

[image: cover]

 COMPSYS

 Compilation and Embedded Computing SystemsInria teams are typically groups of researchers working on the definition of a common project, and objectives, with the goal to arrive at the creation of a project-team. Such project-teams may include other partners (universities or research institutions).

 2016 Team Activity Report
	

 Research centre:
 Grenoble - Rhône-Alpes

 Field: Algorithmics, Programming, Software and Architecture
Theme: Architecture, Languages and Compilation

 Computer Science and Digital Science:

 	2.1.1. - Semantics of programming languages

 	2.1.6. - Concurrent programming

 	2.1.10. - Domain-specific languages

 	2.2.1. - Static analysis

 	2.2.5. - GPGPU, FPGA, etc.

 	2.4.1. - Analysis

 	6.2.6. - Optimization

 	6.2.7. - High performance computing

 	7.2. - Discrete mathematics, combinatorics

 Other Research Topics and Application Domains:

 	6.6. - Embedded systems

 	9.4.1. - Computer science

 Team Compsys

 Members

 Overall Objectives	Introduction
	General Presentation
	Summary of Compsys I Achievements
	Summary of Compsys II
Achievements
	Summary of Compsys III
Achievements

 Research Program	Architecture and Compilation Trends
	Code Analysis, Code Transformations, Code Optimizations
	Mathematical Tools

 Application Domains	Compilers for Embedded Computing Systems
	Users of HPC Platforms and Scientific Computing

 Highlights of the Year

 New Software and Platforms	Lattifold
	PolyOrdo
	OpenOrdo
	ppcg-paramtiling

 New Results	Handling Polynomials for Program
Analysis and Transformation
	Static Analysis of OpenStream Programs
	Liveness Analysis in Explicitly-Parallel
Programs
	Extended Lattice-Based Memory Allocation
	Stencil Accelerators
	Efficient Mapping of Irregular Memory Accesses on FPGA
	PolyApps

 Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry
	Bilateral Grants with Industry

 Partnerships and Cooperations	Regional Initiatives
	National Initiatives
	European Initiatives
	International Initiatives
	International Research Visitors

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Publications of the year

 	
 References in notes

 Creation of the Project-Team: 2004 January 01, updated into Team: 2016 January 01, end of the Team: 2016 December 31

 Compsys is located at Ecole Normale Supérieure de Lyon.

Section: Members
Research Scientists
Alain Darte [Team leader, CNRS, Senior Researcher, HDR]
Tomofumi Yuki [Inria, Researcher]
Faculty Member
Paul Feautrier [ENS Lyon, Emeritus Professor, HDR]
PhD Students
Alexandre Isoard [ENS Lyon, until May 2016]
Guillaume Iooss [ENS Lyon/Colorado State University, until July 2016]
Visiting Scientists
Hammami Emna [PhD student, Tunis University, April-June 2016]
Julien Versaci [Master 2 internship, Claude Bernard University, April-June 2016]
Waruna Ranasinghe [PhD student, Colorado State University, June-August 2016]
Administrative Assistant
Chiraz Benamor [ENS]

 Overall Objectives

 	Overall Objectives	Introduction
	General Presentation
	Summary of Compsys I Achievements
	Summary of Compsys II
Achievements
	Summary of Compsys III
Achievements

 Section:
 Overall Objectives

 Introduction

 	Keywords:

 	
 Compilation, code analysis, code optimization,
memory optimization, combinatorial optimization, algorithmics,
polyhedral optimization, hardware accelerators, high-level
synthesis, high-performance computing, multicore, GPU, FPGA, DSP.

 Compsys has been developing compilation techniques, more precisely
code analysis and code optimization techniques, to help programming
or designing “embedded computing systems” and platforms for
“small” HPC (High-Performance Computing). The team focused first
on both low-level (back-end) optimizations and high-level
(front-end, mainly source-to-source) transformations, for
specialized embedded processors (DSP) and high-level synthesis of
hardware accelerators (FPGA). More recent activities included a
shift towards
abstract
interpretation and program termination, the compilation for GPUs
and multicores, and the analysis of parallel languages. The
main characteristic of Compsys is its use of algorithmic and formal
methods (with graph algorithms, linear programming, polyhedral
optimizations) to address code analysis and optimization problems
(e.g., termination, register allocation, memory optimizations,
scheduling, automatic generation of interfaces) and the validation
of these techniques through the development of compilation tools.

 Compsys started as an Inria project in 2004, after 2 years of
maturation. This first period of Compsys, Compsys I, was
positively evaluated in Spring 2007 after its first 4 years period
(2004-2007). It was again evaluated by AERES in 2009, as part of the
general evaluation of LIP, and got the best possible mark, A+. The
second period (2007-2012), Compsys II, was again evaluated
positively by Inria in Spring 2012 and formally prolonged into
Compsys III at the very end of 2012. In 2013, Fabrice Rastello moved to
Grenoble first to expand the activities of Compsys in the context
of Giant, a R&D technology center with several industrial and
academic actors. He left officially the team in 2014 to work on his
own. The research directions of Compsys III then followed the lines
presented in the synthesis report provided for the 2012
evaluation,
including a shift towards the compilation of streaming programming,
the analysis and optimizations of parallel languages, and an even
stronger focus on polyhedral optimizations and their
extensions. While Christophe Alias was mostly involved in his
developments of the Zettice/XtremLogic start-up, the hiring of
Laure Gonnord (in 2013) and Tomofumi Yuki (in 2014) added new forces on the
code analysis research aspects and on HPC polyhedral-related
topics. However, Christophe Alias and Laure Gonnord left the team in
Sep. 2015. Reaching the limit of 12 years, the project-team ended
officially in Dec. 2015, but with no possible future as a new
project, because it was below critical mass. Compsys was
nevertheless extended as an Inria team until Dec. 2016, in
particular to allow the (positive) final Inria evaluation in Spring
2016 and to let the last participants think about their future. At
the end of 2016, Tomofumi Yuki moved back to Rennes in the Cairn Inria team,
Paul Feautrier is still a member of LIP as an emeritus professor
at ENS-Lyon but is now a long term visitor to the Parkas Inria team
in Paris, and Alain Darte remains CNRS researcher at LIP, ENS-Lyon, but is not
affiliated to Inria anymore.

 Section 2.2 defines
the general context of the team's activities.
Section 2.3 presents the
research objectives and main achievements in Compsys I, i.e.,
until 2007. Section 2.4
shows how the research directions of the team were modified for
Compsys II and outlines the main results we obtained in this
period (until 2012). Finally,
Section 2.5 summarizes
the goals and achievements of Compsys III. More details can be
found in the annual Inria reports. As for the highlights of the past
year, i.e., 2016, they are given in
Section 5.1.

 Section:
 Overall Objectives

 General Presentation

 Classically, an embedded computer is a digital system that is part of a
larger system and that is not directly accessible to the user. Examples are
appliances like phones, TV sets, washing machines, game platforms, or even
larger systems like radars and sonars. In particular, this computer is not
programmable in the usual way. Its program, if it exists, is supplied as part
of the manufacturing process and is seldom (or ever) modified thereafter.
As the embedded systems market grows and evolves, this view of embedded
systems is becoming obsolete and tends to be too restrictive. Many aspects of
general-purpose computers apply to modern embedded platforms. Nevertheless,
embedded systems remain characterized by a set of specialized application
domains, rigid constraints (cost, power, efficiency,
heterogeneity), and its market structure. The term embedded system has
been used for naming a wide variety of objects. More precisely, there are two
categories of so-called embedded systems: a) control-oriented and hard
real-time embedded systems (automotive, plant control, airplanes, etc.); b)
compute-intensive embedded systems (signal processing, multi-media, stream
processing) processing large data sets with parallel and/or pipelined
execution. Compsys is primarily concerned with this second type of
embedded systems, referred to as embedded computing systems.

 Today, the industry sells many more embedded processors than general-purpose
processors; the field of embedded systems is one of the few segments of the
computer market where the European industry still has a substantial share,
hence the importance of embedded system research in the European research
initiatives. Our priority towards embedded software was motivated by the
following observations: a) the embedded system market was expanding, among
many factors, one can quote pervasive digitalization, low-cost products,
appliances, etc.; b) research on software for embedded systems was poorly
developed in France, especially if one considers the importance of actors
like Alcatel, STMicroelectronics, Matra, Thales, etc.; c) since embedded systems
increase in complexity, new problems are emerging: computer-aided design,
shorter time-to-market, better reliability, modular design, component
reuse, etc.

 A specific aspect of embedded computing systems is the use of
various kinds of processors, with many particularities (instruction
sets, registers, data and instruction caches, now multiple cores)
and constraints (code size, performance, storage, power). The
development of compilers is crucial for this industry, as
selling a platform without its programming environment and compiler
would not be acceptable. To cope with such a range of different
processors, the development of robust, generic (retargetable),
though efficient compilers is mandatory. Unlike standard compilers
for general-purpose processors, compilers for embedded processors
and hardware accelerators can be more aggressive (i.e., take more
time to optimize) for optimizing some important parts of
applications. This opens a new range of optimizations. Another
interesting aspect is the introduction of platform-independent
intermediate languages, such as Java bytecode, that is compiled
dynamically at runtime (aka just-in-time). Extreme lightweight
compilation mechanisms that run faster and consume less memory have
to be developed. The introduction of intermediate languages such as
OpenCL was also a sign of the need for portability (as well as
productivity) across diverse (if not heterogeneous) platforms. One
of the initial objectives of Compsys was thus to revisit existing
compilation techniques in the context of such embedded computing
systems, to deconstruct some of these techniques, to improve them,
and to develop new techniques taking constraints of embedded
processors and platforms into account.

 As for high-level synthesis (HLS), several compilers/systems have
appeared, after some first unsuccessful industrial attempts in the past.
These tools are mostly based on C or C++ as for example SystemC,
VCC, CatapultC, Altera C2H, Pico-Express, Vivado HLS.
Academic projects also exist (or existed) such as Flex
and Raw
at MIT, Piperench
at Carnegie-Mellon University, Compaan
at the University of Leiden, Ugh/Disydent at LIP6 (Paris), Gaut at Lester
(Bretagne), MMAlpha (Insa-Lyon), and others. In general, the support for
parallelism in HLS tools is minimal, especially in industrial tools. Also,
the basic problem that these projects have to face is that the definition of
performance is more complex than in classical systems. In fact, it is a
multi-criteria optimization problem and one has to take into account the
execution time, the size of the program, the size of the data structures, the
power consumption, the manufacturing cost, etc. The impact of the compiler
on these costs is difficult to assess and control. Success will be the
consequence of a detailed knowledge of all steps of the design process, from
a high-level specification to the chip layout. A strong cooperation of the
compilation and chip design communities was needed. The main expertise in
Compsys for this aspect was in the parallelization and optimization
of regular computations. Hence, we targeted applications with a
large potential parallelism, but we attempted to integrate our solutions
into the big picture of CAD environments.

 More generally, the aims of Compsys were to develop new
compilation and optimization techniques for the field of embedded
computing system design. This field is large, and Compsys did
not intend to cover it in its entirety. As previously mentioned, we
were mostly interested in the automatic design of accelerators, for
example designing a VLSI or FPGA circuit for a digital filter,
or later GPUs and multicores, and in the development of new back-end
compilation strategies for embedded processors. We studied code
transformations that optimize features such as execution time, power
consumption, code and die size, memory constraints, and compiler
reliability. These features are related to embedded systems but some
are not specific to them. The code transformations we developed
were both at source level and at assembly level. A specificity of
Compsys has always been to mix a solid theoretical basis for all
code optimizations we introduced with algorithmic/software
developments. Within Inria, our project was related to the
“architecture and compilation” theme, more precisely code
optimization, as some of the research conducted in Parkas
(previously known as Alchemy), Alf (previously known as
Caps), Camus, and to high-level architectural synthesis, as
some of the research in Cairn.

