

[image: cover]


    
      PARSIFAL

      Proof search and reasoning with logic specifications


      2018 Project-Team Activity Report
	

      
          Research centre: 
          Saclay - Île-de-France
        

      Field: Algorithmics, Programming, Software and Architecture
Theme: Proofs and Verification

      
          
            Computer Science and Digital Science: 
          
          
            	A2.1. - Programming Languages

            	A2.1.1. - Semantics of programming languages

            	A2.1.4. - Functional programming

            	A2.1.5. - Constraint programming

            	A2.1.10. - Domain-specific languages

            	A2.2.1. - Static analysis

            	A2.4.3. - Proofs

            	A2.5.4. - Software Maintenance & Evolution

            	A7.2.1. - Decision procedures

            	A7.2.2. - Automated Theorem Proving

            	A7.2.3. - Interactive Theorem Proving

            	A7.3.1. - Computational models and calculability

            	A9.8. - Reasoning

          

        

      
          
            Other Research Topics and Application Domains: 
          
          
            	B9.5.1. - Computer science

            	B9.5.2. - Mathematics

            	B9.8. - Reproducibility

          

        

    

    

    
      
      
        
          Project-Team Parsifal
        

        
          Team, Visitors, External Collaborators
        
      

      Overall Objectives	Main themes



      Research Program	General overview
	Inductive and co-inductive reasoning
	Developing a foundational
approach to defining proof evidence
	Deep inference
	Proof nets, atomic flows, and combinatorial proofs
	Cost Models and Abstract Machines for Functional Programs



      Application Domains	Trustworthy implementations of theorem proving techniques
	Principled
computation for strong lambda-calculi



      
        Highlights of the Year
      

      New Software and Platforms	Abella
	Bedwyr
	Checkers
	Psyche
	Maetning
	OCaml



      New Results	Functional programming with λ-tree syntax
	Proof theory for model checking
	From syntactic proofs to combinatorial proofs
	Proof nets for first-order additive linear logic
	On the Decision Problem for MELL
	OCaml metatheory
	Merlin: understanding a language server
	Language interoperability: ML and a Linear language
	First-class simultaneous substitutions in the two-level logic approach
	Hybrid Linear Logic, revisited
	Proof Nets and the Linear Substitution Calculus
	Tight Typings and Split Bounds
	Types of Fireballs
	Decision procedures for intuitionistic propositional logic
	Admissible Tools in the Kitchen of
Intuitionistic Logic



      Partnerships and Cooperations	National Initiatives
	International Research Visitors



      Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization



      
        Bibliography

      

      
        
          	
            Major publications
          

          	
            Publications of the year
          

          	
            References in notes
          

        

      

    

  
    
    
      
      
      

      
      Creation of the Project-Team: 2007 July 01
Section: Team, Visitors, External Collaborators
Research Scientists
Dale Miller [Team leader, Inria, Senior Researcher] 
Beniamino Accattoli [Inria, Researcher] 
Kaustuv Chaudhuri [Inria, Researcher] 
François Lamarche [Inria, Senior Researcher] 
Stéphane Graham-Lengrand [CNRS, Researcher] 
Gabriel Scherer [Inria, Researcher] 
Lutz Straßburger [Inria, Researcher, HDR] 
Post-Doctoral Fellow
Matteo Acclavio [Inria, until Nov 2018] 
PhD Students
Andrea Condoluci [University of Bologna (Italy), until May 2018] 
Ulysse Gerard [Inria] 
Maico Carlos Leberle [Inria] 
Matteo Manighetti [Inria] 
François Thiré [Ecole Normale Supérieure Cachan] 
Interns
Marianela Evelyn Morales Elena [Inria, until Mar 2018] 
Alban Reynaud [Ecole Normale Supérieure Lyon, from Jun 2018 until Jul 2018] 
Administrative Assistant
Maeva Jeannot [Inria] 
Visiting Scientists
Gopalan Nadathur [University of Minnesota (USA), from Oct 2018 until Nov 2018] 
Carlos Olarte [Federal University of Rio Grande do Norte (Brazil), from Oct 2018 until Nov 2018] 
Elaine Pimentel [Federal University of Rio Grande do Norte (Brazil), from Oct 2018 until Nov 2018] 
External Collaborator
Andrea Condoluci [University of Bologna (Italy), from Jun 2018 until Aug 2018] 


      
      

      
    

  
    Overall Objectives

    
      	Overall Objectives	Main themes



    

  
    
    
      
      
      

      
      
        
        Section: 
      Overall Objectives

        Main themes

        The aim of the Parsifal team is to develop and exploit proof
theory and type theory in the specification,
verification, and analysis of computational systems.

        
          	
             Expertise: the team conducts basic research in proof
theory and type theory. In particular, the team is developing
results that help with automated deduction and with the
manipulation and communication of formal proofs.

          

          	
             Design: based on experience with computational systems
and theoretical results, the team develops new logical principles,
new proof systems, and new theorem proving environments.

          

          	
             Implementation: the team builds prototype systems to
help validate basic research results.

          

          	
             Examples: the design and implementation efforts are
guided by examples of specification and verification problems.
These examples not only test the success of the tools but also
drive investigations into new principles and new areas of proof
theory and type theory.

          

        

        The foundational work of the team focuses on structural and
analytic proof theory, i.e., the study of formal
proofs as algebraic and combinatorial structures and the study of
proof systems as deductive and computational formalisms. The main
focus in recent years has been the study of the sequent
calculus and of the deep inference formalisms.

