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Creation of the Project-Team: 2009 July 01
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2. Overall Objectives

2.1. Overall Objectives
The Parietal team focuses on mathematical methods for modeling and statistical inference based on neu-
roimaging data, with a particular interest in machine learning techniques and applications of human functional
imaging. This general theme splits into four research axes:

• Modeling for neuroimaging population studies,

• Encoding and decoding models for cognitive imaging,

• Statistical and machine learning methods for large-scale data,

• Compressed-sensing for MRI.

Parietal is also strongly involved in open-source software development in scientific Python (machine learning)
and for neuroimaging applications.
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3. Research Program

3.1. Inverse problems in Neuroimaging
Many problems in neuroimaging can be framed as forward and inverse problems. For instance, brain
population imaging is concerned with the inverse problem that consists in predicting individual information
(behavior, phenotype) from neuroimaging data, while the corresponding forward problem boils down to
explaining neuroimaging data with the behavioral variables. Solving these problems entails the definition of
two terms: a loss that quantifies the goodness of fit of the solution (does the model explain the data well enough
?), and a regularization scheme that represents a prior on the expected solution of the problem. These priors
can be used to enforce some properties on the solutions, such as sparsity, smoothness or being piece-wise
constant.
Let us detail the model used in typical inverse problem: Let X be a neuroimaging dataset as an
(nsubjects, nvoxels) matrix, where nsubjects and nvoxels are the number of subjects under study, and
the image size respectively, Y a set of values that represent characteristics of interest in the observed
population, written as (nsubjects, nfeatures) matrix, where nfeatures is the number of characteristics that are
tested, and β an array of shape (nvoxels, nfeatures) that represents a set of pattern-specific maps. In the first
place, we may consider the columns Y1, ..,Ynfeatures

of Y independently, yielding nfeatures problems to be
solved in parallel:

Yi = Xβi + εi,∀i ∈ {1, .., nfeatures},

where the vector contains βi is the ith row of β. As the problem is clearly ill-posed, it is naturally handled in
a regularized regression framework:

β̂i = argminβi
‖Yi −Xβi‖2 + Ψ(βi), (1)

where Ψ is an adequate penalization used to regularize the solution:

Ψ(β;λ1, λ2, η1, η2) = λ1‖β‖1 + λ2‖β‖2 + η1‖∇β‖2,1 + η2‖∇β‖2,2 (2)

with λ1, λ2, η1, η2 ≥ 0 (this formulation particularly highlights the fact that convex regularizers are norms or
quasi-norms). In general, only one or two of these constraints is considered (hence is enforced with a non-zero
coefficient):

• When λ1 > 0 only (LASSO), and to some extent, when λ1, λ2 > 0 only (elastic net), the optimal
solution β is (possibly very) sparse, but may not exhibit a proper image structure; it does not fit well
with the intuitive concept of a brain map.

• Total Variation regularization (see Fig. 1) is obtained for (η1 > 0 only), and typically yields a piece-
wise constant solution. It can be associated with Lasso to enforce both sparsity and sparse variations.

• Smooth lasso is obtained with (η2 > 0 and λ1 > 0 only), and yields smooth, compactly supported
spatial basis functions.

Note that, while the qualitative aspect of the solutions are very different, the predictive power of these models
is often very close.

The performance of the predictive model can simply be evaluated as the amount of variance in Yi fitted by
the model, for each i ∈ {1, .., nfeatures}. This can be computed through cross-validation, by learning β̂i on
some part of the dataset, and then estimating ‖Yi −Xβ̂i‖2 using the remainder of the dataset.
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Figure 1. Example of the regularization of a brain map with total variation in an inverse problem. The problem here
is to predict the spatial scale of an object presented as a stimulus, given functional neuroimaging data acquired

during the presentation of an image. Learning and test are performed across individuals. Unlike other approaches,
Total Variation regularization yields a sparse and well-localized solution that also enjoys high predictive accuracy.

This framework is easily extended by considering

• Grouped penalization, where the penalization explicitly includes a prior clustering of the features, i.e.
voxel-related signals, into given groups. This amounts to enforcing structured priors on the problem
solution.

• Combined penalizations, i.e. a mixture of simple and group-wise penalizations, that allow some vari-
ability to fit the data in different populations of subjects, while keeping some common constraints.

• Logistic and hinge regression, where a non-linearity is applied to the linear model so that it yields a
probability of classification in a binary classification problem.

• Robustness to between-subject variability to avoid the learned model overly reflecting a few outlying
particular observations of the training set. Note that noise and deviating assumptions can be present
in both Y and X

• Multi-task learning: if several target variables are thought to be related, it might be useful to constrain
the estimated parameter vector β to have a shared support across all these variables.
For instance, when one of the variables Yi is not well fitted by the model, the estimation of other
variables Yj , j 6= i may provide constraints on the support of βi and thus, improve the prediction of
Yi.

Y = Xβ + ε, (3)

then

β̂ = argminβ=(βi),i=1..nf

nf∑
i=1

‖Yi −Xβi‖2 + λ

nvoxels∑
j=1

√√√√ nf∑
i=1

β2
i,j (4)
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3.2. Multivariate decompositions
Multivariate decompositions provide a way to model complex data such as brain activation images: for
instance, one might be interested in extracting an atlas of brain regions from a given dataset, such as regions
exhibiting similar activity during a protocol, across multiple protocols, or even in the absence of protocol
(during resting-state). These data can often be factorized into spatial-temporal components, and thus can be
estimated through regularized Principal Components Analysis (PCA) algorithms, which share some common
steps with regularized regression.
Let X be a neuroimaging dataset written as an (nsubjects, nvoxels) matrix, after proper centering; the model
reads

X = AD + ε, (5)

where D represents a set of ncomp spatial maps, hence a matrix of shape (ncomp, nvoxels), and A the
associated subject-wise loadings. While traditional PCA and independent components analysis are limited
to reconstructing components D within the space spanned by the column of X, it seems desirable to add some
constraints on the rows of D, that represent spatial maps, such as sparsity, and/or smoothness, as it makes
the interpretation of these maps clearer in the context of neuroimaging. This yields the following estimation
problem:

minD,A‖X−AD‖2 + Ψ(D) s.t. ‖Ai‖ = 1 ∀i ∈ {1..nfeatures}, (6)

where (Ai), i ∈ {1..nfeatures} represents the columns of A. Ψ can be chosen such as in Eq. (2) in order to
enforce smoothness and/or sparsity constraints.
The problem is not jointly convex in all the variables but each penalization given in Eq (2) yields a convex
problem on D for A fixed, and conversely. This readily suggests an alternate optimization scheme, where D
and A are estimated in turn, until convergence to a local optimum of the criterion. As in PCA, the extracted
components can be ranked according to the amount of fitted variance. Importantly, also, estimated PCA models
can be interpreted as a probabilistic model of the data, assuming a high-dimensional Gaussian distribution
(probabilistic PCA).

Utlimately, the main limitations to these algorithms is the cost due to the memory requirements: holding
datasets with large dimension and large number of samples (as in recent neuroimaging cohorts) leads to
inefficient computation. To solve this issue, online method are particularly attractive.