 At the end of the 90s, most french researchers working on
high-performance computing (automatic parallelization, languages,
operating systems, networks) moved to grid computing. We thought
that applications, industrial needs, and research problems were more
interesting in the design of embedded platforms. Furthermore, we
were convinced that our expertise on high-level code transformations
could be more useful in this field. This is the reason why Tanguy
Risset came to Lyon in 2002 to create the Compsys team with Anne
Mignotte and Alain Darte, before Paul Feautrier, Antoine Fraboulet,
and Fabrice Rastello joined the group.
Before integrating the team, all Compsys members had a background
in automatic parallelization, and high-level program analyses and
transformations. Paul Feautrier was the initiator of the polyhedral
model for program transformations around 1990 and, before coming to
Lyon, started to be more interested in programming models and
optimizations for embedded applications, in particular through
collaborations with Philips. Alain Darte worked on mathematical
tools and algorithmic issues for parallelism extraction in
programs. He became interested in the automatic generation of
hardware accelerators, thanks to his stay at HP Labs in the Pico
project in 2001. Antoine Fraboulet did a PhD with Anne Mignotte –
who was working on high-level synthesis (HLS) – on code and memory
optimizations for embedded applications. Fabrice Rastello did a PhD
on tiling transformations for parallel machines, then was hired by
STMicroelectronics where he worked on assembly code optimizations for
embedded processors. Tanguy Risset worked for a long time on the
synthesis of systolic arrays, being the main architect of the HLS
tool MMAlpha. Christophe Alias did a PhD on algorithm recognition
for program optimizations and parallelization, and two post-docs,
one in Compsys on array contraction, one in Ohio State University
with Prof. P. Sadayappan on memory optimizations. Laure Gonnord did
a PhD on invariant generation and program analysis and became
interested on compilation and code generation since her postdoc in
the team. Finally, Tomofumi Yuki did a PhD on polyhedral programming
environments and optimizations (in Colorado State University, with
Prof. S. Rajopadhye) before a post-doc on polyhedral HLS in the
Cairn team (Rennes).

 To understand why we think automation in our field is highly important, it may be worth to quote
Bob Rau and his colleagues (IEEE Computer, Sep. 2002):

 "Engineering disciplines tend to go through fairly predictable phases:
ad hoc, formal and rigorous, and automation. When the discipline is in its
infancy and designers do not yet fully understand its potential problems
and solutions, a rich diversity of poorly understood design techniques
tends to flourish. As understanding grows, designers sacrifice the
flexibility of wild and woolly design for more stylized and restrictive
methodologies that have underpinnings in formalism and rigorous theory.
Once the formalism and theory mature, the designers can automate the design
process. This life cycle has played itself out in disciplines as diverse as
PC board and chip layout and routing, machine language parsing, and logic
synthesis.

 We believe that the computer architecture discipline is ready to enter the
automation phase. Although the gratification of inventing brave new
architectures will always tempt us, for the most part the focus will shift
to the automatic and speedy design of highly customized computer systems
using well-understood architecture and compiler technologies.”

 We share this view of the future of architecture and compilation. Without
targeting too ambitious objectives, we were convinced of two complementary
facts: a) the mathematical tools developed in the past for manipulating
programs in automatic parallelization were lacking in high-level synthesis
and embedded computing optimizations and, even more, they started to be
rediscovered frequently in less mature forms, b) before being able to really
use these techniques in HLS and embedded program optimizations, we needed to
learn a lot from the application side, from the electrical engineering side,
and from the embedded architecture side. Our primary goal was thus twofold:
to increase our knowledge of embedded computing systems and to adapt/extend
code optimization techniques, primarily designed for high performance
computing, to the special case of embedded computing systems. In the initial
Compsys proposal, we proposed four research directions, centered on
compilation methods for embedded applications, both for software and
accelerators design:

 	
 Code optimization for specific processors (mainly DSP and VLIW
processors);

 	
 Platform-independent loop transformations (including memory
optimization);

 	
 Silicon compilation and hardware/software codesign;

 	
 Development of polyhedral (but not only) optimization tools.

 These research activities were primarily supported by a marked investment in
polyhedra manipulation tools and, more generally, solid mathematical and
algorithmic studies, with the aim of constructing operational software tools,
not just theoretical results. Hence the fourth research theme was centered on
the development of these tools.

 Section:
 Overall Objectives

 Summary of Compsys I Achievements

 The main achievements of Compsys I were the following:

 	
 The development of a strong collaboration with the compilation group at
STMicroelectronics, with important results in aggressive optimizations for
instruction cache and register allocation.

 	
 New results on the foundation of high-level program
transformations, including scheduling techniques for process networks
and a general technique for array contraction (memory reuse) based on the
theory of lattices.

 	
 Many original contributions with partners closer to hardware constraints,
including CEA, related to SoC simulation, hardware/software interfaces, power
models, and simulators.

 The Compsys team has been evaluated by Inria for the first time
in April 2007. The evaluation, conducted by Erik Hagersted (Uppsala
University), Vinod Kathail (Synfora, inc), J. (Ram) Ramanujam (Baton
Rouge University) was positive. Compsys I thus continued into
Compsys II for 4-5 years but in a new configuration as Tanguy
Risset (who was hired professor at Insa-Lyon) and Antoine Fraboulet
(assistant professor at Insa-Lyon) left the project to follow research
directions closer to their host laboratory at Insa-Lyon.

 Section:
 Overall Objectives

 Summary of Compsys II
Achievements

 Due to Compsys size reduction (from 5 permanent researchers to 3 in 2008,
then 4 again in 2009), the team then focused, in Compsys II, on two research
directions only:

 	
 Code generation for embedded processors, on the two opposite, though
connected, aspects: aggressive compilation and just-in-time compilation.

 	
 High-level program analysis and transformations for high-level synthesis
tools.

 The main achievements of Compsys II were:

 	
 the great success of the collaboration with STMicroelectronics with many
deep results on SSA (Static Single Assignment), register
allocation, liveness scalar analysis, and intermediate program
representations;

 	
 the design of high-level program analysis, optimizations, and
tools, mainly related to high-level synthesis (some leading to the
development of the Zettice start-up), including liveness array
analysis, memory folding, as well as program (while loops)
termination.

 For more details on the past years of Compsys II, see the previous annual
reports from 2008 to 2012. Compsys II was positively evaluated in Spring
2012 by Inria. The evaluation committee members were Walid Najjar
(University of California Riverside), Paolo Faraboschi (HP Labs), Scott Mahlke
(University of Michigan), Pedro Diniz (University of Southern California),
Peter Marwedel (TU Dortmund), and Pierre Paulin (STMicroelectronics, Canada),
the last three assigned specifically to Compsys.

 Section:
 Overall Objectives

 Summary of Compsys III
Achievements

 For Compsys III, the changes in the permanent members (departure
of Fabrice Rastello and arrival of Laure Gonnord, while she was only external
collaborator of Compsys until Sep. 2013) reduced the forces on
back-end code optimizations, and in particular dynamic compilation,
but increased (for a short period only) the forces on program
analysis. In this context, Compsys III has continued to develop
fundamental concepts or techniques whose applicability should go
beyond a particular architectural or language trend, as well as
stand-alone tools (either as proofs of concepts or to be used as
basic blocks in larger tools/compilers developed by others) and our
own experimental prototypes. One of the main objectives of
Compsys III has been to try to push the polyhedral model beyond
its present limits both in terms of analysis techniques (possibly
integrating approximation and runtime support) and of applicability
(e.g., analysis of parallel or streaming languages, program
verification, compilation towards accelerators such as GPU or
multicores). The hiring of Tomofumi Yuki supported this new
direction. The achievements of Compsys III include work on:

 	
 Back-end code analysis including fast scalar liveness analysis,
register spilling analysis, pointer and array analysis.

 	
 Polyhedral code analysis and optimizations, including
communication analysis for kernel offloading to FPGA and GPU,
analysis of while loops, analysis of parallel and streaming
languages (liveness, memory folding, race detection), parametric
tiling, polynomial extensions.

 Compsys III was positively evaluated in Spring 2016 (with regrets
with respect to its undesired stop) in Spring 2016. This evaluation
also served as the final evaluation of Compsys after 12 years. The
evaluation committee members were Krzystof Czarnecki (University of
Waterloo), Benoît Dupont de Dinechin (Kalray), Nikil Dutt (UC Irvine),
Walid Najjar (UC Riverside), Kristoffer Rose (Two Sigma Investments,
NYW), Christian Schulte (KTH Royal Institute of Technology), Tulika
Mitra (NUS), J. (Ram) Ramanujam (Lousiana State Univ.), Kathryn
S. McKinley (chair, Microsoft), the last three being directly responsible for
Compsys evaluation.

 More details on the 2013, 2014, 2015 activities are given in the
corresponding annual reports (see also the synthesis report provided
for the 2016 evaluation). The new results for this year (2016) are
given in Section 5.1
(highlights) and from Section 7.1
to 7.7 (new results).

 Research Program

 	Research Program	Architecture and Compilation Trends
	Code Analysis, Code Transformations, Code Optimizations
	Mathematical Tools

 Section:
 Research Program

 Architecture and Compilation Trends

 The embedded system design community is facing two challenges:

 	
 The complexity of embedded applications is increasing at a rapid rate.

 	
 The needed increase in processing power is no longer obtained by
increases in the clock frequency, but by increased parallelism.

 While, in the past, each type of embedded application was implemented in a
separate appliance, the present tendency is toward a universal hand-held
object, which must serve as a cell-phone, as a personal digital assistant, as a
game console, as a camera, as a Web access point, and much more. One may say
that embedded applications are of the same level of complexity as those running
on a PC, but they must use a more constrained platform in terms of processing
power, memory size, and energy consumption. Furthermore, most of them depend
on international standards (e.g., in the field of radio digital communication),
which are evolving rapidly. Lastly, since ease of use is at a premium for
portable devices, these applications must be integrated seamlessly to a degree
that is unheard of in standard computers.

 All of this dictates that modern embedded systems retain some form of
programmability. For increased designer productivity and reduced
time-to-market, programming must be done in some high-level language, with
appropriate tools for compilation, run-time support, and debugging. This does
not mean however that all embedded systems (or all of an embedded system) must
be processor based. Another solution is the use of field programmable gate
arrays (FPGA), which may be programmed at a much finer grain than a processor,
although the process of FPGA “programming” is less well understood than
software generation. Processors are better than application-specific circuits
at handling complicated control and unexpected events. On the other hand,
FPGAs may be tailored to just meet the needs of their application, resulting in
better energy and silicon area usage. It is expected that most embedded
systems will use a combination of general-purpose processors, specific
processors like DSPs, and FPGA accelerators (or even low-power GPUs).
Such a combination DSP+FPGA is already present in recent versions of the Atom
Intel processor.

