However, even certified software
needs to interact with simply-typed or untyped programs, be it to
perform system calls, or to use legacy libraries. Trading static
guarantees for runtime checks, the dependent interoperability
framework provides a mechanism by which simply-typed values can safely
be coerced to dependent types and, conversely, dependently-typed
programs can defensively be exported to a simply-typed
application. In [22], we give a semantic account
of dependent interoperability. Our presentation relies on and is
guided by a pervading notion of type equivalence, whose importance has
been emphasized in recent works on homotopy type theory. Specifically,
we develop the notion of partial type equivalences as a key foundation
for dependent interoperability. Our framework is developed in Coq; it
is thus constructive and verified in the strictest sense of the
terms. Using our library, users can specify domain-specific partial
equivalences between data structures. Our library then takes care of
the (sometimes, heavy) lifting that leads to interoperable
programs. It thus becomes possible, as we shall illustrate, to
internalize and hand-tune the extraction of dependently-typed programs
to interoperable OCaml programs within Coq itself.

 Forcing in Type Theory.

 In [26], we study forcing translations of proofs
in dependent type theory, through the Curry-Howard
correspondence. Based on a call-by-push-value decomposition, we
synthesize two simply-typed translations: i) one call-by-value,
corresponding to the translation derived from the presheaf
construction as studied in a previous paper; ii) one call-by-name,
whose intuitions already appear in Krivine and Miquel’s
work. Focusing on the call-by-name translation, we adapt it to the
dependent case and prove that it is compatible with the definitional
equality of our system, thus avoiding coherence problems. This
allows us to use any category as forcing conditions, which is out of
reach with the call-by-value translation. Our construction also
exploits the notion of storage operators in order to interpret
dependent elimination for inductive types. This is a novel example of
a dependent theory with side-effects, clarifying how dependent
elimination for inductive types must be restricted in a non-pure
setting. Being implemented as a Coq plugin, this work gives the
possibility to formalize easily consistency results, for instance
the consistency of the negation of Voevodsky’s univalence axiom.

 Programming languages

 In the domain of programming languages we have presented new results
on constraint programming, development of correct programs by
construction and better controls for computational effects and
modularity for JavaScript.

 Constraint programming

 Constraint programming (CP) relies on filtering algorithms in order to
deal with combinatorial problems. Global constraints offer efficient
algorithms for complex constraints. In particular a large family of
global constraints can be expressed as constraints of finite state
automata with counters. We have generalized these automata
constraints in order to compose them as transducers
[16]. We have also extended these results
with different techniques [20]. First, we
have improved the automaton synthesis to generate automata with fewer
accumulators. Second, we have shown how to decompose a constraint
specified by an automaton with accumulators into a conjunction of
linear inequalities, for use by a MIP (Mixed-Integer Programming)
solver. Third, we have generalized the implied constraint generation
to cover the entire family of time-series constraints. The newly
synthesized automata for time-series constraints outperform the old
ones, for both the CP and MIP decompositions, and the generated
implied constraints boost the inference, again for both the CP and MIP
decompositions.

 Program correctness

 Most IDEs provide refactoring tools to assist programmers when they
modify the structure of their software. However the refactoring
facilities of many popular tools (Eclipse, Visual Studio, IntelliJ,
etc.) are currently not reliable : they occasionally change the
program semantics in unexpected ways, and, as a result, the
programmers systematically have to re-test the resulting code. We
have build a refactoring tool for C programs which core operation is
proved correct by construction [21]. To do that,
we build an AST transformation with Coq (based on the CompCert C
implementation) and we prove that this transformation preserves the
external behavior of programs. The code of the transformation is then
extracted to OCaml and is then embedded in a traditional
parse/transform/pretty-print setting to provide a working prototype.

 Effect Capabilities

 Computational effects complicate the tasks of reasoning about and
maintaining software, due to the many kinds of interferences that can
occur. While different proposals have been formulated to alleviate the
fragility and burden of dealing with specific effects, such as state
or exceptions, there is no prevalent robust mechanism that addresses
the general interference issue. Building upon the idea of
capability-based security, we propose in [18]
effect capabilities as an effective and flexible manner to control
monadic effects and their interferences. Capabilities can be
selectively shared between modules to establish secure effect-centric
coordination. We further refine capabilities with type-based
permission lattices to allow fine-grained decomposition of
authority. We provide an implementation of effect capabilities in
Haskell, using type classes to establish a way to statically share
capabilities between modules, as well as to check proper access
permissions to effects at compile time. We first exemplify how to tame
effect interferences using effect capabilities by treating state and
exceptions. Then we focus on taming I/O by proposing a fine-grained
lattice of I/O permissions based on the current classification of its
operations. Finally, we show that integrating effect capabilities
with modern tag-based monadic mechanisms provides a practical, modular
and safe mechanism for monadic programming in Haskell.

 Extensible JavaScript Modules

 As part of the SecCloud project, we have studied how to modularly
extend JavaScript interpreters with dynamic security analyses in
particular information flow analyses. This has led us to study ways to
improve on the standard JavaScript module pattern. This pattern is
commonly used to encapsulate definitions by using closures. However,
closures prevent module definitions from being extended at runtime. We
have proposed a simple pattern that not only opens the module, but
allows one to extend the module definitions in
layers [39]. The pattern leverages
the with construct and the prototype delegation mechanism of
JavaScript to mimic a form of dynamic binding, while minimizing the
changes made to the module code.

 Florent Marchand's PhD
thesis [13] details the
proposal further and shows its application to the modular extension of
Narcissus, a full-blown JavaScript interpreter, with several dynamic
analyses, including the information flow of Austin and Flanagan based
on multiple facets. A comparison with a previous ad hoc implementation
of the analysis illustrates the benefits of the proposal.

 Software Security and Privacy

 In the area of security we have focused on expressing advanced
security concerns with abstract and formal languages and the study of
policy monitoring and the detection of conflicts.

 Runtime verification of advanced logical security properties.

 Monitoring or runtime verification means to observe the system
execution and to check if it deviates or not from a predefined
contract. Our contract is a formula written in AAL (Abstract
Accountability Language) expressing the expected behavior of a system,
the audit steps as well as punishment and compensation. We choose to
use the rewriting approach with the three valued logic as many other
existing approaches. The monitoring problem raised a validity
question, if we start with a formula neither true nor false are we
sure to conclude? The response is no and this is a completeness
problem and all published solutions are incomplete. For LTL, mixing
the standard semantics, the rewriting principle and coinduction we are
able to define a complete monitoring mechanism. A first
implementation has been done into our AccLab tool support and sketched
in [38]. We are investigating the extension
of our LTL rewriting mechanism to cope with the first-order case.

 Specification of advanced security and privacy properties.

 Security and privacy requirements in ubiquitous systems need a
sophisticated policy language with features to express access
restrictions and obligations. Ubiquitous systems involve multiple
actors owning sensitive data concerning aspects such as location,
discrete and continuous time, multiple roles that can be shared among
actors or evolve over time. Conflict management is an important
problem in security policy frameworks. In [31]
we present an abstract language (AAL) dedicated to accountability. We
show how to specify most of these security and privacy features and
compare it with the XACML approach. We also classified the existing
conflict detection for XACML like approaches in dynamic, testing, or
static detection. A thorough analysis of these mechanisms reveals
that they have several weaknesses and they are not applicable in our
context. We advocate for a classic approach using the notion of
logical consistency to detect conflicts in AAL.

 Composition of privacy-enhancing and security mechanisms.

 As part of his PhD thesis [11], Ronan
Cherrueau's has defined a language for the composition of three
privacy-enhancing and security mechanisms: symmetric key encryption,
database fragmentation and on-client computations. The language allows
the expression of distributed programs that protect data by applying
compositions of the three mechanisms to them. The language ensures
basic privacy and security properties by a type system based on
dependent types. This type system ensures, for example, that data that
has been encrypted and stored in a database fragment cannot be
accessed in plain form and from another location than that fragment.
Furthermore, the language comes equiped with four major additional
results. First, a calculus that allows for the semi-automatic
derivation of distributed privacy-preserving and secure programs from
an original non-distributed one. Second, a transformation from the
language to the π-calculus. Third, a transformation into an input
specification to the Proverif model checker for security
properties. Fourth, two implementations on the basis of, respectively,
the Scala and Idris languages that harness their corresponding
dependent type systems.