3.3. Covariance estimation
Another important estimation problem stems from the general issue of learning the relationship between sets
of variables, in particular their covariance. Covariance learning is essential to model the dependence of these
variables when they are used in a multivariate model, for instance to study potential interactions between
variables. Covariance learning is necessary to model latent interactions in high-dimensional observation
spaces, e.g. when considering multiple contrasts or functional connectivity data.
The difficulties are two-fold: on the one hand, there is a shortage of data to learn a good covariance model from
an individual subject, and on the other hand, subject-to-subject variability poses a serious challenge to the use
of multi-subject data. While the covariance structure may vary from population to population, or depending
on the input data (activation versus spontaneous activity), assuming some shared structure across problems,
such as their sparsity pattern, is important in order to obtain correct estimates from noisy data. Some of the
most important models are:

• Sparse Gaussian graphical models, as they express meaningful conditional independence relation-
ships between regions, and do improve conditioning/avoid overfit.
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• Decomposable models, as they enjoy good computational properties and enable intuitive interpre-
tations of the network structure. Whether they can faithfully or not represent brain networks is still
an open question.

• PCA-based regularization of covariance which is powerful when modes of variation are more
important than conditional independence relationships.

Adequate model selection procedures are necessary to achieve the right level of sparsity or regularization in
covariance estimation; the natural evaluation metric here is the out-of-samples likelihood of the associated
Gaussian model. Another essential remaining issue is to develop an adequate statistical framework to test
differences between covariance models in different populations. To do so, we consider different means of
parametrizing covariance distributions and how these parametrizations impact the test of statistical differences
across individuals.

Figure 2. Example of functional connectivity analysis: The correlation matrix describing brain functional
connectivity in a post-stroke patient (lesion volume outlined as a mesh) is compared to a group of control subjects.

Some edges of the graphical model show a significant difference, but the statistical detection of the difference
requires a sophisticated statistical framework for the comparison of graphical models.

4. Application Domains

4.1. Cognitive neuroscience
4.1.1. Macroscopic Functional cartography with functional Magnetic Resonance Imaging

(fMRI)
The brain as a highly structured organ, with both functional specialization and a complex newtork organi-
zation. While most of the knowledge historically comes from lesion studies and animal electophysiological
recordings, the development of non-invasive imaging modalities, such as fMRI, has made it possible to study
routinely high-level cognition in humans since the early 90’s. This has opened major questions on the in-
terplay between mind and brain , such as: How is the function of cortical territories constrained by anatomy
(connectivity) ? How to assess the specificity of brain regions ? How can one characterize reliably inter-subject
differences ?

4.1.2. Analysis of brain Connectivity
Functional connectivity is defined as the interaction structure that is underlies brain function. Since the
beginning of fMRI, it has been observed that remote regions sustain high correlation in their spontaneous
activity, i.e. in the absence of a driving task. This means that the signals observed during resting-state define
a signature of the connectivity of brain regions. The main interest of retsing-state fMRI is that it provides
easy-to-acquire functional markers that have recently been proved to be very powerful for population studies.
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4.1.3. Modeling of brain processes (MEG)
While fMRI has been very useful in defining the function of regions at the mm scale, Magneto-
encephalography (MEG) provides the other piece of the puzzle, namely temporal dynamics of brain
activity, at the ms scale. MEG is also non-invasive. It makes it possible to keep track of precise schedule of
mental operations and their interactions. It also opens the way toward a study of the rythmic activity of the
brain. On the other hand, the localization of brain activity with MEG entails the solution of a hard inverse
problem.

5. New Software and Platforms
5.1. Mayavi

FUNCTIONAL DESCRIPTION

Mayavi is the most used scientific 3D visualization Python software. Mayavi can be used as a visualization
tool, through interactive command line or as a library. It is distributed under Linux through Ubuntu, Debian,
Fedora and Mandriva, as well as in PythonXY and EPD Python scientific distributions. Mayavi is used
by several software platforms, such as PDE solvers (fipy, sfepy), molecule visualization tools and brain
connectivity analysis tools (connectomeViewer).
• Contact: Gaël Varoquaux
• URL: http://mayavi.sourceforge.net/

5.2. Nilearn
NeuroImaging with scikit learn
KEYWORDS: Health - Neuroimaging - Medical imaging
FUNCTIONAL DESCRIPTION

NiLearn is the neuroimaging library that adapts the concepts and tools of scikit-learn to neuroimaging
problems. As a pure Python library, it depends on scikit-learn and nibabel, the main Python library for
neuroimaging I/O. It is an open-source project, available under BSD license. The two key components of
NiLearn are i) the analysis of functional connectivity (spatial decompositions and covariance learning) and ii)
the most common tools for multivariate pattern analysis. A great deal of efforts has been put on the efficiency
of the procedures both in terms of memory cost and computation time.
• Participants: Gaël Varoquaux, Bertrand Thirion, Loïc Estève, Alexandre Abraham, Michael Eicken-

berg, Alexandre Gramfort, Fabian Pedregosa Izquierdo, Elvis Dohmatob and Virgile Fritsch
• Contact: Bertrand Thirion
• URL: http://nilearn.github.io/

5.3. PyHRF
KEYWORDS: FMRI - Statistic analysis - Neurosciences - IRM - Brain - Health - Medical imaging
FUNCTIONAL DESCRIPTION

As part of fMRI data analysis, PyHRF provides a set of tools for addressing the two main issues involved
in intra-subject fMRI data analysis : (i) the localization of cerebral regions that elicit evoked activity and (ii)
the estimation of the activation dynamics also referenced to as the recovery of the Hemodynamic Response
Function (HRF). To tackle these two problems, PyHRF implements the Joint Detection-Estimation framework
(JDE) which recovers parcel-level HRFs and embeds an adaptive spatio-temporal regularization scheme of
activation maps.
• Participants: Thomas Vincent, Solveig Badillo, Lotfi Chaari, Christine Bakhous, Florence Forbes,

Philippe Ciuciu, Laurent Risser, Thomas Perret and Aina Frau Pascual
• Partners: CEA - NeuroSpin
• Contact: Florence Forbes
• URL: http://pyhrf.org

http://mayavi.sourceforge.net/
http://nilearn.github.io/
http://pyhrf.org
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5.4. Scikit-learn
KEYWORDS: Classification - Learning - Clustering - Regession - Medical imaging
SCIENTIFIC DESCRIPTION

Scikit-learn is a Python module integrating classic machine learning algorithms in the tightly-knit scientific
Python world. It aims to provide simple and efficient solutions to learning problems, accessible to everybody
and reusable in various contexts: machine-learning as a versatile tool for science and engineering.
FUNCTIONAL DESCRIPTION

Scikit-learn can be used as a middleware for prediction tasks. For example, many web startups adapt
Scikitlearn to predict buying behavior of users, provide product recommendations, detect trends or abusive
behavior (fraud, spam). Scikit-learn is used to extract the structure of complex data (text, images) and classify
such data with techniques relevant to the state of the art.

Easy to use, efficient and accessible to non datascience experts, Scikit-learn is an increasingly popular machine
learning library in Python. In a data exploration step, the user can enter a few lines on an interactive (but
non-graphical) interface and immediately sees the results of his request. Scikitlearn is a prediction engine .
Scikit-learn is developed in open source, and available under the BSD license.
• Participants: Olivier Grisel, Gaël Varoquaux, Bertrand Thirion, Michael Eickenberg, Loïc Estève,

Alexandre Gramfort, Arthur Mensch
• Partners: CEA - Logilab - Nuxeo - Saint Gobain - Telecom Paris - Tinyclues
• Contact: Olivier Grisel
• URL: http://scikit-learn.org

6. New Results
6.1. Dictionary Learning for Massive Matrix Factorization

Sparse matrix factorization is a popular tool to obtain interpretable data decompositions, which are also
effective to perform data completion or denoising. Its applicability to large datasets has been addressed with
online and randomized methods, that reduce the complexity in one of the matrix dimension, but not in both
of them. In this paper, we tackle very large matrices in both dimensions. We propose a new factoriza-tion
method that scales gracefully to terabyte-scale datasets, that could not be processed by previous algorithms in
a reasonable amount of time. We demonstrate the efficiency of our approach on massive functional Magnetic
Resonance Imaging (fMRI) data, and on matrix completion problems for recommender systems, where we
obtain significant speed-ups compared to state-of-the art coordinate descent methods.