 As a consequence, parallel programming, which has long been confined to the
high-performance community, must become the common place rather than the
exception. In the same way that sequential programming moved from assembly code
to high-level languages at the price of a slight loss in performance, parallel
programming must move from low-level tools, like OpenMP or even MPI, to
higher-level programming environments. While fully-automatic parallelization
is a Holy Grail that will probably never be reached in our lifetimes, it will
remain as a component in a comprehensive environment, including general-purpose
parallel programming languages, domain-specific parallelizers, parallel
libraries and run-time systems, back-end compilation, dynamic parallelization.
The landscape of embedded systems is indeed very diverse and many design flows
and code optimization techniques must be considered. For example, embedded
processors (micro-controllers, DSP, VLIW) require powerful back-end
optimizations that can take into account hardware specificities, such as
special instructions and particular organizations of registers and memories.
FPGA and hardware accelerators, to be used as small components in a larger
embedded platform, require “hardware compilation”, i.e., design flows and
code generation mechanisms to generate non-programmable circuits. For the
design of a complete system-on-chip platform, architecture models, simulators,
debuggers are required. The same is true for multicores of any kind, GPGPU
(“general-purpose” graphical processing units), CGRA (coarse-grain
reconfigurable architectures), which require specific methodologies and
optimizations, although all these techniques converge or have connections. In
other words, embedded systems need all usual aspects of the process that
transforms some specification down to an executable, software or hardware. In
this wide range of topics, Compsys concentrated on the code optimizations
aspects (and the associated analysis) in this transformation chain, restricting
to compilation (transforming a program to a program) for embedded processors
and programmable accelerators, and to high-level synthesis (transforming a
program into a circuit description) for FPGAs.

 Actually, it is not a surprise to see compilation and high-level synthesis
getting closer (in the last 10 years now). Now that high-level synthesis has
grown up sufficiently to be able to rely on place-and-route tools, or even to
synthesize C-like languages, standard techniques for back-end code generation
(register allocation, instruction selection, instruction scheduling, software
pipelining) are used in HLS tools. At the higher level, programming languages
for programmable parallel platforms share many aspects with high-level
specification languages for HLS, for example the description and manipulations
of nested loops, or the model of computation/communication (e.g., Kahn process
networks and its many “streaming” variants). In all aspects, the frontier
between software and hardware is vanishing. For example, in terms of
architecture, customized processors (with processor extensions as first proposed
by Tensilica) share features with both general-purpose processors and hardware
accelerators. FPGAs are both hardware and software as they are fed with
“programs” representing their hardware configurations.

 In other words, this convergence in code optimizations explains why
Compsys studied both program compilation and high-level synthesis,
and at both front-end and back-end levels, the first one acting more
at the granularity of memories, transfers, and multiple cores, the
second one more at the granularity of registers, system calls, and
single core. Both levels must be considered as they interact with each
other. Front-end optimizations must be aware of what back-end
optimizations will do, as single core performance remain the basis for
good parallel performances. Some front-end optimizations even act
directly on back-end features, for example register tiling considered
as a source-level transformation. Also, from a conceptual point of
view, the polyhedral techniques developed by Compsys are actually
the symbolic front-end counterpart, for structured loops, of back-end
analysis and optimizations of unstructured programs (through
control-flow graphs), such as dependence analysis, scheduling,
lifetime analysis, register allocation, etc. A strength of Compsys
was to juggle with both aspects, the first one based on graph theory
with SSA-type optimizations, the other on polyhedra representing
loops, and to exploit the correspondence between both. This has still
to be exploited, for applying polyhedral techniques to more irregular
programs. Besides, Compsys had a tradition of building free
software tools for linear programming and optimization in general, as
needed for our research.

 Compilation and Languages Issues in the Context of Embedded
Processors, “Embedded Systems”, and Programmable Accelerators

 Compilation is an old activity, in particular back-end code optimizations. The development of embedded systems was one of the reasons for the revival of compilation activities as
a research topic.
Applications for embedded computing systems generate complex programs and need
more and more processing power. This evolution is driven, among others, by the
increasing impact of digital television, the first instances of UMTS
networks, and the increasing size of digital supports, like recordable DVD,
and even Internet applications. Furthermore, standards are evolving very
rapidly (see for instance the successive versions of MPEG). As a consequence,
the industry has focused on programmable structures, whose flexibility more
than compensates for their larger size and power consumption. The appliance
provider has a choice between hard-wired structures (Asic), special-purpose
processors (Asip), (quasi) general-purpose processors (DSP for multimedia
applications), and now hardware accelerators (dedicated platforms – such as
those developed by Thales or the CEA –, or more general-purpose accelerators
such as GPUs or even multicores, even if these are closer to small HPC
platforms than truly embedded systems). Our cooperation with STMicroelectronics, until
2012, focused on investigating the compilation for specialized processors, such
as the ST100 (DSP processor) and the ST200 (VLIW DSP processor)
family. Even for this restricted class of processors, the diversity is large,
and the potential for instruction level parallelism (SIMD, MMX), the limited
number of registers and the small size of the memory, the use of direct-mapped
instruction caches, of predication, generated many open problems. Our goal was
to contribute to their understanding and their solutions.

 An important concept to cope with the diversity of platforms is the concept of
virtualization, which is a key for more portability, more simplicity,
more reliability, and of course more security. This concept – implemented at
low level through binary translation and just-in-time (JIT)
compilation (Aggressive compilation consists in allowing more
time to implement more complete and costly solutions:
compilation time is
less relevant than
execution time, size, and energy consumption of the
produced code, which can have a critical impact on the cost and quality of
the final product. The application is usually cross-compiled, i.e., compiled
on a powerful platform distinct from the target processor. Just-in-time
compilation, on the other hand, corresponds to compiling applets on demand
on the target processor.
The code can be uploaded or sold
separately on a flash memory. Compilation is performed at load time and even
dynamically during execution. The optimization heuristics, constrained by
time and limited resources, are far from being aggressive. They must be fast
but smart enough.) – consists in hiding the architecture-dependent features
as long as possible during the compilation process. It has been used for a
while for servers such as HotSpot, a bit more recently for workstations, and
now for embedded computing. The same needs drive the development of
intermediate languages such as OpenCL to, not necessarily hide, but at least
make more uniform, the different facets of the underlying architectures. The
challenge is then to design and compile high-productivity and high-performance
languages (For examples of such languages, see the keynotes event we
organized in 2013: http://labexcompilation.ens-lyon.fr/hpc-languages.)
(coping with parallelism and heterogeneity) that can be ported to such
intermediate languages, or to architecture-dependent runtime systems. The
offloading of computation kernels, through source-to-source compilation,
targeting back-end C dialects, has the same goals: to automate application
porting to the variety of accelerators.

 For JIT compilation, the compactness of the information representation, and
thus its pertinence, is an important criterion for such late compilation
phases. Indeed, the intermediate representation (IR) is evolving not only from
a target-independent description to a target-dependent one, but also from a
situation where the compilation time is almost unlimited (cross-compilation) to
one where any type of resource is limited. This is one of the reasons why
static single assignment (SSA), a sparse compact representation of liveness
information, became popular in embedded compilation.
If time constraints are
common to all JIT compilers (not only for embedded computing), the benefit of
using SSA is also in terms of its good ratio pertinence/storage of information.
It also enables to simplify algorithms, which is also important for increasing
the reliability of the compiler.
In this context, our aim has been, in particular, to develop exact or heuristic
solutions to combinatorial problems that arise in compilation for VLIW
and DSP processors, and to integrate these methods into industrial compilers
for DSP processors (mainly ST100, ST200, Strong ARM). Such combinatorial
problems can be found in register allocation, opcode selection, code placement,
when removing the SSA multiplexer functions (known as φ functions).
These optimizations are usually done
in the last phases of the compiler, using an assembly-level intermediate
representation.
As mentioned in Sections 2.3
and 2.4, we made a lot of progress
in this area in our past collaborations with STMicroelectronics (see also previous
activity reports). Through the Sceptre and Mediacom projects, we first
revisited, in the light of SSA, some code optimizations in an aggressive
context, to develop better strategies, without eliminating too quickly
solutions that may have been considered as too expensive in the past. Then
we exploited the new concepts introduced in the aggressive context to
design better algorithms in a JIT context, focusing on the speed of
algorithms and their memory footprint, without compromising too much on the
quality of the generated code.

 Our recent research directions were more focused on programmable accelerators,
such as GPU and multicores, but still considering static compilation
and without forgetting the link between high-level (in general at source-code level) and
low-level (i.e., at assembly-code level) optimizations. They concerned program
analysis (of both sequential and parallel specifications), program
optimizations (for memory hierarchies, parallelism, streaming, etc.), and
also the link with applications, and between compilers and users
(programmers). Polyhedral techniques play an important role in these
directions, even if control-flow-based techniques remain in the background and
may come back at any time in the foreground. This is also the case for
high-level synthesis, as exposed in the next section.

 Context of High-Level Synthesis and FPGA Platforms

 High-level synthesis has become a necessity, mainly because the exponential
increase in the number of gates per chip far outstrips the productivity of
human designers. Besides, applications that need hardware accelerators usually
belong to domains, like telecommunications and game platforms, where fast
turn-around and time-to-market minimization are paramount. When Compsys
started, we were convinced that our expertise in compilation and automatic
parallelization could contribute to the development of the needed tools.

 Today, synthesis tools for FPGAs or ASICs come in many shapes. At the lowest
level, there are proprietary Boolean, layout, and place-and-route tools, whose
input is a VHDL or Verilog specification at the structural or register-transfer
level (RTL). Direct use of these tools is difficult, for several reasons:

 	
 A structural description is completely different from an usual
algorithmic language description, as it is written in term of interconnected
basic operators. One may say that it has a spatial orientation, in place of
the familiar temporal orientation of algorithmic languages.

 	
 The basic operators are extracted from a library, which poses problems of
selection, similar to the instruction selection problem in ordinary
compilation.

 	
 Since there is no accepted standard for VHDL synthesis, each tool has its
own idiosyncrasies and reports its results in a different format. This makes
it difficult to build portable HLS tools.

 	
 HLS tools have trouble handling loops. This is particularly true for
logic synthesis systems, where loops are systematically unrolled (or
considered as sequential) before synthesis. An efficient treatment of loops
needs the polyhedral model. This is where past results from the automatic
parallelization community are useful.

 	
 More generally, a VHDL specification is too low level to allow the
designer to perform, easily, higher-level code optimizations, especially on
multi-dimensional loops and arrays, which are of paramount importance to
exploit parallelism, pipelining, and perform communication and memory
optimizations.

 Some intermediate tools were proposed that generate VHDL from a specification in
restricted C, both in academia (such as SPARK,
Gaut,
UGH,
CloogVHDL),
and in industry (such as C2H,
CatapultC,
Pico-Express, Vivado HLS).
All these tools use only the most elementary form of parallelization,
equivalent to instruction-level parallelism in ordinary compilers, with some
limited form of block pipelining, and communication through FIFOs. Targeting
one of these tools for low-level code generation, while we concentrate on
exploiting loop parallelism, might be a more fruitful approach than directly
generating VHDL. However, it may be that the restrictions they impose
preclude efficient use of the underlying hardware.
Our first experiments with these HLS tools reveal two important issues.
First, they are, of course, limited to certain types of input programs so as
to make their design flows successful, even if, over the years, they become
more and more mature. But it remains a painful and tricky task for the user to
transform the program so that it fits these constraints and to tune it to get
good results. Automatic or semi-automatic program transformations can help
the user achieve this task. Second, users, even expert users, have only a very
limited understanding of what back-end compilers do and why they do not lead
to the expected results. An effort must be done to analyze the different
design flows of HLS tools, to explain what to expect from them, and how to use
them to get a good quality of results. Our first goal was thus to develop
high-level techniques that, used in front of existing HLS tools, improve their
utilization. This should also give us directions on how to modify them or to
design new tools from scratch.

