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2 Overall objectives
The Mind team, which finds its origin in the Parietal team, is uniquely equipped to impact the
fields of statistical machine learning and artificial intelligence (AI) in service to the understanding
of brain structure and function, in both healthy and pathological conditions.

AI with recent progress in statistical machine learning (ML) is currently aiming to revolutionize
how experimental science is conducted by using data as the driver of new theoretical insights
and scientific hypotheses. Supervised learning and predictive models are then used to assess
predictability. We thus face challenging questions like Can cognitive operations be predicted from
neural signals? or Can the use of anesthesia be a causal predictor of later cognitive decline or
impairment?

To study brain structure and function, cognitive and clinical neuroscientists have access to
various neuroimaging techniques. The Mind team specifically relies on non-invasive modalities,
notably on one hand, magnetic resonance imaging (MRI) at ultra-high magnetic field to reach high
spatial resolution and, on the other hand, electroencephalography (EEG) and magnetoencephalog-
raphy (MEG), which allow the recording of electric and magnetic activity of neural populations, to
follow brain activity in real time. Extracting new neuroscientific knowledge from such neuroimaging
data however raises a number of methodological challenges, in particular in inverse problems, statis-
tics and computer science. The Mindproject aims to develop the theory and software technology
to study the brain from both cognitive to clinical endpoints using cutting-edge MRI (functional
MRI, diffusion weighted MRI) and MEG/EEG data. To uncover the most valuable information
from such data, we need to solve a large panoply of inverse problems using a hybrid approach in
which machine or deep learning is used in combination with physics-informed constraints.

Once functional imaging data is collected the challenge of statistical analysis becomes apparent.
Beyond the standard questions (Where, when and how can statistically significant neural activity
be identified?), Mind is particularly interested in addressing driving effect or the cause of such
activity in a given cortical region. Answering these basic questions with computer programs requires
the development of methodologies built on the latest research on causality, knowledge bases and
high-dimensional statistics.

The field of neuroscience is now embracing more open science standards and community efforts
to address the referenced to as “replication crisis” as well as the growing complexity of the data
analysis pipelines in neuroimaging. The Mindteam is ideally positioned to address these issues
from both angles by providing reliable statistical inference schemes as well as open source software
that are compliant with international standards.

The impact of Mindwill be driven by the data analysis challenges in neuroscience but also
by the fundamental discoveries in neuroscience that presently inspire the development of novel
AI algorithms. The Parietal team has proved in the past that this scientific positioning leads
to impactful research. Hence, the newly created Mind team formed by computer scientists and
statisticians with a deep understanding of the field of neuroscience, from data acquisition to clinical
needs, offers a unique opportunity to expand and explore more fully uncharted territories.
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3 Research program
The scientific project of Mind is organized around four core developments (machine learning for
inverse problems, heterogeneous data & knowledge bases, statistics and causal inference in high
dimension, and machine Learning on spatio-temporal signals).

3.1 Machine learning for inverse problems
Participants: P. Ciuciu, A. Gramfort, T. Moreau, D. Wassermann

Inverse problems are ubiquitous in observational science. This necessitates the reconstruction of
a signal/image of interest, or more generally a vector of parameters, from remote observations that
are possibly noisy and scarce. The link between the parameters of interest and the observations is
physics, and is commonly well understood. Yet, the recovery of parameters is challenging as the
problem is often ill-posed due to the ill-conditioning of the forward model. Machine learning is
now more frequently used to address such problems, using likelihood-free inference (LFI) to inverse
nonlinear systems, or prior learning using bi-level optimization and reinforcement learning to guide
the way to collect observations.

3.1.1 From linear inverse problems to simulation based inference

Expected breakthrough: Boosts in MR image quality and reconstruction speed and in
spatio-temporal resolution of M/EEG source imaging
Findings: Development of data-driven regularizing functions for inverse problems, as well
as deep invertible and cost-effective network architectures amenable to solve nonlinear inverse
problems on neuroscience data.

Solving an inverse problem consists in estimating the unobserved parameters at the origin of
some measurements. Typical examples are image denoising or image deconvolution, where, given
noisy or low resolution data, the objective is to obtain an underlying high-quality image. Inverse
problems are pervasive in experimental sciences such as physics, biology or neuroscience. The
common problem across these fields is that the measurements are noisy and generally incomplete.

Mathematically speaking, these inverse problem can be formulated as estimating x from y Γ(x)b.
Here, b is an additive noise and Γ is a (generally non-injective) mapping to a lower-dimensional
space. For example, in magneto- and electroenchephalography (M/EEG), Γ is a real linear
mapping ΓM/EEG : RN 7→ RM and b is considered white and Gaussian, while in magnetic resonance
imaging (MRI), Γ is a complex linear mapping ΓMRI : CN 7→ CM and b is circular complex white
Gaussian. Despite the linearity of ΓM/EEG and ΓMRI, estimating x is a challenging task when the
measurements are incomplete, i.e., M �N and the problem is ill-posed. This is often the case
due to physical limitations on the measurement device (M/EEG) or the acquisition time (MRI).
Moreover, the linear Fourier operator ΓMRI only reflects an ideal acquisition process and part of the
acquisition artifacts (e.g. B0 inhomogeneity) can be compensated by considering nonlinear models
at the cost of estimating additional parameters along with the MR image.

To tackle these inverse problems, using adequate regularization will promote the right structure
for the data to be recovered. Over the last decade the members of Mind have proposed state-of-the-
art models and efficient algorithms based on sparsity assumptions [74, 123, 96, 80, 124, 108, 107,
94, 99, 95]. MNE is the reference software developed by the team that implements these methods
for MEG/EEG data while pysap-mri proposes solvers for MR image reconstruction.

