

[image: cover]

 INDES

 Secure Diffuse Programming

 2016 Project-Team Activity Report
	

 Research centre:
 Sophia Antipolis - Méditerranée

 Field: Networks, Systems and Services, Distributed Computing
Theme: Distributed programming and Software engineering

 Computer Science and Digital Science:

 	1.3. - Distributed Systems

 	2. - Software

 	2.1. - Programming Languages

 	2.1.3. - Functional programming

 	2.1.7. - Distributed programming

 	2.1.8. - Synchronous languages

 	2.1.9. - Dynamic languages

 	2.2.1. - Static analysis

 	2.2.3. - Run-time systems

 	4. - Security and privacy

 	4.3.3. - Cryptographic protocols

 	4.6. - Authentication

 	4.7. - Access control

 	4.8. - Privacy-enhancing technologies

 Other Research Topics and Application Domains:

 	6.3.1. - Web

 	6.4. - Internet of things

 	9.4.1. - Computer science

 	9.8. - Privacy

 Project-Team Indes

 Members

 Overall Objectives

 Research Program	Parallelism, concurrency, and distribution
	Web and functional programming
	Security of diffuse programs

 New Software and Platforms	Hop
	Mashic
	Webstats

 New Results	Web programming
	Privacy
	Security

 Partnerships and Cooperations	National Initiatives
	European Initiatives
	International Research Visitors

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization
	Transfer

 Bibliography

 	
 Major publications

 	
 Publications of the year

 Creation of the Team: 2009 January 01, updated into Project-Team: 2010 July 01
Section: Members
Research Scientists
Manuel Serrano [Team leader, Inria, Senior Researcher, HDR]
Nataliia Bielova [Inria, Researcher]
Gérard Boudol [Inria, Senior Researcher, until Jun 2016, HDR]
Ilaria Castellani [Inria, Researcher]
Tamara Rezk [Inria, Researcher]
Bernard Serpette [Inria, Researcher]
Engineers
Cédric Duminy [Inria]
Vincent Prunet [Inria, granted by FP7 RAPP project]
PhD Students
Yoann Couillec [Inria, until June 2016]
Dolière Francis Some [Inria]
Colin Vidal [Inria]
Post-Doctoral Fellow
Nguyen Nhat Minh Ngo [Inria, from October 2016]
Administrative Assistant
Nathalie Bellesso [Inria]
Other
Raimil Cruz Concepcion [University of Chile, Visiting Scientist, from May 2016 until July 2016]

 Overall Objectives

 	
 Overall Objectives

 Section:
 Overall Objectives

 Overall Objectives

 The goal of the Indes team is to study models for diffuse
computing and develop languages for secure diffuse
applications. Diffuse applications, of which Web 2.0 applications are
a notable example, are the new applications emerging from the
convergence of broad network accessibility, rich personal digital
environment, and vast sources of information. Strong security
guarantees are required for these applications, which intrinsically
rely on sharing private information over networks of mutually
distrustful nodes connected by unreliable media.

 Diffuse computing requires an original combination of nearly all
previous computing paradigms, ranging from classical sequential
computing to parallel and concurrent computing in both their
synchronous / reactive and asynchronous variants. It also benefits
from the recent advances in mobile computing, since devices involved
in diffuse applications are often mobile or portable.

 The Indes team contributes to the whole chain of research
on models and languages for diffuse computing, going from the study of
foundational models and formal semantics to the design and
implementation of new languages to be put to work on concrete
applications. Emphasis is placed on correct-by-construction
mechanisms to guarantee correct, efficient and secure implementation
of high-level programs. The research is partly inspired by and
built around Hop, the web programming model proposed by the
former Mimosa team, which takes the web as its execution platform and
targets interactive and multimedia applications.

 Research Program

 	Research Program	Parallelism, concurrency, and distribution
	Web and functional programming
	Security of diffuse programs

 Section:
 Research Program

 Parallelism, concurrency, and distribution

 Concurrency management is at the heart of diffuse
programming. Since the execution platforms are highly heterogeneous,
many different concurrency principles and models may be involved.
Asynchronous concurrency is the basis of shared-memory process
handling within multiprocessor or multicore computers, of direct or
fifo-based message passing in distributed networks, and of fifo- or
interrupt-based event handling in web-based human-machine interaction
or sensor handling. Synchronous or quasi-synchronous concurrency is
the basis of signal processing, of real-time control, and of
safety-critical information acquisition and display. Interfacing
existing devices based on these different concurrency principles
within HOP or other diffuse programming languages will require better
understanding of the underlying concurrency models and of the way they
can nicely cooperate, a currently ill-resolved problem.

 Section:
 Research Program

 Web and functional programming

 We are studying new paradigms for programming Web applications
that rely on multi-tier functional programming
[8]. We have
created a Web programming environment named Hop . It relies on a
single formalism for programming the server-side and the client-side of the
applications as well as for configuring the execution engine.

 Hop is a functional language based on the Scheme
programming language. That is, it is a strict functional language,
fully polymorphic, supporting side effects, and dynamically
type-checked. Hop is implemented as an extension of the Bigloo
compiler that we develop [9].
In the past, we have extensively studied static analyses (type systems and
inference, abstract interpretations, as well as classical compiler
optimizations) to improve the efficiency of compilation in both space
and time.

 Section:
 Research Program

 Security of diffuse programs

 The main goal of our security research is to provide scalable
and rigorous language-based techniques that can be integrated into
multi-tier compilers to enforce the security of diffuse programs.
Research on language-based security has been carried on before in
former Inria teams
[2], [1]. In particular
previous research has focused on controlling
information flow to ensure confidentiality.

 Typical language-based solutions to these problems are founded on static
analysis, logics, provable cryptography, and compilers that generate correct
code by construction [6].
Relying on the multi-tier programming language Hop that tames the
complexity of writing and analysing secure diffuse applications,
we are studying language-based solutions to prominent web security
problems such as code injection and cross-site scripting, to name a few.