See Fig. 3 for an illustration and [22] for more information.

6.2. Learning brain regions via large-scale online structured sparse
dictionary-learning
We propose a multivariate online dictionary-learning method for obtaining de-compositions of brain images
with structured and sparse components (aka atoms). Sparsity is to be understood in the usual sense: the
dictionary atoms are constrained to contain mostly zeros. This is imposed via an 1-norm constraint. By "struc-
tured", we mean that the atoms are piece-wise smooth and compact, thus making up blobs, as opposed to
scattered patterns of activation. We propose to use a Sobolev (Laplacian) penalty to impose this type of
structure. Combining the two penalties, we obtain decompositions that properly delineate brain structures from
functional images. This non-trivially extends the online dictionary-learning work of Mairal et al. (2010), at the
price of only a factor of 2 or 3 on the overall running time. Just like the Mairal et al. (2010) reference method,
the online nature of our proposed algorithm allows it to scale to arbitrarily sized datasets. Experiments on brain
data show that our proposed method extracts structured and denoised dictionaries that are more intepretable
and better capture inter-subject variability in small medium, and large-scale regimes alike, compared to state-
of-the-art models.

http://scikit-learn.org
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Figure 3. Brain atlases: outlines of each map obtained with dictionary learning. Left: the reference algorithm on
the full dataset. Middle: the reference algorithm on a twentieth of the dataset. Right: the proposed algorithm with a
similar run time: half the dataset and a compression factor of 9. Compared to a full run of the baseline algorithm,

the figure explore two possible strategies to decrease computation time: processing less data (middle), or our
approach (right). Our approach achieves a result closer to the gold standard in a given time budget. See [22] for

more information.
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Figure 4. Predicting behavioral variables of the Human Connectome Project dataset using subject-level brain
activity maps and various intermediate representations obtained with variants of dictionary learning. Bold bars

represent performance on test set while faint bars in the background represent performance on train set. See [19]
for more information.
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See Fig. 4 for an illustration and [19] for more information.

6.3. Social-sparsity brain decoders: faster spatial sparsity
Spatially-sparse predictors are good models for brain decoding: they give accurate predictions and their weight
maps are interpretable as they focus on a small number of regions. However, the state of the art, based on total
variation or graph-net, is computationally costly. Here we introduce sparsity in the local neighborhood of
each voxel with social-sparsity, a structured shrinkage operator. We find that, on brain imaging classification
problems, social-sparsity performs almost as well as total-variation models and better than graph-net, for a
fraction of the computational cost. It also very clearly outlines predictive regions. We give details of the model
and the algorithm.

Figure 5. Decoder maps for the object-classification task – Top: weight maps for the face-versus-house task.
Overall, the maps segment the right and left parahippocampal place area (PPA), a well-known place-specific

regions, although the left PPA is weak in TV-l1, spotty in graph-net, and absent in social sparsity. Bottom: outlines
at 0.01 of the other tasks. Beyond the PPA, several known functional regions stand out such as primary or

secondary visual areas around the prestriate cortex as well as regions in the lateral occipital cortex, responding to
structured objects. Note that the graphnet outlines display scattered small regions even thought the value of the

contours is chosen at 0.01, well above numerical noise. See [32] for more information.

See Fig. 5 for an illustration and [32] for more information.

6.4. Deriving reproducible biomarkers from multi-site resting-state data: An
Autism-based example
Resting-state functional Magnetic Resonance Imaging (R-fMRI) holds the promise to reveal functional
biomarkers of neuropsychiatric disorders. However, extracting such biomarkers is challenging for complex
multi-faceted neuropatholo-gies, such as autism spectrum disorders. Large multi-site datasets increase sample
sizes to compensate for this complexity, at the cost of uncontrolled heterogeneity. This heterogeneity raises
new challenges, akin to those face in realistic diagnostic applications. Here, we demonstrate the feasibility of
inter-site classification of neuropsychiatric status, with an application to the Autism Brain Imaging Data Ex-
change (ABIDE) database, a large (N=871) multi-site autism dataset. For this purpose, we investigate pipelines
that extract the most predictive biomarkers from the data. These R-fMRI pipelines build participant-specific
connectomes from functionally-defined brain areas. Connectomes are then compared across participants to
learn patterns of connectivity that differentiate typical controls from individuals with autism. We predict this
neuropsychiatric status for participants from the same acquisition sites or different, unseen, ones. Good choices



Project-Team PARIETAL 11

of methods for the various steps of the pipeline lead to 67% prediction accuracy on the full ABIDE data, which
is significantly better than previously reported results. We perform extensive validation on multiple subsets of
the data defined by different inclusion criteria. These enables detailed analysis of the factors contributing to
successful connectome-based prediction. First, prediction accuracy improves as we include more subjects, up
to the maximum amount of subjects available. Second, the definition of functional brain areas is of paramount
importance for biomarker discovery: brain areas extracted from large R-fMRI datasets outperform reference
atlases in the classification tasks.

Figure 6. Validation of an fMRI-based pipeline for autism prediction. Several variants are considered for each
pipeline step. See [1] for more information.

See Fig. 6 for an illustration and [1] for more information.

6.5. Seeing it all: Convolutional network layers map the function of the
human visual system
Convolutional networks used for computer vision represent candidate models for the computations performed
in mammalian visual systems. We use them as a detailed model of human brain activity during the viewing of
natural images by constructing predictive models based on their different layers and BOLD fMRI activations.
Analyzing the predictive performance across layers yields characteristic fingerprints for each visual brain
region: early visual areas are better described by lower level convolutional net layers and later visual areas
by higher level net layers, exhibiting a progression across ventral and dorsal streams. Our predictive model
generalizes beyond brain responses to natural images. We illustrate this on two experiments, namely retinotopy
and face-place oppositions, by synthesizing brain activity and performing classical brain mapping upon it. The
synthesis recovers the activations observed in the corresponding fMRI studies, showing that this deep encoding
model captures representations of brain function that are universal across experimental paradigms.

See Fig. 7 for an illustration and [10] for more information.

6.6. Formal Models of the Network Co-occurrence Underlying Mental
Operations
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Figure 7. Overview of the vision mapping experiment: Convolutional network image representations of different
layer depth explain brain activity throughout the full ventral visual stream. This mapping follows the known

hierarchical organisation. Results from both static images and video stimuli. A model of brain activity for the full
brain, based on the convolutional network, can synthesize brain maps for other visual experiments. Only deep

models can reproduce observed BOLD activity. See [10] for more information.
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Systems neuroscience has identified a set of canonical large-scale networks in humans. These have predom-
inantly been characterized by resting-state analyses of the task-uncon-strained, mind-wandering brain. Their
explicit relationship to defined task performance is largely unknown and remains challenging. The present
work contributes a multivariate statistical learning approach that can extract the major brain networks and
quantify their configuration during various psychological tasks. The method is validated in two extensive
datasets (n = 500 and n = 81) by model-based generation of synthetic activity maps from recombination of
shared network topographies. To study a use case, we formally revisited the poorly understood difference be-
tween neural activity underlying idling versus goal-directed behavior. We demonstrate that task-specific neural
activity patterns can be explained by plausible combinations of resting-state networks. The possibility of de-
composing a mental task into the relative contributions of major brain networks, the "network co-occurrence
architecture" of a given task, opens an alternative access to the neural substrates of human cognition.