        An important research question is how to reason about computational
specifications that are written in a relational style. To
this end, the team has been developing new approaches to dealing
with induction, co-induction, and generic quantification. A second
important question is of canonicity in deductive systems,
i.e., when are two derivations “essentially the same”? This
crucial question is important not only for proof search, because it
gives an insight into the structure and an ability to manipulate the
proof search space, but also for the communication of proof
objects between different reasoning agents such as automated
theorem provers and proof checkers.

        Important application areas currently include:

        
          	
             Meta-theoretic reasoning on functional programs, such as terms
in the λ-calculus

          

          	
             Reasoning about behaviors in systems with concurrency and
communication, such as the π-calculus, game semantics,
etc.

          

          	
             Combining interactive and automated reasoning methods for
induction and co-induction

          

          	
             Verification of distributed, reactive, and real-time
algorithms that are often specified using modal and temporal
logics

          

          	
             Representing proofs as documents that can be printed,
communicated, and checked by a wide range of computational logic
systems.

          

          	
             Development of cost models for the evaluation of proofs and programs.
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        Section: 
      Research Program

        General overview

        There are two broad approaches for computational specifications. In
the computation as model approach, computations are encoded as
mathematical structures containing nodes, transitions, and state.
Logic is used to describe these structures, that is, the
computations are used as models for logical expressions. Intensional
operators, such as the modals of temporal and dynamic logics or the
triples of Hoare logic, are often employed to express propositions
about the change in state.

        The computation as deduction approach, in contrast, expresses
computations logically, using formulas, terms, types, and proofs as
computational elements. Unlike the model approach, general logical
apparatus such as cut-elimination or automated deduction becomes
directly applicable as tools for defining, analyzing, and animating
computations. Indeed, we can identify two main aspects of logical
specifications that have been very fruitful:

        
          	
             Proof normalization, which treats the state of a
computation as a proof term and computation as normalization of the
proof terms. General reduction principles such as β-reduction
or cut-elimination are merely particular forms of proof
normalization. Functional programming is based on
normalization  [57], and normalization in different
logics can justify the design of new and different functional
programming languages  [30].

          

          	
             Proof search, which views the state of a computation as a
a structured collection of formulas, known as a sequent, and
proof search in a suitable sequent calculus as encoding the dynamics
of the computation. Logic programming is based on proof
search  [61], and different proof search
strategies can be used to justify the design of new and different
logic programming languages  [60].

          

        

        While the distinction between these two aspects is somewhat informal,
it helps to identify and classify different concerns that arise in
computational semantics. For instance, confluence and termination of
reductions are crucial considerations for normalization, while
unification and strategies are important for search. A key challenge
of computational logic is to find means of uniting or reorganizing
these apparently disjoint concerns.

        An important organizational principle is structural proof theory,
that is, the study of proofs as syntactic, algebraic and
combinatorial objects. Formal proofs often have equivalences in
their syntactic representations, leading to an important research
question about canonicity in proofs – when are two proofs
“essentially the same?” The syntactic equivalences can be used to
derive normal forms for proofs that illuminate not only the proofs
of a given formula, but also its entire proof search space. The
celebrated focusing theorem of
Andreoli [32] identifies one such normal form
for derivations in the sequent calculus that has many important
consequences both for search and for computation. The combinatorial
structure of proofs can be further explored with the use of
deep inference; in particular, deep inference allows access
to simple and manifestly correct cut-elimination procedures with
precise complexity bounds.

        Type theory is another important organizational principle, but most
popular type systems are generally designed for either search or for
normalization. To give some examples, the Coq
system  [70] that implements the Calculus of Inductive
Constructions (CIC) is designed to facilitate the expression of
computational features of proofs directly as executable functional
programs, but general proof search techniques for Coq are rather
primitive. In contrast, the Twelf system  [66]
that is based on the LF type theory (a subsystem of the CIC), is
based on relational specifications in canonical form (i.e.,
without redexes) for which there are sophisticated automated
reasoning systems such as meta-theoretic analysis tools, logic
programming engines, and inductive theorem provers. In recent years,
there has been a push towards combining search and normalization in
the same type-theoretic framework. The Beluga
system  [67], for example, is an extension of
the LF type theory with a purely computational meta-framework where
operations on inductively defined LF objects can be expressed as
functional programs.

        The Parsifal team investigates both the search and the normalization
aspects of computational specifications using the concepts, results,
and insights from proof theory and type theory.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Research Program

        Inductive and co-inductive reasoning

        The team has spent a number of years in designing a strong new logic
that can be used to reason (inductively and co-inductively) on
syntactic expressions containing bindings. This work is based on
earlier work by McDowell, Miller, and Tiu [59]
[58] [62]
[71], and on more recent work by Gacek, Miller, and
Nadathur [44] [43]. The Parsifal
team, along with our colleagues in Minneapolis, Canberra,
Singapore, and Cachan, have been building two tools that exploit the
novel features of this logic. These two systems are the following.

        
          	
             Abella, which is an interactive theorem prover for the full logic.

          

          	
             Bedwyr, which is a model checker for the “finite” part of the logic.

          

        

        We have used these systems to provide formalize reasoning of a number
of complex formal systems, ranging from programming languages to the
λ-calculus and π-calculus.

        Since 2014, the Abella system has been extended with a number of new
features. A number of new significant examples have been implemented
in Abella and an extensive tutorial for it has been
written [1].

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Research Program

        Developing a foundational
approach to defining proof evidence

        The team is developing a framework for defining the semantics of proof
evidence. With this framework, implementers of theorem provers can
output proof evidence in a format of their choice: they will only need
to be able to formally define that evidence's semantics. With such
semantics provided, proof checkers can then check alleged proofs for
correctness. Thus, anyone who needs to trust proofs from various
provers can put their energies into designing trustworthy checkers that
can execute the semantic specification.