 More generally, HLS has to be considered as a more global parallelization
process. So far, no HLS tools is capable of generating designs with
communicating parallel accelerators, even if, in theory, at least for
the scheduling part, a tool such as Pico-Express could have such
capabilities. The reason is that it is, for example, very hard to
automatically design parallel memories and to decide the distribution of array
elements in memory banks to get the desired performances with parallel
accesses. Also, how to express communicating processes at the language level?
How to express constraints, pipeline behavior, communication media, etc.? To
better exploit parallelism, a first solution is to extend the source language
with parallel constructs, as in all derivations of the Kahn process networks
model, including communicating regular processes (CRP). The other
solution is a form of automatic parallelization. However, classical methods,
which are mostly based on scheduling, need to be revisited, to pay more
attention to locality, process streaming, and low-level pipelining, which are
of paramount importance in hardware. Besides, classical methods mostly rely
on the runtime system to tailor the parallelism degree to the available
resources. Obviously, there is no runtime system in hardware. The real
challenge is thus to invent new scheduling algorithms that take resource,
locality, and pipelining into account, and then to infer the necessary
hardware from the schedule. This is probably possible only for programs that
fit into the polyhedral model, or in an incrementally-extended model.

 Our research activities on polyhedral code analysis and optimizations directly
targeted these HLS challenges. But they are not limited to the automatic
generation of hardware as can be seen from our different contributions on X10,
OpenStream, parametric tiling, etc. The same underlying concepts also arise
when optimizing codes for GPUs and multicores. In this context of polyhedral
analysis and optimizations, we focused on three aspects:

 	
 developing high-level transformations, especially for loops and
memory/communication optimizations, that can be used in front of HLS tools so
as to improve their use, as well as for hardware accelerators;

 	
 developing concepts and techniques in a more global view of high-level
synthesis and high-level parallel programming, starting from specification
languages down to hardware implementation;

 	
 developing more general code analysis so as to extract more information
from codes as well as to extend the programs that can be handled.

 Section:
 Research Program

 Code Analysis, Code Transformations, Code Optimizations

 Embedded systems, as we recalled earlier, generated new problems in
code analysis and optimization both for optimizing embedded software
(compilation) and hardware (HLS). We now give a bit more details on
some general challenges for program analysis, optimizations, and
transformations, induced by this context, and on our methodology, in
particular our development and use of polyhedral optimizations and
its extensions.

 Processes, Scheduling, Mapping, Communications, etc.

 Before mapping an application to an architecture,
one has to decide which execution model is targeted and where to
intervene in the design flow. Then one has to solve scheduling,
placement, and memory management problems. These three aspects should
be handled as a whole, but present state of the art dictates that they
be treated separately. One of our aims was to develop more
comprehensive solutions. The last task is code generation, both for
the processing elements and the interfaces processors/accelerators.

 There are basically two execution models for embedded systems: one is
the classical accelerator model, in which data is deposited in the
memory of the accelerator, which then does its job, and returns the
results. In the streaming model, computations are done on the fly, as
data items flow from an input channel to the output. Here, the data
are never stored in (addressable) memory. Other models are special
cases, or sometimes compositions of the basic models. For instance, a
systolic array follows the streaming model, and sometimes extends it
to higher dimensions. Software radio modems follow the streaming model
in the large, and the accelerator model in detail. The use of first-in
first-out queues (FIFO) in hardware design is an application of the
streaming model. Experience shows that designs based on the streaming
model are more efficient that those based on memory, for such
applications. One of the point to be investigated is whether it is
general enough to handle arbitrary (regular) programs. The answer is
probably negative. One possible implementation of the streaming model
is as a network of communicating processes either as Kahn process
networks (FIFO based) or as our more recent model of communicating
regular processes (memory based, such as CRP mentioned hereafter). It
is an interesting fact that several researchers have investigated
the translation from process networks [12] and to process
networks [20], [21]. Streaming languages such as
StreamIt and OpenStream are also interesting
solutions to explore.

 Kahn process networks (KPN) were introduced 30 years ago as a notation
for representing parallel programs. Such a network is built from
processes that communicate via perfect FIFO channels. Because the
channel histories are deterministic, one can define a semantics and
talk meaningfully about the equivalence of two implementations. As a
bonus, the dataflow diagrams used by signal processing specialists can
be translated on-the-fly into process networks. The problem with KPNs
is that they rely on an asynchronous execution model, while VLIW
processors and FPGAs are synchronous or partially synchronous. Thus,
there is a need for a tool for synchronizing KPNs. This can be done by
computing a schedule that has to satisfy data dependences within each
process, a causality condition for each channel (a message cannot be
received before it is sent), and real-time constraints. However, there
is a difficulty in writing the channel constraints because one has to
count messages in order to establish the send/receive correspondence
and, in multi-dimensional loop nests, the counting functions may not
be affine. The same situation arises for the OpenStream language (see
Section 7.2. Recent
developments on the theory of polynomials (see
Section 7.1) may offer a
solution to this problem. One can also define another model,
communicating regular processes (CRP), in which channels are
represented as write-once/read-many arrays. One can then dispense with
counting functions and prove that the determinacy property still
holds. As an added benefit, a communication system in which the
receive operation is not destructive is closer to the expectations of
system designers.

 The main difficulty with this approach is that ordinary programs are usually
not constructed as process networks. One needs automatic or semi-automatic
tools for converting sequential programs into process networks. One
possibility is to start from array dataflow analysis [15] or
variants.
Another approach attempts to construct threads, i.e., pieces of sequential code
with the smallest possible interactions. In favorable cases, one may even find
outermost parallelism, i.e., threads with no interactions whatsoever. Tiling
mechanisms can also be used to define atomic processes that can be pipelined as we proposed initially for FPGA [9].

 Whatever the chosen solution (FIFO or addressable memory) for communicating
between two accelerators or between the host processor and an accelerator, the
problems of optimizing communication between processes and of optimizing
buffers have to be addressed. Many local memory optimization problems have
already been solved theoretically. Some examples are loop fusion and loop
alignment for array contraction,
techniques for data allocation in scratch-pad memory, or techniques for folding
multi-dimensional arrays [11]. Nevertheless, the problem is
still largely open. Some questions are: how to schedule a loop sequence (or
even a process network) for minimal scratch-pad memory size? How is the problem
modified when one introduces unlimited and/or bounded parallelism (same
questions for analyzing explicitly-parallel programs)? How does one take into
account latency or throughput constraints, bandwidth constraints for input and
output channels, memory hierarchies? All loop transformations are useful in
this context, in particular loop tiling, and may be applied either as
source-to-source transformations (when used in front of HLS or C-level
compilers) or to generate directly VHDL or lower-level C-dialects such as
OpenCL. One should keep in mind that theory will not be sufficient to solve
these problems. Experiments are required to check the relevance of the various
models (computation model, memory model, power consumption model) and to select
the most important factors according to the architecture. Besides,
optimizations do interact: for instance, reducing memory size and increasing
parallelism are often antagonistic. Experiments will be needed to find a global
compromise between local optimizations. In particular, the design of cost
models remain a fundamental challenge.

 Finally, there remains the problem of code generation for accelerators. It is a
well-known fact that methods for program optimization and
parallelization do not generate a new program, but just deliver blueprints for
program generation, in the form, e.g., of schedules, placement functions, or
new array subscripting functions. A separate code generation phase must be
crafted with care, as a too naive implementation may destroy the benefits
of high-level optimization. There are two possibilities here as suggested
before; one may target another high-level synthesis or compilation tool, or one
may target directly VHDL or low-level code. Each approach has its advantages
and drawbacks. However, both situations require that the input program
respects some strong constraints on the code shape, array accesses, memory
accesses, communication protocols, etc. Furthermore, to get the compilers do
what the user wants requires a lot of program tuning, i.e., of program
rewriting or of program annotations. What can be automated in this rewriting
process? Semi-automated?

 In other words, we still need to address scheduling, memory,
communication, and code generation issues, in the light of the
developments of new languages and architectures, pushing the limits of
such an automation of program analysis, program optimizations, and
code generation.

 Beyond Static Control Programs

 With the advent of parallelism in supercomputers, the bulk of research in code
transformation resulted in (semi-)automatic parallelization, with many
techniques (analysis, scheduling, code generation, etc.) based on the
description and manipulation of nested loops with polyhedra. Compsys has always
taken an active part in the development of these so-called “polyhedral
techniques”. Historically, these analysis were (wrongly) understood to be
limited to static control programs.

 Actually, the polyhedral model is neither a programming language nor an execution model,
rather an intermediate representation.
As such, it can be generated from imperative sequential languages like
C or Fortran, streaming languages like CRP, or equational languages like Alpha.
While the structure of the model is the same in all three cases, it may enjoy
different properties, e.g., a schedule always exists in the
first case, not in the two others. The import of the
polyhedral model is that many questions relative to the analysis of a program
and the applicability of transformations can be answered precisely and
efficiently by applying well-known mathematical results to the model.

 For irregular programs, the basic idea is to construct a polyhedral
over-approximation, i.e., a program which has more operations, a
larger memory footprint, and more dependences than the original. One
can then parallelize the approximated program using polyhedral tools,
and then return to the original, either by introducing guards, or by
insuring that approximations are harmless. This technique is the
standard way of dealing with approximated dependences. We already
started to study the impact of approximations in our kernel offloading
technique, for optimizing remote
communications [10]. It is clear however that
this extension method based on over-approximation will apply only to mildly
non-polyhedral programs. The restriction to arrays as the only data
structure is still present. Its advantage is that it will be able to
subsume in a coherent framework many disparate tricks: the extraction
of SCoPs, induction variable detection, the omission of non-affine
subscripts, or the conversion of control dependences into data
dependences. The link with the techniques developed in the PIPS
compiler (based on array region analysis) is strong and will have to
be explored.

 Such over-approximations can be found by mean of abstract
interpretation, a general framework to develop static analysis on
real-life programs.
However, they were designed mainly for verification purposes, thus
precision was the main issue before scalability. Although many efforts
were made in designing specialized analyses (pointers, data
structures, arrays), these approaches still suffer from a lack of
experimental evidence concerning their applicability for code
optimization. Following our experience and work on termination
analysis (that connects the work on back-end CFG-like and front-end
polyhedral-like optimizations), and our work on range analysis of
numerical variables and on the memory footprint on real-world C
programs [18], one of our objectives for the
future was to bridge the gap between abstract interpretation and
compilation, by designing cheaper analyses that scale well, mainly
based on compact representations derived from variants of static
single assignment (SSA), with a special focus on complex control, and
complex data structures (pointers, lists) that still suffer from
complexity issues in the area of optimization.

 Another possibility is to rely on
application specific knowledge to guide compiler decisions,
as it is impossible for a compiler alone to fully exploit such pieces
of information. A possible approach to better utilize such knowledge
is to put the programmers “in the loop”.
Expert parallel programmers often have a good idea about coarse-grain
parallelism and locality that they want to use for an application. On
the other hand, fine-grain parallelism (e.g., ILP, SIMD) is tedious
and specific to each underlying architecture, and is best left to the
compiler. Furthermore, approximations will have opportunities to be
refined using programmer knowledge. The key challenge is to create a
programming environment where compiler techniques and programmer
knowledge can be combined effectively. One of the difficulties is to
design a common language between the compiler and the programmer. The
first step towards this objective is to establish inter-disciplinary
collaborations with users, and take the time to analyze and optimize
their applications together.M

 Section:
 Research Program

 Mathematical Tools

 All compilers have to deal with sets and relations. In classical
compilers, these sets are finite: the set of statements of a program, the set
of its variables, its abstract syntax tree (AST), its control-flow graph
(CFG), and many others. It is only in the first phase of compilation,
parsing, that one has to deal with infinite objects, regular and context-free
languages, and those are represented by finite grammars, and are processed by
a symbolic algorithm, yacc or one of its clones.

 When tackling parallel programs and parallel compilation, it was soon
realized that this position was no longer tenable. Since it makes no
sense to ask whether a statement can be executed in parallel with itself,
one has to consider sets of operations, which may be so large as to
forbid an extensive representation, or even be infinite. The same is true
for dependence sets, for memory cells, for communication sets, and for
many other objects a parallel compiler has to consider. The representation
is to be symbolic, and all necessary algorithms have to be promoted
to symbolic versions.