See Fig. 8 for an illustration and [6] for more information.

6.7. Transmodal Learning of Functional Networks for Alzheimer’s Disease
Prediction
Functional connectivity describes neural activity from resting-state functional magnetic resonance imaging
(rs-fMRI). This noninvasive modality is a promising imaging biomarker of neurodegenerative diseases, such
as Alzheimer’s disease (AD), where the connectome can be an indicator to assess and to understand the
pathology. However, it only provides noisy measurements of brain activity. As a consequence, it has shown
fairly limited discrimination power on clinical groups. So far, the reference functional marker of AD is the
fluorodeoxyglucose positron emission tomography (FDG-PET). It gives a reliable quantification of metabolic
activity, but it is costly and invasive. Here, our goal is to analyze AD populations solely based on rs-fMRI,
as functional connectivity is correlated to metabolism. We introduce transmodal learning: leveraging a prior
from one modality to improve results of another modality on different subjects. A metabolic prior is learned
from an independent FDG-PET dataset to improve functional connectivity-based prediction of AD. The prior
acts as a regularization of connectivity learning and improves the estimation of discriminative patterns from
distinct rs-fMRI datasets. Our approach is a two-stage classification strategy that combines several seed-
based connectivity maps to cover a large number of functional networks that identify AD physiopathology.
Experimental results show that our transmodal approach increases classification accuracy compared to pure
rs-fMRI approaches, without resorting to additional invasive acquisitions. The method successfully recovers
brain regions known to be impacted by the disease.

6.8. Assessing and tuning brain decoders: cross-validation, caveats, and
guidelines
Decoding, ie prediction from brain images or signals, calls for empirical evaluation of its predictive power.
Such evaluation is achieved via cross-validation, a method also used to tune decoders’ hyper-parameters. This
paper is a review on cross-validation procedures for decoding in neuroimaging. It includes a didactic overview
of the relevant theoretical considerations. Practical aspects are highlighted with an extensive empirical study
of the common decoders in within-and across-subject predictions, on multiple datasets –anatomical and
functional MRI and MEG– and simulations. Theory and experiments outline that the popular " leave-one-
out " strategy leads to unstable and biased estimates, and a repeated random splits method should be preferred.
Experiments outline the large error bars of cross-validation in neuroimaging settings: typical confidence
intervals of 10%. Nested cross-validation can tune decoders’ parameters while avoiding circularity bias.
However we find that it can be more favorable to use sane defaults, in particular for non-sparse decoders.

See Fig. 9 for an illustration and [16] for more information.

6.9. A projection algorithm for gradient waveforms design in Magnetic
Resonance Imaging
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Figure 8. Task-rest correspondence: Reconstructing two similar tasks from two different datasets based on the same
resting networks. 40 sparse PCA networks were discovered from the same rest data and used for feature

engineering as a basis for classificationof 18 psychological tasks from HCP (left) and from ARCHI (right). Middle
column: Examples of resting-state networks derived from decomposing rest data using sparse PCA. Networks B

and C might be related to semantics processing in the anterior temporal lobe, network D covers extended parts of
the parietal cortex, while networks E and F appear to be variants of the so-called “salience” network. Left/Right

column: Examples of task-specific neural activity generated from network co-occurrence models of the
HCP/ARCHI task batteries. Arrows: A diagnostic subanalysis indicated what rest networks were automatically

ranked top-five in distinguishing a given task from the respective 17 other tasks. Although the experimental tasks in
the HCP and ARCHI repositories, “story versus math” and “sentences versus computation” were the most similar
cognitive contrasts in both datasets. For these four experimental conditions the model-derived task maps are highly

similar. Consequently, two independent classification problems in two independent datasets with a six-fold
difference in sample size resulted in two independent explicit models that, nevertheless, generated comparable

task-specific maps. This indicated that network co-occurrence modeling indeed captures genuine aspects of
neurobiology rather than arbitrary discriminatory aspects of the data. See [6] for more information.



Project-Team PARIETAL 15

Figure 9. (Left) Illustration of the nested cross-validation principle. (Right) Typical cross-validated accuracy
result: leave-one-out cross validation, when applied to imaging data, yields to optimistic bias (top) when used on

dependent data, and in other cases leads to estimated with inflated variance. See [16] for more information.

Collecting the maximal amount of information in a given scanning time is a major concern in Magnetic
Resonance Imaging (MRI) to speed up image acquisition. The hardware constraints (gradient magnitude,
slew rate, ...), physical distortions (e.g., off-resonance effects) and sampling theorems (Shannon, compressed
sensing) must be taken into account simultaneously, which makes this problem extremely challenging. To date,
the main approach to design gradient waveform has consisted of selecting an initial shape (e.g. spiral, radial
lines, ...) and then traversing it as fast as possible using optimal control. In this paper, we propose an alternative
solution which first consists of defining a desired parameterization of the trajectory and then of optimizing for
minimal deviation of the sampling points within gradient constraints. This method has various advantages.
First, it better preserves the density of the input curve which is critical in sampling theory. Second, it allows to
smooth high curvature areas making the acquisition time shorter in some cases. Third, it can be used both in the
Shannon and CS sampling theories. Last, the optimized trajectory is computed as the solution of an efficient
iterative algorithm based on convex programming. For piecewise linear trajectories, as compared to optimal
control reparameterization, our approach generates a gain in scanning time of 10% in echo planar imaging
while improving image quality in terms of signal-to-noise ratio (SNR) by more than 6 dB. We also investigate
original trajectories relying on traveling salesman problem solutions. In this context, the sampling patterns
obtained using the proposed projection algorithm are shown to provide significantly better reconstructions
(more than 6 dB) while lasting the same scanning time.

See Fig. 10 for an illustration and [9] for more information.

6.10. Impact of perceptual learning on resting-state fMRI connectivity: A
supervised classification study
Perceptual learning sculpts ongoing brain activity. This finding has been observed by statistically comparing
the functional connectivity (FC) patterns computed from resting-state functional MRI (rs-fMRI) data recorded
before and after intensive training to a visual attention task. Hence, functional connectivity serves a dynamic
role in brain function, supporting the consolidation of previous experience. Following this line of research,
we trained three groups of individuals to a visual discrimination task during a magneto-encephalography
(MEG) experiment. The same individuals were then scanned in rs-fMRI. Here, in a supervised classification
framework, we demonstrate that FC metrics computed on rs-fMRI data are able to predict the type of training
the participants received. On top of that, we show that the prediction accuracies based on tangent embedding
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Figure 10. Reconstructed images from data collected along EPI-like trajectories. (a)-(b): Reconstruction results
from the optimally reparameterized EPI readout. (c)-(d): Reconstructed results from data collected using the

projected EPI trajectories. See [9] for more information.

FC measure outperform those based on our recently developed multivariate wavelet-based Hurst exponent
estimator, which captures low frequency fluctuations in ongoing brain activity too.

Figure 11. Statistical significant functional interactions (positive and negative values are color coded in red and
blue, respectively) within each group of individuals (V: purely visual traing, AV: audio-visual training and AVn:

unmatched audio-visual), Bonferroni-corrected for multiple comparisons at α = 0.05. See [24] for more
information.

See Fig. 11 for an illustration and [24] for more information.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Grants with Industry
7.1.1. The Wendelin FUI project
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The Wendelin project has been granted on December 3rd, 2014. It has been selected at the Programme
d’Investissements d’Avenir (PIA) that supports "cloud computing et Big Data". It gives visibility and fosters
the French technological big data sector, and in particular the scikit-learn library, the NoSQL “NEO” et the
decentralized “SlapOS” cloud, three open-source software supported by the Systematic pôle de compétitivité.