        In order to provide our framework with the flexibility that this
ambitious plan requires, we have based our design on the most recent
advances within the theory of proofs. For a number of years, various
team members have been contributing to the design and theory of
focused proof systems [33]
[35] [37] [38]
[46] [55] [56] and we have
adopted such proof systems as the corner stone for our framework.

        We have also been working for a number of years on the implementation
of computational logic systems, involving, for example, both
unification and backtracking search. As a result, we are also
building an early and reference implementation of our semantic
definitions.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Research Program

        Deep inference

        Deep inference [48], [50]
is a novel methodology for presenting deductive
systems. Unlike traditional formalisms like the sequent calculus, it
allows rewriting of formulas deep inside arbitrary contexts. The new
freedom for designing inference rules creates a richer proof
theory. For example, for systems using deep inference, we have a
greater variety of normal forms for proofs than in sequent calculus or
natural deduction systems. Another advantage of deep inference systems
is the close relationship to category-theoretic proof theory. Due to the deep
inference design one can directly read off the morphism from the
derivations. There is no need for a counter-intuitive translation.

        The following research problems are investigated by members of the
Parsifal team:

        
          	
             Find deep inference system for richer logics. This is necessary
for making the proof theoretic results of deep inference accessible
to applications as they are described in the previous sections of
this report.

          

          	
             Investigate the possibility of focusing proofs in deep
inference. As described before, focusing is a way to reduce the
non-determinism in proof search. However, it is well investigated
only for the sequent calculus. In order to apply deep inference in
proof search, we need to develop a theory of focusing for deep
inference.
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      Research Program

        Proof nets, atomic flows, and combinatorial proofs

        Proof nets graph-like presentations of sequent calculus proofs such
that all "trivial rule permutations" are quotiented away. Ideally
the notion of proof net should be independent from any syntactic
formalism, but most notions of proof nets proposed in the past were
formulated in terms of their relation to the sequent calculus.
Consequently we could observe features like “boxes” and explicit
“contraction links”. The latter appeared not only in Girard's
proof nets [45] for linear logic but also in
Robinson's proof nets [68] for classical
logic. In this kind of proof nets every link in the net corresponds
to a rule application in the sequent calculus.

        Only recently, due to the rise of deep inference, new kinds of proof
nets have been introduced that take the formula trees of the
conclusions and add additional “flow-graph” information (see e.g.,
[54][2] leading to the notion of
atomic flow and  [49]. On one side, this
gives new insights in the essence of proofs and their normalization.
But on the other side, all the known correctness criteria are no
longer available.

        Combinatorial proofs  [52] are another form
syntax-independent proof presentation which separates the
multiplicative from the additive behaviour of classical connectives.

        The following research questions investigated
by members of the Parsifal team:

        
          	
             Finding (for classical and intuitionistic logic) a notion of
canonical proof presentation that is deductive, i.e., can
effectively be used for doing proof search.

          

          	
             Studying the normalization of proofs using
atomic flows and combinatorial proofs, as they simplify the normalization
procedure for proofs in deep inference, and additionally allow to
get new insights in the complexity of the normalization.

          

          	
             Studying the size of proofs in the combinatorial proof formalism.
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      Research Program

        Cost Models and Abstract Machines for Functional Programs

        In the proof normalization approach, computation is usually reformulated as the evaluation of functional programs, expressed as terms in a variation over the λ-calculus. Thanks to
its higher-order nature, this approach provides very concise and abstract
specifications. Its strength is however also its weakness: the abstraction
from physical machines is pushed to a level where it is no longer
clear how to measure the complexity of an algorithm.

        Models like Turing machines or RAM rely on atomic computational steps and thus admit quite obvious cost models for time and space. The λ-calculus instead relies on a single non-atomic operation, β-reduction, for which costs in terms of time and space are far from evident.

        Nonetheless, it turns out that the number of β-steps is a reasonable time cost model, i.e.,it is polynomially related to those of Turing machines and RAM. For the special case of weak evaluation (i.e., reducing only β-steps that are not under abstractions)—which is used to model functional programming languages—this is a relatively old result due to Blelloch and Greiner  [34] (1995). It is only very recently (2014) that the strong case—used in the implementation models of proof assistants—has been solved by Accattoli and Dal Lago [31].

        With the recent recruitment of Accattoli, the team's research has expanded in this direction. The topics under investigations are:

        
          	
             Complexity of Abstract Machines. Bounding and comparing the overhead of different abstract machines for different evaluation schemas (weak/strong call-by-name/value/need λ-calculi) with respect to the cost model. The aim is the development of a complexity-aware theory of the implementation of functional programs.

          

          	
             Reasonable Space Cost Models. Essentially nothing is known about reasonable space cost models. It is known, however, that environment-based execution model—which are the mainstream technology for functional programs—do not provide an answer. We are exploring the use of the non-standard implementation models provided by Girard's Geometry of Interaction to address this question.
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        Section: 
      Application Domains

        Trustworthy implementations of theorem proving techniques

        The production of real-world verified software has made it necessary
to integrate results coming from different theorem provers in a
single certification package. One approach to this integration task
is by exchanging proof evidence and relying on a backend
proof-checker.

        Another approach to integration consists in re-implementing the
theorem proving techniques as proof-search strategies, on an
architecture that guarantees correctness.

        Inference systems in general, and focused sequent calculi in
particular, can serve as the basis of such an architecture, providing
primitives for the exploration of the search space. These form a
trusted Application Programming Interface that can be used to
program and experiment various proof-search heuristics without
worrying about correctness. No proof-checking is needed if one trusts
the implementation of the API.

        This approach has led to the development of the Psyche engine, and to
its latest branch CDSAT.