 New Software and Platforms

 	New Software and Platforms	Hop
	Mashic
	Webstats

 Section:
 New Software and Platforms

 Hop

 Keywords: Domotique - Web 2.0 - Iot - Functional language - Programming

 Scientific Description

 Hop.js is a platform for web, cloud, and IoT applications. Its
development environment is composed of:

 	
 a programming language named HopScript, which is based on
ECMAScript 262, //aka// JavaScript;

 	
 an optimized web server;

 	
 on-the-fly compilers for generating HTML, CSS, and client-side JavaScript;

 	
 an ahead-of-time compiler for compiling JavaScript to native code;

 	
 numerous APIs for networking, multimedia, robotics, IoT, etc.

 The HopScript language extends JavaScript to consistently define
the server and client part of web applications and IoT
applications. HopScript supports syntactic forms that help creating
HTML elements. It supports services that enable function calls over
HTTP. Being at higher level than traditional Ajax programming, Hop.js
services avoid the burden and pitfalls of URL management and explicit
data marshalling. They combine the benefits of a high level RPC
mechanism and low level HTTP compatibility.

 Although Hop.js can be used to develop traditional web servers, it is
particularly adapted to the development of web applications embedded
into devices, where the server and client part of the application are
intimately interoperating with each other. The programing model of
Hop.js fosters the joint specification of server and client code, and
allows the rapid development of web user interfaces, on the client,
controlling the execution of the distributed application. By defining
a single data model, providing functions that can run indifferently on
both sides, and almost forgetting about client-server protocols,
Hop.js seems well suited for agile development of web applications for
this class of applications.

 	
 Participants: Manuel Serrano and Vincent Prunet

 	
 Contact: Manuel Serrano

 	
 URL: http://hop.inria.fr

 Section:
 New Software and Platforms

 Mashic

 Functional Description

 The Mashic compiler is applied to mashups with untrusted scripts. The compiler generates mashups with sandboxed scripts, secured by the same origin policy of the browsers. The compiler is written in Bigloo.

 	
 Contact: Tamara Rezk

 	
 URL: http://web.ist.utl.pt/~ana.matos/Mashic/mashic.html

 Section:
 New Software and Platforms

 Webstats

 Webstats is a follow-up of the internship on JavaScript constructs used in top Alexa sites, started in summer 2015 by Dolière Francis Some.
He analyzed the top 10,000 Alexa sites, and provided statistics about them. Among those statistics, their are:

 	
 the most popular JavaScript libraries

 	
 the most recurrent JavaScript constructs

 	
 the adoption of security features such as:

 	
 The Content Security Policy, a policy for defending against Cross-Site-Script attacks

 	
 HttpOnly and Secure cookies, that prevents attacks like session hijacking.

 Starting from April, 2016, this study is performed periodically, at the end of each month. The results are accessible online at https://webstats.inria.fr.

 	
 Contact: Francis Some

 	
 URL: https://webstats.inria.fr

 New Results

 	New Results	Web programming
	Privacy
	Security

 Section:
 New Results

 Web programming

 Participants :
	Cédric Duminy, Vincent Prunet, Bernard Serpette, Manuel Serrano [correspondant] , Colin Vidal.

 Hop.js [20], [22] is a new
platform for web applications, potentially involving interconnected
servers. The server-side execution is compatible with
Node.js. Programmers then benefit from numerous existing libraries and
applications. Hop.js also introduces distinctive programming features
that are expressed in the HopScript programming language, a multitier
extension of JavaScript. The Hop.js runtime embeds a multi-backends
HopScript compiler.

 The HopScript language extends JavaScript to consistently define
the server and client part of a web application. HopScript supports
syntactic forms that help creating HTML elements. It supports services
that enable function calls over HTTP. Being at higher level than
traditional Ajax programming, Hop.js services avoid the burden and
pitfalls of URL management and explicit data marshalling. They combine
the benefits of a high level RPC mechanism and low level HTTP
compatibility.

 Hop.js supports server-side and client-side parallelism. On the
server, it first relies on its built-in pipelining architecture that
automatically decodes HTTP requests in parallel. It also relies on
server-side web workers that programs may explicitly launch to perform
background tasks (functions and services). Each worker runs its own
system thread. The service invocation and execution API fully
integrates with the JavaScript execution flow, allowing synchronous and
asynchronous operations on both client and server processes. The
asynchronous response API can be combined with the worker API,
allowing processing and asynchronous service responses to be delegated
between workers. On the browser client-side parallelism relies on
standard web workers.

 Although Hop.js can be used to develop traditional web servers, it
is particularly adapted to the development of web applications
embedded into devices, where the server and client part of the
application are intimately interoperating with each other. The
programing model of Hop.js fosters the joint specification of server
and client code, and allows the rapid development of web user
interfaces, on the client, controlling the execution of the
distributed application. By defining a single data model, providing
functions that can run indifferently on both sides, and almost
forgetting about client-server protocols, Hop.js seems well suited for
agile development of web applications for this class of
applications.

 As an example, Hop.js has already been successfully used as the
core framework to develop embedded and cloud applications for
connected robots and IoT devices. In the context of a European
industrial collaborative project, it has been used by various
categories of programmers (mostly undergraduate internships, robotic
experts, and professional engineers familiar with web development
techniques) to build complex distributed applications, where various
sort of digital equipments (computers, robots, small devices)
communicate with each other, discover themselves, and collaborate. In
all cases we have observed an easy adoption from everyone. The tons of
JavaScript resources and examples available on the web helped
internship students to rapidly become productive. Robotic experts were
instantly able to start implementing Hop.js applications. Web experts
seemed to feel at home with Hop.js as it let them build working
applications with Hop.js core features and then extend them with
existing JavaScript third party modules, typically npm modules.

