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2. Overall Objectives

2.1. Overall Objectives
The Parietal team focuses on mathematical methods for modeling and statistical inference based on neu-
roimaging data, with a particular interest in machine learning techniques and applications of human functional
imaging. This general theme splits into four research axes:
• Modeling for neuroimaging population studies,
• Encoding and decoding models for cognitive imaging,
• Statistical and machine learning methods for large-scale data,
• Compressed-sensing for MRI.
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Parietal is also strongly involved in open-source software development in scientific Python (machine learning)
and for neuroimaging applications.

3. Research Program

3.1. Inverse problems in Neuroimaging
Many problems in neuroimaging can be framed as forward and inverse problems. For instance, brain
population imaging is concerned with the inverse problem that consists in predicting individual information
(behavior, phenotype) from neuroimaging data, while the corresponding forward problem boils down to
explaining neuroimaging data with the behavioral variables. Solving these problems entails the definition of
two terms: a loss that quantifies the goodness of fit of the solution (does the model explain the data well enough
?), and a regularization scheme that represents a prior on the expected solution of the problem. These priors
can be used to enforce some properties on the solutions, such as sparsity, smoothness or being piece-wise
constant.
Let us detail the model used in typical inverse problem: Let X be a neuroimaging dataset as an
(nsubjects, nvoxels) matrix, where nsubjects and nvoxels are the number of subjects under study, and
the image size respectively, Y a set of values that represent characteristics of interest in the observed
population, written as (nsubjects, nfeatures) matrix, where nfeatures is the number of characteristics that are
tested, and w an array of shape (nvoxels, nfeatures) that represents a set of pattern-specific maps. In the first
place, we may consider the columns Y1, ..,Ynfeatures

of Y independently, yielding nfeatures problems to be
solved in parallel:

Yi = Xwi + εi,∀i ∈ {1, .., nfeatures},

where the vector contains wi is the ith row of w. As the problem is clearly ill-posed, it is naturally handled in
a regularized regression framework:

ŵi = argminwi
‖Yi −Xwi‖2 + Ψ(wi), (1)

where Ψ is an adequate penalization used to regularize the solution:

Ψ(w;λ1, λ2, η1, η2) = λ1‖w‖1 + λ2‖w‖2 + η1‖∇w‖2,1 + η2‖∇w‖2,2 (2)

with λ1, λ2, η1, η2 ≥ 0 (this formulation particularly highlights the fact that convex regularizers are norms or
quasi-norms). In general, only one or two of these constraints is considered (hence is enforced with a non-zero
coefficient):

• When λ1 > 0 only (LASSO), and to some extent, when λ1, λ2 > 0 only (elastic net), the optimal
solution w is (possibly very) sparse, but may not exhibit a proper image structure; it does not fit well
with the intuitive concept of a brain map.

• Total Variation regularization (see Fig. 1) is obtained for (η1 > 0 only), and typically yields a piece-
wise constant solution. It can be associated with Lasso to enforce both sparsity and sparse variations.

• Smooth lasso is obtained with (η2 > 0 and λ1 > 0 only), and yields smooth, compactly supported
spatial basis functions.

Note that, while the qualitative aspect of the solutions are very different, the predictive power of these models
is often very close.
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Figure 1. Example of the regularization of a brain map with total variation in an inverse problem. The problem here
is to predict the spatial scale of an object presented as a stimulus, given functional neuroimaging data acquired

during the presentation of an image. Learning and test are performed across individuals. Unlike other approaches,
Total Variation regularization yields a sparse and well-localized solution that also enjoys high predictive accuracy.

The performance of the predictive model can simply be evaluated as the amount of variance in Yi fitted by
the model, for each i ∈ {1, .., nfeatures}. This can be computed through cross-validation, by learning ŵi on
some part of the dataset, and then estimating ‖Yi −Xŵi‖2 using the remainder of the dataset.

This framework is easily extended by considering

• Grouped penalization, where the penalization explicitly includes a prior clustering of the features, i.e.
voxel-related signals, into given groups. This amounts to enforcing structured priors on the solution.

• Combined penalizations, i.e. a mixture of simple and group-wise penalizations, that allow some vari-
ability to fit the data in different populations of subjects, while keeping some common constraints.

• Logistic and hinge regression, where a non-linearity is applied to the linear model so that it yields a
probability of classification in a binary classification problem.

• Robustness to between-subject variability to avoid the learned model overly reflecting a few outlying
particular observations of the training set. Note that noise and deviating assumptions can be present
in both Y and X

• Multi-task learning: if several target variables are thought to be related, it might be useful to constrain
the estimated parameter vector w to have a shared support across all these variables.
For instance, when one of the variables Yi is not well fitted by the model, the estimation of other
variables Yj , j 6= i may provide constraints on the support of wi and thus, improve the prediction
of Yi.

Y = Xw + ε, (3)

then

ŵ = argminw=(wi),i=1..nf

nf∑
i=1

‖Yi −Xwi‖2 + λ

nvoxels∑
j=1

√√√√ nf∑
i=1

w2
i,j (4)
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3.2. Multivariate decompositions
Multivariate decompositions provide a way to model complex data such as brain activation images: for
instance, one might be interested in extracting an atlas of brain regions from a given dataset, such as regions
exhibiting similar activity during a protocol, across multiple protocols, or even in the absence of protocol
(during resting-state). These data can often be factorized into spatial-temporal components, and thus can be
estimated through regularized Principal Components Analysis (PCA) algorithms, which share some common
steps with regularized regression.
Let X be a neuroimaging dataset written as an (nsubjects, nvoxels) matrix, after proper centering; the model
reads

X = AD + ε, (5)

where D represents a set of ncomp spatial maps, hence a matrix of shape (ncomp, nvoxels), and A the
associated subject-wise loadings. While traditional PCA and independent components analysis are limited
to reconstructing components D within the space spanned by the column of X, it seems desirable to add some
constraints on the rows of D, that represent spatial maps, such as sparsity, and/or smoothness, as it makes
the interpretation of these maps clearer in the context of neuroimaging. This yields the following estimation
problem:

minD,A‖X−AD‖2 + Ψ(D) s.t. ‖Ai‖ = 1 ∀i ∈ {1..nfeatures}, (6)

where (Ai), i ∈ {1..nfeatures} represents the columns of A. Ψ can be chosen such as in Eq. (2) in order to
enforce smoothness and/or sparsity constraints.
The problem is not jointly convex in all the variables but each penalization given in Eq (2) yields a convex
problem on D for A fixed, and conversely. This readily suggests an alternate optimization scheme, where D
and A are estimated in turn, until convergence to a local optimum of the criterion. As in PCA, the extracted
components can be ranked according to the amount of fitted variance. Importantly, also, estimated PCA models
can be interpreted as a probabilistic model of the data, assuming a high-dimensional Gaussian distribution
(probabilistic PCA).

Ultimately, the main limitations to these algorithms is the cost due to the memory requirements: holding
datasets with large dimension and large number of samples (as in recent neuroimaging cohorts) leads to
inefficient computation. To solve this issue, online methods are particularly attractive [29].

3.3. Covariance estimation
Another important estimation problem stems from the general issue of learning the relationship between sets
of variables, in particular their covariance. Covariance learning is essential to model the dependence of these
variables when they are used in a multivariate model, for instance to study potential interactions among them
and with other variables. Covariance learning is necessary to model latent interactions in high-dimensional
observation spaces, e.g. when considering multiple contrasts or functional connectivity data.
The difficulties are two-fold: on the one hand, there is a shortage of data to learn a good covariance model from
an individual subject, and on the other hand, subject-to-subject variability poses a serious challenge to the use
of multi-subject data. While the covariance structure may vary from population to population, or depending
on the input data (activation versus spontaneous activity), assuming some shared structure across problems,
such as their sparsity pattern, is important in order to obtain correct estimates from noisy data. Some of the
most important models are:

• Sparse Gaussian graphical models, as they express meaningful conditional independence relation-
ships between regions, and do improve conditioning/avoid overfit.
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• Decomposable models, as they enjoy good computational properties and enable intuitive interpre-
tations of the network structure. Whether they can faithfully or not represent brain networks is still
an open question.

• PCA-based regularization of covariance which is powerful when modes of variation are more
important than conditional independence relationships.