        Three major research directions are currently being explored, based on
the above:

        
          	
             The first one is about formulating automated reasoning techniques
in terms of inference systems,
so that they fit the approach described above.
While this is rather standard for technique used in first-order Automated Theorem Provers (ATP),
such as resolution, superposition, etc,
this is much less standard in SMT-solving,
the branch of automated reasoning that can natively handle reasoning
in a combination of mathematical theories:
the traditional techniques developed there usually organise the collaborations
between different reasoning black boxes,
whose opaque mechanisms less clearly connect to proof-theoretical inference systems.
We are therefore investigating new foundations
for reasoning in combinations of theories,
expressed as fine-grained inference systems,
and developed the Conflict-Driven Satisfiability framework
for these foundations [13].

          

          	
             The second one is about understanding how to deal with
quantifiers in presence of one or more theories: On the one hand,
traditional techniques for quantified problems, such as
unification  [29] or quantifier
elimination are usually designed for either the empty theory or
very specific theories. On the other hand, the industrial
techniques for combining theories (Nelson-Oppen, Shostak, MCSAT  [64], [69], [73], [53]) are
designed for quantifier-free problems, and quantifiers there are
dealt with incomplete clause instantiation methods or
trigger-based techniques  [41]. We are
working on making the two approaches compatible.

          

          	
             The above architecture's modular approach raises the
question of how its different modules can safely cooperate (in
terms of guaranteed correctness), while some of them are trusted
and others are not. The issue is particularly acute if some of the
techniques are run concurrently and exchange data at unpredictable
times. For this we explore new solutions based on Milner's LCF  [63]. In  [47],
we argued that our solutions in particular provide a way to fulfil
the “Strategy Challenge for SMT-solving” set by De Moura and
Passmore  [74].
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        Principled
computation for strong lambda-calculi

        The application domain of the cost models and abstract machines for functional programs line of work—when application is intended in concrete terms—is the implementation of proof assistants.

        Both functional languages and proof assistants rely on the λ-calculus has reference model. Functional languages are built on the weak λ-calculus (where evaluation does not enter function bodies) whose theory is simple and whose implementation has been widely explored in the last decades. Proof assistants instead require the full power of the strong λ-calculus, whose theory is more involved and whose implementation has mostly been neglected by the literature.

        The study of reasonable cost models naturally leads to a refined theory of implementations, where different techniques and optimisations are classified depending on their complexity (with respect to the cost model). This direction is particularly relevant for the strong λ-calculus, for which most implementations are developed in a ad-hoc way.

        The theoretical study in particular pointed out that all available proof assistants are implemented following unreasonable implementation schemas, where unreasonable here means with potentially exponential overhead with respect to the number of steps in the calculus.

        Beniamino Accattoli collaborates with Bruno Barras—one of the implementors of Coq, the most used proof assistant—and Claudio Sacerdoti Coen—one of the implementors of Matita—in order to develop a fine theory of implementation for proof assistants.

        If applications are intended also at a more theoretical level, the study of reasonable cost models is also applicable to the development of quantitative denotational semantics, to higher-order approaches to complexity theory, and to implicit computational complexity.
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        Highlights of the Year

        D. Miller has been made General Chair of the LICS Conference Series
for three years, starting July 2018.
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      New Software and Platforms

        Abella

        Functional Description:  Abella is an interactive theorem prover for reasoning about computations given as relational specifications. Abella is particuarly well suited for reasoning about binding constructs.

        
          	
             Participants: Dale Miller, Gopalan Nadathur, Kaustuv Chaudhuri, Mary Southern, Matteo Cimini, Olivier Savary-Bélanger and Yuting Wang

          

          	
             Partner: Department of Computer Science and Engineering, University of Minnesota

          

          	
             Contact: Kaustuv Chaudhuri

          

          	
             URL: http://abella-prover.org/

          

        

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Software and Platforms

        Bedwyr

        
          Bedwyr - A proof search approach to model checking
        

        Keyword:  Model Checker

        Functional Description:  Bedwyr is a generalization of logic programming that allows model checking directly on syntactic expressions that possibly contain bindings. This system, written in OCaml, is a direct implementation of two recent advances in the theory of proof search.

        It is possible to capture both finite success and finite failure in a sequent calculus. Proof search in such a proof system can capture both may and must behavior in operational semantics.
Higher-order abstract syntax is directly supported using term-level lambda-binders, the nabla quantifier, higher-order pattern unification, and explicit substitutions. These features allow reasoning directly on expressions containing bound variables.

        The distributed system comes with several example applications, including the finite pi-calculus (operational semantics, bisimulation, trace analyses, and modal logics), the spi-calculus (operational semantics), value-passing CCS, the lambda-calculus, winning strategies for games, and various other model checking problems.

        
          	
             Participants: Dale Miller, Quentin Heath and Roberto Blanco Martinez

          

          	
             Contact: Dale Miller

          

          	
             URL: http://slimmer.gforge.inria.fr/bedwyr/

          

        

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Software and Platforms

        Checkers

        
          Checkers - A proof verifier
        

        Keywords:  Proof - Certification - Verification

        Functional Description:  Checkers is a tool in Lambda-prolog for the certification of proofs. Checkers consists of a kernel which is based on LKF and is based on the notion of ProofCert.

        
          	
             Participants: Giselle Machado Nogueira Reis, Marco Volpe and Tomer Libal

          

          	
             Contact: Tomer Libal

          

          	
             URL: https://github.com/proofcert/checkers

          

        

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Software and Platforms

        Psyche

        
          Proof-Search factorY for Collaborative HEuristics
        

        Functional Description:  Psyche is a modular platform for automated or interactive theorem proving, programmed in OCaml and built on an architecture (similar to LCF) where a trusted kernel interacts with plugins. The kernel offers an API of proof-search primitives, and plugins are programmed on top of the API to implement search strategies. This architecture is set up for pure logical reasoning as well as for theory-specific reasoning, for various theories.