 In 2016, we first version of Hop.js as been completed and released.
It is available from the Web site http://hop.inria.fr.

 Web Reactive Programming

 Web UI interfaces are specified as HTML documents. When instantiated
in a browser these documents are accessible from JavaScript as
abstract data structures conforming to the Document Object Model
(aka the DOM). Modifying these structures, for instance for
applying updates, involves fine surgery for isolating the concerned
elements and for applying the intended modifications. As these
operations are generally triggered after asynchronous events that may
come in response to earlier network requests or a user actions, the
programming is complex and error prone. Improving on that situation
has been the subject of many previous studies that propose alternative
models for helping programming Web UI. Our work constitutes yet another
contribution to that problem. It differs from the other solutions by
the followings.

 	
 It addresses exclusively the problem of programming the Web UI updates.

 	
 It does not introduce a new programming model and it is fully
compatible with traditional JavaScript programming.

 	
 On the client, it only requires a very thin implementation layer whose
weight is almost unnoticed in a Web browser.

 	
 It does not impact the rest of the execution, leaving the performances
unchanged.

 Our proposal consists in introducing a zest of reactive programming
used only for denoting the parts of the DOM that need updates. For
that, we introduce two new constructs: i) reactive values, called
reactors, that have the appearance of any regular JavaScript
value, and ii) reactive nodes, which are DOM nodes that are
automatically updated upon reactors changes. Reactors and reactive
nodes can be used in pure JavaScript programs but that have been
designed to complement other facilities Hop.js. To justify their
design and to advocate their benefit, we show how they simplify the
programming of classical Web patterns. Let us consider a classical
example already detailed in the literature, a timer example, which
consists in a simple Web page defined by:

 var elapsedTime = 0;

 function doEverySecond() {

 elapsedTime++;

 document.getElementById("curTime")

 .innerHTML = elapsedTime; }

 <html>

 <script>setInterval(doEverySecond, 1000)</script>

 <button onclick="elapsedTime = 0">reset</button>

 <div id="curTime"></div>

 </html>

 Although simple and innocuous at first glance, this program suffers from
two major problems. First, the lack of modularity. The function
doEverySecond , that implements the timer, increments the wall
clock and updates the UI (via innterHTML attribute
assignment). Hence, it must be aware of all the elements that needs
update. This is problematic as a UI may evolve over time with some
elements removed and new elements added. Each evolution of the
specification will then impact doEverySecond implementation. The
second problem we address is the plumbing needed for extracting and
modifying the curTime element. In the pure JavaScript this
involves assigning and looking up unique identifiers (curTime
identifier). The reactors and reactive nodes we propose
solve these two problems.

 <html> ~{

 const T = hop.reactProxy({ elapsedTime: 0 });

 setInterval(() => { T.elapsedTime++ }, 1000);

 }

 <button onclick=~{T.elapsedTime=0}>reset</button>

 <div><react>~{T.elapsedTime}</react></div>

 </html>

 This Hop.js program solves the two problems previously mentioned. It
is modular as new reactive elements depending on the
elapsedTime can be added without modifying existing code. It
avoids tedious surgery of the HTML DOM as the react node
designates the node that need updates and its positioning in the UI.

 We have built a first operational prototypes of reactors and reactive
nodes. This work will be pursued in 2017. We will complete the
implementation in Hop.js by including them in Hop-3.1.0. We will write
a scientific paper describing their design and implementation.

 Hiphop.js

 Modern Web applications are rich in interactions between users and
servers. Those interactions are from different nature: search and play
music, book train or airplane tickets, query database or use an
interactive map. From the programmer point-of-view, those interactions
are handled by asynchronous events from multiple sources. Management
of those events, which is called orchestration, is done by using event
handlers. It is a mechanism that will call a specific function when a
specific event raises. This kind of orchestration doesn't scale well
since the behavior of the application has to be deduced by the
programmer. Synchronous languages like Esterel, which are used in the
industrial area, provides syntactic constructs that allow ordering the
temporal behavior of the application. Then, reading the program source
gives a precise idea of the behavior of the program at runtime.

 The HipHop.js contribution is to adapt the reactive constructs of
Esterel to the Web. The goal is to design a high-level tool that
simplifies the orchestration of Web applications. In the traditional
Esterel setting, the reactive program is written in a different source
file of the host program. It is compiled independently of the host
program. Therefore, the programmer must make explicit bindings between
the reactive program and the host program in order to allow both of
them to interact. This is inadequate for Web developments. So,
HipHop.js adopts a radically different point of view: the reactive
program is written in the same source code with the host program and
the interaction between the reactive program and the host program is
direct, thanks to a JavaScript API which is offered by the compilation
output of the reactive program. HipHop.js uses a XML syntax, where
each node corresponds to an Esterel instruction. This syntax has pros
and cons but we think its advantages dominate. First, it is familiar
to all Web developers, which do not have to learn a new
syntax. Second, it is overly simple to implement as Hop.js natively
supports XML parsing. Third, it gives macros for free as the XML syntax
can be mixed with standard JavaScript that can create and return
XML objects.

 The classical Esterel example of the synchronous community is
“ABRO”: a program which is waiting for two events in parallel. When
both events are raised, the host program is notified (here it pops a
window up). At any moment, the reactive program state can be reset, in
which case, the reactive program waits again for both events. For
the sake of illustration, we show here how to implement ABRO in HipHop.js
inside a Web page:

 <html> ~{

 var abro =

 <hh.module A B R O>

 <hh.loopeach R>

 <hh.parallel>

 <hh.await A/>

 <hh.await B/>

 </hh.parallel>

 <hh.atom apply=${function() {alert("ABRO")}}/>

 </hh.loopeach>

 </hh.module>

 var m = new hh.ReactiveMachine(abro);

 }

 <button onclick=~{m.inputAndReact("A")}>A</button>

 <button onclick=~{m.inputAndReact("B")}>B</button>

 <button onclick=~{m.inputAndReact("R")}>R</button>

 </html>

 Pushing the buttons “A” and “B” triggers the popup message which
contains "ABRO" in the browser page. In spite of its simplicity, the
ABRO example is representative of a wide class of real programs. For
instance, a program behaviorally similar to ABRO can be used to
download a file in several parts of different sources, and merge them
when all downloads are completed.