Scikit-learn is a worldwide reference library for machine learning. Gaël Varoquaux, Olivier Grisel and
Alexandre Gramfort have been major players in the design of the library and Scikit-learn has then been
supported by the growing scientific Python community. It is currently used by major internet companies as
well as dynamic start-ups, including Google, Airbnb, Spotify, Evernote, AWeber, TinyClues; it wins more than
half of the data science "Kaggle" competitions. Scikit-learn makes it possible to predict future outcomes given
a training data, and thus to optimize company decisions. Almost 1 million euros will be invested to improve
the algorithmic core of scikit-learn through the Wendelin project thanks to the Inria, ENS and Institut Mines
Télécom teams. In particular, scikit-learn will be extended in order to ease online prediction and to include
recent stochastic gradient algorithms.

NEO is the native NoSQL base of the Python language. It was initially designed by Nexedi and is currently
used and embedded in the main software of company information systems. More than one million euros will
be invested into NEO, so that scikit-learn can process within 10 years (out-of-core) data of 1 exabyte size.

Paris13 university and the Mines Télécom institute will extend the SlapOS distributed mesh cloud to deploy
Wendelin in Big Data as a Service (BDaaS) mode, to achieve the interoperability between the Grid5000 and
Teralab infrastructures and to extend the cloud toward smart sensor systems.

The combination of scikit-learn, NEO and SlapOS will improve the predictive maintenance of industrial plants
with two major use cases: connected windmills (GDF SUEZ, Woelfel) and customer satisfaction in car sale
systems (MMC Rus). In both cases it is about non-personal, yet profitable big data. The Wendelin project
actually demonstrates that Big data can improve infrastructure and everyday-life equipment without intrusive
data collection. For more information, please see http://www.wendelin.io.

The project partners are:
• Nexedi (leader)
• GDF SUEZ
• Abilian
• 2ndQuadrant
• Institut Mines Télécom
• Inria
• Université Paris 13

8. Partnerships and Cooperations
8.1. Regional Initiatives
8.1.1. CoSmic project

Participants: Philippe Ciuciu [Correspondant], Carole Lazarus, Loubna El Gueddari.

This is a collaborative project with Jean-Luc Stark, (CEA) funded by the CEA program drf-impulsion.

Compressed Sensing is a recent theory in maths that allows the perfect recovery of signals or images from
compressive acquisition scenarios. This approach has been popularized in MRI over the last decade as well
as in astrophysics (noticeably in radio-astronomy). So far, both of these fields have developed skills in
CS separately. The aim of the COSMIC project is to foster collaborations between CEA experts in MRI
(Inria-CEA Parietal team within NeuroSpin) and in astrophysics (CosmoStat lab within the Astrophysics
Department). These interactions will allow us to share different expertise in order to improve image quality,
either in MRI or in radio-astronomy (thanks to the interferometry principle). In this field, given the data
delivered by radio-telescopet he goal will consist of extracting high temporal resolution information in order
to study fast transient events.

http://www.wendelin.io
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8.1.2. BrainAMP project
Participants: Bertrand Thirion [Correspondant], Gaël Varoquaux, Andre Monteiro Manoel.

This is a collaborative project with Lenka Zdeborová, Theoretical Physics Institute (CEA) funded by the CEA
program drf-impulsion.

In many scientific fields, the data acquisition devices have benefited of hardware improvement to increase the
resolution of the observed phenomena, leading to ever larger datasets. While the dimensionality has increased,
the number of samples available is often limited, due to physical or financial limits. This is a problem when
these data are processed with estimators that have a large sample complexity, such as multivariate statistical
models. In that case it is very useful to rely on structured priors, so that the results reflect the state of knowledge
on the phenomena of interest. The study of the human brain activity through high-field MRI belongs among
these problems, with up to 106 features, yet a set of observations limited by cost and participant comfort.

We are missing fast estimators for multivariate models with structured priors, that furthermore provide
statistical control on the solution. Approximate message passing methods are designed to work optimally
with low-sample-complexity, they accommodate rather generic class of priors and come with an estimation of
statistical significance. They are therefore well suited for our purposes.

We want to join forces to design a new generation of inverse problem solvers that can take into account the
complex structure of brain images and provide guarantees in the low-sample-complexity regime. To this end,
we will first adapt AMP to the brain mapping setting, using first standard sparsity priors (e.g. Gauss-Bernoulli)
on the model. We will then consider more complex structured priors that control the variation of the learned
image patterns in space. Crucial gains are expected from the use of the EM algorithm for parameter setting, that
comes naturally with AMP. We will also examine the estimators provided by AMP for statistical significance.
BrainAMP will design a reference inference toolbox released as a generic open source library. We expect a 3-
to 10-fold improvement in CPU time, that will benefit to large-scale brain mapping investigations.

8.1.3. iConnectom project
Participants: Bertrand Thirion [Correspondant], Gaël Varoquaux, Elvis Dohmatob.

This is a Digiteo project (2014-2017).

Mapping brain functional connectivity from functional Magnetic Resonance Imaging (MRI) data has become
a very active field of research. However, analysis tools are limited and many important tasks, such as the em-
pirical definition of brain networks, remain difficult due to the lack of a good framework for the statistical
modeling of these networks. We propose to develop population models of anatomical and functional connec-
tivity data to improve the alignment of subjects brain structures of interest while inferring an average template
of these structures. Based on this essential contribution, we will design new statistical inference procedures to
compare the functional connections between conditions or populations and improve the sensitivity of connec-
tivity analysis performed on noisy data. Finally, we will test and validate the methods on multiple datasets and
distribute them to the brain imaging community.

8.1.4. MetaCog project
Participants: Bertrand Thirion [Correspondant], Gaël Varoquaux, Jérome Dockès.

This is a Digicosme project (2016-2019) and a collaboration with Fabian Suchanek (Telecom Paritech).

Understanding how cognition emerges from the billions of neurons that constitute the human brain is a
major open problem in science that could bridge natural science –biology– to humanities –psychology.
Psychology studies performed on humans with functional Magnetic Resonance Imaging (fMRI) can be used
to probe the full repertoire of high-level cognitive functions. While analyzing the resulting image data for
a given experiment is a relatively well-mastered process, the challenges in comparing data across multiple
datasets poses serious limitation to the field. Indeed, such comparisons require to pool together brain images
acquired under different settings and assess the effect of different experimental conditions that correspond to
psychological effects studied by neuroscientists.
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Such meta-analyses are now becoming possible thanks to the development of public data resources
–OpenfMRI http://openfmri.org and NeuroVault http://neurovault.org. As many others, researchers of the Pari-
etal team understand these data sources well and contribute to them. However, in such open-ended context,
the description of experiments in terms of cognitive concepts is very difficult: there is no universal definition
of cognitive terms that could be employed consistently by neuroscientists. Hence meta-analytic studies loose
power and specificity. On the other hand, http://brainspell.org provide a set of curated annotation, albeit on
much less data, that can serve as a seed or a ground truth to define a consensual ontology of cognitive con-
cepts. Relating these terms to brain activity poses another challenge, of statistical nature, as brain patterns
form high-dimensional data in perspective with the scarcity and the noise of the data.

The purpose of this project is to learn a semantic structure in cognitive terms from their occurrence in brain
activations. This structure will simplify massive multi-label statistical-learning problems that arise in brain
mapping by providing compact representations of cognitive concepts while capturing the imprecision on the
definition these concepts.