 Section:
 New Results

 Distributed programming and the Cloud

 Participants :
	Frederico Alvares, Bastien Confais, Simon Dupont, Md Sabbir Hasan, Adrien Lebre, Thomas Ledoux, Guillaume Le Louët, Jean-Marc Menaud, Jonathan Pastor, Rémy Pottier, Anthony Simonet, Mario Südholt.

 Cloud applications and infrastructures

 Complex event processing.
We presented this year the evolution of SensorScript towards a
language for complex event processing dedicated to sensor
networks. While the model mainly relies on previous works, we
highlighted how the new language builds on the multitree in order to
provide complex event processing mechanisms. We are able to balance
the syntactic concision of the language with a real-time complex event
processor for sensor networks. By providing flexible selections over
the nodes, with the possibility to filter them on complex conditions,
possibly over a time window, we offer a strong alternative to
traditional SQL used in the literature. Moreover, SensorScript does
not focus only on data access. In fact it provides the possibility to
widen the scope of the methods accessible on nodes to other features
than sensors monitoring, including but not limited to addressing
actuators functions. Finally we showed that SensorScript is able to
address examples proposed in the literature, with simpler results than
SQL, while highlighting its limitations, especially on history
management. [24]

 Secure cloud storage.
The increasing number of cloud storage services like Dropbox or Google
Drive allows users to store more and more data on the
Internet. However, these services do not give users enough guarantees
in protecting the privacy of their data. In order to limit the risk
that the storage service scans user documents for commercial purposes,
we propose a storage service that stores data on several cloud
providers while preventing these providers to read user
documents. TrustyDrive is a cloud storage service that protects the
privacy of users by breaking user documents into blocks in order to
spread them on several cloud providers. As cloud providers only own a
part of the blocks and they do not know the block organization, they
can not read user documents. Moreover, the storage service connects
directly users and cloud providers without using a third-party as is
generally the practice in cloud storage services. Consequently, users
do not give critical information (security keys, passwords, etc.) to a
third-party. [30]

 Service-level agreement for the Cloud.

 Quality-of-service and SLA guarantees are among the major challenges
of cloud-based services. In [19], we first
present a new cloud model called SLAaaS — SLA aware Service. SLAaaS
considers QoS levels and SLA as first class citizens of cloud-based
services. This model is orthogonal to other SaaS, PaaS, and IaaS cloud
models, and may apply to any of them. More specifically, we make three
contributions: (i) we provide a domain-specific language that allows
to define SLA constraints in cloud services; (ii) we present a general
control-theoretic approach for managing cloud service SLA; (iii) we
apply our approach to MapReduce, locking, and e-commerce services.

 Cloud Capacity Planning and Elasticity.

 Capacity management is a process used to manage the capacity of IT
services and the IT infrastructure. Its primary goal is to ensure that
IT resources (services, infrastructure) are right-sized to meet
current and future requirements in a cost-effective and timely
manner. In [34], we present a comprehensive
overview of capacity planning and management for cloud
computing. First, we state the problem of capacity management in the
context of cloud computing from the point of view of several service
providers. Second, we provide a brief discussion about when
capacity planning should take place. Finally, we survey a number of
methods for capacity planning and management proposed by both
people from industry and researchers.

 In his PhD [12], Simon Dupont proposes to extend
the concept of elasticity to higher layers of the cloud, and more
precisely to the SaaS level. He presents the new concept of
software elasticity by defining the ability of the software to
adapt, ideally in an autonomous way, to cope with workload changes
and/or limitations of IaaS elasticity. This brings the consideration
of Cloud elasticity in a multi-layer way through the adaptation of all
kind of Cloud resources (software, virtual machines, physical
machines). In [23], we introduce ElaScript, a
DSL that offers Cloud administrators a simple and concise way to
define complex elasticity-based reconfiguration plans. ElaScript is
capable of dealing with both infrastructure and software elasticities,
independently or together, in a coordinated way. We validate our
approach by first showing the interest to have a DSL offering multiple
levels of control for Cloud elasticity, and then by showing its
integration with a realistic well-known application benchmark deployed
in OpenStack and Grid'5000 infrastructure testbed.

 Infrastructure.

 Academic and industry experts are now advocating for going from
large-centralized Cloud Computing infrastructures to smaller ones
massively distributed at the edge of the network (aka., Fog and Edge
Computing solutions). Among the obstacles to the adoption of this
model is the development of a convenient and powerful IaaS system
capable of managing a significant number of remote data-centers in a
unified way.

 In 2016, we achieved three major results in this context.

 The first result is related to the economical viability of Fog/Edge
Computing infrastructures that is often debated w-r-t large cloud
computing data centers operated by US giants such as Amazon,
Google To answer such a question, we conducted a specific
study that goes beyond the state of the art of the current cost model
of Distributed Cloud infrastructures. First, we provided a
classification of the different ways of deploying Distributed Cloud
platforms. Then, we proposed a versatile cost model that can help new
actors evaluate the viability of deploying a Fog/Edge Computing
offer. We illustrated the relevance of our proposal by instantiating
it over three use-cases and comparing them according to similar
computation capabilities provided by the Amazon solution. Such a study
clearly showed that deploying a Distributed Cloud infrastructure makes
sense for telcos as well as new actors willing to enter the
game [29].

 The second result is related to the preliminary revisions we made in
OpenStack. The OpenStack software suite has become the de facto
open-source solution to operate, supervise and use a Cloud Computing
infrastructure. Our objective is to study to what extent current
OpenStack mechanisms can handle massively distributed cloud
infrastructures and to propose revisions/extensions of internal
mechanisms when appropriate. The work we conducted this year focused
on the Nova service of OpenStack.More precisely, we modified the code base in order to use a
distributed key/value store instead of the centralized SQL backend. We
conducted several experiments that validate the correct behavior and
gives performance trends of our prototype through an emulation of
several data-centers using Grid’5000 testbed. In addition to paving
the way to the first large-scale and Internet-wide IaaS manager, we
expect this work will attract a community of specialists from both
distributed system and network areas to address the Fog/Edge Computing
challenges within the OpenStack
ecosystem [36], [27]. These and
additional corresponding results have been presented in a more
detailed manner as part of Jonathan Pastor's PhD
thesis [14].

 The third result is related to the data management in Fog/Edge
Computing infrastructures. Our ultimate goal is to propose an
Amazon-S3 like system, i.e., a blob storage service, that can
take into account Fog/Edge specifics. The study we achieved this year
is preliminary. We first identified a list of properties a storage
system should meet in this context. Second, we evaluated through
performance analysis three “off-the-shelf” object store solutions,
namely Rados, Cassandra and InterPlanetary File System (IPFS). In
particular, we focused (i) on access times to push and get objects
under different scenarios and (ii) on the amount of network traffic
that is exchanged between the different sites during such
operations. We also evaluated how the network latencies influence the
access times and how the systems behave in case of network
partitioning. Experiments have been conducted using the Yahoo Cloud
System Benchmark (YCSB) on top of the Grid’5000 testbed. We showed
that among the three tested solutions IPFS fills most of the criteria
expected for a Fog/Edge computing infrastructure.
[33], [32]

 Renewable energy

 With the emergence of the Future Internet and the dawning of new IT
models such as cloud computing, the usage of data centers (DC), and
consequently their power consumption, increase dramatically. Besides
the ecological impact, the energy consumption is a predominant
criterion for DC providers since it determines the daily cost of their
infrastructure. As a consequence, power management becomes one of the
main challenges for DC infrastructures and more generally for
large-scale distributed systems. We have design the EpoCloud
prototype, from hardware to middleware layers. This prototype aims at
optimizing the energy consumption of mono-site Cloud DCs connected to
the regular electrical grid and to renewable-energy
sources. [17]

 Green Energy awareness in SaaS Application.