 The first HipHop.js version has been released this year. It is available
at the following URL
http://www-sop.inria.fr/members/Colin.Vidal/hiphop/.

 Garbage Collection with non ambiguous roots

 Hop uses lot of objets with short time life.

 Some Hop programs allocate many temporary objects whose lifetimes are very short.
These objects are unefficiently handled by this Mark&Sweep garbage collector that Hop currently uses.
We expect a speed-up by switching from a Mark&Sweep garbage collector to a generational Stop&Copy one.
Stop&Copy collectors demand that all roots of the accessibility graph have to be precisely known (non ambiguous root). We have changed the code generation of the compiler in order to maintain a precise map of the pointers living in the stack.

 Event calculus

 We have studied functions over streams of events (timed values) and more precisely those which have a temporal causality property: at every instant, current outputs only depends on inputs that have already been received [24]. We have found a clear characterization of causal functions and made some proofs with the Coq system [21].

 Section:
 New Results

 Privacy

 Participant :
	Nataliia Bielova.

 Hybrid Monitoring of Attacker knowledge

 Enforcement of noninterference requires proving that an attacker's knowledge
about the initial state
remains the same after observing a program's public output.
We have proposed a hybrid monitoring mechanism which dynamically evaluates
the knowledge that is contained in program variables [14].
To get a precise estimate of the knowledge, the monitor statically analyses
non-executed branches.
We show that our knowledge-based monitor can be combined with existing
dynamic monitors for non-interference. A distinguishing feature of
such a combination is that the combined monitor is provably more permissive than each
mechanism taken separately. We demonstrate this by proposing a
knowledge-enhanced version of a no-sensitive-upgrade (NSU) monitor.
The monitor and its static analysis have been formalized and
proved correct within the Coq proof assistant.

 Section:
 New Results

 Security

 Participants :
	Nataliia Bielova, Ilaria Castellani, Tamara Rezk, Dolière Francis Some.

 Security for multiparty session calculi

 In our previous work,
we investigated two security properties for multiparty session calculi:
access control and information flow security. We proposed
a type system ensuring both these properties. We also defined a monitored
semantics inducing a property that is strictly included between
typability and information flow security, which we called information flow safety.

 The article [5]
is an extended version of a previous workshop paper, which introduces refined
versions of the safety and security properties examined in that paper
and provides two additional results: compositionality of the refined
safety property, and the proof that this property is ensured by a
simplified version of the type system of [4].

 In [18], we argue that the security requirements
considered in previous work
could be overly restrictive in
some cases. In particular, a party is not allowed to communicate any
kind of public information after receiving a secret information. The
aim of [18] is to overcome this restriction, by
proposing a new type discipline for a multiparty session calculus,
which classifies messages according to their topics and allows
unrestricted sequencing of messages on independent topics.

 Security for dynamic and adaptable systems

 We have started to study security issues in the context of dynamically
evolving communicating systems, namely systems which are able to adapt
themselves in reaction to particular events, arising in the system
itself or in its environment. When focussing on security, examples of
such events are security attacks or changes in security policies.

 The paper [11]
investigates a simple session calculus in
which self-adaptation and security concerns may be jointly
addressed. In this calculus, security violations occur when processes
attempt to read or write messages of inappropriate security level
within a session. Such violations trigger adaptation mechanisms that
prevent the violations to propagate their effect in the remainder of
the session, while allowing the computation to proceed. More
specifically, our calculus is equipped with a monitored semantics
based on session types, which activates local and global adaptation
mechanisms for reacting respectively to soft and hard security
violations. We present type soundness results that ensure that the
overall protocol is still correctly executed after the application of
these mechanisms.

 Information Flow Monitoring

 The dynamic aspects of JavaScript make the security analysis of web
applications very challenging. Purely static analysis is
prohibitively restrictive in practice since it must exclude JavaScript
dynamic aspects or over-approximate them. In recent years, several
dynamic enforcement mechanisms in the form of information flow
monitors have been proposed. In order to better evaluate the
currently available information flow monitors trade-offs, our
contribution is to rigorously compare
them [16]. We compare them with respect to two
important dimensions according to the runtime monitor literature:
soundness and transparency. We analyse five widely explored
information flow monitor techniques: no-sensitive-upgrade,
permissive-upgrade, hybrid monitors, secure multi execution, and
multiple facets. Furthermore, we formally prove that the generalised
belief in the equivalence of two of these approaches, secure
multi-execution and multiple facets, is false [17].

 Quantitative information flow measures

 A number of measures for quantifying information
leakage of a program have been proposed.
Most of these measures evaluate a program as a whole by quantifying
how much information can be leaked on average by different
program outputs. While these measures perfectly fit for static program
analyses, they cannot be used by dynamic analyses since
they do not specify what information an attacker learns
through observing one concrete program output.

 In this work, we study the existing definitions of quantitative information
flow [15].
Our goal is to find the definition of dynamic leakage –
it should evaluate how much information
an attacker learns when she observes one program output.
Surprisingly, we find out that none of the existing definitions
provide a suitable measure for dynamic leakage.
We hence open a new research question in quantitative
information flow area: which definition of dynamic leakage
is suitable?