The field is now progressing with novel approaches based on deep learning by either learning
the regularization from data in the context of MRI reconstruction [145, 146], or by considering
nonlinear models grounded in the physics underlying the data. The team has started to explore
this direction using so-called Likelihood-Free Inference (LFI) techniques built on deep invertible
networks [147, 106]. A particular application has been on diffusion MRI (dMRI), where we have
linked the dMRI signal with physiological tissue models of grey matter tissue [106]. Still in MRI
but in susceptibility weighted imaging, another approach [88] has consisted in directly estimating
the B0 field map from non-Cartesian k-space data to correct for off-resonance effects in non-Fourier

https://mne.tools/stable/index.html
https://github.com/CEA-COSMIC/pysap-mri
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operators ΓMRI. The Mind project will continue along this direction studying nonlinear simulators
of imaging data as building blocks. A key aspect of the work proposed is to exploit knowledge on
the physics of the data generation mechanisms.

3.1.2 Bi-level optimization

Expected breakthrough: Efficient algorithms to select hyper-parameters and priors for
source localisation in MEG and image reconstruction in MRI/fMRI.
Findings: Bi-level optimization solvers exploiting gradients to scale with the large number of
samples and hyper-parameters.

In recent years, bi-level optimization – minimizing over a parameter which is itself the solution of
another optimization problem – has raised great interest in the machine learning community. Indeed,
many methods in ML reduce to this bi-level framework, typically the problem of hyper-parameter
optimization.

In most practical cases, hyper-parameter selection is done using cross-validation (CV), which
basically consists in splitting the whole dataset in training and validation sets. The parameters of the
method are computed by minimizing a loss function on the training set, and the hyper-parameters
are then set by minimizing the loss function on the validation set. This approach is a bi-level
optimization problem.

Other instances of such problems can be found in dictionary learning, robust training of neural
networks or the use of implicit layers in deep learning. In all these applications, the model or
the latent variables are learned by minimizing some loss while the parameters or the dictionary
are updated by minimizing a second optimization problem depending on the outcome of the first
problem. While theoretical results were produced in the early 70’s [87], there are still many
challenges related to bi-level optimization that need to be addressed to produce methods that are
both theoretically well grounded and computationally efficient. Recently, the members of Mind
have published several works related to the subject [57, 58, 69, 81]. We intend to pursue this effort
in the following directions.

Stochastic bi-level solvers. Bi-level solvers require the use of the whole training set before
doing an update on an outer-level problem: In this sense, they are full-batch methods [69]. We
propose to study stochastic methods for this task, where some improvement on the optimization can
be achieved using only a few samples from the training data. Stochastic algorithms are notoriously
faster than full-batch methods for large datasets, but are also generally harder to analyse from a
theoretical standpoint. In addition to being fast, the proposed algorithm should come with some
statistical guarantees. These solvers can have many applications, from stochastic prior learning for
inverse problem to hyper-parameters tuning in general machine learning.

Neural Dictionary Learning. Bi-level optimization framework offers a canvas to advance the
state of the art in dictionary and prior learning. Indeed, dictionary learning has long been seen
as a bi-level optimization problem [122]. Practical algorithms are mainly based on alternate
minimization and rarely account for the sub-optimality of each sub-problem. With advances in
bi-level optimization and algorithm unrolling [57], we aim at providing efficient and theoretically
justified dictionary learning algorithms, that will be able to leverage the technologies of differentiable
programming [55, 141].

Deep EquilibriumModels. The use of Deep learning, and in particular unrolled algorithms [102],
has introduced a quantum leap in the resolution of inverse problems compared to variational ap-
proaches, specifically in terms of computing efficiency and image/signal recovery performance.
However, these networks are very demanding in memory for the training, which currently limits
their potential. Different methods exist to alleviate this problem both on the modeling (gradient
check-pointing, reversible networks) and the implementation side (model parallelism, mixed preci-
sion), but come at the expense of larger computational cost. However, a promising research avenue,
illustrated by [100], is the use of Deep Equilibrium Models. These models are defined implicitly
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and amount to unrolling an infinite number of iterations, thereby using much less memory. These
implicit layers constitute another instance of bi-level optimization problem and we plan to work on
these directions in the near future as a means to address DL image reconstruction in realistic 3D
and 4D multi-coil MRI setting, both for structural and functional imaging.

3.1.3 Reinforcement learning for active k-space sampling

Expected breakthrough: New hardware compliant under-sampling patterns in MRI k-space
that accelerate anatomical and functional scans while optimizing MR image quality.
Findings: Develop novel principles of active sampling in the reinforcement learning framework
which optimizes a sampling policy tightly linked to the reconstructed image quality.

Current under-sampling schemes in MRI allow for shorter scan acquisition times, however at
the cost of artifacts in various regions of the reconstructed MR image. These artifacts arise due to
uncertainties in some heavily under-sampled regions of the acquired Fourier space (i.e. also called
k-space). Modern reconstruction algorithms, with the use of strong priors, either hand-crafted or
learned, tend to reduce these uncertainties and behave as if the acquisition is fixed.

To go beyond the state of the art, we argue that there is a need to jointly learn an algorithm
that designs the optimal under-sampling pattern in k-space as well as the reconstruction network.

As it can be summarized to learning a sequential decision algorithm, we will rely on reinforcement
learning (RL) to build up optimal k-space sampling patterns while enforcing physical constraints
on the MRI sequence, as originally proposed in [77, 72, 115].