        Release Functional Description:  It is now equipped with the machinery to handle quantifiers and quantifier-handling techniques. Concretely, it uses meta-variables to delay the instantiation of existential variables, and constraints on meta-variables are propagated through the various branches of the search-space, in a way that allows local backtracking. The kernel, of about 800 l.o.c., is purely functional.

        
          	
             Participants: Assia Mahboubi, Jean-Marc Notin and Stéphane Graham-Lengrand

          

          	
             Contact: Stéphane Graham-Lengrand

          

          	
             URL: http://www.lix.polytechnique.fr/~lengrand/Psyche/

          

        

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Software and Platforms

        Maetning

        Functional Description:  Mætning is an automated theorem prover for intuitionistic predicate logic that is designed to disprove non-theorems.

        
          	
             Contact: Kaustuv Chaudhuri

          

          	
             URL: https://github.com/chaudhuri/maetning/

          

        

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Software and Platforms

        OCaml

        Keywords:  Functional programming - Static typing - Compilation

        Functional Description:  The OCaml language is a functional programming language that combines safety with expressiveness through the use of a precise and flexible type system with automatic type inference. The OCaml system is a comprehensive implementation of this language, featuring two compilers (a bytecode compiler, for fast prototyping and interactive use, and a native-code compiler producing efficient machine code for x86, ARM, PowerPC and System Z), a debugger, a documentation generator, a compilation manager, a package manager, and many libraries contributed by the user community.

        
          	
             Participants: Damien Doligez, Xavier Leroy, Fabrice Le Fessant, Luc Maranget, Gabriel Scherer, Alain Frisch, Jacques Garrigue, Marc Shinwell, Jeremy Yallop and Leo White

          

          	
             Contact: Damien Doligez

          

          	
             URL: https://ocaml.org/
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        Functional programming with λ-tree syntax

        Participants :
	Ulysse Gerard, Dale Miller, Gabriel Scherer.

        We have been designing a new functional programming language, MLTS,
that uses the λ-tree syntax approach to encoding
bindings that appear within data structures
[17]. In this setting, bindings never become
free nor escape their scope: instead, binders in data structures are
permitted to move into binders within programs phrases. The
design of MLTS—whose concrete syntax is based on that of
OCaml—includes additional sites within programs that directly
support this movement of bindings. Our description of MLTS includes a
typing discipline that naturally extends the typing of OCaml programs.

        The operational semantics of MLTS is given using natural semantics for
evaluation. We shall view such natural semantics as a logical theory
with a rich logic that includes both nominal abstraction and the
∇-quantifier: as a result, the natural semantic specification
of MLTS can be given a succinct and elegant presentation.

        We have developed a number of examples of how this new programming
language can be used. Some of the most convincing of these examples
are programs that manipuate untyped λ-terms.
A web-based implementation of an MLTS interpreter is available to
anyone with a modern web browser: simply visit
https://trymlts.github.io/. Small MLTS programs can be composed and
executed using that interpreter.
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        Proof theory for model checking

        Participant :
	Dale Miller.

        While model checking has often been considered as a practical
alternative to building formal proofs, we have argued that the theory
of sequent calculus proofs can be used to provide an appealing
foundation for model checking [7]. Given that
the emphasis of model checking is on establishing the truth of a
property in a model, our framework concentrates on additive
inference rules since these provide a natural description of truth
values via inference rules. Unfortunately, using these rules alone
can force the use of inference rules with an infinite number of
premises. In order to accommodate more expressive and finitary
inference rules, multiplicative rules must be used, but limited
to the construction of additive synthetic inference rules: such
synthetic rules are described using the proof-theoretic notions of
polarization and focused proof systems. This framework provides a
natural, proof-theoretic treatment of reachability and
non-reachability problems, as well as tabled deduction, bisimulation,
and winning strategies. (Q. Heath collaborated on several parts of
this research effort.)
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        From syntactic proofs to combinatorial proofs

        Participants :
	Matteo Acclavio, Lutz Straßburger.

        We continued our research on combinatorial proofs as a notion of proof
identity for classical logic. We managed to extend our results from
last year: We show for various syntactic formalisms including sequent
calculus, analytic tableaux, and resolution, how they can be
translated into combinatorial proofs, and which notion of identity
they enforce. This allows the comparison of proofs that are given in
different formalisms.

        These results have been presented at the MLA
workshop ins Kanazawa and the IJCAR conference in Oxford,
published in [25].
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        Proof nets for first-order additive linear logic

        Participant :
	Lutz Straßburger.

        In a joint work with Willem Heijltjes (University of Bath) and Dominic
Hughes (UC Berkeley) we present canonical proof nets for first-order
additive linear logic, the fragment of linear logic with sum, product,
and first-order universal and existential quantification. We present
two versions of our proof nets. One, witness nets, retains explicit
witnessing information to existential quantification. For the other,
unification nets, this information is absent but can be reconstructed
through unification. Unification nets embody a central contribution of
the paper: first-order witness information can be left implicit, and
reconstructed as needed. Witness nets are canonical for first-order
additive sequent calculus. Unification nets in addition factor out any
inessential choice for existential witnesses. Both notions of proof
net are defined through coalescence, an additive counterpart to
multiplicative contractibility, and for witness nets an additional
geometric correctness criterion is provided. Both capture sequent
calculus cut-elimination as a one-step global composition operation.