Adequate model selection procedures are necessary to achieve the right level of sparsity or regularization
in covariance estimation; the natural evaluation metric here is the out-of-sample likelihood of the associated
Gaussian model. Another essential remaining issue is to develop an adequate statistical framework to test
differences between covariance models in different populations. To do so, we consider different means of
parametrizing covariance distributions and how these parametrizations impact the test of statistical differences
across individuals.

Figure 2. Example of functional connectivity analysis: The correlation matrix describing brain functional
connectivity in a post-stroke patient (lesion volume outlined as a mesh) is compared to a group of control subjects.

Some edges of the graphical model show a significant difference, but the statistical detection of the difference
requires a sophisticated statistical framework for the comparison of graphical models.

4. Application Domains

4.1. Cognitive neuroscience
4.1.1. Macroscopic Functional cartography with functional Magnetic Resonance Imaging

(fMRI)
The brain as a highly structured organ, with both functional specialization and a complex network organi-
zation. While most of the knowledge historically comes from lesion studies and animal electophysiological
recordings, the development of non-invasive imaging modalities, such as fMRI, has made it possible to study
routinely high-level cognition in humans since the early 90’s. This has opened major questions on the in-
terplay between mind and brain , such as: How is the function of cortical territories constrained by anatomy
(connectivity) ? How to assess the specificity of brain regions ? How can one characterize reliably inter-subject
differences ?

4.1.2. Analysis of brain Connectivity
Functional connectivity is defined as the interaction structure that underlies brain function. Since the beginning
of fMRI, it has been observed that remote regions sustain high correlation in their spontaneous activity, i.e.
in the absence of a driving task. This means that the signals observed during resting-state define a signature
of the connectivity of brain regions. The main interest of resting-state fMRI is that it provides easy-to-acquire
functional markers that have recently been proved to be very powerful for population studies.
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4.1.3. Modeling of brain processes (MEG)
While fMRI has been very useful in defining the function of regions at the mm scale, Magneto-
encephalography (MEG) provides the other piece of the puzzle, namely temporal dynamics of brain
activity, at the ms scale. MEG is also non-invasive. It makes it possible to keep track of precise schedule of
mental operations and their interactions. It also opens the way toward a study of the rhythmic activity of the
brain. On the other hand, the localization of brain activity with MEG entails the solution of a hard inverse
problem.

4.1.4. Current challenges in human neuroimaging (acquisition+analysis)
Human neuroimaging targets two major goals: i) the study of neural responses involved in sensory, motor
or cognitive functions, in relation to models from cognitive psychology, i.e. the identification of neurophys-
iological and neuroanatomical correlates of cognition; ii) the identification of markers in brain structure and
function of neurological or psychiatric diseases. Both goals have to deal with a tension between

• the search for higher spatial 1 resolution to increase spatial specificity of brain signals, and clarify
the nature (function and structure) of brain regions. This motivates efforts for high-field imaging and
more efficient acquisitions, such as compressed sensing schemes, as well as better source localization
methods from M/EEG data.

• the importance of inferring brain features with population-level validity, hence, contaminated with
high variability within observed cohorts, which blurs the information at the population level and
ultimately limits the spatial resolution of these observations.

Importantly, the signal-to-noise ratio (SNR) of the data remains limited due to both resolution improvements
2 and between-subject variability. Altogether, these factors have led to realize that results of neuroimaging
studies were statistically weak, i.e. plagued with low power and leading to unreliable inference [54], and
particularly so due to the typically number of subjects included in brain imaging studies (20 to 30, this number
tends to increase [55]): this is at the core of the neuroimaging reproducibility crisis. This crisis is deeply related
to a second issue, namely that only few neuroimaging datasets are publicly available, making it impossible to
re-assess a posteriori the information conveyed by the data. Fortunately, the situation improves, lead by projects
such as NeuroVault or OpenfMRI. A framework for integrating such datasets is however still missing.

5. Highlights of the Year

5.1. Highlights of the Year
5.1.1. ERC

Demian Wassermann obtained an ERC starting grant, Neurolang, Accelerating Neuroscience Research by
Unifying Knowledge Representation and Analysis Through a Domain Specific Language.

Besides, Alexandre Gramfort joined Parietal just after the start of his ERC grant entitled SLAB, Signal
processing and Learning Applied to Brain data.

6. New Software and Platforms

6.1. Mayavi

1and to some extent, temporal, but for the sake of simplicity we focus here on spatial aspects.
2The SNR of the acquired signal is proportional to the voxel size, hence an improvement by a factor of 2 in image resolution along

each dimension is payed by a factor of 8 in terms of SNR.

http://neurovault.org
http://openfmri.org
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FUNCTIONAL DESCRIPTION: Mayavi is the most used scientific 3D visualization Python software. Mayavi
can be used as a visualization tool, through interactive command line or as a library. It is distributed under
Linux through Ubuntu, Debian, Fedora and Mandriva, as well as in PythonXY and EPD Python scientific
distributions. Mayavi is used by several software platforms, such as PDE solvers (fipy, sfepy), molecule
visualization tools and brain connectivity analysis tools (connectomeViewer).
• Contact: Gaël Varoquaux
• URL: http://mayavi.sourceforge.net/

6.2. MedInria
KEYWORDS: Visualization - DWI - Health - Segmentation - Medical imaging
SCIENTIFIC DESCRIPTION: It aims at creating an easily extensible platform for the distribution of research
algorithms developed at Inria for medical image processing. This project has been funded by the D2T (ADT
MedInria-NT) in 2010, renewed in 2012. A fast-track ADT was awarded in 2017 to transition the software
core to more recent dependencies and study the possibility of a consortium creation.The Visages team leads
this Inria national project and participates in the development of the common core architecture and features of
the software as well as in the development of specific plugins for the team’s algorithm.
FUNCTIONAL DESCRIPTION: MedInria is a free software platform dedicated to medical data visualization
and processing.
• Participants: Maxime Sermesant, Olivier Commowick and Théodore Papadopoulo
• Partners: HARVARD Medical School - IHU - LIRYC - NIH
• Contact: Olivier Commowick
• URL: http://med.inria.fr

6.3. Nilearn
NeuroImaging with scikit learn
KEYWORDS: Health - Neuroimaging - Medical imaging
FUNCTIONAL DESCRIPTION: NiLearn is the neuroimaging library that adapts the concepts and tools of scikit-
learn to neuroimaging problems. As a pure Python library, it depends on scikit-learn and nibabel, the main
Python library for neuroimaging I/O. It is an open-source project, available under BSD license. The two key
components of NiLearn are i) the analysis of functional connectivity (spatial decompositions and covariance
learning) and ii) the most common tools for multivariate pattern analysis. A great deal of efforts has been put
on the efficiency of the procedures both in terms of memory cost and computation time.
• Participants: Alexandre Abraham, Alexandre Gramfort, Bertrand Thirion, Elvis Dohmatob, Fabian

Pedregosa Izquierdo, Gaël Varoquaux, Loïc Estève, Michael Eickenberg and Virgile Fritsch
• Contact: Bertrand Thirion
• URL: http://nilearn.github.io/

6.4. PyHRF
KEYWORDS: Health - Brain - IRM - Neurosciences - Statistic analysis - FMRI - Medical imaging
FUNCTIONAL DESCRIPTION: As part of fMRI data analysis, PyHRF provides a set of tools for addressing
the two main issues involved in intra-subject fMRI data analysis : (i) the localization of cerebral regions that
elicit evoked activity and (ii) the estimation of the activation dynamics also referenced to as the recovery of
the Hemodynamic Response Function (HRF). To tackle these two problems, PyHRF implements the Joint
Detection-Estimation framework (JDE) which recovers parcel-level HRFs and embeds an adaptive spatio-
temporal regularization scheme of activation maps.
• Participants: Aina Frau Pascual, Christine Bakhous, Florence Forbes, Jaime Eduardo Arias Almeida,

Laurent Risser, Lotfi Chaari, Philippe Ciuciu, Solveig Badillo, Thomas Perret and Thomas Vincent
• Partners: CEA - NeuroSpin
• Contact: Florence Forbes
• URL: http://pyhrf.org

http://mayavi.sourceforge.net/
http://med.inria.fr
http://nilearn.github.io/
http://pyhrf.org
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6.5. Scikit-learn
KEYWORDS: Regession - Clustering - Learning - Classification - Medical imaging
SCIENTIFIC DESCRIPTION: Scikit-learn is a Python module integrating classic machine learning algorithms in
the tightly-knit scientific Python world. It aims to provide simple and efficient solutions to learning problems,
accessible to everybody and reusable in various contexts: machine-learning as a versatile tool for science and
engineering.
FUNCTIONAL DESCRIPTION: Scikit-learn can be used as a middleware for prediction tasks. For example,
many web startups adapt Scikitlearn to predict buying behavior of users, provide product recommendations,
detect trends or abusive behavior (fraud, spam). Scikit-learn is used to extract the structure of complex data
(text, images) and classify such data with techniques relevant to the state of the art.