The k-space acquisition can be modeled by a sampling policy and the rewards for the joint
network are based on reconstructed image quality. Under this paradigm, after every fixed scan
time, an instantaneous reconstruction can be obtained and the Fourier space uncertainty maps
analysed in depth. Based on this, the scan can continue by actively sampling the k-space and
enforcing denser samples in regions where uncertainty is larger. In this way, the learned k-space
trajectories may become more patient and organ specific. Further, the trajectory can run and lead
to instantaneous best results of reconstruction under a given variable scan time budget. These
aspects define one of the core directions we will investigate to produce the next generation of
state-of-the-art MR data sampling and image reconstruction algorithms. Recent contributions [159,
142] only approach the problem in the Cartesian framework and hence perform 1D variable density
sampling along the phase encoding dimension. Given our expertise on non-Cartesian sampling in
developing SPARKLING for both for 2D and 3D MR imaging [115, 116, 75], we plan to extend
this framework to non-Cartesian acquisition setups while still remaining compatible with hardware
constraints on the gradient system. The access to various MRI scanners at CEA/NeuroSpin is
necessary and an added advantage to the success of the Mind team.

3.2 Heterogeneous Data & Knowledge Bases

Participants: B. Thirion, D. Wassermann
Inferring the relationship between the physiological bases of the human brain and its cognitive

functions requires articulating different datasets in terms of their semantics and representation.
Examples of these are spatio-temporal brain images, tabular datasets, structured knowledge
represented as ontologies, and probabilistic datasets. Developing a formalism that can integrate
all these modalities requires constructing a framework able to represent and efficiently perform
computations on high-dimensional datasets as well as to combine hybrid data representations in
deterministic and probabilistic settings. We will take on two main angles to achieve this task: on
one hand, the automated inference of cross-dataset features, or coordinated representations and
on the other hand, the use of probabilistic logic for knowledge representation and inference. The
probabilistic knowledge representation part is now well advanced with the Neurolang project. It is
yet a long-term endeavor. The learning of coordinated representations is less advanced.

https://neurolang.github.io/
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3.2.1 Learning coordinated representations

Expected breakthrough: Process semantic information together with image data to bridge
large-scale resources and knowledge bases
Findings: Set up a learning model that leverages heterogeneous data: Images, annotations,
texts, and coordinate tables.

Inference is the pathway that leads from data to knowledge. One crucial aspect is that in the
context of neuroscience, data comes in different forms: Full texts, images and tables. Annotations
may be full texts or simply tags associated with observed images. One challenge is thus to develop
automated techniques that learn coordinated representations across such heterogeneous data sources.

This learning endeavor rests on several key machine learning techniques: Compression, em-
beddings, and multi-layer networks. Compression (sketching) consists in building a reduced
representation of some input that leads from large sparse and complex representation to low-
dimension ones, while minimizing some distortion criterion. Embedding techniques also create
representations, but possibly bias them to enhance some aspects of the data. It thus incorporates
prior information on data distribution or the relevance of features. Finally, multi-layer networks
create intermediate representation of data that are suitable to achieve a prediction goal. Such
representations are rich enough in particular in multi-task settings, where the outputs of the network
are multi-dimensional. Following [63], we call such latent data models coordinated representations.

Deep learning is well suited to the goal of learning intermediate representations. As an example,
we plan to develop a framework that coalesces in one deep learning formulation, the task of
estimating brain structures, cognitive concepts, and their relationships.

Brain structures and cognitive concepts will appear as intermediate representations responsible
for linking brain activity to observed behavior. However deep learning cannot be considered as
a standard means to understand coordinated representations, due to the limited data available,
their poor signal-to-noise ratio (SNR) and their heterogeneity. Deep learning needs instead to be
adapted by injecting our expertise on statistical structure of the data (see e.g. [104, 126]). Since the
challenge is to train such models on limited and noisy data, we will extend our recent work [62] that
has developed regularization schemes for deep-learning models: it relies on structured stochastic
regularizations (a.k.a. structured dropout). Such approaches are efficient, powerful and can be
used in wide settings. We will enhance them with more generic, cross-layer, grouping schemes.
Additionally, we will develop two strategies: i) aggregation of predictors for variance reduction
and stability of the model [104] and ii) data augmentation – i.e. learning to augment, based on
unlabeled data – to improve the fit with limited data. For this we will consider plausible generative
mechanisms.

3.2.2 Probabilistic Knowledge Representation

Expected breakthrough: A domain-specific language (DSL) capable of articulating hetero-
geneous probabilistic data sources in neuroimaging is a way to relate physiology to cognition.
Findings: Self-optimizing probabilistic solvers for discrete and continuous hierarchical models
able to scale for neuroimaging problems.

Neuroscientific data used to infer the relationships between physiology of the human brain and its
cognitive function goes well beyond text, image, and tables. Knowledge graphs representing human
knowledge, and the ability to encode reasoning strategies in neuroscience are also key to effectively
bridge current data-centric approaches and decades-old domain knowledge. A main challenge in
performing inferences combining demographic data-centric approaches, imaging measurements,
and domain knowledge, is to be able to infer new knowledge soundly and efficiently taking into
account the noisy nature of demographic and imaging measurements, and the common open-world
assumption of ontologies and knowledge graphs. Such probabilistic hybrid logic approaches are
known to be, in general, intractable in the deterministic [60] as well as in the probabilistic case [156].
Nonetheless, there is an opportunity to be seized in identifying tractable segments of probabilistic
hybrid logic representations able to solve open neuroscientific questions.
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A noticeable opportunity to incorporate all statistical evidence gathered from noisy data into
a usable knowledge base is to formalize the inferred relationships into probabilistic symbolic
representations [105]. These representations are much better suited to simultaneously handle data
across topologies and logic systems, implementing inferential algorithms avoiding the brittleness of
deterministic logic as well as causal probabilistic reasoning.