8.1.5. CDS2
Participants: Bertrand Thirion [Correspondant], Gaël Varoquaux, Guillaume Lemaitre.

CDS2 is an "Strategic research initiatice” of the Paris Saclay University Idex http://datascience-paris-saclay.fr.
Although it groups together many partners of the Paris Saclay ecosystem, Parietal has been deeply involved in
the project. It currently funds a post-doc for Guillume Lemaitre.

8.2. National Initiatives
8.2.1. ANR
8.2.1.1. MultiFracs project

Participants: Philippe Ciuciu [Correspondant], Daria La Rocca.

The scale-free concept formalizes the intuition that, in many systems, the analysis of temporal dynamics cannot
be grounded on specific and characteristic time scales. The scale-free paradigm has permitted the relevant
analysis of numerous applications, very different in nature, ranging from natural phenomena (hydrodynamic
turbulence, geophysics, body rhythms, brain activity,...) to human activities (Internet traffic, population,
finance, art,...).

Yet, most successes of scale-free analysis were obtained in contexts where data are univariate, homogeneous
along time (a single stationary time series), and well-characterized by simple-shape local singularities. For
such situations, scale-free dynamics translate into global or local power laws, which significantly eases
practical analyses. Numerous recent real-world applications (macroscopic spontaneous brain dynamics, the
central application in this project, being one paradigm example), however, naturally entail large multivariate
data (many signals), whose properties vary along time (non-stationarity) and across components (non-
homogeneity), with potentially complex temporal dynamics, thus intricate local singular behaviors.

These three issues call into question the intuitive and founding identification of scale-free to power laws,
and thus make uneasy multivariate scale-free and multifractal analyses, precluding the use of univariate
methodologies. This explains why the concept of scale-free dynamics is barely used and with limited successes
in such settings and highlights the overriding need for a systematic methodological study of multivariate
scale-free and multifractal dynamics. The Core Theme of MULTIFRACS consists in laying the theoretical
foundations of a practical robust statistical signal processing framework for multivariate non homogeneous
scale-free and multifractal analyses, suited to varied types of rich singularities, as well as in performing
accurate analyses of scale-free dynamics in spontaneous and task-related macroscopic brain activity, to
assess their natures, functional roles and relevance, and their relations to behavioral performance in a timing
estimation task using multimodal functional imaging techniques.

http://openfmri.org
http://neurovault.org
http://brainspell.org
http://datascience-paris-saclay.fr
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This overarching objective is organized into 4 Challenges:

1. Multivariate scale-free and multifractal analysis,

2. Second generation of local singularity indices,

3. Scale-free dynamics, non-stationarity and non-homogeneity,

4. Multivariate scale-free temporal dynamics analysis in macroscopic brain activity.

8.2.1.2. BrainPedia project
Participants: Bertrand Thirion [Correspondant], Gaël Varoquaux.

BrainPedia is an ANR JCJC (2011-2015) which addresses the following question: Neuroimaging produces
huge amounts of complex data that are used to better understand the relations between brain structure
and function. While the acquisition and analysis of this data is getting standardized in some aspects, the
neuroimaging community is still largely missing appropriate tools to store and organize the knowledge
related to the data. Taking advantage of common coordinate systems to represent the results of group studies,
coordinate-based meta-analysis approaches associated with repositories of neuroimaging publications provide
a crude solution to this problem, that does not yield reliable outputs and looses most of the data-related
information. In this project, we propose to tackle the problem in a statistically rigorous framework, thus
providing usable information to drive neuroscientific knowledge and questions.

8.2.1.3. Niconnect project
Participants: Bertrand Thirion, Gaël Varoquaux [Correspondant], Alexandre Abraham, Kamalaker Reddy
Dadi, Darya Chyzhyk, Mehdi Rahim.

• Context: The NiConnect project (2012-2016) arises from an increasing need of medical imaging
tools to diagnose efficiently brain pathologies, such as neuro-degenerative and psychiatric diseases
or lesions related to stroke. Brain imaging provides a non-invasive and widespread probe of various
features of brain organization, that are then used to make an accurate diagnosis, assess brain
rehabilitation, or make a prognostic on the chance of recovery of a patient. Among different measures
extracted from brain imaging, functional connectivity is particularly attractive, as it readily probes
the integrity of brain networks, considered as providing the most complete view on brain functional
organization.

• Challenges: To turn methods research into popular tool widely usable by non specialists, the NiCon-
nect project puts specific emphasis on producing high-quality open-source software. NiConnect
addresses the many data analysis tasks that extract relevant information from resting-state fMRI
datasets. Specifically, the scientific difficulties are i) conducting proper validation of the models and
tools, and ii) providing statistically controlled information to neuroscientists or medical doctors.
More importantly, these procedures should be robust enough to perform analysis on limited quality
data, as acquiring data on diseased populations is challenging and artifacts can hardly be controlled
in clinical settings.

• Outcome of the project: In the scope of computer science and statistics, NiConnect pushes forward
algorithms and statistical models for brain functional connectivity. In particular, we are investigating
structured and multi-task graphical models to learn high-dimensional multi-subject brain connec-
tivity models, as well as spatially-informed sparse decompositions for segmenting structures from
brain imaging. With regards to neuroimaging methods development, NiConnect provides systematic
comparisons and evaluations of connectivity biomarkers and a software library embedding best-
performing state-of-the-art approaches. Finally, with regards to medical applications, the NiConnect
project also plays a support role in on going medical studies and clinical trials on neurodegenerative
diseases.

• Consortium
– Parietal Inria research team: applied mathematics and computer science to model the brain

from MRI
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– LIF INSERM research team: medical image data analysis and modeling for clinical
applications

– CATI center: medical image processing center for large scale brain imaging studies
– Henri-Mondor hospital neurosurgery and neuroradiology: clinical teams conducting re-

search on treatments for neurodegenerative diseases, in particular Huntington and Parkin-
son diseases

– Logilab: consulting in scientific computing

8.3. European Initiatives
8.3.1. FP7 & H2020 Projects
8.3.1.1. HBP

Title: The Human Brain Project
Programm: FP7
Duration: October 2013 - September 2016
Coordinator: EPFL
Partners: 100 across Europe
Inria contact: Olivier Faugeras
Understanding the human brain is one of the greatest challenges facing 21st century science. If we
can rise to the challenge, we can gain profound insights into what makes us human, develop new
treatments for brain diseases and build revolutionary new computing technologies. Today, for the
first time, modern ICT has brought these goals within sight. The goal of the Human Brain Project,
part of the FET Flagship Programme, is to translate this vision into reality, using ICT as a catalyst
for a global collaborative effort to understand the human brain and its diseases and ultimately to
emulate its computational capabilities. The Human Brain Project will last ten years and will consist
of a ramp-up phase (from month 1 to month 36) and subsequent operational phases. This Grant
Agreement covers the ramp-up phase. During this phase the strategic goals of the project will be to
design, develop and deploy the first versions of six ICT platforms dedicated to Neuroinformatics,
Brain Simulation, High Performance Computing, Medical Informatics, Neuromorphic Computing
and Neurorobotics, and create a user community of research groups from within and outside the HBP,
set up a European Institute for Theoretical Neuroscience, complete a set of pilot projects providing
a first demonstration of the scientific value of the platforms and the Institute, develop the scientific
and technological capabilities required by future versions of the platforms, implement a policy of
Responsible Innovation, and a programme of transdisciplinary education, and develop a framework
for collaboration that links the partners under strong scientific leadership and professional project
management, providing a coherent European approach and ensuring effective alignment of regional,
national and European research and programmes. The project work plan is organized in the form of
thirteen subprojects, each dedicated to a specific area of activity. A significant part of the budget will
be used for competitive calls to complement the collective skills of the Consortium with additional
expertise.