 Access control and capability systems

 Motivated by the problem of understanding the
difference between practical access control and capability
systems formally, we distill the essence of both in a language-based setting [19]. We first prove that access control systems and
(object) capabilities are fundamentally different. We further
study capabilities as an enforcement mechanism for confused
deputy attacks (CDAs), since CDAs may have been the primary
motivation for the invention of capabilities. To do this, we
develop the first formal characterization of CDA-freedom in
a language-based setting and describe its relation to standard
information flow integrity. We show that, perhaps suprisingly,
capabilities cannot prevent all CDAs. Next, we stipulate restrictions on programs under which capabilities ensure CDA-
freedom and prove that the restrictions are sufficient. To relax
those restrictions, we examine provenance semantics as sound
CDA-freedom enforcement mechanisms.

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization
	Transfer

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific Events Organisation

 General Chair, Scientific Chair

 	
 Ilaria Castellani co-organised (with Mohammad Reza Mousavi) the workshop TRENDS
2016, which took place in Québec City in association with the
CONCUR conference.

 Member of the Organizing Committees

 	
 Ilaria Castellani participated in the organisation of the 2nd Summer School of the
BETTY project, which took place in Cyprus.

 Scientific Events Selection

 Member of the Conference Program Committees

 	
 Ilaria Castellani served in the programme committee of the workshop EXPRESS/SOS 2016.

 	
 Tamara Rezk served in the programme committee of POST, SEC@SAC, PLAS, IEEE SecDev, and APLAS 2016.

 Reviewer

 The team members have been reviewers for
FSTJCS conference, SEC@SAC conference,
USENIX Security 2016, POST 2016, NDSS 2016, and CCS 2016.

 Journal

 Member of the Editorial Boards

 	
 Ilaria Castellani is a member of the editorial board of the french
journal Technique et Science Informatiques.

 	
 Tamara Rezk is a member of the editorial board of the french journal Interstices.

 Reviewer - Reviewing Activities

 The team members have been reviewers for the international
journals JLAMP (Journal of of Logical and Algebraic Methods in
Programming), LMCS (Logical Methods in Computer Science),
International Journal of Information Security (IJIS), EEE TDCS, and ACM TISSEC.

 Invited Talks

 Manuel Serrano gave a presentation on
"Diffuse Web programming" at The Open Source
Innovation Spring 2016 (http://open-source-innovation-spring.org/techniques-de-programmation-web-letat-de-lart-date-conf/).

 Nataliia Bielova has been invited to give a talk on Price discrimination of Online Airline Tickets at the Collaborative Action on the Protection of Privacy Rights in the Information Society (CAPRIS) project meeting, Sophia Antipolis, France.

 Leadership within the Scientific Community

 	
 Ilaria Castellani is the chair of the IFIP TC1 WG 1.8 on Concurrency Theory since May
2014. In this quality, she co-organises every year (together with the
WG Secretary Mohammad Reza Mousavi) the annual business meeting of the
working group as well as the workshop TRENDS, which is always
affiliated with the CONCUR conference. Ilaria Castellani was a member of the
european COST Action IC1201 BETTY on Behavioural Types (October
2012-October 2016). She also belonged to the Management Committee of
BETTY and was the chair of its working group on security. Ilaria Castellani is a member of the COST Action IC1405 on
Reversible Computation (November 2014-November 2018). She is also a
deputy Management Committee member of this action.

 	
 Nataliia Bielova has co-organised a Dagstuhl Seminar on Online Privacy and Web Transparency (https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=17162) with researchers from Telefonica (Spain), Stony Brook University (USA) and Princeton University (USA).

 	
 Nataliia Bielova is a member of the W3C Tracking Protection Working Group. This group works towards creating a “DoNotTrack” specification. Its goal is to help users express their preferences on third-party tracking and help companies ensure their compliance with the specification.

 Scientific Expertise

 During 2016, Tamara Rezk has been an international research proposal evaluator for the following research agencies:
Ministerio de Ciencia y Tecnología e Innovación Productiva (Foncyt, Argentina), Executive Agency for Higher Education, Research, Development and Innovation
Funding (UEFISCDI, Romania).

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Licence : Vincent Prunet, Algorithms and Data Structures, 8 ETD, L2, Lycée International de Valbonne Sophia Antipolis (within the scope of the national Inria action to promote early CS courses in all scientific curricula), France

 	
 Master : Nataliia Bielova, Information Flow Security in Web Applications, 15 ETD, University of Pierre et Marie Curie, France

 	
 Master : Tamara Rezk, Web Application Security, 28H ETD, University of Nice Sophia Antipolis, France

 	
 Master : Tamara Rezk, Proofs of Cryptography, 28H ETD, University of Nice Sophia Antipolis, France

 	
 Master : Tamara Rezk, Information Flow Security in Web Applications, 15 ETD, University of Pierre et Marie Curie, France

 Supervision

 	
 PhD in progress :
Colin Vidal, Programmation Web
réactive, University of Nice, 1/07/2015, Manuel Serrano and
Gérard Berry.

 	
 PhD in progress :
Dolière Francis Some, Web Tracking Prevention, University of Nice, 1/11/2015, Nataliia Bielova and
Tamara Rezk.

 	
 PFE Master in progress: Leila Kuntar, Analysis of web tracking technologies that use 1x1 pixel image, University of Nice, Nataliia Bielova

 Juries

 	
 Nataliia Bielova was an examiner of the PhD thesis of Willem De Groef, KU Leuven, Belgium.

 	
 Ilaria Castellani was a member of the
“Comité de sélection
“ for a position of
Maître de conférences at the University of Paris Diderot (Paris 7),
IRIF Laboratory.

 	
 Ilaria Castellani was a reviewer of the PhD thesis of Saverio Giallorenzo, University of Bologna. She took part in the jury of this PhD thesis, as well as of ten other PhD theses defended in the same round.

 	
 Ilaria Castellani was an examiner for the PhD thesis of Aurélien Deharbe, Université Pierre et Marie Curie (Paris 6).

 	
 Tamara Rezk was an examiner of the PFE juries for Security and Privacy and Mobile Cloud and IoT at Univesity of Nice Sophia Antipolis.