A typical application of such heterogeneous data processing is meta-analytic applications which
combine neuroimaging data with results found in the scientific literature. Current tools to perform
this task are NeuroSynth or Neuroquery (developed by the team). However, knowledge inferred
by such tools is tremendously limited by the expressive power of the language used to query
the data. Current meta-analytic tools are able to express queries relating test makers, article
annotations, and their relationship with reported brain activations, support propositional logic
only. Propositional logic requires the user to explicitly express every desired term with their
characteristics and their relationships. Our goal is to extend the inference capabilities of such
applications by leveraging current advances in probabilistic logic languages and embedding them in
the Neurolang language. Neurolang enables the encoding of complex knowledge in terms of more
expressive queries. Neurolang queries first-order logic segment, FO¬∃, with a tractable probabilistic
extension allowing for high-dimensional and large dataset computations. Such segment of first order
logic enables formalising questions such as “what brain areas are most likely reported active in a
study specifically when terms related to consciousness are mentioned in such study”, hence being
able to infer, amongst other tasks, specificity and causality [157] of diverse neuroscience phenomena.
To disseminate our results allowing complex expressive searches of massively aggregated diverse
data, we will leverage Neurolang. The latter produces a domain-specific language (DSL) for human
neuroscience research, while being able to combine imaging data, anatomical descriptions and
ontologies. Three main characteristics of the DSL are key to fulfilling this goal: First, it represents
neuroimaging-derived information and spatial relationships in a syntax close to natural language
used by neuroscientists [158]. Second, through a back-end belonging to the Datalog± family, it
allows querying ontologies with the same expressive power as current standards SPARQL and
OWL [66]. Finally, we will extend Neurolang to a probabilistic language able to express graphical
models allowing the implementation of a wide variety of causal inference and machine learning
algorithms [65] in high-dimensional settings which are specific to neuroimaging research. In sum,
by leveraging recent advances in deductive database systems [66] and this novel DSL [158] we will
provide a more flexible tool to express and infer knowledge on brain structure-function relationships.

3.3 Statistics and causal inference in high dimension
Participants: A. Gramfort, T. Moreau, B. Thirion, D. Wassermann

Statistics is the natural pathway from data to knowledge. Using statistics on brain imaging
data involves dealing with high-dimensional data that can induce intensive computation and
low statistical power. Besides, statistical models on large-scale data also need to take potential
confounding effects and heterogeneity into account. To address these questions the Mind team will
employ causal modeling and post-selection inference. Conditional and post-hoc inference are rather
short-term perspectives, while the potential of causal inference stands as a longer-term endeavor.

3.3.1 Conditional inference in high dimension

Expected breakthrough: Obtain statistical guarantees on the parameters of very-high
dimensional generalized linear or non-parametric models.
Findings: Develop computationally efficient procedures that allow inference for such models,
by leveraging structural priors on the solutions.

Conditional inference consists of assessing the importance of a certain feature in a predictive
model, while taking into account the information carried by alternative features. One motivation
for using this inference scheme is that brain regions that sustain behavior and cognition are strongly
interacting. Taking these interactions into account is critical to avoid confusing correlation with
causation in brain/behavior analysis.

http://neurosynth.org
https://neuroquery.org
https://neurolang.github.io/
https://neurolang.github.io/
https://neurolang.github.io/
https://neurolang.github.io/
https://neurolang.github.io/
https://tract-querier.readthedocs.io/en/latest
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Technical difficulties come when the set of explanatory features X becomes extremely large as
frequently met in neuroimaging: Conditioning on many variables (or equivalently, high dimensional
variables) is computationally costly and statistically inefficient. The main solutions to date are
based either on linear model debiasing [110], as well as simulation-based approaches (knockoff
inference [73] or conditional randomization tests [119]). Importantly the latter involves simulating
data with statistical characteristics described explicitly (in a parametric family) or implicitly (by
samples). There remain two gaps to bridge for these methods: i) The computational gap, as the
algorithmic complexity of these approaches is typically cubic in the number of samples, unless more
efficient generative mechanisms are available; ii) the power gap, related to the limited number of
available samples. The best solution thus far consists of associating these inference procedures
with dimension reduction procedures [134]. The next step is adaptation to more general settings:
Conditional inference has been formulated in the linear framework, where it boils down to controlling
that the corresponding coefficient is non-zero, hence it has to be generalized to nonlinear models:
Non-parametric models like random forests, then possibly deep networks.

3.3.2 Post-selection inference on image data

Expected breakthrough: Statistical control of false discovery proportion (FDP) for data
under arbitrary correlation structure.
Findings: A computationally efficient non-parametric statistical test procedure, and a bench-
mark against alternative techniques.

Large-scale statistical testing is pervasive in many scientific fields, where high-dimensional
datasets are collected and compared with an outcome of interest. In such high-dimensional
contexts, false discovery rate (FDR) control [68] is attractive because it yields reasonable power,
while providing an explicit and interpretable control on false positives. Yet the FDR rate is
the expectation of the FDP. Controlling the FDR does not mean that the FDP is controlled, a
distinction that is most often ignored by practitioners. For the sake of scientific reproducibility,
there is a need for methods controlling the FDP.