 With the proliferation of Cloud computing, data centers have to
urgently face energy consumption issues. Although recent efforts such
as the integration of renewable energy to data centers or energy
efficient techniques in (virtual) machines contribute to the reduction
of carbon footprint, creating green energy awareness around
Interactive Cloud Applications by smartly using the presence
of green energy has not been yet addressed. By awareness, we
mean the inherited capability of SaaS applications to dynamically
adapt with the availability of green energy and to reduce energy
consumption while green energy is scarce or absent. In
[25], we present two application controllers
based on different metrics (e.g., availability of green energy,
response time, user experience level). Based on extensive experiments
with a real application benchmark and workloads in Grid'5000, results
suggest that providers revenue can be increased as high as 64%, while
13% brown energy can be reduced without deprovisioning any physical
or virtual resources at IaaS layer and 17 fold increment of
performance can be guaranteed.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	Cooperation with SIGMA group

 Section:
 Bilateral Contracts and Grants with Industry

 Cooperation with SIGMA group

 Participants :
	Thomas Ledoux [correspondent] , Simon Dupont.

 In 2012, we have started a cooperation with Sigma Group
(http://www.sigma.fr), a software editor and consulting
enterprise. The cooperation consists in a joint (a so-called Cifre)
PhD on eco-elasticity of software for the Cloud and the sponsorship of
several engineering students at the MSc-level.

 As a direct consequence of the increasing popularity of Cloud
computing solutions, data centers are rapidly growing in number and
size and have to urgently face with energy consumption issues. The aim
of Simon Dupont's PhD, started in November 2012, is to explore the
software elasticity capability in Software-as-a-Service (SaaS)
development to promote the management of SaaS applications that are
more flexible, more reactive to environment changes and therefore
self-adaptive for a wider range of contexts. As a result, SaaS
applications become more elastic and by transitivity more susceptible
to energy constraints and optimization issues.

 In 2016, Simon Dupont defended his PhD on "Cross-layer
elasticity management for Cloud: towards an efficient usage of Cloud
resources and services" [12]. Besides, we
focused on ElaScript, a domain-specific language that offers Cloud
administrators a simple and concise way to define complex
elasticity-based reconfiguration plans [23].

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific Events Organisation

 Member of the Steering and Organizing Committees

 	
 A. Lebre took part to the organisation of the Grid'5000 school in Grenoble (70 attendees).

 	
 A. Lebre took part to the organisation of the workshop
“Stockage informatique” during the Journées Scientifiques
event in Nantes.

 	
 J. Noyé was a co-organizer of LaMod '16, a workshop on
Language Modularity co-located with Modularity '16 in
Málaga, Spain.

 Scientific Events Selection

 Member of the Conference Program Committees

 	
 J.-C. Royer was a member of the program committes WETCIE 2016, CAL 2016, ICIS 2016, IWAISE 2016, IIAI 2016.

 	
 T. Ledoux was member of the program committees of the following workshops: Greens'16@ICSE, ARM'16@Middleware, CrossCloud'16@EuroSys.

 	
 A. Lebre was a member of the program committees of ACM/IEEE
CCGRID 2016, Europar 2016, ACM/IEEE SC 2016, IEEE
CloudCom 2016, IEEE SSS 2016, OPTIM 2016.

 	
 J. Noyé was a member of the program committee of
Modularity '16 (Málaga, Spain).

 Journal

 Member of the Editorial Boards

 	
 A. Lebre is associate editor for the IEEE Transactions on
Big Data journal.

 	
 M. Südholt is joint editor-in-chief of the journal
Transactions on Modularity and Software Composition (Springer),
formerly Transactions on AOSD.

 	
 M. Südholt is an associate editor of the Journal on
Programming, an open access journal.

 Reviewer - Reviewing Activities

 	
 A. Lebre has been a reviewer for the IEEE TPDS and IEEE TCC
Journals, the IEEE Cloud Computing magazine, and the Journal of
Parallel and Distributed Computing.

 	
 T. Ledoux has been a reviewer for the IEEE Communications
Letters.

 	
 J. Noyé has been a reviewer for the Journal of Object
Technology and Science of Computer Programming.

 Invited Talks

 	
 A. Lebre and Anthony Simonet have been invited to the 9th edition of the CloudControl Workshop (Sweden).

 	
 A. Lebre has been invited to the BigStorage Initial Training Schoom (Spain).

 Leadership within the Scientific Community

 	
 A. Lebre is leading the OpenStack “Massively Distributed
Working Group” (further information at:
https://wiki.openstack.org/wiki/Massively_Distributed_Clouds).

 	
 A. Lebre is member of the executive committee of the GDR CNRS
RSD (Reseau et Système distribué). He is also co-leading the
transversal action Virtualization and Clouds of this GDR.

 	
 A. Lebre is member of the executive and architect committees
of the Grid'5000 GIS (Groupement d'intérêt scientifique).

 	
 T. Ledoux is member of the board of the Green Lab Center
association. This association promotes and disseminates Green IT
practices and research prototypes to the world of education,
research and companies
(Green Lab Center).

 	
 M. Südholt is a member of the steering
committees of the two international conferences on Programming and
Modularity.

 	
 M. Südholt has been a member of the board of the
Aspect-Oriented Software Association.

 Research Administration

 	
 Pierre Cointe has been the head of the Lina laboratory that
managed research in Computer Science of the main research
institutions in Nantes.

 	
 Jacques Noyé is the deputy head of the Mines Nantes department
of Automation, Production and Computer Sciences.

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 The team is involved in the following undergraduate and graduate-level
programs at Mines Nantes and University of Nantes (the institutions
all of eaching staff belongs to):

 	
 The team is a main contributor to the engineering
program of EMN.

 	
 Within this engineering program, the team is steering,
chairing and the main contributor to a two-year
graduate-level informatics specialization. H. Grall is
managing this program.

 	
 The team is leading a three-year engineering program
on software engineering. T. Ledoux is managing this program.

 The team has also been involved in the following MSc programs that
have been carried out with partners from French and foreign
universities:

 	
 The team participates in the MSc program “Alma” on
software architecture and distributed systems, a joint program
steered by colleagues from University of Nantes. In this context,
we are responsible for a 48-hour module on advanced software
composition and take part in the program's governing board. M. Südholt is managing the participation of Mines Nantes in this
program.

 	
 J.-C. Royer was teaching “Architecture, component programming
and OSGi”, from March 7 until 12, level M1, at the University of
Monastir (Tunisia).

 m members have taught for about 220 hours on average in
2015 (hours of presence in front of students). Hereby, we have taken
into account that researchers and some professors have not taught at
times. In addition, another significant part of the program is taught
by temporary staff, whose participation is managed by ASCOLA members.

 Juries

 	
 J.-C. Royer was reviewer of the HDR of Mohamed Bhiri (Université
Grenoble), September 7, 2016. He was also member of the PhD defense
of Jonathan Pépin (Université de Nantes) December 5, Madhi Benmoussa
(Université Paris XIII) December 6, and Amine Benelallam (Ecole des
Mines) December 7.

 	
 A. Lebre was a member of the PhD committee of Vincent Kherbache,
“Ordonnancement des migrations à chaud de machines virtuelles”,
Université de Nice - Sophia Antipolis, Dec. 7.