Easy to use, efficient and accessible to non datascience experts, Scikit-learn is an increasingly popular machine
learning library in Python. In a data exploration step, the user can enter a few lines on an interactive (but
non-graphical) interface and immediately sees the results of his request. Scikitlearn is a prediction engine .
Scikit-learn is developed in open source, and available under the BSD license.

• Participants: Alexandre Gramfort, Bertrand Thirion, Fabian Pedregosa Izquierdo, Gaël Varoquaux,
Loïc Estève, Michael Eickenberg and Olivier Grisel

• Partners: CEA - Logilab - Nuxeo - Saint Gobain - Tinyclues - Telecom Paris

• Contact: Olivier Grisel

• URL: http://scikit-learn.org

6.6. MODL
Massive Online Dictionary Learning
KEYWORDS: Pattern discovery - Machine learning
FUNCTIONAL DESCRIPTION: Matrix factorization library, usable on very large datasets, with optional sparse
and positive factors.

• Participants: Arthur Mensch, Gaël Varoquaux, Bertrand Thirion and Julien Mairal

• Contact: Arthur Mensch

• Publications: Subsampled online matrix factorization with convergence guarantees - Stochastic
Subsampling for Factorizing Huge Matrices

• URL: http://github.com/arthurmensch/modl

6.7. MNE
MNE-Python
KEYWORDS: Neurosciences - EEG - MEG - Signal processing - Machine learning
FUNCTIONAL DESCRIPTION: Open-source Python software for exploring, visualizing, and analyzing human
neurophysiological data: MEG, EEG, sEEG, ECoG, and more.

• Contact: Alexandre Gramfort

• URL: http://martinos.org/mne/

http://scikit-learn.org
https://hal.inria.fr/hal-01405058
https://hal.inria.fr/hal-01431618v3
https://hal.inria.fr/hal-01431618v3
http://github.com/arthurmensch/modl
http://martinos.org/mne/
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7. New Results

7.1. Joint prediction of multiple scores captures better individual traits from
brain images
To probe individual variations in brain organization, population imaging relates features of brain images to
rich descriptions of the subjects such as genetic information or behavioral and clinical assessments. Capturing
common trends across these measurements is important: they jointly characterize the disease status of patient
groups. In particular, mapping imaging features to behavioral scores with predictive models opens the way
toward more precise diagnosis. Here we propose to jointly predict all the dimensions (behavioral scores) that
make up the individual profiles, using so-called multi-output models. This approach often boosts prediction
accuracy by capturing latent shared information across scores. We demonstrate the efficiency of multi-
output models on two independent resting-state fMRI datasets targeting different brain disorders (Alzheimer’s
Disease and schizophrenia). Furthermore, the model with joint prediction generalizes much better to a new
cohort: a model learned on one study is more accurately transferred to an independent one. Finally, we
show how multi-output models can easily be extended to multi-modal settings, combining heterogeneous
data sources for a better overall accuracy.

More information can be found in Fig. 3 in [46].

Figure 3. Joint prediction of multiple scores captures better individual traits from brain images

7.2. Population-shrinkage of covariance to estimate better brain functional
connectivity
Brain functional connectivity, obtained from functional Magnetic Resonance Imaging at rest (r-fMRI), reflects
inter-subject variations in behavior and characterizes neuropathologies. It is captured by the covariance matrix
between time series of remote brain regions. With noisy and short time series as in r-fMRI, covariance
estimation calls for penalization, and shrinkage approaches are popular. Here we introduce a new covariance
estimator based on a non-isotropic shrinkage that integrates prior knowledge of the covariance distribution
over a large population. The estimator performs shrinkage tailored to the Riemannian geometry of symmetric
positive definite matrices, coupled with a probabilistic modeling of the subject and population covariance
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distributions. Experiments on a large-scale dataset show that such estimators resolve better intra-and inter-
subject functional connectivities compared existing co-variance estimates. We also demonstrate that the
estimator improves the relationship across subjects between their functional-connectivity measures and their
behavioral assessments. More information can be found in Fig. 4 in [47].

Prior

New covariance

traintrain

Figure 4. (a) Shrunk embedding estimation workflow: the empirical covariance is estimated from r-fMRI
time-series; it is projected onto a tangent space built from a prior population; the embedding is then shrunk

towards the prior (
−→
dΣ0,

−→−→
Λ 0). (b) Principle of tangent embedding shrinkage towards population distribution.

7.3. Fast Regularized Ensembles of Models
Brain decoding relates behavior to brain activity through predictive models. These are also used to identify
brain regions involved in the cognitive operations related to the observed behavior. Training such multivariate
models is a high-dimensional statistical problem that calls for suitable priors. State of the art priors –eg small
total-variation– enforce spatial structure on the maps to stabilize them and improve prediction. However, they
come with a hefty computational cost. We build upon very fast dimension reduction with spatial structure
and model ensembling to achieve decoders that are fast on large datasets and increase the stability of the
predictions and the maps. Our approach, fast regularized ensemble of models (FReM), includes an implicit
spatial regularization by using a voxel grouping with a fast clustering algorithm. In addition, it aggregates
different estimators obtained across splits of a cross-validation loop, each time keeping the best possible
model. Experiments on a large number of brain imaging datasets show that our combination of voxel clustering
and model ensembling improves decoding maps stability and reduces the variance of prediction accuracy.
Importantly, our method requires less samples than state-of-the-art methods to achieve a given level of
prediction accuracy. Finally, FreM is highly parallelizable, and has lower computation cost than other spatially-
regularized methods.

More information can be found in Fig. 5 in [23].

7.4. time decoding
Most current functional Magnetic Resonance Imaging (fMRI) decoding analyses rely on statistical summaries
of the data resulting from a deconvolution approach: each stimulation event is associated with a brain response.
This standard approach leads to simple learning procedures, yet it is ill-suited for decoding events with short
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Figure 5. Qualitative comparison of decoder weight maps: Weight maps for different discriminative tasks on the
HCP dataset. The maps are thresholded at the 99 percentile for visualization purposes. These correspond to a
face-recognition task. The weight maps obtained with TV-L1 and FReM methods with clustering outline the

organization of the functional areas of the visual mosaic, such as: primary visual areas, lateral occipital complex,
the face and place specific regions in the fusiform gyrus.

inter-stimulus intervals. In order to overcome this issue, we propose a novel framework that separates the
spatial and temporal components of the prediction by decoding the fMRI time-series continuously, i.e. scan-
by-scan. The stimulation events can then be identified through a deconvolution of the reconstructed time series.
We show that this model performs as well as or better than standard approaches across several datasets, most
notably in regimes with small inter-stimuli intervals (3 to 5s), while also offering predictions that are highly
interpretable in the time domain. This opens the way toward analyzing datasets not normally thought of as
suitable for decoding and makes it possible to run decoding on studies with reduced scan time.

More information can be found in Fig. 6 in [28].

7.5. Hierarchical Region-Network Sparsity for High-Dimensional Inference in
Brain Imaging
Structured sparsity penalization has recently improved statistical models applied to high-dimensional data in
various domains. As an extension to medical imaging, the present work incorporates priors on network hier-
archies of brain regions into logistic-regression to distinguish neural activity effects. These priors bridge two
separately studied levels of brain architecture: functional segregation into regions and functional integration
by networks. Hierarchical region-network priors are shown to better classify and recover 18 psychological
tasks than other sparse estimators. Varying the relative importance of region and network structure within the
hierarchical tree penalty captured complementary aspects of the neural activity patterns. Local and global pri-
ors of neurobiological knowledge are thus demonstrated to offer advantages in generalization performance,
sample complexity, and domain interpretability.

More information can be found in Fig. 7 in [48].