Such an approach has been developed in the context of neuroimaging, namely the all-resolution
inference framework [148] based on classical multiple correction error control bounds. Yet, the
empirical behavior of this method remains to be assessed. Moreover, it has been clearly established
that the procedure is over-conservative in some settings [70]. Indeed, it relies on the Simes statistical
bound, that is not adaptive to the specific type of dependence for a particular data set. To bypass
these limitations, [70] have proposed a randomization-based procedure known as λ-calibration, which
yields tighter mathematical bounds that are adapted to the dependency observed in the dataset at
hand. It rests on a non-parametric (permutation-based) estimation of the null distribution, leading
to tight and valid inference under general assumptions.

In this research axis, we propose to fix some of the open issues with the approach described
in [70], namely the choice of a template family to calibrate the error distribution in the permutation
procedure. We hope to propose a practical choice for this family to avoid putting the burden of
choice on practitioners.

We will characterize by simulations and theoretical arguments the behavior of these error control
procedures and develop efficient computational methods for the use of these tools in brain imaging
analysis.

3.3.3 Causal inference for population analysis

Expected breakthrough: Provide a reference methodology for causal and mediation analysis
in high-dimensional settings.
Findings: Benchmark state-of-the-art techniques and further adapt them to the high-
dimensional setting.

Modern health datasets present population characteristics with many variables and in multiple
modalities. They can ground prediction and understanding of individual outcomes, using machine
learning techniques. Still, heterogeneous variables have complex relationships, making it hard
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to tease apart each factor in an outcome of interest. Potential outcome theory [150] provides a
valuable framework to evaluate the impact of treatment (interventions). Treatment effects can be
heterogeneous. In particular, interactions between background and treatment variables have to be
considered.

The statistical behavior (consistency and efficiency) under non-parametric models is actively
investigated [61, 135]. However, their behavior in high-dimensional settings, when both the number
of features and the number of samples are large, is still poorly understood. Our objective is thus to
extend the theory and algorithms of causal inference to noisy high-dimensional settings, where the
noise level implies that effects sizes are proportionally small, and classic methods often become
inefficient and potentially inaccurate due to overfitting. More specifically, we plan to explore the
following directions.

Mediation analysis and conditional independence Mediation analysis considers the question
of whether a variable z mediates all the effect of another variable x onto a target variable y,
a.k.a. outcome. It turns out that full-mediation analysis amounts to testing whether x ⊥ y|z
(x is independent from y given z), which is handled by a conditional independence test. When
the dimensions of these variables (z in particular, but also x and to some extent y) grow, the
underlying statistical inference procedures typically lose power, or even possibly error control. We
propose to leverage our experience on such high-dimensional inference problems [82, 133] to set up
computationally efficient and accurate solutions to this problem.

Latent variable models and confounders The most important aspect of inferring causal
effects from observational data is the handling of confounders, i.e., factors that affect both an
intervention and its outcome. For instance, age has a clear impact on brain characteristics as well
as on behavior, potentially biasing brain/behavior statistical associations. A carefully designed
observational study attempts to measure all important confounders. When one does not have
direct access to all confounders, there may exist noisy and uncertain measurements of proxies for
confounders. A possible solution to this problem relies on generative modeling, such as Variational
Autencoders (VAE) and Generative Adversarial Networks (GANs), to sample the unknown latent
space summarizing the confounders on datasets with incomplete information; the seminal work
of [121] is promising, but still requires improvements to become usable in realistic settings.

The quest of model selection and validation In the classical potential outcome theory [150],
causal effects are determined by both factual and counterfactual outcomes, ground-truth effects
can never be measured in an observational study. In the absence of such measures, how can we
evaluate the performance of causal inference methods? Addressing this question is an important
step for practical problems, in which one has to determine if an effect can safely be considered
non-zero, or heterogeneous through a population. We propose to revisit the promising work of [59]
analysing in detail the shortcomings of the procedure (regarding both bias and variance), especially
when the model becomes high-dimensional.

3.4 Machine Learning on spatio-temporal signals
Participants: P. Ciuciu, A. Gramfort, T. Moreau, D. Wassermann, B.Thirion

The brain is a dynamic system. A core task in neuroscience is to extract the temporal structures
in the recorded signals as a means to linking them to cognitive processes or to specific neurological
conditions. This calls for machine learning methods that are designed to handle multivariate signals,
possibly mapped to some spatial coordinate system (e.g. like in fMRI).

3.4.1 Injecting structural priors with Physics-informed data augmentation

Expected breakthrough: Obtain models with more predictive power when trained on small
datasets.
Findings: Efficient data-augmentation strategy tailored to brain signals.
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Data augmentation consists of virtually increasing dataset size during learning by applying
random, yet plausible, transformations to the input data. In computer vision, this means altering
data by applying symmetries, rotations, geometric deformations etc. While such strategies are
reasonable for natural or medical images [140], it is still unclear how neural or BOLD signals can
be augmented in order to improve prediction performance and robustness.

Some purely data driven strategies have been proposed to augment EEG data using spectral
transforms [120] or advanced strategies such as channel, time or frequency masking or phase
randomizations [114, 117]. Although dozens of transformations have been considered in the
literature to augment EEG signals, it is now apparent that different augmentation strategies should
be applied to the data as a function of the prediction task to be handled. For example when
considering sleep stage classification or BCI applications, the spatial sampling of electrodes and the
duration of signals varies considerably, with the consequence being that different augmentation
parameters and even transformations need to be employed.

In this line of work we will develop algorithms that can quickly identify the relevant augmentation
techniques, building for example on [85, 119]. The aim is to provide a system that can automatically
learn invariance within a class and across subjects in order to maximize the prediction performance
on unseen data. The methodology developed will be relevant beyond neuroscience as long as a
family of physics-informed transformations is available for prediction tasks at hand.