 	
 T. Ledoux was a member of the PhD committee of Zakarea Al Shara
(Univ. Montpellier), Nov. 17.

 Section:
 Dissemination

 Popularization

 	
 A. Lebre has been invited to the CargoDays event (Nantes).

 Bibliography

 Major publications by the team in recent years

 	[1]

 	B. De Fraine, E. Ernst, M. Südholt.
Essential AOP: The A Calculus, in: ACM Transactions on Programming Languages and Systems (TOPLAS), December 2012.
http://hal.inria.fr/hal-00676082

 	[2]

 	I. Figueroa, T. Schrijvers, N. Tabareau, É. Tanter.
Compositional Reasoning About Aspect Interference, in: Modularity'14: 13th International Conference on Modularity, Lugano, Switzerland, April 2014.
https://hal.inria.fr/hal-00919935

 	[3]

 	M. S. Hasan, Y. Kouki, T. Ledoux, J.-L. Pazat.
Exploiting Renewable sources: when Green SLA becomes a possible reality in Cloud computing, in: IEEE Transactions on Cloud Computing, July 2015, vol. PP, no 99, 1 p. [
DOI : 10.1109/TCC.2015.2459710]
https://hal.archives-ouvertes.fr/hal-01187907

 	[4]

 	G. Jaber, G. Lewertowski, P.-M. Pédrot, M. Sozeau, N. Tabareau.
The Definitional Side of the Forcing, in: Logics in Computer Science, New York, United States, May 2016. [
DOI : 10.1145/2933575.2935320]
https://hal.archives-ouvertes.fr/hal-01319066

 	[5]

 	Y. Kouki, F. Alvares De Oliveira Jr., S. Dupont, T. Ledoux.
A Language Support for Cloud Elasticity Management, in: CCGrid'14: IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Chicago, United States, May 2014, pp. 1-8.
https://hal.archives-ouvertes.fr/hal-00941945

 	[6]

 	A. Lebre, J. Pastor, M. Südholt.
VMPlaceS: A Generic Tool to Investigate and Compare VM Placement Algorithms, in: Europar 2015, Vienne, Austria, August 2015.
https://hal.inria.fr/hal-01159033

 	[7]

 	R. Pottier, J.-M. Menaud.
TrustyDrive: a Multi-Cloud Storage Service that Protects Your Privacy, in: IEEE 9th International Conference on Cloud Computing, San Francisco, United States, International Conference on Cloud Computing, June 2016.
https://hal.inria.fr/hal-01322638

 	[8]

 	M. Sozeau, N. Tabareau.
Universe Polymorphism in Coq, in: ITP'14: Interactive Theorem Proving, Vienna, Austria, July 2014.
https://hal.inria.fr/hal-00974721

 	[9]

 	N. Tabareau, M. Südholt, É. Tanter.
Aspectual Session Types, in: Modularity'14 - 13th International Conference on Modularity, Lugano, Switzerland, April 2014.
https://hal.inria.fr/hal-00872791

 	[10]

 	J. M. Van Ham, G. Salvaneschi, M. Mezini, J. Noyé.
JEScala: Modular Coordination with Declarative Events and Joins, in: Modularity'14 - 13th International Conference on Modularity, Lugano, Switzerland, E. Ernst (editor), April 2014.
https://hal.inria.fr/hal-00862332

 Publications of the year

 Doctoral Dissertations and Habilitation Theses

 	[11]

 	R.-A. Cherrueau.
A Compositional Language of Security Techniques for Information Privacy in the Cloud, Ecole des Mines de Nantes, November 2016.
https://tel.archives-ouvertes.fr/tel-01416166

 	[12]

 	S. Dupont.
Crosslayer elasticity management for Cloud : towards an efficient usage of Cloud resources and services, Ecole des Mines de Nantes, April 2016.
https://tel.archives-ouvertes.fr/tel-01344377

 	[13]

 	F. Marchand De Kerchove De Denterghem.
Extending interpreters by diverting, or how to extend interpreters without modifying their source code, Ecole des Mines de Nantes, November 2016.
https://tel.archives-ouvertes.fr/tel-01415588

 	[14]

 	J. Pastor.
Contributions to massively distributed Cloud Computing infrastructures, Ecole des Mines de Nantes, October 2016.
https://tel.archives-ouvertes.fr/tel-01416099

 	[15]

 	N. Tabareau.
Managing Logical and Computational Complexity using Program Transformations, université de nantes, November 2016, Habilitation à diriger des recherches.
https://tel.archives-ouvertes.fr/tel-01406351

 Articles in International Peer-Reviewed Journals

 	[16]

 	N. Beldiceanu, M. Carlsson, R. Douence, H. Simonis.
Using finite transducers for describing and synthesising structural time-series constraints, in: Constraints, January 2016, vol. 21, no 1. [
DOI : 10.1007/s10601-015-9200-3]
https://hal.inria.fr/hal-01370322

 	[17]

 	N. Beldiceanu, B. Dumas Feris, P. Gravey, S. Hasan, C. Jard, T. Ledoux, Y. Li, D. Lime, G. Madi-Wamba, J.-M. Menaud, P. Morel, M. Morvan, M.-L. MOULINARD, A.-C. Orgerie, J.-L. Pazat, O. H. Roux, A. Sharaiha.
Towards energy-proportional Clouds partially powered by renewable energy, in: Computing, January 2017, vol. 99, no 1, 20 p. [
DOI : 10.1007/s00607-016-0503-z]
https://hal.inria.fr/hal-01340318

 	[18]

 	I. Figueroa, N. Tabareau, É. Tanter.
Effect capabilities for Haskell: Taming effect interference in monadic programming, in: Science of Computer Programming, April 2016, vol. 119, pp. 3-30. [
DOI : 10.1016/j.scico.2015.11.010]
https://hal.inria.fr/hal-01400002

 	[19]

 	D. Serrano, S. Bouchenak, Y. Kouki, F. Alvares De Oliveira Jr., T. Ledoux, J. Lejeune, J. Sopena, L. Arantes, P. Sens.
SLA guarantees for cloud services, in: Future Generation Computer Systems, January 2016, vol. 54, pp. 233–246. [
DOI : 10.1016/j.future.2015.03.018]
https://hal.archives-ouvertes.fr/hal-01162654

 International Conferences with Proceedings

 	[20]

 	E. Arafailova, N. Beldiceanu, R. Douence, P. Flener, M. A. Francisco Rodríguez, J. Pearson, H. Simonis.
Time-Series Constraints: Improvements and Application in CP and MIP Contexts, in: CPAIOR 2016 - 13th International Conference on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming, Banff, Canada, C.-G. Quimper (editor), Lecture Notes in Computer Science, Springer, May 2016, vol. 9676, pp. 18-34. [
DOI : 10.1007/978-3-319-33954-2]
https://hal.inria.fr/hal-01355262

 	[21]

 	J. Cohen.
Renaming Global Variables in C Mechanically Proved Correct, in: Fourth International Workshop on Verification and Program Transformation, Eindhoven, Netherlands, April 2016.
https://hal.archives-ouvertes.fr/hal-01277269

 	[22]

 	P.-E. Dagand, N. Tabareau, É. Tanter.
Partial Type Equivalences for Verified Dependent Interoperability, in: ICFP 2016 - 21st ACM SIGPLAN International Conference on Functional Programming, Nara, Japan, September 2016, pp. 298-310. [
DOI : 10.1145/2951913.2951933]
https://hal.inria.fr/hal-01328012

 	[23]

 	S. Dupont, S. Bouri, F. Alvares De Oliveira, T. Ledoux.
ElaScript: a DSL for Coding Elasticity in Cloud Computing, in: 32nd ACM Symposium on Applied Computing - Track on Cloud Computing, Marrakesh, Morocco, Proceedings of the 32nd ACM Symposium on Applied Computing - Track on Cloud Computing, April 2017.
https://hal.archives-ouvertes.fr/hal-01400236

 	[24]

 	A. Garnier, J.-M. Menaud, N. MONTAVONT.
Bringing Complex Event Processing into Multitree Modelling of Sensors, in: International Conference on Distributed Applications and Interoperable Systems (DAIS), Heraklion, Greece, June 2016.
https://hal.inria.fr/hal-01322670

 	[25]

 	M. S. Hasan, F. Alvares De Oliveira, T. Ledoux, J.-L. Pazat.
Enabling Green Energy awareness in Interactive Cloud Application, in: IEEE International Conference on Cloud Computing Technology and Science 2016, Luxembourg, Luxembourg, December 2016.
https://hal.inria.fr/hal-01365230

 	[26]

 	G. Jaber, G. Lewertowski, P.-M. Pédrot, M. Sozeau, N. Tabareau.
The Definitional Side of the Forcing, in: Logics in Computer Science, New York, United States, May 2016. [
DOI : 10.1145/2933575.2935320]
https://hal.archives-ouvertes.fr/hal-01319066

 	[27]

 	A. Lebre, J. Pastor, A. Simonet, F. Desprez.
Revising OpenStack to Operate Fog/Edge Computing infrastructures, in: IEEE International Conference on Cloud Engineering, Vancouver, France, April 2017.
https://hal.inria.fr/hal-01273427