 	
 Manuel Serrano was an examiner of the PhD thesis of Rabah Laouadi, Université
de Montpellier.

 	
 Manuel Serrano was an examiner of the PhD thesis of Julien Pagès, Université
de Montpellier.

 Section:
 Dissemination

 Popularization

 	
 Web users are continuously tracked as they browse the Web. One of the techniques for tracking is device fingerprinting that distinguishes users based on their Web browser and operating system properties. Together with Inria Celtique team, we have proposed solutions to detect and prevent device fingerprinting via runtime monitoring of JavaScript programs.
We have published an article in a general public ERCIM News
magazine (http://ercim-news.ercim.eu/en106/special/using-javascript-monitoring-to-prevent-device-fingerprinting)
about prevention of device fingerprinting via program monitoring [10].

 	
 We have implemented the WebStats
website (http://webstats.inria.fr/). This website collects, on a monthly basis,
a number of JavaScript and security statistics about top 10 000 webpages:
the usage of popular JavaScript libraries; the usage of different language constructs
in these libraries; use of Content Security Policies and secure cookies, etc. The WebStats
website can be used by programmers (to understand which
JavaScript libraries are more popular),
researchers in programming languages (when designing a subset
of JavaScript, to safely exclude the language constructs that are rarely used according
to WebStats), and researchers in privacy (to analyse which tracking libraries are
the most prevalent).

 Section:
 Dissemination

 Transfer

 WebRobotics

 The WebRobotics initiative aims at developing collaborations with
partner academic and industry teams to jointly prototype and
experiment end user applications involving assistive robots and sensor
devices (depending on the size and number of the embedded components,
applications may be either classified as robotic or IoT ones). Each
WebRobotics project is structured around partner medical institutions
that provide key requirements to specifications and use the actual
prototype throughout their daily activity. WebRobotics Applications
all use Hop.js as their core framework, natively supporting web
protocols for communication and distribution of tasks, and any web
enabled device such as a smartphone or tablet to drive the robots and
applications. In 2016, the initiative accounted to two full time
engineers until the completion of the project, mid year.

 The Top Three Benefits of WebRobotics:

 	
 WebRobotics focuses on key societal issues, developing real applications for demanding users.

 	
 Application developers and users feedback to Hop.js framework developers, helping identify and prioritize key requirements.

 	
 The WebRobotics application portfolio fosters the dissemination and transfer of the Hop.js technology to the Industry.

 The WebRobotics initiative now encompasses several prototypes in use by medical foundations and hospitals.

 	
 RAPP. The WebRobotics project is part of the RAPP FP7 european
project, to be completed in December 2016, where Hop.js technology
is used by several academic and SME R&D teams to develop a
distributed software platform and applications for assistive
robotics. Two prototypes have been developed, the first one is a
personal coach robot (a Nao humanoid robot embedding Hop.js
distributed applications), and the second one is a smart rollator (a
walking aid with additional hardware and software services for
rehabilitation, training and activity monitoring. The rollator
hardware and robotic components are provided by Inria
Hephaistos). Both prototypes are being evaluated by partner medical
institutions.

 	
 Hopcare. Indes collaborates with other research teams (Inria STARS, Nice University Cobtek Project) and local institutes and SMEs to foster the development
distributed monitoring and supervision applications with the Hop.js
technology. An expert engineer is dedicated to this project (grant
from UCN@Sophia Labex, until April 2016).

 	
 ICP (Institut Claude Pompidou Hospital, in Nice) is now using the Alzheimer diagnosis tool developed using Hop.js. User Data generated from Inria/Stars sensors and image analysis software are
collected by a Hop.js server and processed before being delivered to the Physician's web tablet, as an editable web report, or paper ready PDF reports.

 	
 The activity monitoring application enables real-time monitoring of various events generated by hardware/software monitoring tools (such as the video monitoring applications from Inria/Stars) as
well as user defined events. Hop.js is the common framework for the whole application (communications with remote information servers, processing of input data, database management, user authentication
and authorization, custom views for web clients). The application will soon be deployed at the Nice Valrose EHPAD (a specialized institution for elderly who need medical care), where Inria runs an
experimentation lab.

 	
 A third application has been developed to enable the configuration and use of Inria/Stars video analysis tools through a web interface. The application is used by researchers to tune their data
processing algorithms.

 Hop.js for IoT

 As more and more software developers come to IoT, teams are facing
critical challenges due to the inherent complexity of multi-platform
distributed development, leading to team building issues, long and
costly development cycles to deliver products with the highest
quality, usability, and security standards

 The Hop.js software suite enables agile software teams to build
flexible, robust and secure end-to-end IoT applications with a single
language and a consistent set of API and built-in software components.

 Building on the Hop.js technology and the successful WebRobotics
experiments, a startup project has been launched in 2016 as a spin-off
of the Indes team, with the support of Inria DGD-T, funding two
engineers from July 2016.

 The team has initiated partnerships with IoT hardware vendors, adapted
Hop.js to highly constrained execution environments on
microcontrollers, and participated to a number of public and business events to
promote the solution and meet future customers. The startup company
is expected to launch in 2017.

 Bibliography

 Major publications by the team in recent years

 	[1]

 	G. Barthe, T. Rezk, A. Russo, A. Sabelfeld.
Security of Multithreaded Programs by Compilation, in: ESORICS, 2007, pp. 2-18.

 	[2]

 	G. Boudol, I. Castellani.
Noninterference for Concurrent Programs and Thread Systems, in: Theoretical Computer Science, 2002, vol. 281, no 1, pp. 109-130.

 	[3]

 	G. Boudol, Z. Luo, T. Rezk, M. Serrano.
Reasoning about Web Applications: An Operational Semantics for HOP, in: ACM Transactions on Programming Languages and Systems (TOPLAS), 2012, vol. 34, no 2.