3.4.2 Learning structural priors with self-supervised learning

Expected breakthrough: Unveiling the latent structure of brain signals from large datasets
without human supervision as well as improving the prediction performance when learning from
limited data.
Findings: Self-supervised algorithms for multivariate brain signals.

Self-supervised learning (SSL) is a recently developed area of research that provides a compelling
approach for exploiting large unlabeled datasets. With SSL, the structure of the data is used to turn
an unsupervised learning problem into a supervised one, called a “pretext task”, such as solving
Jigsaw puzzles from images [137] or learning how to color gray-scaled images. The representation
learned on the pretext task can then be reused for unsupervised data exploration or on a supervised
downstream task, with the potential to greatly reduce the number of labeled examples required to
train a good predictive model.

In fields like computer vision [137, 128] and time series processing [138], SSL has shown
great promise in terms of prediction performance but also in ease of use. Indeed, SSL simplifies
model selection and evaluation as it relies on prediction scores and cross-validation, contrarily to
unsupervised learning methods like ICA [56].

Recently the team has applied SSL to two large cohorts of clinical EEG data [64] revealing
insights on the data without any human supervision. However many challenges remain. For
example in Mind, we aim to explore novel SSL strategies applicable to electrophysiology as well
as to haemodynamic signals measured with fMRI. As such, our goal is to expand the recent
multivariate method we have introduced in the field for the blind deconvolution of BOLD signals in
both task-related and resting-state experiments [79].

While rather small networks have been employed so far on EEG data [76, 149] due to limited
sets of annotations, the use of SSL tasks opens the possibility to work with much larger labeled
datasets, and therefore many more overparametrized models. We aim to explore these directions,
hoping to reach a state where pre-trained models could be available for EEG or MEG signals as is
presently the case for images or for natural language processing (NLP) tasks.
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3.4.3 Revealing spatio-temporal structures with convolutional sparse coding and
driven point processes

Expected breakthrough: A novel way to study and quantify temporal dependencies between
neural processes, going beyond connectomes based on spectral analysis.
Findings: Temporal pattern finding algorithms that scale to massive MEG/EEG datasets
with parallel processing and point-process inference algorithms.

The convolutional sparse linear model is one established unsupervised learning framework
designed for signals. Using algorithms known as convolutional sparse coding (CSC), this framework
allows for the learning of shift-invariant patterns to sparsely reconstruct a time series. These
patterns, also called atoms, correspond to recurrent structures present in the data. While some of
our recent advances have improved the computational tractability of these methods [130, 129] and
adapted them to neurophysiological data [109, 93, 79], there are still many shortcomings that make
them unpractical for applications beyond denoising.

Model validation The main challenge for the evaluation of unsupervised convolutional models
comes from current theoretical limitations: What can we guarantee statistically concerning the
recovered atoms? Due to their non-convexity, existing algorithms can only guarantee convergence
to local minima, which might be sub-optimal. In this setting, it is challenging to quantify if the
model parameters are well estimated and if they are actually representative of the signals. In Mind,
we aim to develop statistical quantification of the uncertainty associated with such models and in
this regard, provide objective selection criteria for the model and its parameters. This topic of
research will benefit from our other developments on bi-level optimization (cf. subsubsection 3.1.2)
and on FDR control (cf. subsubsection 3.3.2) as well as the expertise of the team members on
dictionary learning [130, 127, 129].

Capturing temporal dependencies with point processes Another shortcoming of these
models is that they do not capture temporal dependencies between the occurrences of the different
atoms. However, neural activity at level of the whole brain is highly distributed. Different brain
regions form networks that are characterized by the presence of statistical dependencies in their
activity [139]. An interesting question to formulate is how one can model and learn these time
dependencies between brain areas from the MEG or EEG recordings using an unsupervised event-
based approach such as CSC. One of the approaches considered is based on point processes (PP;
[71, 103]). PP are classical tools to study event trains (e.g. sequence of spikes) and to model their
dependency structure. We aim here to develop PP-based inference algorithms as a means to capture
network effects in different brain areas, but also to quantify how experimental stimuli are affecting
the temporal statistics of temporal patterns [139]. To model this latter scenario, we will develop
the so-called driven PP. In a second stage, we aim to design fully unsupervised methods to capture
the connections between different brain areas leveraging the full temporal resolution of non-invasive
electrophysiological signals.

4 Application domains
The four research axes we presented earlier have been thought of in tight interaction with four
main applications (large-scale predictive modeling, mapping cognition & brain networks, modeling
clinical endpoints, from brain images and bio-signals to quantitative biology and physics).

4.1 Population modeling, large-scale predictive modeling
4.1.1 Unveiling Cognition Through Population Modeling

Linking the human brain’s structure and function with cognitive abilities has been a research
epicenter for the past 40 years. The sophistication of brain mapping machinery such as MRI, EEG
and MEG, has produced a treasure trove of data. Nonetheless, the effect size of the phenomena
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leading to understanding cognition is often drowned out by noise and inter-individual variability.
A main goal of Mind is to simultaneously harness the power of large-scale general purpose
datasets, such as the Human Connectome Project (HCP) and the Adolescent Brain Cognitive
Development Study (ABCD), as well as small scale high precision ones, such as the Individual
Brain Charting (IBC) dataset [144], to understand the link between the human brain’s architecture
and function, and cognition. Parietal’s expertise has already been demonstrated in this field.
Examples of this include using diffusion MRI (dMRI) to link the brain’s macrostructure with
language comprehension [78], tissue microstructure with cognitive control [125], functional gradients
on the cortical surface [91] to functional territory segregation [143].