7.6. Cross-validation failure: small sample sizes lead to large error bars
Predictive models ground many state-of-the-art developments in statistical brain image analysis: decoding,
MVPA, searchlight, or extraction of biomarkers. The principled approach to establish their validity and
usefulness is cross-validation, testing prediction on unseen data. Here, we raise awareness on error bars
of cross-validation, which are often underestimated. Simple experiments show that sample sizes of many
neuroimaging studies inherently lead to large error bars, eg ±10% for 100 samples. The standard error
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Figure 6. Schema of the time-domain decoding model. Straight arrows represent generative steps, while curved
ones represent estimation steps.

Figure 7. Building blocks of the hierarchical region-network tree. Displays the a-priori neurobiological knowledge
introduced into the classification problem by hierarchical structured sparsity. Left: Continuous, partially

overlapping brain network priors (hot-colored) accommodate the functional integration perspective of brain
organization. Right: Discrete, non-overlapping brain region priors (single-colored) accommodate the functional

segregation perspective. Middle: These two types of predefined voxel groups are incorporated into a joint
hierarchical prior of parent networks with their descending region child nodes. Top to bottom: Two exemplary

region-network priors are shown, including the early cortices that process visual and sound information from the
environment.
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across folds strongly underestimates them. These large error bars compromise the reliability of conclusions
drawn with predictive models, such as biomarkers or methods developments where, unlike with cognitive
neuroimaging MVPA approaches, more samples cannot be acquired by repeating the experiment across many
subjects. Solutions to increase sample size must be investigated, tackling possible increases in heterogeneity
of the data.

More information can be found in Fig. 8 in [33].

Figure 8. Cross-validation errors. a – Distribution of errors between the prediction accuracy as assessed via
cross-validation (average across folds) and as measured on a large independent test set for different types of

neuroimaging data. b – Distribution of errors between the prediction accuracy as assessed via cross-validation on
data of various sample sizes and as measured on 10 000 new data points for simple simulations. c – Distribution of
errors as given by a binomial law: difference between the observed prediction error and the population value of the
error, p = 75%, for different sample sizes. d – Discrepancies between private and public score. Each dot represents

the difference between the accuracy of a method on the public test data and the private one. The scores are
retrieved from http://www.kaggle.com/c/mlsp-2014-mri, in which 144 subjects were used total, 86 for training

predictive model, 30 for the public test set, and 28 for the private test set. The bar and whiskers indicate the median
and the 5th and 95th percentile. Measures on cross-validation (a and b) are reported for two reasonable choices of

cross-validation strategy: leave one out (leave one run out or leave one subject out in data with multiple runs or
subjects), or 50-times repeated splitting of 20% of the data.

7.7. Autoreject: Automated artifact rejection for MEG and EEG data
We present an automated algorithm for unified rejection and repair of bad trials in magnetoencephalography
(MEG) and electroencephalography (EEG) signals. Our method capitalizes on cross-validation in conjunction
with a robust evaluation metric to estimate the optimal peak-to-peak threshold – a quantity commonly used
for identifying bad trials in M/EEG. This approach is then extended to a more sophisticated algorithm
which estimates this threshold for each sensor yielding trial-wise bad sensors. Depending on the number
of bad sensors, the trial is then repaired by interpolation or by excluding it from subsequent analysis. All
steps of the algorithm are fully automated thus lending itself to the name Autoreject. In order to assess
the practical significance of the algorithm, we conducted extensive validation and comparisons with state-
of-the-art methods on four public datasets containing MEG and EEG recordings from more than 200

http://www.kaggle.com/c/mlsp-2014-mri
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subjects. The comparisons include purely qualitative efforts as well as quantitatively benchmarking against
human supervised and semi-automated preprocessing pipelines. The algorithm allowed us to automate the
preprocessing of MEG data from the Human Connectome Project (HCP) going up to the computation of the
evoked responses. The automated nature of our method minimizes the burden of human inspection, hence
supporting scalability and reliability demanded by data analysis in modern neuroscience.

More information can be found in Fig. 9 and in [24].

Figure 9. Autoreject: Automated artifact rejection for MEG and EEG data.

7.8. Learning Neural Representations of Human Cognition across Many
fMRI Studies
Cognitive neuroscience is enjoying rapid increase in extensive public brain-imaging datasets. It opens the
door to large-scale statistical models. Finding a unified perspective for all available data calls for scalable
and automated solutions to an old challenge: how to aggregate heterogeneous information on brain function
into a universal cognitive system that relates mental operations/cognitive processes/psychological tasks to
brain networks? We cast this challenge in a machine-learning approach to predict conditions from statistical
brain maps across different studies. For this, we leverage multi-task learning and multi-scale dimension
reduction to learn low-dimensional representations of brain images that carry cognitive information and can
be robustly associated with psychological stimuli. Our multi-dataset classification model achieves the best
prediction performance on several large reference datasets, compared to models without cognitive-aware low-
dimension representations; it brings a substantial performance boost to the analysis of small datasets, and can
be introspected to identify universal template cognitive concepts.

More information can be found in Fig. 10 in [45].

7.9. SPARKLING: Novel Non-Cartesian Sampling Schemes for Accelerated
2D Anatomical Imaging at 7T Using Compressed Sensing
We have presented for the first time the implementation of non-Cartesian trajectories on a 7T scanner for
2D anatomical imaging. The proposed SPARKLING curves (Segmented Projection Algorithm for Random
K-space sampLING) are a new type of non-Cartesian segmented sampling trajectories which allow fast and
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Figure 10. Model architecture: Three-layer multi-dataset classification. The first layer (orange) is learned from
data acquired outside of cognitive experiments and captures a spatially coherent signal at multiple scales, the

second layer (blue) embeds these representations in a space common to all datasets, from which the conditions are
predicted (pink) from multinomial models.

efficient coverage of the k-space according to a chosen variable density. To demonstrate their potential, a high-
resolution (0.4×0.4×3.0mm 3) T2*-weighted image was acquired with an 8-fold undersampled SPARKLING
trajectory. Images were reconstructed using non-linear iterative reconstructions derived from the Compressed
Sensing theory.

More information can be found in Fig. 11 in [43], [42].

Figure 11. T2*-weighted Gradient-Echo transversal slice of the ex vivo baboon brain is displayed for A) the full
Cartesian reference sampling lasting 4 minutes and 42 seconds and B) the presented 8-fold undersampled

SPARKLING trajectories lasting only 35 seconds. A good visual quality of the subsampled reconstruction was
observed with the preservation of major folded patterns. The structural similarity score between the SPARKLING

reconstructions and the reference was also very satisfactory.
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7.10. A Projection Method on Measures Sets
We consider the problem of projecting a probability measure π on a set MN of Radon measures. The projection
is defined as a solution of the following variational problem:

infµ∈MN
‖h ∗ (µ−π)‖22,

where h ∈ L2(Ω) is a kernel, Ω ⊂ Rd and denotes the convolution operator. To motivate and illustrate our
study, we show that this problem arises naturally in various practical image rendering problems such as
stippling (representing an image with N dots) or continuous line drawing (representing an image with a
continuous line). We provide a necessary and sufficient condition on the sequence (MN )N∈N that ensures
weak convergence of the projections (µ∗N )N∈N to π. We then provide a numerical algorithm to solve a
discretized version of the problem and show several illustrations related to computer-assisted synthesis of
artistic paintings/drawings.

More information can be found in [19].

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Grants with Industry
8.1.1. The Wendelin FUI project

The Wendelin project has been granted on December 3rd, 2014. It has been selected at the Programme
d’Investissements d’Avenir (PIA) that supports "cloud computing et Big Data". It gives visibility and fosters
the French technological big data sector, and in particular the scikit-learn library, the NoSQL “NEO” et the
decentralized “SlapOS” cloud, three open-source software supported by the Systematic pôle de compétitivité.

Scikit-learn is a worldwide reference library for machine learning. Gaël Varoquaux, Olivier Grisel and
Alexandre Gramfort have been major players in the design of the library and Scikit-learn has then been
supported by the growing scientific Python community. It is currently used by major internet companies as
well as dynamic start-ups, including Google, Airbnb, Spotify, Evernote, AWeber, TinyClues; it wins more than
half of the data science "Kaggle" competitions. Scikit-learn makes it possible to predict future outcomes given
a training data, and thus to optimize company decisions. Almost 1 million euros will be invested to improve
the algorithmic core of scikit-learn through the Wendelin project thanks to the Inria, ENS and Institut Mines
Télécom teams. In particular, scikit-learn will be extended in order to ease online prediction and to include
recent stochastic gradient algorithms.