8.3.2. Collaborations in European Programs, Except FP7 & H2020
Program: Marie Curie
Project acronym: Neuroimaging Power
Project title: Effect size and power for neuroimaging.
Duration: mois année début - mois année fin
Coordinator: Inria
Other partners: Univ. Stanford, USA



22 Activity Report INRIA 2016

Abstract: There is an increasing concern about statistical power in neuroscience research. Critically,
an underpowered study has poor predictive power. Findings from a low-power study are unlikely
to be reproducible, and thus a power analysis is a critical component of any paper. This project
aims to promote and facilitate the use of power analyses.A key component of a power analysis
is the specification of an effect size. However, in neuroimaging, there is no standardised way to
communicate effect sizes, which makes the choice of an appropriate effect size a formidable task.
The best way today to perform a power analysis is by collecting a pilot data set, a very expensive
practice. To eliminate the need for pilot data, we will develop a standardised measure of effect size
taking into account the spatial variance and the uncertainty of the measurements. Communicating
effect sizes in new publications will facilitate the use of power analyses.To further alleviate the
need for pilot data, we will provide a library of effect sizes for different tasks and contrasts, using
open data projects in neuroimaging. We will integrate our effect size estimator in open repositories
NeuroVault and OpenfMRI. Consequently, these effect sizes can then serve as a proxy for a pilot
study, and as such, a huge cost in the design of an experiment is eliminated.A new experiment
will not be identical to the open data and as such the hypothesised parameters might not be fully
accurate. To address this issue, we present a flexible framework to analyse data mid-way without
harming the control of the type I error rate. Such a procedure will allow re-evaluating halfway an
experiment whether it is useful to continue a study, and how many more subjects are needed for
statistically sound inferences.To make our methods maximally available, we will write a software
suite including all these methods in different programming platforms and we will provide a GUI to
further increase the use of power analyses.

8.4. International Initiatives
8.4.1. MetaMRI

Title: Machine learning for meta-analysis of functional neuroimaging data

International Partner (Institution - Laboratory - Researcher):

Stanford (United States) - Department of Psychology - Russ Poldrack

Start year: 2015

See also: https://team.inria.fr/metamri

Neuroimaging produces huge amounts of complex data that are used to better understand the
relations between brain structure and function. Observing that the neuroimaging community is still
largely missing appropriate tools to store and organize the knowledge related to the data, Parietal
team and Poldrack’s lab, have decided to join forces to set up a framework for functional brain
image meta-analysis, i.e. a framework in which several datasets can be jointly analyzed in order to
accumulate information on the functional specialization of brain regions. MetaMRI will build upon
Poldrack’s lab expertise in handling, sharing and analyzing multi-protocol data and Parietal’s recent
developments of machine learning libraries to develop a new generation of meta-analytic tools.

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific Events Organisation
9.1.1.1. Member of the Organizing Committees

• Bertrand Thirion: Organization for Human Brain Mapping.

9.1.1.2. Reviewer

https://team.inria.fr/metamri
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• Philippe Ciuciu: IEEE ISBI (15 papers), IEEE ICASSP (10 papers), IEEE ICIP (5 papers), NIPS (4
papers), EUSIPCO (5 papers).

• Bertrand Thirion: IPMI, MICCAI, NIPS, ISBI, PRNI, AISTATS
• Gaël Varoquaux: IEEE ICASSP, MICCAI, NIPS, IPMI, ICML

9.1.2. Journal
9.1.2.1. Member of the Editorial Boards

• Bertrand Thirion: Medical Image Analysis, Frontiers in brain imaging
• Gaël Varoquaux: Frontiers in NeuroInformatics, Frontiers in brain imaging methods, NeuroImage

9.1.2.2. Reviewer - Reviewing Activities
• Philippe Ciuciu: Reviewer for Neuroimage, IEEE Signal Processing Letters, Signal Processing,

IEEE Trans. Medical Imaging, Plos One, Plos Comput. Biology, Frontiers in Neuroscience.
• Bertrand Thirion: Human Brain Mapping, IEEE TMI, MedIA, NeuroImage, PNAS
• Gaël Varoquaux: NeuroImage, JSTSP, PNAS, HBM, PLOS Comp Bio, Gigascience
• Olivier Grisel: Journal of Machine Learning Research (software track).

9.1.3. Invited Talks
9.1.3.1. Bertrand Thirion

• February: invited talk at the Imagerie du Vivant National congress, entitled Large-scale analyses in
functional brain Imaging.

• February: presentation at the Pasadena working group of the Digicosme Labex.
• April: invited presentation at European Neuroscience institute, Paris, entitled Seeing it all: Convolu-

tional network layers map the function of the human visual system.
• April: presentation Functional connectomicts, at DTU Copenhagen, entitled from large-scale esti-

mators to empirical validation.
• May: Talk at Atlas workshop, Grenoble, entitled Learning representations from functional brain

imaging.
• June: organizer of a table ronde at the Futur en Seine event entitled Computational methods for

neurosciences & medical imaging.
• October: talk at MPI Psychiatry, Munich, entitled Machine learning for neuroimaging: current

challenges and solutions.
• June: Talk at Neurostic workshop, Grenoble, entitled Learning representations from functional brain

imaging.
• October: Invited talk by the ITMO Neuroscience, Bordeaux, entitled Working with large data

samples: the case of human brain imaging.

9.1.3.2. Philippe Ciuciu
• 12/16: IEEE Lecture at University of British Columbia (Vancouver, Canada): Sparkling: Novel non-

Cartesian sampling schemes for accelerated 2D anatomical imaging at 7 Tesla.
• 12/16: Pacific Parkinson’s research center (Vancouver, Canada): Impact of perceptual learning on

resting-state brain dynamics in fMRI: A supervised classification study.
• 09/16: GdR d’Analyse Multifractale (Avignon, France): Convergence of neural activity to multifrac-

tal attractors in MEG predicts learning.
• 08/16: invitation to the Special session entitled “Unraveling brain networks from functional neu-

roimaging data” at EUSIPCO’16 (Budapest, Hungary): Impact of perceptual learning on resting-
state fMRI connectivity: A supervised classification study.

• 06/16: Journées scientifiques d’Inria (Rennes, France): Compressive Sampling in MRI.
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• 06/16: Inria Sophia-Antipolis, équipe Athena. New physically plausible compressive sampling
schemes for MRI: First results at 7 Tesla

• 05/16: University of Geneva (Campus BioTech, Geneva, Switzlerand): Convergence to asymptotic
Multifractal dynamics in the brain predicts learning.

• 02/16: Grenoble Institut of Neurosciences (Grenoble, France): Physically plausible trajectories for
Compressed Sensing in MRI.

• 02/16: Workshop on 7 Tesla scanner at NeuroSpin (Gif-sur-Yvette, France) Compressed sensing for
high resolution MRI at 7 Tesla.

• 01/16: Cosmostat lab, IRFU/CEA. On the generation of compressed sampling schemes in MRI.

9.1.3.3. Loïc Estève

• EuroScipy 2016: scikit-learn tutorial

• Budapest BI 2016 : scikit-learn tutorial and talk "Recent developments in scikit-learn and joblib"

9.1.3.4. Olivier Grisel

• PyData Berlin and PyData Paris 2016: "Predictive modeling with Python, trends and tools

• invited talk on Some recent developments in Deep Learning researc at Strata London 2016.