 Such symbolic representations have to be efficient – the formula representing
a set has to be much smaller than the set itself – and effective – the
operations one needs, union, intersection, emptiness tests and many others –
have to be feasible and fast. As an aside, note that progress in algorithm
design has blurred the distinction between polynomially-solvable and
NP-complete problems, and between decidable and undecidable questions. For
instance SAT, SMT, and ILP software tools solve efficiently many NP-complete
problems, and the Z3 tool is able to “solve” many instances of the
undecidable Hilbert's 10th problem.

 Since the times of Pip and of the Polylib, Compsys has been active in the
implementation of basic mathematical tools for program analysis and synthesis.
Pip is still developed by Paul Feautrier and Cédric Bastoul, while the
Polylib is now taken care of by the Inria Camus project, which introduced
Ehrhart polynomials. These tools are still in use world-wide and they also
have been reimplemented many times with (sometimes slight) improvements, e.g.,
as part of the Parma Polylib, of Sven Verdoolaege's Isl and Barvinok libraries,
or of the Jollylib of Reservoir Labs. Other groups also made a lot of efforts
towards the democratization of the use of polyhedral techniques, in particular
the Alchemy Inria project, with Cloog and the development of Graphite in GCC,
and Sadayappan's group in the USA, with the development of U. Bondhugula's
Pluto prototype compiler. The same effort is made through the PPCG prototype
compiler (for GPU) and Pencil (directives-based language on top of PPCG).

 After 2009, Compsys continued to focus on the introduction of concepts and
techniques to extend the polytope model, with a shift toward tools that may
prepare the future. For instance, PoCo and C2fsm are able to parse
general programs, not just SCoPs (static control programs), while the efficient
handling of Boolean affine formulas [13] is a prerequisite for
the construction of non-convex approximations. Euclidean lattices provide an
efficient abstraction for the representation of spatial phenomena, and the
construction of critical lattices as embedded in the tool Cl@k is a
first step towards memory optimization in stream languages and may be useful in
other situations. Our work on Chuba introduced a new element-wise array
reuse analysis and the possibility of handling approximations. Our work on the
analysis of while loops is both an extension of the polytope model itself
(i.e., beyond SCoPs) and of its applications, here links with program
termination and worst-case execution time (WCET) tools.

 A recent example of this extension idea is the proposal by
Paul Feautrier to use polynomials for program analysis and
optimization [14]. The associated tools are
based on Handelman and Schweighofer theorems, the polynomial analogue
of Farkas lemma. While this is definitely work in progress, with many
unsolved questions, it has the potential of greatly enlarging the set
of tractable programs.

 As a last remark, observe that a common motif of these developments is the
transformation of finite algorithms into symbolic algorithms, able to
solve very large or even infinite instances. For instance, PIP is a symbolic
extension of the Simplex; our work on memory allocation is a symbolic
extension of the familiar register allocation problem; loop scheduling
extends DAG scheduling. Many other algorithms await their symbolic
transformation: a case in point is resource-constrained scheduling.

 Application Domains

 	Application Domains	Compilers for Embedded Computing Systems
	Users of HPC Platforms and Scientific Computing

 Section:
 Application Domains

 Compilers for Embedded Computing Systems

 The previous sections described our main activities in terms of research
directions, but also placed Compsys within the embedded computing systems
domain, especially in Europe. We will therefore not come back here to the
importance, for industry, of compilation and embedded computing systems
design.

 In terms of application domain, the embedded computing systems we considered
are mostly used for multimedia: phones, TV sets, game platforms, etc. But,
more than the final applications developed as programs, our main application
has always been the computer itself: how the system is organized
(architecture) and designed, how it is programmed (software), how programs
are mapped to it (compilation and high-level synthesis).

 The industry that can be impacted by our research is thus all the companies
that develop embedded processors, hardware accelerators (programmable or
not), embedded systems, and those (the same plus other) that need software
tools to map applications to these platforms, i.e., that need to use or even
develop programming languages, program optimization techniques, compilers,
operating systems. Compsys did not focus on all these critical parts, but
our activities were connected to them.

 Section:
 Application Domains

 Users of HPC Platforms and Scientific Computing

 The convergence between embedded computing systems and high-performance
computing (HPC) technologies offers new computing platforms and tools for the
users of scientific computing (e.g., people working in numerical analysis, in
simulation, modeling, etc.). The proliferation of “cheap” hardware
accelerators and multicores makes the “small HPC” (as opposed to computing
centers with more powerful computers, grid computing, and exascale computing)
accessible to a larger number of users, even though it is still difficult to
exploit, due to the complexity of parallel programming, code tuning,
interaction with compilers, which result from the multiple levels of
parallelism and of memories in the recent architectures. The link between
compiler and code optimization research (as in Compsys) and such users are
still to be reinforced, both to guarantee the relevance of compiler research
efforts with respect to application needs, and to help users better interact
with compiler choices and understand performance issues.

 The support of Labex MILYON (through its thematic quarters, such as
the thematic quarter on compilation we organized in
2013 (Thematic quarter on compilation:
http://labexcompilation.ens-lyon.fr/), or the 2016
thematic quarter on high-performance computing, with a dedicated
inter-disciplinary spring school between numerical simulation and
polyhedral compilation, see hereafter) and the activities of the
LyonCalcul initiative (Lyon Calcul federation:
http://lyoncalcul.univ-lyon1.fr) are means to get closer to
users of scientific computing, even if it is too early to know if
Compsys will indeed be directly helpful to them.

 Highlights of the Year

 	
 Highlights of the Year

 Section:
 Highlights of the Year

 Highlights of the Year

 Scientific Results and Dissemination

 Despite the approaching end of Compsys, we continued the
objectives we fixed for Compsys III, i.e., pushing static
compilation beyond its present limits, both in terms of techniques
and applications. Our most important efforts in 2016 were to extend
static analysis from sequential codes to parallel specifications and
languages, to develop polynomial techniques, and to increase
inter-disciplinary collaborations and dissemination towards HPC
users and their applications. The most important results in 2016 are
the following:

 	
 Publications Well recognized in the polyhedral community,
we got three papers at IMPACT'16, the central event of this
community, one paper at the main compiler conference (CC'16), and a
last one in the field of FPGA, which remains an important target for
polyhedral optimizations. See
Sections 7.1
to 7.7 for more details.

 	
 Interdisciplinary spring school With colleagues from HPC
numerical simulation, we organized a very successful
inter-disciplinary event in May 2016, to bridge the gap between
polyhedral compilation and HPC users. See details in
Section 10.1.

 	
 Move towards HPC users In addition to the spring school we
organized, we increased our activity towards HPC users and their
applications through the supervision of the internship of J. Versaci
(quantum physics), the reviewing of T. Gasc's PhD thesis (fluid
dynamics), and the regular contacts with the LMGC lab (mechanics).

 	
 PhD theses The end of Compsys coincided also with the
end of two PhD theses, the PhD thesis of
Guillaume Iooss [16] and the PhD thesis of
Alexandre Isoard [17], see Section 10.2.2.

 	
 Final evaluation The team was evaluated in March 2016,
this was also its final evaluation.

 Final Evaluation and End of Compsys

 Compsys has been created in 2002 as an Inria team, then in 2004 as
an Inria project-team, and evaluated by Inria first in 2007, then in
2012. It was evaluated again in March 2016, which was its final
evaluation because an Inria project-team is limited to 12 years. The
construction of a new project was planned in early 2015, following
the shift in the research directions that started in the second half
of Compsys III. A few tentative research directions were:

 	
 Shift the application domain from embedded systems to high performance
computing (HPC) but at small scale (desktop HPC: FPGA, GPU, multicores). In
fact, the two ecosystems are nowadays slowly converging.

 	
 A stronger attention to real HPC users and real HPC applications may lead
to better programming models (“putting the programmer in the loop”).

 	
 Design new models of programs. The polynomial model is but an example.

 	
 Explore the synergy between parallel programming and program verification
and certification; in particular, import approximation methods from one field
to the other. Abstract interpretation is a case in point.

 However, while its field of expertise, compilation for parallel and
heterogeneous systems, is still of crucial importance, the unexpected
departure in Sep. 2015 of two of its staff members made this future
impossible. We nevertheless continued in 2016, in particular to
present our activities in this last evaluation, until the three last
members had to split in three different cities (Lyon, Paris,
Rennes). We report here some of the comments made by the external
reviewers that, we think, summarize well some aspects of our efforts,
successes, and difficulties during 15 years:

 	

 Compsys established and matured the polyhedral optimization
approach, which is the state of the art for locality and parallelism
optimization in optimizing compilers. The project has had
world-wide impact.

 	

 We strongly recommend that the members of the team are accommodated
in Camus, Cairn, Parkas, or another complementary Inria team,
irrespective of the geographical location. Otherwise, Inria will
lose one of its peaks of research excellence in Computer Science.

 	

 This team is a prime example where Inria requirements on teams
are damaging science and collaboration.

 	

 This team has produced many impactful results and is considered
as the Polyhedral center of excellence.
It is globally
recognized for its research in both front-end (polyhedral
optimizations) and back-end (graph optimizations) compiler
optimization techniques integrating elegant foundational theory with
real implementation on various architectures (multi-core, FPGAs,
DSP, GPU etc.).

 	

 In back‐end optimizations, the team had developed the
state-of‐the‐art SSA and decoupled register allocation
techniques that are important to achieving peak performance.

 	

 They have internationally visible and
impactful research in compilers, technology transfer to companies
through collaborations and through start‐ups. They raised the
global awareness of polyhedral analysis through creation of
workshops, summer schools etc., essentially reviving interest in the
topic about a decade ago, and finally educating next‐generation of
researchers in this area, who are now contributing to both academic
and industrial research landscape in France and beyond.

 	

 The start‐up company (XtremLogic on HLS) is an excellent concrete
evidence of technology transfer from the team. [...]
In the future, a more careful analysis of the trade-off
between technology transfer and academic research is necessary for
small project teams so that a promising research direction does not
get jeopardized in Inria.

 	

 The Compsys team has truly achieved research excellence in
compilation techniques. Unfortunately, the future of the team
remains uncertain due to administrative policies. Inria should
enable the team to continue with their research strengths in
polyhedral analysis and graph‐theory based SSA-type
optimizations.

 New Software and Platforms

 	New Software and Platforms	Lattifold
	PolyOrdo
	OpenOrdo
	ppcg-paramtiling

 Section:
 New Software and Platforms

 Lattifold

 Lattice-based Memory Folding

 Keywords: Polyhedral compilation - Euclidean Lattices

 Functional Description

 Implements advanced lattice-based memory folding techniques. The idea
is to reduce memory footprint of multidimensional arrays by reducing
the size of each dimension. Given a relation denoting conflicting
array cells, it produces a new mapping based on affine functions
bounded by moduli. The moduli induces memory reuse and bound memory
accesses to a tighter area, allowing to reduce the array size without
loss of correctness. Status: proof of concept, see related
paper [2].

 	
 Partner: ENS Lyon

 	
 Contact: Alexandre Isoard

 Section:
 New Software and Platforms

 PolyOrdo

 Polynomial Scheduler

 Functional Description

 Computes a polynomial schedule for a sequential polyhedral program
having no affine schedule, in lieu of multidimensional schedules. Uses
algorithms for finding positive polynomials in semi-algebraic
sets. Status: proof of concept software, see related
paper [14].