 	[4]

 	S. Capecchi, I. Castellani, M. Dezani-Ciancaglini.
Typing access control and secure information flow in sessions, in: Journal of Information and Computation, 2014, vol. 238, pp. 68 - 105. [
DOI : 10.1016/j.ic.2014.07.005]
https://hal.inria.fr/hal-01088782

 	[5]

 	S. Capecchi, I. Castellani, M. Dezani-Ciancaglini.
Information Flow Safety in Multiparty Sessions, in: Mathematical Structures in Computer Science, 2015, vol. 26, no 8, 43 p. [
DOI : 10.1017/S0960129514000619]
https://hal.inria.fr/hal-01237236

 	[6]

 	C. Fournet, T. Rezk.
Cryptographically sound implementations for typed information-flow security, in: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008, 2008, pp. 323-335.

 	[7]

 	M. Serrano, G. Berry.
Multitier Programming in Hop - A first step toward programming 21st-century applications, in: Communications of the ACM, August 2012, vol. 55, no 8, pp. 53–59. [
DOI : 10.1145/2240236.2240253]
http://cacm.acm.org/magazines/2012/8/153796-multitier-programming-in-hop/abstract

 	[8]

 	M. Serrano, E. Gallesio, F. Loitsch.
HOP, a language for programming the Web 2.0, in: Proceedings of the First Dynamic Languages Symposium, Portland, Oregon, USA, October 2006.

 	[9]

 	M. Serrano.
Bee: an Integrated Development Environment for the Scheme Programming Language, in: Journal of Functional Programming, May 2000, vol. 10, no 2, pp. 1–43.

 Publications of the year

 Articles in International Peer-Reviewed Journals

 	[10]

 	N. Bielova, F. Besson, T. Jensen.
Using JavaScript Monitoring to Prevent Device Fingerprinting, in: ERCIM News, July 2016.
https://hal.inria.fr/hal-01353997

 	[11]

 	I. Castellani, M. Dezani-Ciancaglini, J. A. Perez.
Self-adaptation and secure information flow in multiparty communications, in: Formal Aspects of Computing, 2016, vol. 28, no 4, 28 p. [
DOI : 10.1007/s00165-016-0381-3]
https://hal.inria.fr/hal-01354906

 	[12]

 	Z. Luo, J. Fragoso Santos, A. Almeida Matos, T. Rezk.
Mashic compiler: Mashup sandboxing based on inter-frame communication, in: Journal of Computer Security, 2016. [
DOI : 10.3233/JCS-160542]
https://hal.inria.fr/hal-01353966

 	[13]

 	S. E. Reppou, E. G. Tsardoulias, A. M. Kintsakis, A. L. Symeonidis, P. A. Mitkas, F. E. Psomopoulos, G. T. Karagiannis, C. Zelienski, V. Prunet, J.-P. Merlet, M. Iturburu, A. Gkiokas.
RAPP: A Robotic-Oriented Ecosystem for Delivering Smart User Empowering Applications for Older People, in: International Journal of Social Robotics, June 2016. [
DOI : 10.1007/s12369-016-0361-z]
https://hal.inria.fr/hal-01336250

 International Conferences with Proceedings

 	[14]

 	F. Besson, N. Bielova, T. Jensen.
Hybrid Monitoring of Attacker Knowledge, in: 29th IEEE Computer Security Foundations Symposium, Lisboa, Portugal, 2016.
https://hal.inria.fr/hal-01310572

 	[15]

 	N. Bielova.
Dynamic leakage - a need for a new quantitative information flow measure, in: Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security, Vienna, Austria, October 2016, pp. 83-88. [
DOI : 10.1145/2993600.2993607]
https://hal.inria.fr/hal-01409706

 	[16]

 	N. Bielova, T. Rezk.
A Taxonomy of Information Flow Monitors, in: International Conference on Principles of Security and Trust (POST 2016), Eindhoven, Netherlands, F. Piessens, L. Viganò (editors), LNCS - Lecture Notes in Computer Science, Springer, April 2016, vol. 9635, pp. 46–67. [
DOI : 10.1007/978-3-662-49635-0_3]
https://hal.inria.fr/hal-01348188

 	[17]

 	N. Bielova, T. Rezk.
Spot the Difference: Secure Multi-Execution and Multiple Facets, in: European Symposium on Research in Computer Security (ESORICS), Heraklion, Greece, September 2016.
https://hal.inria.fr/hal-01348192

 	[18]

 	I. Castellani, M. Dezani-Ciancaglini, U. De'Liguoro.
Secure Multiparty Sessions with Topics, in: PLACES 2016, Eindhoven, Netherlands, Proceedings of the 9th workshop on Programming Language Approaches to Concurrency and Communication-cEntric Software, PLACES 2016, Eindhoven, The Netherlands, 8th April 2016., Dominic A. Orchard and Nobuko Yoshida, April 2016, vol. 211, 12 p. [
DOI : 10.4204/EPTCS.211.1]
https://hal.inria.fr/hal-01354905

 	[19]

 	V. Rajani, D. Garg, T. Rezk.
On Access Control, Capabilities, Their Equivalence, and Confused Deputy Attacks, in: Computer Security Foundations, Lisbon, Portugal, June 2016. [
DOI : 10.1109/CSF.2016.18]
https://hal.inria.fr/hal-01353963

 	[20]

 	M. Serrano, V. Prunet.
A Glimpse of Hopjs, in: International Conference on Functional Programming (ICFP), Nara, Japan, ACM, September 2016, 12 p. [
DOI : 10.1145/2951913.2951916]
https://hal.inria.fr/hal-01350936

 National Conferences with Proceedings

 	[21]

 	B. P. Serpette, D. Janin.
Causalité dans les calculs d'événements, in: JFLA 2017 - Vingt-huitième Journées Francophones des Langages Applicatifs, Gourette, France, January 2017.
https://hal.inria.fr/hal-01403369

 Scientific Books (or Scientific Book chapters)

 	[22]