        These results are published in [26] and have been
presented at the First workshop of the Proof Society in Ghent and at
the 3rd FISP workshop in Vienna.
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        On the Decision Problem for MELL

        Participant :
	Lutz Straßburger.

        The decision problem for multiplicative exponential linear logic
(MELL) is one of the most important open problems in the are of linear
logic. in 2015 there has been an attempt by Bimbò to prove the
decidability of MELL. However, we have found several mistakes in that
work, and the main mistake is so serious that there is no obvious fix,
and therefore the decidability of MELL remains to be open. As a side
effect, our work contains a complete (syntactic) proof of the
decidability of the relevant version of MELL, that is the logic
obtained from MELL by replacing the linear logic contraction rule by a
general unrestricted version of the contraction rule. These results
are presented in [27].
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        OCaml metatheory

        Participant :
	Gabriel Scherer.

        We worked on the evolution of advanced features of the OCaml
programming language, designing static analyses to ensure their safety
through a scientific study their metatheory. Specifically, we worked
on unboxed type declarations (during an internship by Simon Colin, M1
from École Polytechnique) and recursive value definitions (during an
internship by Alban Reynaud, L3 from ENS Lyon). The two internships
and followup work each resulted in both a change proposal to the OCaml
implementation and a submission to an academic conference.
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        Merlin: understanding a language server

        Participant :
	Gabriel Scherer.

        Thomas Réfis (Jane Street) and Frédéric Bour maintain the Merlin
language server of OCaml, a tool that provides language-aware features
to text editors. We collaborated with them on dissecting the tool and
explaining its design and evolution ([4]); the
similarities and differences with usual compiler frontends may inform
future language implementation work, and our language-agnostic
presentation may be of use to tool designers for other languages and
proof assistants.
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        Language interoperability: ML and a Linear language

        Participant :
	Gabriel Scherer.

        In a programming system where programs are created in one programming
language, we consider the addition of another programming language
that interoperates with the first – and the reimplementation of some
library/system functions in this new language. This can increase
expressivity, but it could also break some assumptions made by
programmers. Typically, adding a bridge to C or assembly code can
introduce memory-unsafe code in a previously-safe system. In
[18], we formalize a notion of “graceful”
interoperability between two languages in this setting, determined by
full abstraction, that is, preservation of equational reasoning. We
instantiate this general idea by extending ML with an advanced expert
language with linear types and linear mutable cells.
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        First-class simultaneous substitutions in the two-level logic approach

        Participant :
	Kaustuv Chaudhuri.

        The two-level logic approach that underlies the Abella prover
is excellent at reasoning about the inductive structure of terms with
binding constructs, such as λ-terms from the
λ-calculus. However, there is no built in support in Abella
for reasoning about the inductive structure of (simultaneous)
substitutions. This lack of this kind of support is often criticized
in the λ-tree syntax representational style that is used in
Abella; indeed, in a number of other systems based on this style,
support for reasoning about substitutions is explicitly added into the
trusted kernel. In [14] we show how to formalize
substitutions in Abella in a fluent and high level manner, where all
the meta-theory can be proven in a straightforward manner. We
illustrate its use in giving a clean formulation of fact that the Howe
extension of applicative similarity is a pre-congruence, a standard
result from the meta-theory of the λ-calculus that requires
sophistication in treating simultaneous substitutions.
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        Hybrid Linear Logic, revisited

        Participant :
	Kaustuv Chaudhuri.

        Hybrid Linear Logic (HyLL) was proposed by Chaudhuri and
Despeyroux in 2010 as a meta-logic for reasoning about constrained
transition systems, with applications to a number of domains including
formal molecular biology  [36]. This logic is an
extension of (intuitionistic) linear logic with hybrid connectives
that can reason about monoidal constraint domains such as instants of
time or rate functions. Linear logic with subexponential is a
different extension of linear logic that has been proposed as a
mechanism for capturing certain well known constrained settings such
as bigraphs  [39] or concurrent constraint
programming  [65]. In a paper accepted to
MSCS [5] we show how to relate these two
extensions of linear logic by giving an embedding of HyLL into linear
logic with subexponentials. Furthermore, we show that subexponentials
are able to give an adequate encoding of CTL*, which is beyond the
expressive power of HyLL. Thus, subexponentials appear to be the
better choice as a foundation for constraints in linear logic.
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        Proof Nets and the Linear Substitution Calculus

        Participant :
	Beniamino Accattoli.

        This work [21] belongs to line of work Cost Models and Abstract Machines for Functional Programs, supported by the ANR project COCA HOLA, and it has been published in the proceedings of the international conference ICTAC 2018.

        The Linear Substitution Calculus (LSC) is a refinement of the λ-calculus that is crucial for the study of cost models for functional programs, as it enables a sharp and yet simple decomposition of the evaluation of λ-terms, and it is employed in the proof of various results about cost models in the literature.

        In this work we show that the LSC is isomorphic to the linear logic representation of the λ-calculus. More precisely, it is isomorphic to the proof nets presentation of such a fragment of linear logic. Proof nets are a graphical formalism, which—as most graphical formalisms—is handy for intuitions but not prone to formal reasoning. The result is relevant because it allows to manipulate formally a graphical formalism (proof nets) by means of an ordinary term syntax (the LSC).
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        Tight Typings and Split Bounds

        Participants :
	Beniamino Accattoli, Stéphane Graham-Lengrand.

        This joint work with Delia Kesner (Paris Diderot University) [12] belongs to line of work Cost Models and Abstract Machines for Functional Programs, supported by the ANR project COCA HOLA, and it has been published in the proceedings of the international conference ICFP 2018.

        Intersection types are a classic tool in the study of the λ-calculus. They are known to characterise various termination properties.