NEO is the native NoSQL base of the Python language. It was initially designed by Nexedi and is currently
used and embedded in the main software of company information systems. More than one million euros will
be invested into NEO, so that scikit-learn can process within 10 years (out-of-core) data of 1 exabyte size.

Paris13 university and the Mines Télécom institute will extend the SlapOS distributed mesh cloud to deploy
Wendelin in Big Data as a Service (BDaaS) mode, to achieve the interoperability between the Grid5000 and
Teralab infrastructures and to extend the cloud toward smart sensor systems.

The combination of scikit-learn, NEO and SlapOS will improve the predictive maintenance of industrial plants
with two major use cases: connected windmills (GDF SUEZ, Woelfel) and customer satisfaction in car sale
systems (MMC Rus). In both cases it is about non-personal, yet profitable big data. The Wendelin project
actually demonstrates that Big data can improve infrastructure and everyday-life equipment without intrusive
data collection. For more information, please see http://www.wendelin.io.

http://www.wendelin.io
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The project partners are:
• Nexedi (leader)
• GDF SUEZ
• Abilian
• 2ndQuadrant
• Institut Mines Télécom
• Inria
• Université Paris 13

9. Partnerships and Cooperations
9.1. Regional Initiatives
9.1.1. CoSmic project

Participants: Philippe Ciuciu [Correspondant], Carole Lazarus, Loubna El Gueddari.

This is a collaborative project with Jean-Luc Stark, (CEA) funded by the DRF-impulsion CEA program.

Compressed Sensing is a recent theory in maths that allows the perfect recovery of signals or images from
compressive acquisition scenarios. This approach has been popularized in MRI over the last decade as well
as in astrophysics (noticeably in radio-astronomy). So far, both of these fields have developed skills in CS
separately. The aim of the COSMIC project is to foster collaborations between CEA experts in MRI (Parietal
team within NeuroSpin) and in astrophysics (CosmoStat lab within the Astrophysics Department). These
interactions will allow us to share different expertise in order to improve image quality, either in MRI or
in radio-astronomy (thanks to the interferometry principle). In this field, given the data delivered by radio-
telescopes, the goal consists in extracting high temporal resolution information in order to study fast transient
events.

9.1.2. BrainAMP project
Participants: Bertrand Thirion [Correspondant], Gaël Varoquaux, Antonio Andre Monteiro Manoel.

This is a collaborative project with Lenka Zdeborová, Theoretical Physics Institute (CEA) funded by the DRF-
impulsion CEA program.

In many scientific fields, the data acquisition devices have benefited of hardware improvement to increase the
resolution of the observed phenomena, leading to ever larger datasets. While the dimensionality has increased,
the number of samples available is often limited, due to physical or financial limits. This is a problem when
these data are processed with estimators that have a large sample complexity, such as multivariate statistical
models. In that case it is very useful to rely on structured priors, so that the results reflect the state of knowledge
on the phenomena of interest. The study of the human brain activity through high-field MRI belongs among
these problems, with up to 106 features, yet a set of observations limited by cost and participant comfort.

We are missing fast estimators for multivariate models with structured priors, that furthermore provide
statistical control on the solution. Approximate message passing methods are designed to work optimally
with low-sample-complexity, they accommodate rather generic class of priors and come with an estimation of
statistical significance. They are therefore well suited for our purposes.

We want to join forces to design a new generation of inverse problem solvers that can take into account the
complex structure of brain images and provide guarantees in the low-sample-complexity regime. To this end,
we will first adapt AMP to the brain mapping setting, using first standard sparsity priors (e.g. Gauss-Bernoulli)
on the model. We will then consider more complex structured priors that control the variation of the learned
image patterns in space. Crucial gains are expected from the use of the EM algorithm for parameter setting, that
comes naturally with AMP. We will also examine the estimators provided by AMP for statistical significance.
BrainAMP will design a reference inference toolbox released as a generic open source library. We expect a 3-
to 10-fold improvement in CPU time, that will benefit to large-scale brain mapping investigations.
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9.1.3. iConnectom project
Participants: Bertrand Thirion [Correspondant], Gaël Varoquaux, Elvis Dohmatob.

This is a Digiteo project (2014-2017).

Mapping brain functional connectivity from functional Magnetic Resonance Imaging (MRI) data has become
a very active field of research. However, analysis tools are limited and many important tasks, such as the em-
pirical definition of brain networks, remain difficult due to the lack of a good framework for the statistical
modeling of these networks. We propose to develop population models of anatomical and functional connec-
tivity data to improve the alignment of subjects brain structures of interest while inferring an average template
of these structures. Based on this essential contribution, we will design new statistical inference procedures to
compare the functional connections between conditions or populations and improve the sensitivity of connec-
tivity analysis performed on noisy data. Finally, we will test and validate the methods on multiple datasets and
distribute them to the brain imaging community.

9.1.4. MetaCog project
Participants: Bertrand Thirion [Correspondant], Gaël Varoquaux, Jérome Dockès.

This is a Digicosme project (2016-2019) and a collaboration with Fabian Suchanek (Telecom Paritech).

Understanding how cognition emerges from the billions of neurons that constitute the human brain is a
major open problem in science that could bridge natural science –biology– to humanities –psychology.
Psychology studies performed on humans with functional Magnetic Resonance Imaging (fMRI) can be used
to probe the full repertoire of high-level cognitive functions. While analyzing the resulting image data for
a given experiment is a relatively well-mastered process, the challenges in comparing data across multiple
datasets poses serious limitation to the field. Indeed, such comparisons require to pool together brain images
acquired under different settings and assess the effect of different experimental conditions that correspond to
psychological effects studied by neuroscientists.

Such meta-analyses are now becoming possible thanks to the development of public data resources
–OpenfMRI http://openfmri.org and NeuroVault http://neurovault.org. As many others, researchers of the Pari-
etal team understand these data sources well and contribute to them. However, in such open-ended context,
the description of experiments in terms of cognitive concepts is very difficult: there is no universal definition
of cognitive terms that could be employed consistently by neuroscientists. Hence meta-analytic studies loose
power and specificity. On the other hand, http://brainspell.org provide a set of curated annotation, albeit on
much less data, that can serve as a seed or a ground truth to define a consensual ontology of cognitive con-
cepts. Relating these terms to brain activity poses another challenge, of statistical nature, as brain patterns
form high-dimensional data in perspective with the scarcity and the noise of the data.

The purpose of this project is to learn a semantic structure in cognitive terms from their occurrence in brain
activation. This structure will simplify massive multi-label statistical-learning problems that arise in brain
mapping by providing compact representations of cognitive concepts while capturing the imprecision on the
definition these concepts.

9.1.5. HighDimStat project
Participants: Bertrand Thirion [Correspondant], Jérome-Alexis Chevalier, Joseph Salmon.

This is a Digicosme project (2017-2020) and a collaboration with Joseph Salmon (Telecom Paritech).

The HiDimStat project aims at handling uncertainty in the challenging context of high dimensional regression
problem. Though sparse models have been popularized in the last twenty years in contexts where many features
can explain a phenomenon, it remains a burning issue to attribute confidence to the predictive models that they
produce. Such a question is hard both from the statistical modeling point of view, and from a computation
perspective. Indeed, in practical settings, the amount of features at stake (possibly up to several millions
in high resolution brain imaging) limit the application of current methods and require new algorithms to
achieve computational efficiency. We plan to leverage recent developments in sparse convex solvers as well
as more efficient reformulations of testing and confidence interval estimates to provide several communities

http://openfmri.org
http://neurovault.org
http://brainspell.org
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with practical software handling uncertainty quantification. Specific validation experiments will be performed
in the field of brain imaging.

9.1.6. AMPHI project
Participants: Bertrand Thirion [Correspondant], Joseph Salmon, Antonio Andre Monteiro Manoel.

This is a Digicosme project (2017-2020) and a collaboration with Joseph Salmon (Telecom Paritech) and
Lenka Zdeborova (CEA, IPhT).