 	[28]

 	Y. Li, A.-C. Orgerie, J.-M. Menaud.
Balancing the use of batteries and opportunistic scheduling policies for maximizing renewable energy consumption in a Cloud data center, in: PDP 2017 - 25th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, St Petersburg, Russia, March 2017.
https://hal.inria.fr/hal-01432752

 	[29]

 	A. Lèbre, A. Simonet, A.-C. Orgerie.
Deploying Distributed Cloud Infrastructures: Who and at What Cost?, in: Proceedings of the fifth IEEE International Workshop on Cloud Computing Interclouds, Multiclouds, Federations, and Interoperability, Berlin, Germany, Intercloud 2016, April 2016, 6 p. [
DOI : 10.1109/IC2EW.2016.48]
https://hal.inria.fr/hal-01404594

 	[30]

 	R. Pottier, J.-M. Menaud.
TrustyDrive: a Multi-Cloud Storage Service that Protects Your Privacy, in: IEEE 9th International Conference on Cloud Computing, San Francisco, United States, International Conference on Cloud Computing, June 2016.
https://hal.inria.fr/hal-01322638

 	[31]

 	J.-C. Royer, A. Santana De Oliveira.
AAL and Static Conflict Detection in Policy, in: 15th International Conference on Cryptology and Network Security, Milan, Italy, S. Foresti, G. Persiano (editors), Cryptology and Network Security, Springer, November 2016, no 10052, pp. 362-382. [
DOI : 10.1007/978-3-319-48965-0_22]
https://hal.archives-ouvertes.fr/hal-01396376

 Conferences without Proceedings

 	[32]

 	B. Confais, A. Lèbre, B. Parrein.
Performance Analysis of Object Store Systems in a Fog/Edge Computing Infrastructures, in: CloudCom, Luxembourg, Luxembourg, December 2016.
https://hal.archives-ouvertes.fr/hal-01397686

 	[33]

 	B. Confais, A. Lèbre, B. Parrein.
Quel système de stockage pour les architectures Fog ?, in: Compas'2016, Lorient, France, July 2016.
https://hal.archives-ouvertes.fr/hal-01376292

 Scientific Books (or Scientific Book chapters)

 	[34]

 	Y. Kouki, F. Alvares De Oliveira, T. Ledoux.
Cloud Capacity Planning and Management, in: Encyclopedia of Cloud Computing, Wiley-IEEE Press, July 2016.
https://hal.archives-ouvertes.fr/hal-01342153

 Internal Reports

 	[35]

 	R.-A. Cherrueau, A. Lebre, D. Pertin, A. Simonet, M. Simonin.
ENOS: a HolisticFramework forConducting ScientificEvaluations of OpenStack, Inria Rennes Bretagne Atlantique ; Nantes, November 2016, no RT-0485.
https://hal.inria.fr/hal-01415522

 	[36]

 	A. Lèbre, J. Pastor, F. Desprez.
A Ring to Rule Them All - Revising OpenStack Internals to Operate Massively Distributed Clouds: The Discovery Initiative - Where Do We Are ?, Inria, February 2016, no RT-0480, pp. 1-24.
https://hal.inria.fr/hal-01320235

 Other Publications

 	[37]

 	B. Ahrens, R. Matthes, A. Mörtberg.
From signatures to monads in UniMath, December 2016, working paper or preprint.
https://hal.inria.fr/hal-01410487

 	[38]

 	W. Benghabrit, H. Grall, J.-C. Royer.
Monitoring accountability policies with AccMon framework, June 2016, GDR-GPL, Poster.
https://hal.inria.fr/hal-01332040

 	[39]

 	F. Marchand de Kerchove, J. Noyé, M. Südholt.
Extensible Modules for JavaScript, April 2016, 3 p, SAC '16 - 31st Annual ACM Symposium on Applied Computing, Poster. [
DOI : 10.1145/2851613.2851958]
https://hal.inria.fr/hal-01407340

 	[40]

 	P.-M. Pédrot, N. Tabareau.
An Effectful Way to Eliminate Addiction to Dependence, January 2017, working paper or preprint.
https://hal.inria.fr/hal-01441829

 References in notes

 	[41]

 	M. Akşit, S. Clarke, T. Elrad, R. E. Filman (editors)
Aspect-Oriented Software Development, Addison-Wesley Professional, September 2004.

 	[42]

 	C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, J. Tibble.
Adding trace matching with free variables to AspectJ, in: ACM Conference on Object-Oriented Programming, Systems and Languages (OOPSLA), R. P. Gabriel (editor), ACM Press, 2005.

 	[43]

 	R. Allen, D. Garlan.
A Formal Basis for Architectural Connection, in: ACM Transactions on Software Engineering and Methodology, July 1997, vol. 6, no 3, pp. 213–49.

 	[44]

 	J. H. Andrews.
Process-Algebraic Foundations of Aspect-Oriented Programming, in: Proceedings of the 3rd International Conference on Metalevel Architectures and Separation of Crosscutting Concerns, Lecture Notes in Computer Science, 2001, vol. 2192, pp. 187–209.

 	[45]

 	M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia.
A view of cloud computing, in: Communications of the ACM, 2010, vol. 53, no 4, pp. 50–58.

 	[46]

 	T. H. Austin, C. Flanagan.
Multiple facets for dynamic information flow, in: Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, New York, USA, POPL '12, ACM, 2012, pp. 165–178.
http://doi.acm.org/10.1145/2103656.2103677

 	[47]

 	A. Beloglazov, R. Buyya.
Energy efficient resource management in virtualized cloud data centers, in: in: Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, CCGRID’10, IEEE Computer Society, 2010, pp. 826–831.

 	[48]

 	L. D. Benavides Navarro, M. Südholt, W. Vanderperren, B. De Fraine, D. Suvée.
Explicitly distributed AOP using AWED, in: Aspect-Oriented Software Development (AOSD), ACM Press, March 2006, pp. 51-62.

 	[49]

 	G. S. Blair, G. Coulson, P. Robin, M. Papathomas.
An architecture for next generation middleware, in: Proceedings of the IFIP International Conference on Distributed Systems Platforms and Open Distributed Processing, Springer-Verlag, 1998.

 	[50]

 	A. Braccialia, A. Brogi, C. Canal.
A formal approach to component adaptation, in: Journal of Systems and Software, 2005.

 	[51]

 	R. E. Brown, E. R. Masanet, B. Nordman, W. F. Tschudi, A. Shehabi, J. Stanley, J. G. Koomey, D. A. Sartor, P. T. Chan.
Server and Data Center Energy Efficiency: Public Law 109-431, in: Report to Congress, 06/2008 2008.

 	[52]

 	S. Capecchi, I. Castellani, M. Dezani-Ciancaglini, T. Rezk.
Session Types for Access and Information Flow Control, in: CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings, P. Gastin, F. Laroussinie (editors), Lecture Notes in Computer Science, Springer, 2010, vol. 6269, pp. 237–252.
http://dx.doi.org/10.1007/978-3-642-15375-4_17

 	[53]

 	E. M. Clarke, O. Grumberg, D. A. Peled.
Model Checking, The MIT Press, Cambridge, Massachusetts, 1999.

 	[54]

 	A. Colyer, A. Clement.
Large-scale AOSD for Middleware, in: Proceedings of the 3rd ACM Int. Conf. on Aspect-Oriented Software Development (AOSD), Lancaster, K. Lieberherr (editor), ACM Press, 2004, pp. 56–65.

 	[55]

 	F. DeRemer, H. H. Kron.
Programming-in-the-large versus programming-in-the-small, in: IEEE Transactions on Software Engineering, 1976, vol. SE-2, no 2, pp. 80-86.

 	[56]

 	G. Decker, O. Kopp, F. Leymann, M. Weske.
BPEL4Chor: Extending BPEL for Modeling Choreographies, in: IEEE International Conference on Web Services (ICWS 2007), IEEE Computer Society, 2007, pp. 296–303.

 	[57]

 	E. W. Dijkstra.
On the role of scientific thought, in: Selected Writings on Computing: A Personal Perspective, Springer-Verlag, 1974, pp. 60–66, Published in 1982.