Mind project will continue this task by seizing our core methodological developments, described
in the previous section, and our global collaborative network of cognitive scientists.

4.1.2 Imaging for health in the general population

Individual differences in brain function and cognition have historically been investigated by studies
carried out by individual laboratories having access mainly to small sample sizes. The growing
availability of public large-scale data of epidemiological dimensions curated by dedicated consor-
tia (e.g. UK Biobank) has enabled studying the relationship between cognition and the brain with
unparalleled granularity and statistical power. These resources now allow researchers to relate brain
signals/images to rich descriptions of the participants including behavioral and clinical assessments
in addition to social and lifestyle factors. Machine learning has proven essential when modeling
biomedical outcomes from the large-scale and high-dimensional data brought by consortia and
biobanks. It is used to to build predictive models of heterogenous biomedial outcomes (cognitive,
social, clinical) based on different neuroscientific modalities. Taken together, this facilitates the
study of lifestyle and health-related behavior in the general population, potentially revealing risk
factors leading to biomarker discovery.

Mind will greatly contribute to this effort by focusing on population modeling as a tool for
enhancing the analysis of clinical data and mental health.

4.1.3 Proxy measures of brain health

Clinical datasets tend to be small as sharing of data is not incentivized or institutional and economic
resources are missing. As a consequence, the capacity of machine learning to learn functions
that relate complex-to-grasp biomedical outcomes to heterogeneous data cannot be fully exploited.
This has stimulated growing interest in proxy measures of neurological conditions derived from
the general population, such as individual biological aging. One counter-intuitive aspect of the
methodology is that measures of biological aging (e.g. via brain imaging) can be obtained by
focusing on the age of a person, which is known in advance and is, in itself not interesting as a target.
However, by predicting the age, machine-learning can capture the relevant information about aging.
Based on a population of brain images, it extracts the best guess for the age of a person, indirectly
positioning that person within the population. Individual-specific prediction errors therefore reflect
deviations from what is statistically expected [155]. The brain of a person can look similar to brains
commonly seen in older (or younger) people. The resulting brain-predicted age reflects physical
and cognitive impairment in adults [154, 83, 92] and reveals neurodegenerative processes [118, 101],
which could be overlooked without using machine learning.

Mind will extend this line of research in two directions: 1) Assessment of brain age using EEG
and non-brain data such as health-records and 2) proxy measures of mental health beyond aging.

4.1.4 Studying brain age using electrophysiology

MRI is not yet available in all clinical situations and certain aspects of brain function are better
understood using electrophysiological modalities (M/EEG). Until recently, it was unclear if brain
age can be meaningfully estimated from M/EEG. In a recent study [97], we demonstrated, using
the Cam-CAN cohort (n 650), that combining MRI and MEG enhanced detection of cognitive
dysfunction. The proposed approach not only achieved integration of brain signals from distinct
modalities but explicitly handled the absence of MEG or MRI recordings, adapting ideas from [111].
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This is key for clinical translation where one cannot afford excluding cases because one modality is
missing. In the clinical setting, EEG is predominantly used (and not MEG). Clinical recordings are
far noisier than lab EEG and gold-standard source modeling with MRI is rarely done outside the lab.
Supported by theoretical analysis and simulations, we found through empirical benchmarks [152]
that Riemannian embeddings 1) capture individual head geometry 2) bring robustness to extreme
noise and, 3) enable good age prediction from clinical 20-channel EEG (n=1300) with performance
close to 306-channel lab MEG.

Mind will extend this line of research by translating EEG-based brain age measures into the
hospital setting and probe these in different patient populations in which ageing-related differences
in brain structure and function are part of the clinical picture, e.g., neurodevelopmental disorders,
postoperative cognitive decline and dementia (cf. subsection 4.3).

4.1.5 Proxy measures of mental health beyond brain aging

Quantitative measures of mental health remain challenging despite substantial research efforts [112].
Mental health, can only be probed indirectly through psychological constructs, e.g. intelligence or
anxiety gauged by valid and statistically relevant questionnaires or structured examinations by a
specialist. In practice, full neuropsychological evaluation is not an automated process but relies
on expert judgment to confront multiple responses and interpret them in the context of a larger
environmental context including the cultural background of the participant. Inspired by brain age,
we set out to build empirical measures of mental health [86] by predicting traditional and broadly
used psychological constructs such as fluid intelligence or neuroticism in the UK Biobank. Our
results have shown that all proxies captured the target constructs and were more useful than the
original measures for characterizing real-world health behavior (sleep, exercise, tobacco, alcohol
consumption). In the long run, we anticipate that using proxies could complement psychometric
assessments by corroborating data and potentially providing more accurate data faster and more
efficiently for clinical populations.

Mind will expand this line of research by systematically searching for proxy measures of physical
and mental health derived from large clinical population using electronic health records or transcripts
from clinical interviews. We will propose a systematic causal analysis (treatment effect size and
mediation) to provide a clearer understanding of the relationships between the many variables that
characterize mental health. We will study more in detail the impact of general health markers on
brain status, as this may well fit much of the unexplained variance on brain health.