In many scientific fields, the data acquisition devices have benefited of hardware improvement to increase the
resolution of the observed phenomena, leading to ever larger datasets. While the dimensionality has increased,
the number of samples available is often limited, due to physical or financial limits. This is a problem when
these data are processed with estimators that have a large sample complexity, such as multivariate statistical
models. In that case it is very useful to rely on structured priors, so that the results reflect the state of knowledge
on the phenomena of interest. The study of the human brain activity through neuroimaging belongs among
these problems, with up to 106 features, yet a set of observations limited by cost and participant comfort. We
are missing fast estimators for multivariate models with structured priors, that furthermore provide statistical
control on the solution. Approximate message passing (AMP) methods are designed to work optimally with
low- sample-complexity, they accommodate rather generic class of priors and come with an estimation of
statistical significance. They are therefore well suited for our purposes. We want to join forces to design a new
generation of inverse problem solvers that can take into account the complex structure of brain images and
provide guarantees in the low-sample-complexity regime. To this end, we will first adapt AMP to the brain
mapping setting, using first standard sparsity priors (e.g. Gauss-Bernoulli) on the model. We will then consider
more complex structured priors that control the variation of the learned image patterns in space. Crucial gains
are expected from the use of the EM algorithm for parameter setting, that comes naturally with AMP. We
will also examine the estimators provided by AMP for statistical significance. AMPHI will design a reference
inference toolbox released as a generic open source library. We expect a 3- to 10-fold improvement in CPU
time, that will benefit to large-scale brain mapping investigations.

9.1.7. CDS2
Participants: Bertrand Thirion [Correspondant], Gaël Varoquaux, Guillaume Lemaitre, Joris Van Den Boss-
che.

CDS2 is an "Strategic research initiative” of the Paris Saclay University Idex http://datascience-paris-saclay.fr.
Although it groups together many partners of the Paris Saclay ecosystem, Parietal has been deeply involved
in the project. It currently funds a post-doc for Guillaume Lemaitre and an engineer position for Joris van den
Bossche.

9.2. National Initiatives
9.2.1. ANR
9.2.1.1. MultiFracs project

Participants: Philippe Ciuciu [Correspondant], Daria La Rocca.

The scale-free concept formalizes the intuition that, in many systems, the analysis of temporal dynamics cannot
be grounded on specific and characteristic time scales. The scale-free paradigm has permitted the relevant
analysis of numerous applications, very different in nature, ranging from natural phenomena (hydrodynamic
turbulence, geophysics, body rhythms, brain activity,...) to human activities (Internet traffic, population,
finance, art,...).

Yet, most successes of scale-free analysis were obtained in contexts where data are univariate, homogeneous
along time (a single stationary time series), and well-characterized by simple-shape local singularities. For
such situations, scale-free dynamics translate into global or local power laws, which significantly eases
practical analyses. Numerous recent real-world applications (macroscopic spontaneous brain dynamics, the
central application in this project, being one paradigm example), however, naturally entail large multivariate
data (many signals), whose properties vary along time (non-stationarity) and across components (non-
homogeneity), with potentially complex temporal dynamics, thus intricate local singular behaviors.

http://datascience-paris-saclay.fr
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These three issues call into question the intuitive and founding identification of scale-free to power laws,
and thus make uneasy multivariate scale-free and multifractal analyses, precluding the use of univariate
methodologies. This explains why the concept of scale-free dynamics is barely used and with limited successes
in such settings and highlights the overriding need for a systematic methodological study of multivariate
scale-free and multifractal dynamics. The Core Theme of MULTIFRACS consists in laying the theoretical
foundations of a practical robust statistical signal processing framework for multivariate non homogeneous
scale-free and multifractal analyses, suited to varied types of rich singularities, as well as in performing
accurate analyses of scale-free dynamics in spontaneous and task-related macroscopic brain activity, to
assess their natures, functional roles and relevance, and their relations to behavioral performance in a timing
estimation task using multimodal functional imaging techniques.

This overarching objective is organized into 4 Challenges:

1. Multivariate scale-free and multifractal analysis,

2. Second generation of local singularity indices,

3. Scale-free dynamics, non-stationarity and non-homogeneity,

4. Multivariate scale-free temporal dynamics analysis in macroscopic brain activity.

9.2.1.2. Niconnect project
Participants: Bertrand Thirion, Gaël Varoquaux [Correspondant], Kamalaker Reddy Dadi, Darya Chyzhyk,
Mehdi Rahim.

• Context: The NiConnect project (2012-2017) arises from an increasing need of medical imaging
tools to diagnose efficiently brain pathologies, such as neuro-degenerative and psychiatric diseases
or lesions related to stroke. Brain imaging provides a non-invasive and widespread probe of various
features of brain organization, that are then used to make an accurate diagnosis, assess brain
rehabilitation, or make a prognostic on the chance of recovery of a patient. Among different measures
extracted from brain imaging, functional connectivity is particularly attractive, as it readily probes
the integrity of brain networks, considered as providing the most complete view on brain functional
organization.

• Challenges: To turn methods research into popular tool widely usable by non specialists, the NiCon-
nect project puts specific emphasis on producing high-quality open-source software. NiConnect
addresses the many data analysis tasks that extract relevant information from resting-state fMRI
datasets. Specifically, the scientific difficulties are i) conducting proper validation of the models and
tools, and ii) providing statistically controlled information to neuroscientists or medical doctors.
More importantly, these procedures should be robust enough to perform analysis on limited quality
data, as acquiring data on diseased populations is challenging and artifacts can hardly be controlled
in clinical settings.

• Outcome of the project: In the scope of computer science and statistics, NiConnect pushes forward
algorithms and statistical models for brain functional connectivity. In particular, we are investigating
structured and multi-task graphical models to learn high-dimensional multi-subject brain connec-
tivity models, as well as spatially-informed sparse decompositions for segmenting structures from
brain imaging. With regards to neuroimaging methods development, NiConnect provides systematic
comparisons and evaluations of connectivity biomarkers and a software library embedding best-
performing state-of-the-art approaches. Finally, with regards to medical applications, the NiConnect
project also plays a support role in on going medical studies and clinical trials on neurodegenerative
diseases.

• Consortium
– Parietal Inria research team: applied mathematics and computer science to model the brain

from MRI

– LIF INSERM research team: medical image data analysis and modeling for clinical
applications
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– CATI center: medical image processing center for large scale brain imaging studies

– Henri-Mondor hospital neurosurgery and neuroradiology: clinical teams conducting re-
search on treatments for neurodegenerative diseases, in particular Huntington and Parkin-
son diseases

– Logilab: consulting in scientific computing

9.3. European Initiatives
9.3.1. FP7 & H2020 Projects
9.3.1.1. HBP

Title: The Human Brain Project

Programm: FP7

Duration: October 2013 - September 2016

Coordinator: EPFL

Partners:

• Inria contact: Olivier Faugeras

• Understanding the human brain is one of the greatest challenges facing 21st century
science. If we can rise to the challenge, we can gain profound insights into what makes us
human, develop new treatments for brain diseases and build revolutionary new computing
technologies. Today, for the first time, modern ICT has brought these goals within sight.
The goal of the Human Brain Project, part of the FET Flagship Programme, is to translate
this vision into reality, using ICT as a catalyst for a global collaborative effort to understand
the human brain and its diseases and ultimately to emulate its computational capabilities.
The Human Brain Project will last ten years and will consist of a ramp-up phase (from
month 1 to month 36) and subsequent operational phases. This Grant Agreement covers
the ramp-up phase. During this phase the strategic goals of the project will be to design,
develop and deploy the first versions of six ICT platforms dedicated to Neuroinformatics,
Brain Simulation, High Performance Computing, Medical Informatics, Neuromorphic
Computing and Neurorobotics, and create a user community of research groups from
within and outside the HBP, set up a European Institute for Theoretical Neuroscience,
complete a set of pilot projects providing a first demonstration of the scientific value of the
platforms and the Institute, develop the scientific and technological capabilities required
by future versions of the platforms, implement a policy of Responsible Innovation, and a
programme of transdisciplinary education, and develop a framework for collaboration that
links the partners under strong scientific leadership and professional project management,
providing a coherent European approach and ensuring effective alignment of regional,
national and European research and programmes. The project work plan is organized in
the form of thirteen subprojects, each dedicated to a specific area of activity. A significant
part of the budget will be used for competitive calls to complement the collective skills of
the Consortium with additional expertise.