 	[58]

 	R. Douence, P. Fradet, M. Südholt.
A framework for the detection and resolution of aspect interactions, in: Proceedings of the ACM SIGPLAN/SIGSOFT Conference on Generative Programming and Component Engineering (GPCE'02), Lecture Notes in Computer Science, Springer-Verlag, October 2002, vol. 2487, pp. 173–188.
http://hal.inria.fr/inria-00072153

 	[59]

 	R. Douence, P. Fradet, M. Südholt.
Trace-Based Aspects, in: Aspect-Oriented Software Development, M. Akşit, S. Clarke, T. Elrad, R. E. Filman (editors), Addison-Wesley, 2004, pp. 201-218.

 	[60]

 	R. Douence, O. Motelet, M. Südholt.
A formal definition of crosscuts, in: Proceedings of the 3rd International Conference on Metalevel Architectures and Separation of Crosscutting Concerns, Lecture Notes in Computer Science, Springer-Verlag, 2001, vol. 2192, pp. 170–186.

 	[61]

 	R. Douence, D. Le Botlan, J. Noyé, M. Südholt.
Concurrent Aspects, in: Proc. of the Int. ACM Conf. on Generative Programming and Component Engineering (GPCE), ACM Press, October 2006, pp. 79-88.

 	[62]

 	H. Foster, S. Uchitel, J. Magee, J. Kramer.
Model-based Verification of Web Service Compositions, in: Proceedings of the 18th IEEE Int. Conf. on Automated Software Engineering (ASE'03), IEEE Computer Society, 2003, pp. 152–163.

 	[63]

 	I. Foster, Y. Zhao, I. Raicu, S. Lu.
Cloud computing and grid computing 360-degree compared, in: Grid Computing Environments Workshop, 2008. GCE'08, Ieee, 2008, pp. 1–10.

 	[64]

 	A. Fuggetta, G. P. Picco, G. Vigna.
Understanding Code Mobility, in: IEEE Transactions on Software Engineering, May 1998, vol. 24, no 5, pp. 342–361.

 	[65]

 	Greenpeace.
Make IT green: Cloud computing and its contribution to climate change, Greenpeace International, March 2010.

 	[66]

 	K. Honda, N. Yoshida, M. Carbone.
Multiparty asynchronous session types, in: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008, G. C. Necula, P. Wadler (editors), ACM, 2008, pp. 273–284.
http://www.doc.ic.ac.uk/~yoshida/multiparty/multiparty.pdf

 	[67]

 	G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold.
An Overview of AspectJ, in: ECOOP 2001 — Object-Oriented Programming 15th European Conference, Budapest Hungary, Berlin, J. L. Knudsen (editor), Lecture Notes in Computer Science, Springer-Verlag, June 2001, vol. 2072, pp. 327–353.
http://www.eclipse.org/aspectj/

 	[68]

 	G. Kiczales.
Aspect Oriented Programming, in: Proc. of the Int. Workshop on Composability Issues in Object-Orientation (CIOO'96) at ECOOP, July 1996, Selected paper published by dpunkt press, Heidelberg, Germany.

 	[69]

 	G. Kiczales, J. des Rivieres, Daniel G. Bobrow.
The Art of the Meta-Object Protocol, MIT Press, Cambridge (MA), USA, 1991.

 	[70]

 	J. Kienzle, R. Guerraoui.
AOP - Does It Make Sense? The Case of Concurrency and Failures, in: 16th European Conference on Object-Oriented Programming (ECOOP'2002), Malaga, Spain, B. Magnusson (editor), Lecture Notes in Computer Science, Springer-Verlag, 2002.

 	[71]

 	T. Ledoux.
OpenCorba: a Reflective Open Broker, in: ACM Meta-Level Architectures and Reflection, Second International Conference, Reflection'99, Saint-Malo, France, P. Cointe (editor), Lecture Notes in Computer Science, Springer-Verlag, July 1999, vol. 1616, pp. 197–214.

 	[72]

 	M. McIlroy.
Mass produced software components, in: Mass produced software components, Garmish, Germany, P. Naur, B. Randell (editors), NATO Science Committee, October 1968, pp. 138-155.

 	[73]

 	N. Medvidovic, R. N. Taylor.
A Classification and Comparison Framework for Software Architecture Description Languages, in: IEEE Transactions on Software Engineering, January 2000, vol. 26, no 1, pp. 70-93.

 	[74]

 	M. Mernik, J. Heering, A. M. Sloane.
When and How to Develop Domain-Specific Languages, in: ACM Computing Surveys, December 2005, vol. 37, no 4, pp. 316-344.

 	[75]

 	L. Mikhajlov, E. Sekerinski.
A study of the fragile base class, in: A study of the fragile base class, Brussels, Belgium, E. Jul (editor), Lecture Notes in Computer Science, July 1998, vol. 1445, pp. 355-382.

 	[76]

 	D. H. Nguyen, M. Südholt.
VPA-based aspects: better support for AOP over protocols, in: 4th IEEE International Conference on Software Engineering and Formal Methods (SEFM'06), IEEE Computer Society Press, September 2006.

 	[77]

 	O. Nierstrasz.
Regular Types for Active Objects, in: Object-Oriented Software Composition, O. Nierstrasz, D. Tsichritzis (editors), Prentice Hall, 1995, chap. 4, pp. 99–121.

 	[78]

 	M. Nishizawa, S. Chiba, M. Tatsubori.
Remote Pointcut - A Language Construct for Distributed AOP, in: Proceedings of the 3rd ACM Int. Conf. on Aspect-Oriented Software Development (AOSD), Lancaster, ACM Press, 2004.

 	[79]

 	D. L. Parnas.
On the criteria for decomposing systems into modules, in: Communications of the ACM, December 1972, vol. 15, no 12, pp. 1053-1058.

 	[80]

 	S. Pearson.
Toward Accountability in the Cloud, in: Internet Computing, IEEE, July-Aug. 2011, vol. 15, no 4, pp. 64-69.
http://dx.doi.org/10.1109/MIC.2011.98

 	[81]

 	F. Plasil, S. Visnovsky.
Behavior Protocols for Software Components, in: Transactions on Software Engineering, January 2002, vol. 28, no 9.

 	[82]

 	F. Puntigam.
Coordination Requirements Expressed in Types for Active Objects, in: ECOOP'97—Object-Oriented Programming, M. Akşit, S. Matsuoka (editors), Lecture Notes in Computer Science, Springer-Verlag, 1997, vol. 1241, pp. 367–388.

 	[83]

 	N. Sharma, S. Barker, D. Irwin, P. Shenoy.
Blink: managing server clusters on intermittent power, in: SIGARCH Comput. Archit. News, March 2011, vol. 39, pp. 185–198.
http://dx.doi.org/10.1145/1961295.1950389

 	[84]

 	M. Shaw, D. Garlan.
Software Architecture: Perspectives on an Emerging Discipline, Prentice-Hall, 1996.

 	[85]

 	B. C. Smith.
Reflection and Semantics in LISP, Xerox Palto Alto Research Center, Palo Alto, 1984, no P84-00030.

 	[86]

 	S. Soares, E. Laureano, P. Borba.
Implementing distribution and persistence aspects with AspectJ , in: Proceedings of the 17th ACM conference on Object-oriented programming, systems, languages, and applications (OOPSLA-02), C. Norris, J. J. B. Fenwick (editors), ACM SIGPLAN Notices, ACM Press, November 4–8 2002, vol. 37, 11, pp. 174–190.

 	[87]

 	S. Sundareswaran.
Ensuring Distributed Accountability for Data Sharing in the Cloud, in: Dependable and Secure Computing, 2012, vol. 9.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6165313

 	[88]

 	R. J. Walker, K. Viggers.
Implementing Protocols via Declarative Event Patterns, in: Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE-12), ACM Press, 2004, pp. 159 - 169.

 	[89]

 	M. Wand, G. Kiczales, C. Dutchyn.
A Semantics for Advice and Dynamic Join Points in Aspect-Oriented Programming, in: ACM Transactions on Programming Languages and Systems (TOPLAS), 2004, vol. 26, no 5, pp. 890–910.