 	
 Contact: Paul Feautrier

 Section:
 New Software and Platforms

 OpenOrdo

 OpenStream scheduler

 Functional Description

 Finds polynomial schedules for the streaming language OpenStream.
Main use: detecting deadlocks. The scheduler has been extended to bound
the size of stream buffers, either directly or as a side-effect of
constructing bounded delay schedules. An effort for bounding the number
of in-flight tasks is under way.

 Status: proof of concept, see related paper [1].

 	
 Contact: Paul Feautrier

 Section:
 New Software and Platforms

 ppcg-paramtiling

 Parametric Tiling Extension for PPCG

 Keywords: Source-to-source compiler - Polyhedral compilation

 Functional Description

 PPCG is a source-to-source compiler, based on polyhedral techniques,
targeting GPU architectures. It involves automatic parallelization
and tiling using polyhedral techniques. This version replaces the
static tiling of PPCG by a fully parametric tiling and code
generator. It allows to choose tile sizes at run time when the memory
size is known. It also provides a symbolic expression of memory usage
depending on the problem size and the tile sizes.

 Status: proof of concept, unfinished, see Alexandre Isoard's thesis [17].

 	
 Partner: ENS Lyon

 	
 Contact: Alexandre Isoard

 New Results

 	New Results	Handling Polynomials for Program
Analysis and Transformation
	Static Analysis of OpenStream Programs
	Liveness Analysis in Explicitly-Parallel
Programs
	Extended Lattice-Based Memory Allocation
	Stencil Accelerators
	Efficient Mapping of Irregular Memory Accesses on FPGA
	PolyApps

 Section:
 New Results

 Handling Polynomials for Program
Analysis and Transformation

 Participant :
	Paul Feautrier.

 As is well known in natural language processing, the first step in translating
a text from one language to another is to understand it. The situation is
the same for formal languages. A language processor has to “understand”
a program before translating or optimizing or verifying it. Such understanding
takes the form of a model, usually a mathematical representation
whose natural operations mimic the behavior of its program. The polyhedral
model is such a representation. However, the set of programs it can represent
is too restricted, and the hunt for more powerful models has been under way
since the millennium.

 An obvious ideas is to replace affine formulas by polynomials, and
hence polyhedra by semi-algebraic sets. Polynomials are ubiquitous in
HPC and embedded system programming. For instance, the so-called
“linearizations” (replacing a multi-dimensional object by a
one-dimensional one) generate polynomial access functions. These
polynomials then reappear in dependence testing, scheduling, and
invariant construction. It may also happen that polynomials are absent
from the source program, but are created either by an enabling
analysis, as for OpenStream (see
Section 7.2), or are imposed by
complexity consideration. Lastly, polynomials may be native to the
underlying algorithm, as when distances are computed by the usual
Euclidean formula. What is needed here is a replacement for the
familiar emptiness tests and for Farkas lemma (deciding whether an
affine form is positive inside a polyhedron). Recent mathematical
results by Handelman and Schweighofer on the Positivstellensatz
allow one to devise algorithms that are able to solve these
problems. The difference is that one gets only sufficient conditions,
and that complexity is much higher than in the affine cases.

 A paper presenting applications of these ideas to three
use cases – dependence testing, scheduling, and transitive closure
approximation – was presented at
(IMPACT'15) [14].
A tool to manipulate polynomials, polynomial constraints and objective
functions, needed for the derivation of polynomial schedules,
complements this work (see
Section 6.2). It implements
Farkas lemma and its generalization with Handelman & Schweighofer
formulations, and is in constant development, including improvements
on the objective functions, in particular to make schedule selection
more stable, independently on the degree of the polynomial schedule.

 Section:
 New Results

 Static Analysis of OpenStream Programs

 Participants :
	Albert Cohen [Inria Parkas team] , Alain Darte, Paul Feautrier.

 In the context of the ManycoreLabs project, we started to study the
applicability of polyhedral techniques to the parallel language
OpenStream [19]. When applicable, polyhedral techniques
are indeed invaluable for compile-time debugging and for generating
efficient code well suited to a target architecture. OpenStream is a
two-level language in which a control program directs the
initialization of parallel task instances that communicate through
streams, with possibly multiple writers and readers. It has a
fairly complex semantics in its most general setting, but we
restricted ourselves to the case where the control program is
sequential, which is representative of the majority of the OpenStream
applications.

 In contrast to the language X10, which we studied in previous years,
this restriction offers deterministic concurrency by construction, but
deadlocks are still possible. We showed that, if the control program
is polyhedral, one may statically compute, for each task instance, the
read and write indices to each of its streams, and thus reason
statically about the dependences among task instances (the only
scheduling constraints in this polyhedral subset). If the control
program has nested loops, communications use one-dimensional channels
in a form of linearization, and these indices may be polynomials of
arbitrary degree, thus requiring to extend to polynomials the standard
polyhedral techniques for dependence analysis, scheduling, and
deadlock detection. Modern SMT allow to solve polynomial problems,
albeit with no guarantee of success; the approach previously developed
by P. Feautrier [14], and recalled in Section 7.1, offers an
alternative solution.

 The usual way of disproving deadlocks is by exhibiting a schedule for
the program operations, a well-known problem for polyhedral programs
where dependences can be described by affine constraints. In the case
of OpenStream, we established two important results related to
deadlocks: 1) a characterization of deadlocks in terms of dependence
paths, which implies that streams can be safely bounded as soon as a
schedule exists with such sizes, 2) the proof that deadlock detection
is undecidable, even for polyhedral OpenStream. Details of this work
have been published at the international workshop
IMPACT'16 [1].

 Some further developments are in progress for scheduling OpenStream
programs using polynomial techniques (with a corresponding prototype
scheduling tool, specific to OpenStream, see
Section 6.3). In particular, we
made some progress for parsing a simplified version of OpenStream,
exhibiting the relevant structure, and on the properties and
construction of schedules with bounded streams and bounded delays, and
on the analysis of the “foot bath”, i.e., the pool of tasks that are
created (already requiring some resources) but not activated yet
(because they need to wait for the termination of other tasks due to
dataflow semantics). This work should have interesting connections
with the way runtime systems of tasks are managed.

 Section:
 New Results

 Liveness Analysis in Explicitly-Parallel
Programs

 Participants :
	Alain Darte, Alexandre Isoard, Tomofumi Yuki.

 In the light of the parallel specifications encountered in our other
work – kernel offloading with pipelined
communications [10], automatic parallelization,
analysis of X10 [22], [23] and of
OpenStream (see Section 7.2),
intra-array reuse (see
Section 7.4) – we revisited
scalar and array element-wise liveness analysis for programs with
parallel specifications. In earlier work on memory
allocation/contraction (register allocation or intra- and inter-array
reuse in the polyhedral model), a notion of “time” or a total order
among the iteration points was used to compute the liveness of
values. In general, the execution of parallel programs is not a total
order, and hence the notion of time is not applicable.

 We first revised how conflicts are computed by using ideas from
liveness analysis for register allocation, studying the structure of
the corresponding conflict/interference graphs. Instead of considering
the conflict between two pairs of live ranges, we only consider the
conflict between a live range and a write. This simplifies the
formulation from having four instances involved in the test down to
three, and also improves the precision of the analysis in the general
case. Then we extended the liveness analysis to work with partial
orders so that it can be applied to many different parallel
languages/specifications with different forms of parallelism. An
important result is that the complement of the conflict graph with
partial orders is directly connected to memory reuse, even in presence
of races. However, programs with conditionals do not even have a
partial order, and our next step will be to handle such cases with
more accuracy. Details of this work have been published at the
international workshop IMPACT'16 [3].

 Some new developments are in progress to explore even further the
properties of such liveness analysis and the construction of conflict
sets, in the general case (with connections with the concept of trace
monoid) or for some common situations such as series-parallel graphs,
appearing in languages such as X10 or OpenMP.

 Section:
 New Results

 Extended Lattice-Based Memory Allocation

 Participants :
	Alain Darte, Alexandre Isoard, Tomofumi Yuki.

 We extended lattice-based memory allocation [11], an earlier
work on memory (array) reuse analysis. The main motivation is to handle in a
better way the more general forms of specifications we see today, e.g., with
loop tiling, pipelining, and other forms of parallelism available in explicitly
parallel languages. Our extension has two complementary aspects. We showed how
to handle more general specifications where conflicting constraints (those that
describe the array indices that cannot share the same location) are specified
as a (non-convex) union of polyhedra. Unlike convex specifications, this also
requires to be able to choose suitable directions (or basis) of array reuse.
For that, we extended two dual approaches, previously proposed for a fixed basis,
into optimization schemes to select suitable basis. Our final approach relies
on a combination of the two, also revealing their links with, on one hand, the
construction of multi-dimensional schedules for parallelism and tiling (but
with a fundamental difference that we identify) and, on the other hand, the
construction of universal reuse vectors (UOV), which was only used so far in a
specific context, for schedule-independent mapping.

 This algorithmic work, connected to our previous work on parametric
tiling [10] and the liveness analysis results
of Section 7.3, is complemented
by a set of prototype scripting tools, see
Section 6.1. Details of this
work have been published at the 2016 International Conference on
Compiler Construction [2].

 Section:
 New Results

 Stencil Accelerators

 Participants :
	Steven Derrien [University of Rennes 1, Inria/CAIRN] , Sanjay Rajopadhye [Colorado State University] , Tomofumi Yuki.

 Stencil computations have been known to be an important class of programs for
scientific calculations. Recently, various architectures (mostly targeting
FPGAs) for stencils are being proposed as hardware accelerators with high
throughput and/or high energy efficiency. There are many different challenges
for such design: How to maximize compute-I/O ratio? How to partition the
problem so that the data fits on the on-chip memory? How to efficiently
pipeline? How to control the area usage? We seek to address these challenges by
combining techniques from compilers and high-level synthesis tools.

 One project in collaboration with the CAIRN team and Colorado State University
targets stencils with regular dependence patterns. Although many architectures
have been proposed for this type of stencils, most of them use a large number
of small processing elements (PE) to achieve high throughput. We are exploring
an alternative design that aims for a single, large, deeply-pipelined PE. The
hypothesis is that the pipelined parallelism is more area-efficient compared to
replicating small PEs. We have published a work-in-progress paper on this topic
at IMPACT'16 [4].

 Section:
 New Results

 Efficient Mapping of Irregular Memory Accesses on FPGA

 Participants :
	Xinyu Niu [Imperial College London] , Tomofumi Yuki.

 In a collaboration with Imperial College, we looked at efficiently implementing
dynamic dependences on FPGAs. The collaboration is in the context of the
EURECA
project (http://www.doc.ic.ac.uk/~nx210/2015/09/01/eureca.html)
where the dynamic reconfigurability of modern FPGAs is used to efficiently
handle dynamic access patterns. We worked on analyzing data dependent array
accesses to identify regularities within irregular memory accesses to reduce
the cost of a dynamic memory reconfiguration module.

 One part of this work has been published at the 2016 International Conference on
Field Programmable Logic and Applications [5].

 Section:
 New Results

 PolyApps

 Participant :
	Tomofumi Yuki.

 Loop transformation frameworks using the polyhedral model have gained increased
attention since the rise of the multi-core era. We now have several research
tools that have demonstrated their power on important kernels found in
scientific computations. However, there remains a large gap between the typical
kernels used to evaluate these tools and the actual applications used by the
scientists.

 PolyApps is an effort to collect applications from other domains of science to
better establish the link between the compiler tools and “real” applications.
The applications are modified to bypass some of the front-end issues of
research tools, while keeping the ability to produce the original output. The
goal is to assess how the state-of-the-art automatic parallelizers perform on
full applications, and to identify new opportunities that only arise in larger
pieces of code.