 	M. Serrano.
The Computer Scientist Nightmare: My Favorite Bug, in: A List of Successes That Can Change the World : Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, Lecture Notes on Computer Science, Springer, April 2016, vol. 9600, pp. 356-366.
https://hal.archives-ouvertes.fr/hal-01340384

 Books or Proceedings Editing

 	[23]

 	M. Serrano, J. Hage (editors)
Trends in Functional Programming (TFP 2015): Revised Selected Papers, Lecture Notes on Computer Science, Springer Verlag, Sophia Antipolis, France, February 2016, vol. 9547, 156 p. [
DOI : 10.1007/978-3-319-39110-6]
https://hal.inria.fr/hal-01354237

 Internal Reports

 	[24]

 	D. Janin, B. P. Serpette.
Timed Denotational Semantics for Causal Functions over Timed Streams, LaBRI - Laboratoire Bordelais de Recherche en Informatique, November 2016.
https://hal.archives-ouvertes.fr/hal-01402209

 	[25]

 	B. P. Serpette.
Logical semantics of Esterel with unconstrained local signals, Inria Sophia Antipolis - Méditerranée, August 2016, no RR-8942.
https://hal.archives-ouvertes.fr/hal-01351005

 	[26]

 	B. P. Serpette.
Using counters for absence prediction in Esterel, Inria Sophia Antipolis - Méditerranée, July 2016, no RR-8941, 18 p.
https://hal.inria.fr/hal-01226760

 OEBPS/uid52.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 FP7 & H2020 Projects

 RAPP

 		
 Program: http://rapp-project.eu

 		
 Title: Robot App Store

 		
 Collaborator: Inria Hephaistos

 		
 Abstract: RAPP is a 36 months pan-european FP7 project,
started in December 2013. Hop.js technology is used by partner
academic and SME R&D teams to develop a distributed software
platform and applications for assistive robotics.

 Collaborations in European Programs, Except FP7 & H2020

 ICT Cost Action IC1201 BETTY

 		
 Program:BETTY

 		
 Project acronym: BETTY

 		
 Project title: Behavioural Types for Reliable Large-Scale Software
Systems

 		
 Duration: October 2012 - October 2016

 		
 Coordinator:Simon Gay, University of Glasgow

 		
 Other partners: several research groups, belonging to 22 european countries

 		
 Abstract: The aim of BETTY is to investigate and promote behavioural type theory
as the basis for new foundations, programming languages, and software
development methods for communication-intensive distributed
systems. Behavioural type theory encompasses concepts such as
interfaces, communication protocols, contracts, and choreography.

 ICT Cost Action IC1405 on Reversible Computation

 		
 Program: COST

 		
 Project acronym: RC

 		
 Project title: Reversible computation - extending horizons of computing

 		
 Duration: November 2014 - November 2018

 		
 Coordinator: Irek Ulidowski, University of Leicester

 		
 Other partners: several research groups, belonging to 23 european
countries

 		
 Abstract: Reversible computation is an emerging paradigm that extends the
standard mode of computation with the ability to execute in
reverse. It aims to deliver novel computing devices and software, and
to enhance traditional systems. The potential benefits include the
design of reversible logic gates and circuits - leading to low-power
computing and innovative hardware for green ICT, new conceptual
frameworks and language abstractions, and software tools for reliable
and recovery-oriented distributed systems. This is the first European
network of excellence aimed at coordinating research on reversible
computation.

 Bilateral PICS project SuCCeSS

 		
 Program: PICS

 		
 Project acronym: SuCCeSS

 		
 Project title: Security, Adaptability and time in Communication

 		
 Duration: June 2016 - June 2019

 		
 Coordinator: Cinzia Di Giusto, I3S, Sophia Antipolis

 		
 Other partners: I3S, University of Gröningen

 		
 Abstract: The project SuCCeSS is a CNRS-funded “Projet coopératif” (PICS
07313), involving 2 French teams in Sophia Antipolis (the MDSC team at
the laboratory I3S, acting as coordinator, and the INDES team) and one
Dutch team at the University of Gröningen. The project started in
June 2016 and is due to end in June 2019. The objective of the project
is to study formal models for reliable distributed
communication-centric software systems. The project focusses on
analysis and validation techniques based on behavioural types, aimed
at enforcing various properties (safety, liveness, security) of
structured communications.

OEBPS/contrats.html

OEBPS/international.html

OEBPS/domaine.html

OEBPS/uid84.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits of International Scientists

 Internships

 		
 Raimil Cruz

 		
 Date: 01/05/16 - 30/07/16

 		
 Institution: University of Chile

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/highlights.html

OEBPS/uid48.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 ANR AJACS

 The AJACS project (Analyses of JavaScript Applications: Certification
& Security) is by the ANR for 42 months, starting
December 2014. The goal of AJACS project is to provide strong security
and privacy guarantees on the client side for web application scripts.
The Indes members are involved in the tasks WP2 Certified Analyses and
WP3 Security of JavaScript Applications. The partners of this project
include Inria teams Celtique (coordinator), Toccata, and Prosecco.

 FUI UCF

 The 3 years long UCF project aims at developing a reactive Web
platforms for delivering multimedia contents. The partners of the
project are the startups Alterway, OCamlPro, and XWiki, and the
academic research laboratories of University Pierre et Marie Curie, and
Denis Diderot.

 Actions marquante

 Inria Sophia-Antipolis Actions Marquante is a special funding for 2 postdocs during one year
to explore a new research direction. The joint project with DIANA team
“User discrimination on the Web: measurement, causation and prevention”
has obtained this funding.
The goal of this project is to detect when users get discriminated on the Web,
what are the technologies used to discriminate users and how we can prevent
it without breaking the functionality and sometimes useful personalisation within
Web applications.

OEBPS/IMG/iTunesArtwork.png
Activity Report 2016
Project-Team Indes

Secure Diffuse
Programming