9.1.3.5. Gaël Varoquaux

• Paris Open Source summit 2016: scikit-learn, the vision and the community

• EuroScipy 2016 (Erlangen): keynote: "On writing code the science"

• Open Data Science Conference 2017 (London): keynote: "The code of data science"

• EuroPython 2016 (Bilbao): keynote "Scientists meet web dev: how Python became the language of
data"

• PiterPy 2016 (St Petersbourg): keynote: "Python for data"

• Facebook AI Research: some statistical learning problems in brain imaging

• GDR ISIS Imagerie medicale: prediction de pathologies psychiatriques à partir d’imagerie fonction-
nelle de repos

• Brain network analysis workshop, MICCAI 2016 (Athenes): keynote

• Journée Graphes et neuroscience à Marseilles: Machine learning on brain graphes

• Séminaire débat sur le Big data en Neuroscience, Lyon

• Seminar Max Planck Institute Leipzig: data mining for neuroimaging

• Seminar Telecom ParisTech: randomized methods for high-dimensional statistical learning

• Séminaire d’équipe Asclepios: Quelques problèmes d’apprentissage sur des images cérébrales

9.1.4. Leadership within the Scientific Community
• Gaël Varoquaux: Chair of the steering committee, IEEE PRNI

• Bertrand Thirion: member of the Committee on Best Practices in Data Analysis and Sharing for the
OHBM community.

9.1.5. Scientific Expertise
• Philippe Ciuciu: ANR JC, NSERC au Canada, FWO

• Bertrand Thirion: ANR, NWO, NSF

• Gaël Varoquaux: Membre de la Commission Expertises Scientifiques, (CE23) ANR

• Olivier Grisel did 3 days of consulting with the CTO of the Therapixel startup to share expertise on
the use of Deep Learning for the predictive analysis of 3D imaging data.
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9.1.6. Research Administration
9.1.6.1. Philippe Ciuciu

• 03/16: Involvement in the CEA visiting committee on High Performance Computing.
• 05/16: Member of a Comité de sélection for hiring an Assistant Professor in Paris-Saclay

University (Section 61 of CNU).
• 06/16: Member of the Inria scientific commission in charge of ranking PhD and post-doctoral

applicants as well as delegations of Assistant Professors to Inria.

9.1.6.2. Bertrand Thirion

• Leader of the Datasense axis of the Digicosme Labex
• Member of the STIC department committee Paris-Saclay University and of the bureau thereof.
• DSA Saclay.

9.1.6.3. Gaël Varoquaux

• Member of "Commité de suivi doctoral", Inria Saclay
• Member of "Commité cluster", Inria Saclay
• Member of "Commission de Développement Technologique", Inria Saclay
• Member of the directorate of the Paris-Saclay CDS (Center for Data Science)

9.2. Teaching - Supervision - Juries
9.2.1. Teaching
9.2.1.1. Bertrand Thirion

Master : Brain Computer interface and Functional Neuroimaging, 12 heures équivalent TD, niveau
M2, ENS Cachan

9.2.1.2. Philippe Ciuciu

Master 2 : “Functional MRI: From data acquisition to analysis”, 3h, Univ. Paris V René Descartes
& Télécom-Paristech, Master of Biomedical Engineering
Master 2 : “FMRI data analysis”, 3h, Univ. Paris-Saclay, Master of medical Physics

9.2.1.3. Gaël Varoquaux

Master 2 : “Brain functional connectivity analysis”, 7h, Univ. Paris V René Descartes & Télécom-
Paristech, Master of Biomedical Engineering
Master 2 : “Machine learning with scikit-learn”, 2h, ENSAE
Master 2 : “Advanced Machine learning with scikit-learn”, 3h, Centrale Paris, MSc in data sciences
& business analytics
Ecole d’été multidisciplinaire analyse de données, Rennes, 1h
OHBM 2016: course on machine learning for cognitive neuroimaging 30mn
PRNI 2016: nilearn for machine learning on brain images, 8h
Max Planck Institute Leipzig: nilearn for machine learning on brain images, 8h

9.2.2. Supervision
9.2.2.1. Bertrand Thirion

PhD in progress: Elvis Dohmatob,
PhD in progress: Arthur Mensch,
PhD in progress: Andrés Hoyos Idrobo

9.2.2.2. Philippe Ciuciu
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PhD defended: Aina Frau-Pascual, “Statistical models for the analysis of BOLD and ASL Magnetic
Resonance modalities to study brain function and disease”, University of Grenoble-Alpes (doctoral
school: Mathématiques, Sciences et Technologies de l’Information, Informatique), defense:
19/12/2016, Advisors: Florence Forbes (Dir), Philippe Ciuciu (Co-Dir)
PhD in progress: Carole Lazarus, “Physically plausible compressed sensing for high resolution MRI
at 7 Tesla in Humans” starting date: October 2015 (Univ. Paris-Saclay, doctoral school: EOBE).
Advisors: Philippe Ciuciu (Dir), Alexandre Vignaud (Co-Dir)
PhD in progress: Loubna El Gueddari, “Parallel proximal algorithms for compressed sensing
MRI reconstruction. Applications in ultra-high magnetic field imaging”, starting date: October
2016 (Univ. Paris-Saclay, doctoral school: EOBE). Advisors: Philippe Ciuciu (Dir) and Jean-
Christophe Pesquet (Co-Dir, Prof. at Centrale-Supélec)

9.2.2.3. Gael Varoquaux
PhD defended: Alexandre Abraham
PhD in progress: Elvis Dohmatob,
PhD in progress: Arthur Mensch,
PhD in progress: Andrés Hoyos Idrobo

9.2.3. Juries
9.2.3.1. Bertrand Thirion

• 04/29: Reviewer of Niklas Kasenburg PhD Thesis , Univ. Copenhagen, Denmark.
• 01/12: Examiner of Simona Schiavi PhD Thesis, Univ. Paris Saclay.
• 14/12: Reviewer of Olivier Marre habilitation, Paris.
• 15/12: Reviewer of Maite Termenon PhD thesis, Univ. Grenoble.

9.2.3.2. Philippe Ciuciu
• 04/16: Reviewer of Aiping Liu’s PhD thesis (ECCS Dpt, Univ. British Columbia, Vancouvern

Canada) entitled “Brain Connectivity Network Modeling using fMRI signals”
• 05/16: Reviewer of Andrea Laruelo-Fernandez’s PhD thesis (INP Toulouse-IRIT- ENSEEIHT)

entitled “Integration of magnetic resonance spectroscopic imaging into the radiotherapy treatment
planning”

• 09/16: Examinor of Mohanad Albughdadi’s PhD thesis (INP Toulouse-IRIT- ENSEEIHT) entitled
“ Bayesian joint detection-estimation in functional MRI with automatic parcellation and functional
constraints”

• 10/16: Reviewer of Sébastien Combrexelle’s PhD thesis (INP Toulouse-IRIT- ENSEEIHT) entitled
“Multifractal analysis for multivariate data with application to remote sensing”.

• 10/16: Co-director of Aina Frau-Pascual’s PhD thesis (see above).
9.2.3.3. Gaël Varoquaux

• 06/16: Examiner of Alberto García Durán, PhD Thesis, UTC Compiegne.

9.3. Popularization
9.3.1. Gaël Varoquaux

• Unithé ou Café, Inria Saclay Ile de France
• Atelier IHEST Les mots du numérique - 17 novembre

9.3.2. Loïc Estève
Software Carpentry workshops:
• git course at UNIC in Gif-sur-Yvette March 29-30
• helper at "Scientific Programming with Python and Software Engineering Best Practices" workshop,

April 28-29 at Télécom Paris
• git course at Proto 204, May 24-25
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Mentor at Startup Weekend Artificial Intelligence, November 4-6.

9.3.3. Olivier Grisel
"La tête au carré" radio show on France Inter in January 2016 to share his expertise and opinion on the use
and impacts of Big Data and predictive algorithms 1.
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