 	[90]

 	D. M. Yellin, R. E. Strom.
Protocol specifications and component adaptors, in: ACM Transactions of Programming Languages and Systems, March 1997, vol. 19, no 2, pp. 292–333.

 	[91]

 	Q. Zhang, L. Cheng, R. Boutaba.
Cloud computing: state-of-the-art and research challenges, in: Journal of internet services and applications, 2010, vol. 1, no 1, pp. 7–18.

 	[92]

 	A. van Deursen, P. Klint, J. Visser.
Domain-Specific Languages: An Annotated Bibliography, in: ACM SIGPLAN Notices, June 2000, vol. 35, no 6, pp. 26-36.

 OEBPS/uid79.html

 Section:
 Partnerships and Cooperations

 Regional Initiatives

 RFI Atlanstic 2020

 CoMe4ACloud

 Participants :
	Thomas Ledoux [coordinator] , Frederico Alvares, Zakarea Al Shara.

 The high-level objective of the 1-year CoMe4ACloud (Constraints and
Model Engineering for Autonomic Clouds) project is to provide an
end-to-end solution for autonomic Cloud services. To that end, we rely
on techniques of Constraint Programming so as a decision-making tool
and Model-driven Engineering to ease the automatic generation of the
so-called autonomic managers as well as their communication with the
managed system.

 CoMe4ACloud is an Atlanstic2020 funded project and supports a post-doc
position. The project is led by Ascola research team and involves
also AtlanModels and TASC, all of them from the LINA (Nantes Computer
Science Laboratory) and situated at Ecole des Mines de Nantes. See
https://come4acloud.github.io for more information.

 Pays de la Loire

 SyMeTRIC

 Participant :
	Jean-Marc Menaud.

 SyMeTRIC is a regional federated project in Systems Medicine funded by
the Pays de la Loire region. Systems Medicine approaches can be
compared to Systems Biology. They aim at integrating several
information sources to design and validate bio-models and biomarkers
to anticipate and enhance patients following (diagnosis, treatment
response prediction, prognosis).

 The long term goal of SyMeTRIC is to build a common Systems Medicine
computing infrastructure to accelerate the discovery and validation of
biomarkers in the fields of oncology, transplantation, and chronic
cardiovascular diseases.

OEBPS/international.html

OEBPS/uid84.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 CominLabs laboratory of excellence

 EPOC

 Participants :
	Jean-Marc Menaud [coordinator] , Thomas Ledoux, Md Sabbir Hasan, Yunbo Li.

 The project EPOC (Energy Proportional and Opportunistic Computing
system) is a project running for 4 years. Four other partners
collaborate within the project that is coordinated by ASCOLA: Myriads
team, and the three institutions ENIB, ENSTB and University of Nantes.
In this project, the partners focus on energy-aware task execution
from the hardware to application's components in the context of a
mono-site data center (all resources are in the same physical
location) which is connected to the regular electric Grid and to
renewable energy sources (such as windmills or solar cells). Three
major challenges are addressed in this context: Optimize the energy
consumption of distributed infrastructures and service compositions in
the presence of ever more dynamic service applications and ever more
stringent availability requirements for services; Design a clever
cloud's resource management which takes advantage of renewable energy
availability to perform opportunistic tasks, then exploring the
trade-off between energy saving and performance aspects in large-scale
distributed system; Investigate energy-aware optical ultra high-speed
interconnection networks to exchange large volumes of data (VM memory
and storage) over very short periods of time.

 One of the strengths of the project is to provide a systematic approach, and use a single model for the system (from hard to soft) by mixing constraint programming and behavioral models to manage energy consumption in data centers.

 PrivGen

 Participants :
	Fatima-Zahra Boujdad, Mario Südholt [coordinator] .

 PrivGen (“Privacy-preserving sharing and processing of genetic
data”) is a three-year project that has been started in Oct. 2016
and is conducted by three partners: a team of computer scientists from
the LATIM Inserm institute in Brest mainly working on data
watermarking techniques, a team of geneticians from an Inserm
institute in Rennes working on the gathering and interpretation of
genetic data, and the Ascola team. The project provides funding of 330
KEUR altogether with an Ascola share of 120 KEUR.

 The project considers challenges related to the outsourcing of genetic
data that is in the Cloud by different stakeholders (researchers,
organizations, providers, etc.). It tackles several limitations of
current security solutions in the cloud, notably the lack of support
for different security and privacy properties at once and computations
executed at different sites that are executed on behalf of multiple
stakeholders.

 The partners are working on three main challenges:

 		
 Mechanisms for a continuous digital content protection

 		
 Composition of security and privacy-protection mechanisms

 		
 Distributed processing and sharing of genetic data

 The Ascola team is mainly involved in providing solutions for the
second and third challenges.

 SecCloud

 Participants :
	Jacques Noyé [coordinator] , Florent Marchand de Kerchove de Denterghem, Mario Südholt.

 The high-level objective of the 3-year SecCloud (Secure Scripting for
the Cloud) project is to enhance the security of devices on which web
applications can be downloaded, i.e. to enhance client-side security
in the context of the Cloud. In order to do so, the project relies on
a language-based approach, focusing on three related issues:

 		
 The definition of security policies for web architectures,
especially on the client-side.

 		
 Formally-proven analyses of web programming languages.

 		
 Multi-level enforcement mechanisms for the security policies (based on
static and dynamic analysis encompassing application-level and
system-level software).

 ASCOLA members are mainly interested in JavaScript as a programming
language as well as the use of aspects as a seamless path from the
definition of security policies and their composition to their
implementation.

 This year, we have finalized our proposal of extensible JavaScript
modules and applied it to extend in a modular way the full-blown JavaScript
interpreter Narcissus with several dynamic analyses including
information-flow analyses.

 ANR

 SONGS (ANR/INFRA)

 Participants :
	Adrien Lebre [coordinator] , Jonathan Pastor, Anthony Simonet.

 The SONGS project (Simulation of Next Generation Systems) is an
ANR/INFRA project running for 48 months (starting in January 2012 with
an allocated budget of 1.8MEuro, 95KEuro for ASCOLA).

 The consortium is composed of 11 academic partners from Nancy (AlGorille,
coordinator), Grenoble (MESCAL), Villeurbanne (IN2P3 Computing Center,
GRAAL/Avalon - LIP), Bordeaux (CEPAGE, HiePACS, RUNTIME), Strasbourg (ICPS -
LSIIT), Nantes (ASCOLA), Nice (MASCOTTE, MODALIS).

 The goal of the SONGS project
(http://infra-songs.gforge.inria.fr)
is to extend the applicability of the SimGrid simulation framework
from Grids and Peer-to-Peer systems to Clouds and High Performance
Computation systems.

 FSN

 OpenCloudware (FSN)

 Participants :
	Jean-Marc Menaud [coordinator] , Thomas Ledoux.

 The OpenCloudware project is coordinated by France Telecom, funded by
the French Fonds National pour la Société Numérique (FSN, call Cloud
n°1) and endorsed by competitiveness clusters Minalogic, Systematic
and SCS. OpenCloudware is developed by a consortium of 18 partners
bringing together industry and academic leaders, innovative technology
start-ups and open source community expertise. The project started in
2012 for a duration of 42 months.

 The OpenCloudware project aims at building an open software
engineering platform, for the collaborative development of distributed
applications to be deployed on multiple Cloud infrastructures. It will
be available through a self-service portal. We target virtualized
multi-tier applications such as JavaEE - OSGi. The results of
OpenCloudware will contain a set of software components to manage the
lifecycle of such applications, from modelling(Think), developing and
building images (Build), to a multi-IaaS compliant PaaS platform
(Run).

 The ASCOLA project-team is mainly involved in the sub-projects
"Think" (SLA model across Cloud layers) and "Run" (virtual machine
manager for datacenters and placement constraints). The team
has developed btrCloudStack, a private cloud based on the OpenSource
CloudStack and integrating the work on placement rules and energy
optimization. This software system has been extended this year.

 Hosanna (FSN)

 Participants :
	Jean-Marc Menaud [coordinator] , Rémy Pottier.