 We showed that, with a few enhancements, the current tools will
be able to reach and/or exceed the performance of existing parallelizations of
the applications. One of the most critical element missing in current tools is
the ability to modify the memory mappings.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry
	Bilateral Grants with Industry

 Section:
 Bilateral Contracts and Grants with Industry

 Bilateral Contracts with Industry

 Since the team was going to be stopped, Compsys did not try to establish any long-term contract with industry.

 Section:
 Bilateral Contracts and Grants with Industry

 Bilateral Grants with Industry

 Same situation.

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific Events Organisation

 General Chair, Scientific Chair

 Alain Darte is general chair of the steering committee of CPC
(International Workshop on Compilers for Parallel Computing), which
regroups in Europe, every 18 months, a large community of researchers
interested in compilers for HPC. He participated to CPC'16 in
Valladolid in July 2016.

 Member of the Organizing Committees

 Tomofumi Yuki was co-organizer of IMPACT'16 (International Workshop on
Polyhedral Compilation Techniques,
http://impact.gforge.inria.fr/impact2016/) with Michelle Strout
(University of Arizona).

 Spring School on Numerical Simulation and Polyhedral
Compilation

 Alain Darte (with the help of Tomofumi Yuki for the program) co-organized
with Violaine Louvet (Institute Camille Jordan in Lyon, now lead of
UMS Gricad in Grenoble) a second polyhedral spring school, May 9-13
2016, targeting both the polyhedral community and HPC users from
numerical analysis. This spring school has been labelled (and funded)
as a CNRS interdisciplinary spring school
(https://mathsinfohpc.sciencesconf.org/), with a total budget of
roughly 39 Keuros, including funding from Labex MILYON, CNRS, GDR
Calcul, ENS, LIP, and registrations fees, which were kept low to keep
the spirit of the first spring school on polyhedral code analysis and
optimizations.

 This second spring school was motivated by the need for a more global
approach for HPC applications, that combines the design of numerical
methods with extensive hardware considerations, in interaction with
languages and compilers, so as to take into account both the
complexity of architectures and the needs of their non-expert
users. Research communities in computer science (architecture,
compilation) and applied mathematcs (numerical simulation) are not
always aware of this need; at least their work do not always spread
enough across the other discipline to lead to mutual
influence. Automatic code optimizations and tools also require a
better evaluation of their applicability. The goal of this research
school – or meeting place of two communities – was to make the link
between some of the most recent advances on automatic program
optimizations (in particular polyhedral techniques and tools) and
applied mathematics (schemes for numerical simulation), in relation
with application needs. This school was therefore interdisciplinary,
with a strong will to bring communities together on the common theme
of supercomputing.

 We finally opted for a single track instead of parallel sessions,
which helped federate the two communities. The school included courses
on architectures (M. Haefele, Maison de la simulation), on numerical
schemes in connection with stencils (T. Dumont, ICJ), on simulation
methods (discontinuous Galerkin) in particular for GPU (P. Helluy,
Strasbourg), on polyhedral techniques and tiling (A. Darte, Compsys), on some
polyhedral compilers such as Pluto (U. Bondhugula, Bangalore) and PPCG
(S. Verdoolaege, ENS), on the roofline model for performance analysis
(M. Püschel, ETH Zürich), on stencils and tensors optimizations
(Ramanujam, Baton Rouge), on numerical precision (C. Rubio-Gonzalez,
UC Davis), plus some additional talks on reproducibility,
applications, the ECM model, etc. The school was a success, with 71
participants, roughly half from each community, with 29 coming from
abroad (Italy, Algeria, USA, India, Canada, Germany, Croatia,
Switzerland, Austria, Belgium), and a majority (37) being PhD
students.

 The future will tell if our objectives have been reached, i.e., if the
two communities will interact more on the long term and rethink their
work with an interdisciplinary look, to invent new computing schemes
and compilers more suitable for the constraints of today's
architectures, in particular their memory hierarchy and locality
needs. In Compsys at least, one can already see some moves in this
direction, with the interdisciplinary internship of Julien Versaci
co-advised by Tomofumi Yuki, the participation of Alain Darte as a referee
to the PhD jury of T. Gasc (CEA, Maison de la Simulation, ENS Cachan),
a planned seminar by Alain Darte at Maison de la Simulation in early
2017, starting exchanges with the LMGC lab (Montpellier) on their
applications, and a planned mini-symposium, following the line of this
spring school, at SMAI 2017.

 Scientific Events Selection

 Chair of Conference Program Committees

 In addition to the organization, Tomofumi Yuki was program co-chair
of IMPACT'16, with Michelle Strout (University of Arizona).

 Member of the Conference Program Committees

 Alain Darte was a member of the program committee of HPCS'16
(International Conference on High Performance Computing &
Simulation) and will be member of the program committee of PACT'17
(International Conference on Parallel Architectures and
Compilation Techniques).

 Paul Feautrier was a member of the program committees of IMPACT'16 and IMPACT'17.

 Tomofumi Yuki was a member of the program committees of SC'16, X10
Workshop'16, IMPACT'16, and IMPACT'17.

 Reviewer

 Alain Darte, Paul Feautrier, and Tomofumi Yuki were reviewers for the
different program committees to which they participated.

 Journal

 Member of the Editorial Boards

 No participation to journal editorial boards in 2016.

 Reviewer - Reviewing Activities

 Alain Darte was a reviewer for the “Software, Practice, and
Experience” journal.

 Paul Feautrier was a reviewer for the “International Journal of Parallel
Programming”.

 Tomofumi Yuki was a reviewer for the TACO, TOPLAS, JPDC, and TPDS
journals.

 Invited Talks

 Alain Darte was invited to give a talk on “Liveness Analysis in
Explicitly-Parallel Programs” at ScalPerf'16 in Bertinoro (Italy),
Sep. 2016.

 Paul Feautrier was invited to give a talk (in two parts) “Toward A
Polynomial Model with Application to the OpenStream Language” at the
second and third LCS (Language, Compilation, Semantics) LIP seminars,
in June and November 2016.

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Master:

 	
 Paul Feautrier was invited to give a talk on “New Architectures, New
Compilations Problems”, at the student seminar for the IMAG M2
course, Grenoble, December 5, 2016.

 	
 Spring/Summer Schools:

 	
 Alain Darte, as part of the spring school on numerical simulation
and polyhedral compilation, gave a half-day course on
“Introduction to Automated Polyhedral Code Optimizations and
Tiling”, see https://mathsinfohpc.sciencesconf.org.

 	
 Tomofumi Yuki, a part of the École Jeunes Chercheurs en
Programmation 2016, gave a half-day course on “Research in
Compilers and Introduction to Loop Transformations”, see
http://ejcp2016.univ-lille1.fr/.

 Supervision

 	
 PhD: Guillaume Iooss, “Detection of linear algebra operations in
polyhedral programs” [16], joint PhD
ENS-Lyon/Colorado State University, started Sep. 2011, defended
July 1st, 2016, advisors: Christophe Alias and Alain Darte (ENS-Lyon) /
Sanjay Rajopadhye (Colorado State University).

 	
 PhD: Alexandre Isoard, “Extending Polyhedral Techniques towards
Parallel Specifications and
Approximations” [17], ENS-Lyon, started in
Sep. 2012, defended July 5th, 2016, advisor: Alain Darte.

 Guillaume Iooss is now post-doc in the Parkas team, while Alexandre Isoard
is R&D engineer at Xilinx (Dublin, Ireland, then San Jose, Ca).

 Juries

 Alain Darte was one of the two reviewers of the PhD of Thibault Gasc (CEA
DAM DIF, Maison de la Simulation, November 2016), entitled “Modèles
de performance pour l’adaptation des méthodes numériques aux
architectures multi-cœurs vectorielles. Application aux schémas
Lagrange-Projection en hydrodynamique compressible”. He was also
member of the juries of the PhD of Alexandre Isoard, as adviser, and of
Guillaume Iooss as administrative co-adviser.

 Section:
 Dissemination

 Popularization

 The interdisciplinary spring school organized in May 2016 (see
Section 10.1) is a form of
popularization of compiler technology (in particular polyhedral
optimizations) towards HPC users from the numerical simulation
community.

 Bibliography

 Publications of the year

 International Conferences with Proceedings

 	[1]

 	A. Cohen, A. Darte, P. Feautrier.
Static Analysis of OpenStream Programs, in: 6th International Workshop on Polyhedral Compilation Techniques (IMPACT'16), held with HIPEAC'16, Prague, Czech Republic, Proceedings of the IMPACT series, Michelle Strout and Tomofumi Yuki, January 2016.
https://hal.inria.fr/hal-01251845

 	[2]

 	A. Darte, A. Isoard, T. Yuki.
Extended Lattice-Based Memory Allocation, in: 25th International Conference on Compiler Construction (CC'16), Barcelona, Spain, 25th International Conference on Compiler Construction (CC'16), March 2016.
https://hal.archives-ouvertes.fr/hal-01272969

 	[3]

 	A. Darte, A. Isoard, T. Yuki.
Liveness Analysis in Explicitly-Parallel Programs, in: 6th International Workshop on Polyhedral Compilation Techniques (IMPACT'16), held with HIPEAC'16, Prague, Czech Republic, Proceedings of the IMPACT series, Michelle Strout and Tomofumi Yuki, January 2016.
https://hal.inria.fr/hal-01251843

 	[4]

 	G. Deest, N. Estibals, T. Yuki, S. Derrien, S. Rajopadhye.
Towards Scalable and Efficient FPGA Stencil Accelerators, in: 6th International Workshop on Polyhedral Compilation Techniques (IMPACT'16), held with HIPEAC'16, Prague, Czech Republic, Proceedings of the IMPACT series, http://impact.gforge.inria.fr/, January 2016.
https://hal.inria.fr/hal-01254778

 	[5]

 	X. Niu, N. Ng, S. Wang, T. Yuki, N. Yoshida, W. Luk.
EURECA Compilation: Automatic Optimisation of Cycle-Reconfigurable Circuits, in: 26th International Conference on Field Programmable Logic and Applications, Lausanne, Switzerland, Proceedings of the 26th International Conference on Field Programmable Logic and Applications, August 2016. [
DOI : 10.1109/FPL.2016.7577359]
https://hal.archives-ouvertes.fr/hal-01413307

 Conferences without Proceedings

 	[6]

 	G. Deest, N. Estibals, T. Yuki, S. Derrien, S. Rajopadhye.
Towards Scalable and Efficient FPGA Stencil Accelerators, in: IMPACT'16, Prague, Czech Republic, January 2016.
https://hal.inria.fr/hal-01425018

 Internal Reports

 	[7]

 	A. Cohen, A. Darte, P. Feautrier.
Static Analysis of OpenStream Programs, CNRS ; Inria ; ENS Lyon, January 2016, no RR-8764, 26 p, Corresponding publication at IMPACT'16 (http://impact.gforge.inria.fr/impact2016).
https://hal.inria.fr/hal-01184408

 	[8]

 	A. Darte, A. Isoard, T. Yuki.
Liveness Analysis in Explicitly-Parallel Programs, CNRS ; Inria ; ENS Lyon, January 2016, no RR-8839, 25 p, Corresponding publication at IMPACT'16 (http://impact.gforge.inria.fr/impact2016).
https://hal.inria.fr/hal-01251579

 References in notes

 	[9]

 	C. Alias, A. Darte, A. Plesco.
Optimizing Remote Accesses for Offloaded Kernels: Application to High-Level Synthesis for FPGA, in: International Conference on Design, Automation and Test in Europe (DATE'13), Grenoble, France, March 2013, pp. 575-580.