        It is also well-known that multi types, a variant of intersection types strongly related to linear logic, also characterise termination properties. Typing derivation of multi types, moreover, provide quantitative information such as the number of evaluation step and the size of the results, as first shown by de Carvalho.

        In this work we provide some new results on this line of work, notably we provide the first quantitative study via multi types of the leftmost and linear head evaluation strategies. Moreover, we show that our approach covers also the other cases in the literature.
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        Types of Fireballs

        Participant :
	Beniamino Accattoli.

        This joint work with Giulio Guerrieri (Bologna University) [22] belongs to line of work Cost Models and Abstract Machines for Functional Programs, supported by the ANR project COCA HOLA, and it has been published in the proceedings of the international conference APLAS 2018.

        The theory of the call-by-value λ-calculus has mostly been developed for closed programs, that is, programs without free variables. In the last few years, the authors dedicated considerable efforts to extend it to open terms, that is the case relevant for the implementation of proof assistants. The simplest presentation of the call-by-value λ-calculus for open terms is the fireball calculus.

        In this work we extend the quantitative study via multi types mentioned in Tight Typings and Split Bounds to the fireball calculus.
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        Decision procedures for intuitionistic propositional logic

        Participant :
	Stéphane Graham-Lengrand.

        Provability in intuitionistic propositional logic is decidable and, as
revealed by the works of, e.g., Vorobev  [72],
Hudelmaier  [51] and Dyckhoff  [42], proof theory
can provide natural decision procedures, which have been implemented in
various software. More precisely, a decision procedure is obtained by
performing direct root-first proof-search in (different variants of) a sequent
calculus system called LJT (aka G4ip); termination is ensured by a property of
the sequent calculus called depth-boundedness.

        Independently from this, Claessen and Rosen  [40]
recently proposed a decision procedure for the same logic, based on
a methodology used in the field of Satisfiability-Modulo-Theories (SMT).
Their implementation clearly outperforms the sequent-calculus-based implementations.

        In 2018 we managed to establish of formal connection between the G4ip sequent
calculus and the algorithm from  [40], revealing
the features that they share and the features that distinguish them. This
connection is interesting because it gives a proof-theoretical light on
SMT-solving techniques, and it opens the door to the design of an
intuitionistic version of the CDCL algorithm used in SAT-solvers, which
decides provability in classical logic.
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        Admissible Tools in the Kitchen of
Intuitionistic Logic

        Participants :
	Matteo Manighetti, Andrea Condoluci.

        In this work we study the computational meaning of the inference rules
that are admissible, but not derivable, in intuitionistic logic
[16].

        An inference rule is admissible for a logic if whenever its antecedent
is derivable, its conclusion was already derivable without the rule.
In classical logic, whenever this is the case, then also the implication
between antecedent and conclusion is derivable. The notion of an
admissible rule is therefore internalized in the logic.

        This is not the case for intuitionistic logic, and some rules that are
admissible are not derivable: therefore they need reasoning outside the
usual intuitionistic logic in order to be reduced to purely
intuitionistic derivation.

        In this work we propose a proof system with term annotations and
reduction rules to give a computational meaning to these reductions.
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      Dissemination

        Promoting Scientific Activities

        
        Scientific Events Organisation

        
        General Chair, Scientific Chair

        D. Miller is the General Chair of LICS (Logic In
Computer Science), starting July 2018.

        
        Member of the Organizing Committees

        D. Miller is on the Steering Committee for the FSCD conference
series and the CPP conference series.

        D. Miller is a member of the SIGLOG advisory board, starting
November 2015.

        
        Scientific Events Selection

        
        Chair of Conference Program Committees

        B. Accattoli co-chaired LSFA 2018: 13th Workshop on Logical
and Semantic Frameworks with Applications, Fortaleza, Brazil,
September 26-28, 2018.

        G. Scherer chaired ML2018: the ML Family Workshop 2018 in Saint
Louis, US, on Friday September 28th 2018.

        L. Straßburger chaired TYDI 2018: Workshop on “Twenty Years
of Deep Inference” in Oxford July 7, 2018.

        
        Member of the Conference Program Committees

        B. Accattoli was on the PPDP 2018 Program Committe: 20th International Symposium
on Principles and Practice of Declarative Programming, Frankfurt,
Germany, 3–5 September 2018.

        S. Graham-Lengrand was on the LFMTP 2018 Program Comittee: Workshop on Logical
Frameworks and Meta-Languages: Theory and Practice, Oxford, UK,
7 July 2018.

        L. Straßburger was on the PC for LACompLing 2018: Symposium on
Logic and Algorithms in Computational Linguistics, Stockholm, 28–31 August 2018

        D. Miller was on the program committee for IJCAR-2018: 9th
International Joint Conference on Automated Reasoning, Oxford,
14-17 July 2018.

        D. Miller was a member of the jury for selecting the 2018
Ackermann Award (the EACSL award for outstanding doctoral
dissertation in the field of Logic in Computer Science).

        Member of the EATCS Distinguished Dissertation Award Committee
since March 2013.