9.4. International Initiatives
9.4.1. Inria Associate Teams Not Involved in an Inria International Labs
9.4.1.1. MetaMRI

Title: Machine learning for meta-analysis of functional neuroimaging data

International Partner (Institution - Laboratory - Researcher):

Stanford (United States) - Department of Psychology - Russ Poldrack
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Start year: 2015
See also: https://team.inria.fr/metamri
Neuroimaging produces huge amounts of complex data that are used to better understand the
relations between brain structure and function. Observing that the neuroimaging community is still
largely missing appropriate tools to store and organize the knowledge related to the data, Parietal
team and Poldrack’s lab, have decided to join forces to set up a framework for functional brain
image meta-analysis, i.e. a framework in which several datasets can be jointly analyzed in order to
accumulate information on the functional specialization of brain regions. MetaMRI will build upon
Poldrack’s lab expertise in handling, sharing and analyzing multi-protocol data and Parietal’s recent
developments of machine learning libraries to develop a new generation of meta-analytic tools.

9.4.1.2. LargeBrainNets

Title: Characterizing Large-scale Brain Networks Using Novel Computational Methods for dMRI
and fMRI-based Connectivity
International Partner (Institution - Laboratory - Researcher):

Stanford (United States) - Stanford Cognitive and Systems Neuroscience Laboratory -
Vinod Menon

Start year: 2016
See also: http://www-sop.inria.fr/members/Demian.Wassermann/large-brain-nets.html
In the past two decades, brain imaging of neurotypical individuals and clinical populations has
primarily focused on localization of function and structures in the brain, revealing activation in
specific brain regions during performance of cognitive tasks through modalities such as functional
MRI. In parallel, technologies to identify white matter structures have been developed using
diffusion MRI. More recently, interest has shifted towards developing a deeper understanding of
the brain’s intrinsic architecture and its influence on cognitive and affective information processing.
Using for this resting state fMRI and diffusion MRI to build the functional and structural networks
of the human brain.

The human brain is a complex patchwork of interconnected regions, and graph-theoretical ap-
proaches have become increasingly useful for understanding how functionally connected systems
engender, and constrain, cognitive functions. The functional nodes of the human brain and their
structural inter-connectivity, collectively the "connectome", are, however, poorly understood. Crit-
ically, there is a dearth of computational methods for reliably identifying functional nodes of the
brain and their structural inter-connectivity in vivo, despite an abundance of high-quality data from
the Human Connectome Project (HCP). Devising and validating methods for investigating the hu-
man connectome has therefore taken added significance.

The first major goal of this project is to develop and validate appropriate sophisticated computational
and mathematical tools for identifying functional nodes at the whole-brain level and measuring
structural and functional connectivity between them, using state-of-the-art human brain imaging
techniques and open-source HCP data. To this end, we will first develop and validate novel
computational tools for (1) identifying stable functional nodes of the human brain using resting-
state functional MRI and (2) measuring structural connectivity between functional nodes of the
brain using multi-shell high-angular diffusion MRI. Due to the complementarity of the two imaging
techniques fMRI and dMRI, our novel computational methods methods, the synergy between the
two laboratories of this associate team will allow us to reveal in unprecedented detail the structural
and functional connectivity of the human brain.

The second major goal of this project is to use our newly developed computational tools to
characterize normal structural and functional brain networks in neurotypical adults.

9.5. International Research Visitors

https://team.inria.fr/metamri
http://www-sop.inria.fr/members/Demian.Wassermann/large-brain-nets.html
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9.5.1. Visits of International Scientists
Parietal has welcome François Meyer, Univ Colorado at Boulder, for a six months visit (Jan-June 2017),
funded by a D’Alembert fellowship of Paris Saclay University. The project of François is to assess novel
statistical models of functional connectivity based on the generalized resistivity model he has developed within
a graph theoretical framework.

9.5.2. Visits to International Teams
9.5.2.1. Research Stays Abroad

9.5.2.1.1. Denis Engemann

has spent two months in Boston (April-May) with the MEG Core lab, Athinoula A. Martinos Center
(MGH/Harvard-MIT) working on functional connectivity methods and population analysis for MEG.

9.5.2.1.2. Arthur Mensch

has spent 3 months in Japan (Sept-Dec) with NTT, working on dynamic time warping problems with Mathieu
Blondel.

9.5.2.1.3. Jérome Dockès

has spent two months with Poldracklab at Stanford, as part of the MetaMRI associated team. He has worked
on the statistical relationships between neuroscientific concepts (whether anatomical or cognitive) and brain
activation loci.

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events Selection
10.1.1.1. Member of the Conference Program Committees

10.1.1.1.1. Gaël Varoquaux

MICCAI, NIPS, IPMI, ICML, CCN

10.1.1.1.2. Bertrand Thirion

NIPS, IPMI, OHBM, PRNI

10.1.2. Journal
10.1.2.1. Member of the Editorial Boards

• Gaël Varoquaux, Editor, Neuroimage

• Alexandre Gramfort, Editor, Frontiers in Brain Imaging Methods, Journal of Machine Learning
Research (JMLR)

• Bertrand Thirion, Editor, Frontiers in Brain Imaging Methods

10.1.2.2. Reviewer - Reviewing Activities

10.1.2.2.1. Gaël Varoquaux

Nature Methods, JMLR, PLOS Comp Bio, NeuroImage, IEEE TBME, Annals of Applied Statistics, Biological
Psychiatry, MedIA

10.1.2.2.2. Alexandre Gramfort

JMLR, PLOS Comp Bio, NeuroImage, IEEE TBME, IEEE TMI, IEEE TSP, MedIA, Brain Topography, NIPS,
ICML, ICLR.
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10.1.2.2.3. Philippe Ciuciu

PLOS One, NeuroImage, HBM, IEEE TMI, IEEE TSP, IEEE SP letters, MedIA, J of Neuroscience, JCBFM,
ISBI, ICASSP, EUSIPCO.

10.1.2.2.4. Denis Engemann

PLOS Biology, PLOS Computational Biology, Nature Scientific Reports, Neuroimage, Neuroimage Clinical,
Human Brain Mapping, Journal of Machine Learning Research, Brain Topography, Brain Connectivity, Jour-
nal of Alzheimer’s Disease, PLOS ONE, Frontiers in Neuroscience, Psychiatry and Clinical Neurosciences,
Sensors

10.1.2.2.5. Bertrand Thirion

Nature communications, Neuroimage, Medical Image Analysis, IEEE TMI, PNAS, PLOS Comp Bio.

10.1.3. Invited Talks
• Gaël Varoquaux, Keynote, BDEC Workshop 2017, Wuxi, China
• Gaël Varoquaux, Keynote, scipy 2017, Austin TX
• Gaël Varoquaux, Keynote, Swiss Python summit 2017, Zurich, Switzerland
• Gaël Varoquaux, Keynote, NIPS learning with limited labels workshop, Long Beach, CA
• Philippe Ciuciu, Seminar in the neuroscience Department, NYU, School of Medicine, May 2017,

NYC.
• Philippe Ciuciu, Laufer Center Seminar Series, May 2017, Stony Brook Univ, NY.
• Philippe Ciuciu, Dedale workshop on Dictionary learning on manifolds, Sep. 2017, Nice, France
• Philippe Ciuciu, Colloquium at Perform centre, Dec 2017, Montreal, Canada
• Philippe Ciuciu, Seminar at Ecole Polytechnique Montreal, Dec 2017, Montreal, Canada
• Alexandre Gramfort, 2017 EU-US Frontiers of Engineering Symposium, UC Davis, CA
• Alexandre Gramfort, Computational Challenges in Image Processing, Turing Institute, Cambridge

Univ., UK
• Alexandre Gramfort, Machine learning for functional brain imaging Symposium and Workshop,

Karolinska Institute, Sweden
• Denis A. Engemann, Lessons learned from high-dimensional statistics and M/EEG: From automated

preprocessing to detection of consciousness, University of Naples, Italy, March 2017
• Denis A. Engemann, Learning from Oscillations – New Vistas for Translational Neuroimaging, MIT,

Cambridge MA, April 2017
• Denis A. Engemann, Building better biomarkers using M/EEG and statistical learning, Eespo

University, Finland, June 2017
• Bertrand Thirion, ARSEP, February 2017, Paris
• Bertrand Thirion, AI for Medical Imaging symposium, June 2017, Paris
• Bertrand Thirion, Causality and big data workshop, October 2017, Saclay
• Bertrand Thirion, Machine learning workshop, Telcom Paris Sud, October 2017, Evry
• Bertrand Thirion, Icube seminary, Strasburg, July 2017
• Bertrand Thirion, Laboratoire de Mathématiques d’Orsay, December 2017