 	[10]

 	A. Darte, A. Isoard.
Exact and Approximated Data-Reuse Optimizations for Tiling with Parametric Sizes, in: 24th International Conference on Compiler Construction (CC'15), part of ETAPS'15, London, United Kingdom, April 2015.
https://hal.inria.fr/hal-01099017

 	[11]

 	A. Darte, R. Schreiber, G. Villard.
Lattice-Based Memory Allocation, in: IEEE Transactions on Computers, October 2005, vol. 54, no 10, pp. 1242-1257, Special Issue: Tribute to B. Ramakrishna (Bob) Rau.

 	[12]

 	P. Feautrier.
Scalable and Structured Scheduling, in: International Journal of Parallel Programming, October 2006, vol. 34, no 5, pp. 459–487.

 	[13]

 	P. Feautrier.
Simplification of Boolean Affine Formulas, Inria, July 2011, no RR-7689.
http://hal.inria.fr/inria-00609519/PDF/RR-7689.pdf

 	[14]

 	P. Feautrier.
The Power of Polynomials, in: 5th International Workshop on Polyhedral Compilation Techniques (IMPACT'15), Amsterdam, Netherlands, A. Jimborean, A. Darte (editors), January 2015.
https://hal.inria.fr/hal-01094787

 	[15]

 	P. Feautrier.
Dataflow Analysis of Scalar and Array References, in: International Journal of Parallel Programming, February 1991, vol. 20, no 1, pp. 23–53.

 	[16]

 	G. Iooss.
Detection of linear algebra operations in polyhedral programs, École normale supérieure de Lyon and Colorado State University, 2016.

 	[17]

 	A. Isoard.
Extending Polyhedral Techniques towards Parallel Specifications and Approximations, École normale supérieure de Lyon, 2016.

 	[18]

 	H. Nazaré, I. Maffra, W. Santos, L. Oliveira, F. M. Q. Pereira, L. Gonnord.
Validation of Memory Accesses Through Symbolic Analyses, in: ACM International Conference on Object Oriented Programming Systems Languages & Applications (OOPSLA'14), Portland, Oregon, United States, October 2014, pp. 791-809.
https://hal.inria.fr/hal-01006209

 	[19]

 	A. Pop, A. Cohen.
OpenStream: Expressiveness and data-flow compilation of OpenMP streaming programs, in: ACM Transactions on Architecture and Code Optimization (TACO), 2013, vol. 9, no 4, pp. 1-25.

 	[20]

 	A. Turjan, B. Kienhuis, E. Deprettere.
Translating Affine Nested-Loop Programs to Process Networks, in: International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES'04), New York, NY, USA, ACM, 2004, pp. 220–229.

 	[21]

 	S. Verdoolaege, H. Nikolov, N. Todor, P. Stefanov.
Improved Derivation of Process Networks, in: International Workshop on Optimization for DSP and Embedded Systems (ODES'06), 2006.

 	[22]

 	T. Yuki, P. Feautrier, S. Rajopadhye, V. Saraswat.
Array Dataflow Analysis for Polyhedral X10 Programs, in: 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'13), Shenzhen, China, ACM, 2013.
http://hal.inria.fr/hal-00761537

 	[23]

 	T. Yuki.
Revisiting Loop Transformations with X10 Clocks, in: Proceedings of the ACM SIGPLAN Workshop on X10, Portland, OR, United States, June 2015. [
DOI : 10.1145/2771774.2771778]
https://hal.inria.fr/hal-01253630

 OEBPS/international.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid106.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits of International Scientists

 Visiting PhD students

 		
 Emna Hammami (Tunis University, with Yosr Slama) visited Compsys
from April to June 2016 to refine her PhD topic with Compsys
members. She also participated to the spring school on numerical
simulation and polyhedral compilation.

 		
 Waruna Ranasinghe (Colorado State University, with Sanjay
Rajopadhye) visited Compsys from end of June to mid August 2016 to
work with Tomofumi Yuki on extending cache oblivious techniques to
polyhedral programs.

 Internships

 		
 Julien Versaci, M2 student from Lyon 1 University, from both
physics and computer science departments, worked from April to June
2016 in Compsys, to work on the parallelization of a model of
quantum physics. Julien was co-supervised by Jean-Philippe Guillet
(physicist) and Tomofumi Yuki, the second part of his internship
(until mid August) being done affiliated to Annecy physics
laboratory (LAPTH). Julien also participated to the spring school on
numerical simulation and polyhedral compilation.

 Visits to International Teams

 No long (more than one month) stay abroad in 2016.

OEBPS/uid100.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Collaboration with Colorado State University

 Compsys had always kept strong connections with Colorado State
University (CSU):

 		
 In July 2016, Guillaume Iooss defended his joint ENS-Lyon/CSU PhD
thesis [16]. He was co-advised by both Sanjay
Rajopadhye (CSU) and Christophe Alias (with supplementary
support by Alain Darte for administrative reason, as he has
no HDR yet).

 		
 Tomofumi Yuki, who did his PhD with Sanjay Rajopadhye, then a
post-doc in the Cairn team in Rennes, continued his collaboration
with these two groups, as the results described in
Section 7.5 illustrate. He also
participates regularly, over the net, to the reading group
“Melange” of S. Rajodapdhye's group, with CSU students. Due to the
stop of Compsys, Tomofumi Yuki has now returned to the Cairn team.

 		
 Waruna Ranasinghe, a PhD student from S. Rajopadhye's team,
visited Compsys, to work with Tomofumi Yuki, for 2 months (see
Section 9.5).

 Polyhedral Community

 In 2011, as part of the organization of the workshops at CGO’11,
Christophe Alias (with Cédric Bastoul) organized IMPACT’11 (international
workshop on polyhedral compilation techniques,
http://impact2011.inrialpes.fr/). This workshop in Chamonix was
the very first international event on this topic, although it was
introduced by Paul Feautrier in the late 80s. Alain Darte gave the introductory
keynote talk. After this successful edition (more than 60 people),
IMPACT continued as a satellite workshop of the HIPEAC conference, in
Paris (2012), Berlin (2013), Vienna (2014). Alain Darte was program
co-chair and co-organizer of the 2015 edition in Amsterdam, and
Tomofumi Yuki of the 2016 edition in Prague.

 The creation of IMPACT, now the annual event of the polyhedral
community, helped to identify this community and to make it more
visible. This effort was complemented by the organization by Alain Darte
of the first school on polyhedral code analysis and optimizations
(http://labexcompilation.ens-lyon.fr/polyhedral-school/). A
second polyhedral school
(https://mathsinfohpc.sciencesconf.org), more open, because
involving themes and researchers from numerical analysis (users of
HPC), was organized in 2016 by Alain Darte (for the compiler side) and
Violaine Louvet (for the HPC side). See details in
Section 10.1.

 Alain Darte also manages two new mailing lists for news
(polyhedral-news@listes.ens-lyon.fr) and discussions
(polyhedral-discuss@listes.ens-lyon.fr) on polyhedral code analysis and
optimizations. Tomofumi Yuki is involved in the development of PolyBench
(http://sourceforge.net/projects/polybench), a suite of kernels used for
illustrating polyhedral optimizations. He is also developing PolyApps, a set of
larger applications to evaluate the gap between kernels and “real”
applications, see more details in
Section 7.7.

OEBPS/uid90.html

 Section:
 Partnerships and Cooperations

 Regional Initiatives

 Compsys followed or participated to the activities of LyonCalcul
(http://lyoncalcul.univ-lyon1.fr/), a network to federate
activities on high-performance computing in Lyon. In this context,
and with the support of the Labex MILYON
(http://milyon.universite-lyon.fr/), Compsys had organized in
2013 a thematic quarter on compilation
(http://labexcompilation.ens-lyon.fr). A second thematic
quarter on high performance computing (HPC) was organized in 2016,
initiated by Violaine Louvet (Institute Camille Jordan), with the
participation of the LIP teams Aric, Avalon, Compsys, and
Roma. Among other events, it included a CNRS inter-disciplinary
spring school (https://mathsinfohpc.sciencesconf.org)
co-organized by Compsys, connecting mathematics (HPC numerical
analysis) and computer science (polyhedral optimizations for HPC)
that can be seen as a follow-up of the first polyhedral school
organized by Compsys in 2013. See details in
Section 10.1.

 Alain Darte, Alexandre Isoard, and Tomofumi Yuki had also some exchanges
with Violaine Louvet and Thierry Dumont on tiling code
optimizations, advising (in an informal way) some of their students
during their internships, for implementations on multicore machines
and GPUs.

OEBPS/uid91.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 French Compiler Community

 In 2010, Laure Gonnord and Fabrice Rastello created the french community of
compilation, which had no organized venue in the past. All groups with
activities related to compilation were contacted and the first
“compilation day” was organized in
Lyon. This effort has been quickly a success: the community
(http://compilfr.ens-lyon.fr/) is now well identified and 3-days
workshops now occur at least once a year (the 11th event has been
organized in Sep. 2016). The community is animated by Laure Gonnord and
Fabrice Rastello since 2010, and now also by Florian Brandner (ex-Compsys
too). Alain Darte and Tomofumi Yuki participated to the 11th
edition.

 Recognized as a sub-group of the CNRS GDR GPL (Software Engineering
and Programming), the community is also in charge, since 2014, of
organizing one day of the research school “Ecole des jeunes
chercheurs en Algorithmique et Programmation” (EJCP). Tomofumi Yuki, in
this context, gave a half-day lecture at the 2016 edition
(http://ejcp2016.univ-lille1.fr/), following his 2015 course.

 Collaboration with Parkas group, in Paris

 Alain Darte and Paul Feautrier have regular meetings with Albert Cohen, from the
Parkas team at ENS Paris. The current discussions are mostly related
to the analysis and compilation of the OpenStream language developed
by Parkas, a research topic that started though the ManycoreLabs
project (see previous reports). The results of
Sections 7.2
and 7.1 are related to this
collaboration. Now that Compsys has been stopped, Paul Feautrier is
affiliated to Parkas, in addition to his emeritus position at
ENS-Lyon.

 Collaboration with Cairn group, in Rennes

 Tomofumi Yuki continues to work with the Cairn group through regular meetings and
occasional visits. The topic of the collaboration is in applying compiler
techniques for hardware design using high-level synthesis.
Section 7.5 presents the results through
this collaboration.

 Collaboration with Camus group, in Strasbourg

 Paul Feautrier and Tomofumi Yuki have an ongoing cooperation with Alain Ketterlin and
Eric Violard (Camus group, Strasbourg). The main result has been the
determination of the happens before relation of clocked X10,
a prerequisite for the detection of races in clocked programs.
The resulting formula has been proved correct using the Coq proof assistant.
Publishing formal proofs is known to be difficult, but we will give it a
try soon.

OEBPS/uid96.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 FP7 & H2020 Projects

 After the participation to a (rejected) H2020 proposal in 2015,
Compsys did not try any effort in this direction as the team was going
to be stopped.

 Collaborations in European Programs, Except FP7 & H2020

 Same situation.

 Collaborations with Major European Organizations

 Compsys members participate to the European Network of Excellence on High
Performance and Embedded Architecture and Compilation (HiPEAC,
http://www.hipeac.net/), either as members or affiliate members. The
International Workshop on Polyhedral Compilation Techniques (IMPACT, see
Section 9.4.2), co-created by Christophe Alias in 2011, is
now an annual event of the HIPEAC conference, as an official workshop. The 5th
edition, IMPACT'15, was co-chaired by Alain Darte (see
http://impact.gforge.inria.fr/impact2015/), while the 6h edition,
IMPACT'16, was co-chaired by Tomofumi Yuki (see
http://impact.gforge.inria.fr/impact2016/).

OEBPS/IMG/iTunesArtwork.png
Activity Report 2016
Team Compsys

Compilation and
Embedded Computing
Systems