        G. Scherer was on the POPL 2019 Program Committee: Principles Of Programming
Languages, 13-19 January 2019 Cascais/Lisbon, Portugal

        
        Reviewer

        G. Scherer reviewed for Computer Science Logic (CSL).

        L. Straßburger was reviewer for the following conferences:

        
          	
             LICS 2018

          

          	
             IJCAR 2018

          

          	
             FSCD 2018

          

          	
             AiML 2018

          

          	
             ARQNL 2018

          

        

        B. Accattoli reviewed for LICS 2018, FSCD 2018, PPDP 2018, LSFA 2018.

        
        Journal

        
        Member of the Editorial Boards

        D. Miller is on the editorial board of the following journals:

        
          	
             Journal of Automated Reasoning

          

          	
             Journal of Applied Logics

          

        

        
        Reviewer - Reviewing Activities

        G. Scherer reviewed for Mathematical Structures in Computer Science (MSCS).

        L. Straßburger was reviewer for the following journals:

        
          	
             Transactions on Computational Logic, ToCL (2x)

          

          	
             Logical Methods in Computer Science, LMCS

          

          	
             Mathematical Structures in Computer Science, MSCS

          

          	
             Journal of Logic, Language and Information, JLLI

          

          	
             Journal of Automated Reasoning, JAR

          

          	
             Notre Dame Journal of Formal Logic, NDJFL

          

        

        B. Accattoli reviewed for Logical Methods in Computer Science (LMCS) and Theoretical Computer Science (TCS).

        
        Invited Talks

        S. Graham-Lengrand gave an invited talk at the JFLA 2018 (January),
and an invited lecture series at the 8th Summer School on Formal
Techniques (May).

        B. Accattoli gave an invited talk at the IFIP Working Group 1.6: Rewriting on July 8 2018 in Oxford, Uk.

        D. Miller was an invited speaker and panelist at the Workshop on
Proof Theory and its Applications, 6–7 September 2018 in Ghent,
Beligum.

        D. Miller gave a colloquim talk at the Technical University of
Vienna on 31 October 2018 and at the Cyber Security Lab, NTU,
Singapore, 21 March 2018.

        
        Scientific Expertise

        G. Scherer participated to a scientific expertise of the implementation of the Tezos blockchain – implemented in OCaml.

        
        Research Administration

        L. Straßburger was reviewer for the NWO (Netherlands Organisation
for Scientific Research).
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        Teaching - Supervision - Juries

        
        Teaching

        
          	
             Licence : G. Scherer,
Programmation Fonctionnelle, 50, L1, Paris 8 (Vincennes / Saint Denis), France

          

          	
             Licence : K. Chaudhuri,
Programmation avancée en OCaml, 40 hours eq TD, L3, École polytechnique, France

          

          	
             Bachelor : K. Chaudhuri,
Computer programming, principal instructor, École polytechnique, France

             (This program has no direct equivalent in the traditional French
university system; the closest would be L1.)

          

          	
             Licence: S. Graham-Lengrand, “INF412: Fondements de l'Informatique: Logique, Modèles, Calcul”, 32 hours eq. TD, L3, École Polytechnique,
France.

          

          	
             Master: S. Graham-Lengrand, “INF551:
Computational Logic”, 45 hours eq. TD, M1, École
Polytechnique, France.

          

          	
             Master: B. Accattoli, “Logique linéaire et paradigmes logiques du calcul”, 18 hours eq. TD, M2, Master Parisien de Recherche en Informatique (MPRI), France.

          

          	
             Master: D. Miller, “Logique linéaire et paradigmes logiques du calcul”, 18 hours eq. TD, M2, Master Parisien de Recherche en Informatique (MPRI), France.

          

          	
             Summer School: B. Accattoli, “The Complexity of Beta-reduction”, 4.5h, International School on Rewriting (ISR) 2018, Cali, Colombia.

          

        

        
        Supervision

        
          	
             PhD : Sonia Marin, Modal Proof Theory through a Focused Telescope, Université Paris-Saclay, 30 January 2018, encadrant(s): Lutz Straßburger, Dale Miller.

          

          	
             PhD in progress: Ulysse Gérard and Matteo Manighetti supervised by Dale Miller.

          

          	
             PhD in progress: François Thiré (since 1st October 2016), supervised by S. Graham-Lengrand (joint with G. Dowek).

          

          	
             PhD in progress: Maico Leberle supervised by Dale Miller and Beniamino Accattoli.

          

        

        
        Juries

        
          	
             D. Miller was the a reporter for the PhD juries of
Michael Lettmann (TU Vienna, 30 October 2018)
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        Popularization

        L. Straßburger serves as member of the “commission développement technologique (CDT)” for Inria
Saclay–Île-de-France (since June 2012).

        F. Lamarche was site co-ordinator for the Activity Report for Inria
Saclay–Ile-de-France.

        
        Interventions

        G. Scherer and M. Manighetti participated the “Fête de la
Science” exhibit at Inria Saclay on the whole day of October 11th,
2018. They manned an activity on sorting algorithms for colored
plastic pieces.

        
        Internal action

        G. Scherer spoke at the “Unithé ou café” meeting, a Saclay-internal
popularization meeting, on February 1st, 2018.
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        National Initiatives


        
        ANR


        COCA HOLA: Cost Models for Complexity Analyses of Higher-Order
Languages, coordinated by B. Accattoli, 2016–2019.


        FISP: The Fine Structure of Formal Proof Systems and their
Computational Interpretations, coordinated by Lutz Straßburger in
collaboration with Université Paris 7, Universität Innsbruck and
TU Wien, 2016–2019.


        
        Competitivity Clusters


        UPScale: Universality of Proofs in SaCLay, a Working Group of LabEx
DigiCosme, organized by Chantal Keller (LRI) with regular
participation from Parsifal members and a post-doc co-supervision.
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        International Research Visitors


        
        Internships


        Simon Colin did an M1 internship supervised by G. Scherer, conducting
a static analysis to check the safety, in OCaml, of unboxing
annotations on type declarations.


        Alban Reynaud did an L3 internship supervised by G. Scherer,
conducting a static analysis to check the safety, in OCaml, of
recursive value declarations.


        
        Visits to International Teams


        
        Research Stays Abroad


        S. Graham-Lengrand was an International Fellow at SRI
International, for 25 months over a period of three years between
2015 and 2018.
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