10.1.4. Scientific Expertise
• Philippe Ciuciu, Member of the "ANR evualuation committee (CES 45) in Mathématique, informa-

tique, automatique, traitement du signal"
• Philippe Ciuciu, Member of the IEEE BISP committe for the international symposium in biomedical

imaging
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• Philippe Ciuciu, Member of the Biomedical Imaging & Signal Analytics special area team (SAT) in
Eurasip

• Bertrand Thirion, Member of the prospective group of ITMO Neurosciences

10.1.5. Research Administration
• Gaël Varoquaux, Member of the Inria Saclay CDT, "Comission de développement téchnologique"
• Gaël Varoquaux, Member of the Inria Saclay CSD, "Comission de suivi doctoral"
• Gaël Varoquaux, Member of the Inria Saclay cluster committee
• Alexandre Gramfort, Member of the "comité de pilotage" DataIA
• Alexandre Gramfort, Member of the "comité de pilotage" DIM RFSI
• Philippe Ciuciu, Member of the "Inria Saclay scientific committee"
• Philippe Ciuciu, Member of the CEA/DRF Impulsion evaluation committee
• Philippe Ciuciu, Member of the "jury du prix de thèse de la société EEA et du GDR ISIS"
• Bertrand Thirion, Deputy scientific director of Inria Saclay research center
• Bertrand Thirion, Leader of the Datasense research axis of the Digicosme Labex
• Bertrand Thirion, Member of the steering committee of the Dataia Convergence Institute
• Bertrand Thirion, Member of the steering committee of the Computer Science Deprtment of paris

Saclay University.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching
10.2.1.1. Gaël Varoquaux

Master : Machine learning with scikit-learn, 2 heures équivalent TD, M1, ENSAE, France
Master : Brain functional connectivity, 8 heures équivalent TD, M2, Télécom Paris Tech, France
Doctorat : Machine learning for brain imaging with nilearn, 16 heures équivalent TD, Université de
Montréal, Canada
Doctorat : Ecole d’hiver, Computational Brain Connectivity Mapping, Juan-Les-Pins, 1h30
Doctorat : Ecole d’hiver, Computational Brain Connectivity Mapping, 1h30, Juan-Les-Pins
Doctorat : Machine learning for brain imaging, 1h00, IPAM, UCLA, Los Angeles, USA
Doctorat : Scipy: numerical algorithms in Python, 1h30, Euroscipy 2017, Erlangen, Germany
Doctorat : Estimation of brain functional connectomes, 30mn, OHBM 2017, Vancouver, Canada
Doctorat : Software engineering for reproducible science, Open science summer school 2017, EPFL,
Lausanne, Switzerland

10.2.1.2. Philippe Ciuciu
Master 2 : “Functional MRI: From data acquisition to analysis”, 3h,Univ. Paris V René Descartes &
Télécom-Paristech, Master of Biomedical Engineering
Master 2 : “FMRI data analysis”, 3h, Univ. Paris-Saclay, Master of medical Physics

10.2.1.3. Alexandre Gramfort
Master 2 : “Functional Brain Imaging with EEG and MEG”, 6h, Univ. Paris V René Descartes &
Télécom-Paristech, Master of Biomedical Engineering
Master 2 : “Optimization for Data Science”, 20h, Univ. Paris-Saclay, Master of Mathematics / Data
Science
Master 2 : “Data Camp”, 18h, Univ. Paris-Saclay, Master of Mathematics / Data Science
Ecole d’hiver, Computational Brain Connectivity Mapping, Juan-Les-Pins, 1h30
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Scikit-learn tutorial, Scipy Conf., Austin, USA, 6h
MNE tutorial, Univ. Libre de Bruxelles, Belgique, 6h

10.2.1.4. Denis A. Engemann
MNE-Python workshop, University of Bari, June 2017, 14h

10.2.1.5. Bertrand Thirion
Master : Functional Neuroimaging and brain-computer interfaces, 12h, MVA, ENS Paris-Saclay,
France
Doctorat : OHBM course 2017, Pattern Recognition for brain Imaging, Vancouver, Canada
Master: Resting-State Functional Magnetic Resonance Imaging, 3h, Paris V, France.

10.2.2. Supervision
PhD in progress : Patricio Cerda, Statistical methods for analysis across datasets, started 01/09/2016,
supervisors: Balazs Kegl (CNRS, LAL), Gaël Varoquaux
PhD in progress : Jérome Dockès, Mining text and brain activity to learning the semantics of
cognitive science, started 01/09/2016, supervisors: Fabian Suchanek (Télécom Paristech), Gaël
Varoquaux
PhD in progress : Arthur Mensch, Learning representations of fMRI, started 01/09/2015, supervi-
sors: Bertrand Thirion, Gaël Varoquaux, Julien Mairal (Inria Grenoble)
PhD: Elvis Dohmatob, Amélioration de connectivité fonctionnelle par utilisation de modèles dé-
formables dans l’estimation de décompositions spatiales des images de cerveau, defended sept 2017,
supervisors Bertrand Thirion, Gaël Varoquaux

10.2.2.1. Philippe Ciuciu
PhD in progress: Carole Lazarus (3rd year, Director)
PhD in progress: Loubna El Gueddari (2nd year, Director)
PhD in progress: Hamza Cherkaoui (1st year, Director)
PhD in progress: Sylvain Lannuzel (1st year, co-director)

10.2.2.2. Alexandre Gramfort
PhD defended: Albert Thomas
PhD defended: Romain Laby
PhD in progress: Yousra Bekhti
PhD in progress: Mainak Jas
PhD in progress: Tom Dupré La Tour
PhD in progress: Stanislas Chambon
PhD in progress: Pierre Ablin
PhD in progress: Mathurin Massias
PhD in progress: Hicham Janati

10.2.2.3. Denis A. Engemann
PhD in progress: Mainak Jas (co-supervision on 1 main project)
PhD in progress: Sami aboud (co-supervision on 1 main project)
PhD in progress: Kamalakar Reddy (co-supervision)

10.2.2.4. Bertrand Thirion
PhD defended: Elvis Dohmatob (co-supervision with G.Varoquaux)
PhD in progress: Arthur Mensch (co-supervision with G. Varoquaux and J. Mairal)
PhD in progress: Jérome Dockès (co-supervision with G. Varoquaux and F. Suchanek)
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PhD in progress: Kamalakar Reddy (co-supervision with G.Varoquaux and D. Engemann)

PhD in progress: Jérome-Alexis Chevalier (co-supervision with J.Salmon)

10.2.3. Juries
10.2.3.1. Philippe Ciuciu

12/15: Reviewer of Lucie Thiebaut-Lonjaret PhD Thesis, Univ. Aix-Marseille, France.

04/23: Reviewer of Yosra Marnissi PhD Thesis, Univ. Paris-Est, France.

10.2.3.2. Gaël Varoquaux

external reviewer, PhD defence of Christian Dansereau, Université de Montréal.

10.2.3.3. Alexandre Gramfort

12/19: Examiner of Thomas Moreau, Univ. Paris Saclay / ENS Paris-Saclay

12/13: Reviewer of Etienne Combrisson PhD Thesis, Univ. Lyon 1, France.

11/10: Reviewer of Lankinen Kaisu PhD Thesis, Univ. Aalto, Finland.

04/26: Reviewer of Seyed Mostafa Kia PhD Thesis, Trento FBK Univ., Italy.

10.2.3.4. Bertrand Thirion

18/01: Reviewer of Jonathan Vacher PhD thesis, Univ. Paris VI

3O/05: Examiner of Brahim Bougacha PhD thesis, University Nice

10.3. Popularization
10.3.1. Gaël Varoquaux

Présentation "Démocratisation de l’IA", Station F, (Dec 2017).

Présentation sur les logiciels libres de machine learning aux journées annuelles du groupe de travail
sur les logiciels libres (Oct 2017)

Présentation sur scikit-learn au "Paris ML meetup" (Dec 2017)

Présentation sur scikit-learn au "Paris Pydata meetup" (Mars 2017)

10.3.2. Alexandre Gramfort
Présentation sur "L’intelligence artificielle au service de la société" à l’UNESCO dans le cadre des
journées des ingénieurs et scientifiques de France (IESF) (Oct 2017). 3.

Présentation sur l’Intelligence Artificielle au conseil d’administration de l’Institut National du
Cancer (INCA) (Nov 2017).
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