 The Hosanna project (aims to scientifically and technically addresses
the problem of deploying applications on a distributed multi-cloud
virtual infrastructure (private cloud, Amazon, OVH, CloudWatt, Numergy
etc.). This recent need is an important topic issue highlighted by
recent major Outages in 2013 by the biggest players in the cloud such
as Amazon or Netflix. This project aims to provide services that
allow users to deploy their cloud multi-tier applications on hybrid
Clouds infrastructures without any separation between IaaS. The
Ascola team is extending its optimization solution to address the task
placement problem in a multi-cloud environment and will develop a case
study on a secure distributed file system. The project started in 2015
for a duration of 2 years.

 CPER

 SeDuCe

 Participants :
	Jean-Marc Menaud [coordinator] , Adrien Lebre.

 The SeDuCe project (Sustainable Data Centers: Bring Sun, Wind and
Cloud Back Together), aims to design an experimental infrastructure
dedicated to the study of data centers with low energy footprint.
This innovative data center will be the first experimental data center
in the world for studying the energy impact of cloud computing and the
contribution of renewable energy (solar panels, wind turbines) as well
on the scientific, technological, that economical. This project is
integrated in the national context of grid computing (Grid'5000), and
the Constellation project, which will be an inter-node (Pays de la
Loire, Brittany). He also participated in the validation of scientific
work in interdisciplinary axis STIC and energy efficiency of the
laboratory of excellence COMIN Labs.

 Inria Project Labs

 DISCOVERY

 Participants :
	Ronan Alexandre Rcherreau, Adrien Lebre [coordinator] , Anthony Simonet, Mario Südholt.

 To accommodate the ever-increasing demand for Utility Computing (UC) resources,
while taking into account both energy and economical issues, the current trend
consists in building larger and larger Data Centers in a few strategic
locations. Although such an approach enables UC providers to cope with the
actual demand while continuing to operate UC resources through centralized
software system, it is far from delivering sustainable and efficient UC
infrastructures for future needs.

 The DISCOVERY initiative [36] aims at exploring a
new way of operating Utility Computing (UC) resources by leveraging
any facilities available through the Internet in order to deliver
widely distributed platforms that can better match the geographical
dispersal of users as well as the ever increasing demand. Critical to
the emergence of such locality-based UC (also referred as Fog/Edge
Computing) platforms is the availability of appropriate operating
mechanisms. The main objective of DISCOVERY is to design, implement,
demonstrate and promote a new kind of Cloud Operting System (OS) that
will enable the management of such a large-scale and widely
distributed infrastructure in an unified and friendly manner.

 The consortium is composed of experts in the following research areas:
large-scale infrastructure management systems, networking and P2P
algorithms. Moreover, two key network operators, namely Orange and
RENATER, are involved in the project.

 By deploying and using a Fog/Edge OS on backbones, our
ultimate vision is to enable large parts of the Internet to be hosted
and operated by its internal structure itself: a scalable set of
resources delivered by any computing facilities forming the Internet,
starting from the larger hubs operated by ISPs, governments and
academic institutions, to any idle resources that may be provided by
end users.

 ASCOLA leads the DISCOVERY IPL and contributes mainly around two axes:
VM life cycle management and security concerns.

 InriaHub

 MERCURY

 Participants :
	Ronan-Alexandre Rcherrueau, Adrien Lebre [coordinator] .

 ASCOLA, in particular within the framework of the DISCOVERY
initiative has been working on the massively distributed use case
since 2013. With the development of several proof-of-concepts around
OpenStack, the team has had the opportunity to start an InriaHub
action. Named MERCURY, the goal of this action is twofold: (i)
support the research development made within the context of DISCOVERY
and (ii) favor the transfer toward the OpenStack community.

 Further
information available at: http://beyondtheClouds.github.io.

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/IMG/iTunesArtwork.png
Activity Report 2016
Project-Team Ascola

Aspect and composition
languages

IN COLLABORATION WITH: Laboratoire des Sciences du numerique de Nantes

OEBPS/uid106.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 FP7 & H2020 Projects

 CoqHoTT

 		
 Title: Coq for Homotopy Type Theory

 		
 Programm: H2020

 		
 Type: ERC

 		
 Duration: June 2015 - May 2020

 		
 Coordinator: Inria

 		
 Inria contact: Nicolas TABAREAU

 Every year, software bugs cost hundreds of millions of euros to
companies and administrations. Hence, software quality is a prevalent
notion and interactive theorem provers based on type theory have shown
their efficiency to prove correctness of important pieces of software
like the C compiler of the CompCert project. One main interest of such
theorem provers is the ability to extract directly the code from the
proof. Unfortunately, their democratization suffers from a major
drawback, the mismatch between equality in mathematics and in type
theory. Thus, significant Coq developments have only been done by
virtuosos playing with advanced concepts of computer science and
mathematics. Recently, an extension of type theory with homotopical
concepts such as univalence is gaining traction because it allows for
the first time to marry together expected principles of equality. But
the univalence principle has been treated so far as a new axiom which
breaks one fundamental property of mechanized proofs: the ability to
compute with programs that make use of this axiom. The main goal of
the CoqHoTT project is to provide a new generation of proof assistants
with a computational version of univalence and use them as a base to
implement effective logical model transformation so that the power of
the internal logic of the proof assistant needed to prove the
correctness of a program can be decided and changed at compile
time—according to a trade-off between efficiency and logical
expressivity. Our approach is based on a radically new compilation
phase technique into a core type theory to modularize the difficulty
of finding a decidable type checking algorithm for homotopy type
theory. The impact of the CoqHoTT project will be very strong. Even if
Coq is already a success, this project will promote it as a major
proof assistant, for both computer scientists and
mathematicians. CoqHoTT will become an essential tool for program
certification and formalization of mathematics.

 BigStorage

 		
 Title: BigStorage: Storage-based Convergence between HPC and Cloud to handle Big Data

 		
 Programm: H2020

 		
 Duration: January 2015 - December 2018

 		
 Coordinator: Universidad politecnica de Madrid

 		
 Partners:

 		
 Storage Research Group, Barcelona Supercomputing Center - Centro Nacional de Supercomputacion (Spain)

 		
 Ca Technologies Development Spain (Spain)

 		
 Commissariat A L Energie Atomique et Aux Energies Alternatives (France)

 		
 Deutsches Klimarechenzentrum (Germany)

 		
 ICS, Foundation for Research and Technology Hellas (Greece)

 		
 Fujitsu Technology Solutions (Germany)

 		
 Johannes Gutenberg Universitaet Mainz (Germany)

 		
 Universidad Politecnica de Madrid (Spain)

 		
 Seagate Systems Uk (United Kingdom)

 		
 Inria contact: G. Antoniu & A. Lebre

 The consortium of this European Training Network (ETN) 'BigStorage:
Storage-based Convergence between HPC and Cloud to handle Big Data'
will train future data scientists in order to enable them and us to
apply holistic and interdisciplinary approaches for taking advantage
of a data-overwhelmed world, which requires HPC and Cloud
infrastructures with a redefinition of storage architectures
underpinning them - focusing on meeting highly ambitious performance
and energy usage objectives. There has been an explosion of digital
data, which is changing our knowledge about the world. This huge data
collection, which cannot be managed by current data management
systems, is known as Big Data. Techniques to address it are gradually
combining with what has been traditionally known as High Performance
Computing. Therefore, this ETN will focus on the convergence of Big
Data, HPC, and Cloud data storage, ist management and analysis. To
gain value from Big Data it must be addressed from many different
angles: (i) applications, which can exploit this data, (ii)
middleware, operating in the cloud and HPC environments, and (iii)
infrastructure, which provides the Storage, and Computing capable of
handling it. Big Data can only be effectively exploited if techniques
and algorithms are available, which help to understand its content,
so that it can be processed by decision-making models. This is the
main goal of Data Science. We claim that this ETN project will be the
ideal means to educate new researchers on the different facets of
Data Science (across storage hardware and software architectures,
large-scale distributed systems, data management services, data
analysis, machine learning, decision making). Such a multifaceted
expertise is mandatory to enable researchers to propose appropriate
answers to applications requirements, while leveraging advanced data
storage solutions unifying cloud and HPC storage facilities.