4.2 Mapping cognition & brain networks
4.2.1 Problem statement

Cognitive science and psychiatry aim at describing mental operations: cognition, emotion, perception
and their dysfunction. As an investigation device, they use functional brain imaging, that provides
a unique window to bridge these mental concepts to the brain, neural firing and wiring. Yet
aggregating results from experiments probing brain activity into a consistent description faces the
roadblock that cognitive concepts and brain pathologies are ill-defined. Separation between them
is often blurry. In addition, these concepts (a.k.a. psychological constructs) may not correspond
to actual brain structures or systems. To tackle this challenge, we propose to leverage rapidly
increasing data sources: text and brain locations described in neuroscientific publications, brain
images and their annotations taken from public data repositories, and several reference datasets.

4.2.2 What machine learning can do for neuroscience

Recent works in computer vision [89] or natural language processing [84, 90] have tackled predictions
on a large number of classes, getting closer to open-ended knowledge. These approaches, that rely
on uncovering some form of relational structure across these classes, in effect capture the semantics
of the domain [84], including the similarity structure of the relevant classes and the ambiguities
across classes or the multiple aspects of a class. Broadly speaking, these contributions converge
to the concept of representation learning [67], i.e. estimating latent factors that reformulate a
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learning problem into a new set of input features or output classes that are more natural for the data
and help further analysis. These new tools enable extraction of knowledge, for instance ontology
induction, with statistical learning [136]. They are at the root of heterogeneous data integration,
such as multi-modal machine learning [63]. The machine learning challenges that we aim to tackle
are three-fold:

• Existing multi-modal machine learning techniques have been developed for relatively abundant
data, with overall high SNR: text, natural images, videos, sound. These data are most often
non-ambiguous, while brain data typically are, due to the low SNR per image and, more
crucially, poor annotation quality. We propose to tackle this by adapting machine learning
solutions to this low-SNR regime: introduction of priors, aggressive dimension reduction,
aggregation approaches and data augmentation to reduce overfitting.

• Leveraging implicit supervisory signals: While data sources contain lots of implicit information
that could be used as targets in supervised learning, there is most often no obvious way to
extract it. We propose to tackle this by using additional, ill- or not-annotated data, relying
on self-supervision methods.

• Model interpretability: Our goal is to provide clear assertions on the relationships between
brain structures and cognition: the inference should always lead to an updated knowledge
base, i.e. updated relationships between concepts pertaining to neuroscience on one hand,
psychology on the other hand. Specifically, one should be able to reason about the information
extracted within Mind. For this, we will develop dedicated statistical, causal and formal
(ontology-based) data analysis schemes.

Associating knowledge engineering with statistical learning to boost cognitive neuroimaging,
requires tackling the challenge of multimodal machine learning under noisy conditions with limited
data. Doing so, it will capture links between behavior and brain activity, and enable aggregating
the information carried by neuroimaging data to redefine and link concepts in psychology and
psychiatry.

4.2.3 Perspective taken: combine distributional semantics with brain images

In natural language processing (NLP), distributional semantics capture meanings of words using
similarities in the way they appear in their environment. We want to adapt these ideas to learn
data-driven organizations of psychological concepts. Importantly, applying these techniques solely
to the psychology literature merely captures the current status quo of the field. Including brain
images is necessary to bring new information.

To link observed cognition to brain activity, two typical statistical learning problems arise:
encoding, that seeks to describe brain activity from behavior; and decoding, that seeks the converse,
predicting behavior from brain activity [113]. In addition, statistical modeling of each aspect of the
data on its own generates knowledge, typically spatial decompositions from resting-state data, and
topic modeling on descriptions of behavior. The research strategy followed in this proposal is to
combine the different statistical learning problems in a unified framework to extract core structures
from the aggregation of neuroimaging data: on one side brain structures, and on the other side
semantic relationships and concepts in psychological sciences.

Mind will in particular publish automated functional meta-analyses to give a systematic
assessment of the publicly available data and question the limitations of the current conceptual
framework of systems neuroscience as well as of these resources.

4.3 Modeling clinical endpoints
When sufficient data is available, machine learning can be employed to directly model various
clinical endpoints (such as diagnosis, drug response, and neuropsychological scores) from brain
signals without the need for proxy measures. This approach has the potential to significantly
and meaningfully simplify statistical modeling in clinical research. Machine learning facilitates
combining heterogeneous input data (different modalities) and does not need high confidence in
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underlying generative models linking the data to the clinical endpoint. As a consequence, the
same class of models can be applied regardless of the endpoint. Its focus is on bounding the
approximation error of the endpoint instead of correct parameter estimates. As such, it provides
generalizing models that are more robust. Our team has pushed this type of research program
through several important collaborations with our European clinical partners using EEG and MRI.

4.3.1 EEG-based modeling of clinical endpoints

Neurological and psychiatric disorders can show complex neurological patterns. Diagnosis is often
performed clinically (based on cerebral signs and behavioral symptoms), leading to important
variability across doctors. In clinical neuroscience, predicting diagnosis from brain signals is therefore
a common application. In the clinical context, EEG is an economically viable option that can be
applied in a wide array of circumstances. In collaboration with the Salpêtrière Hospital and the Paris
Brain Institute (ICM) we have developed and validated an approach for an EEG-based modeling
of diagnosis for severely brain injured patients suffering from consciousness disorders (DoC) [98].
Expert-defined features from consciousness studies were rigorously combined using random forest
classification. Sensitivity analysis and benchmarks showed robustness across EEG-configurations
(channels, time points), protocols (resting state vs evoked responses), label noise and differences
between recording sites. When changes in the signal are more subtle than they are in DoC patients
(average power turned out to be one of the strongest stand-alone features) more general approaches
are needed.

Our future activities will focus on extending this line of research to other clinical populations
and other endpoints. We have started a collaboration with the Institut Pasteur (GHFC team, T
Bourgeron, R Delorme) and the University of Montreal (PPSP team, G Dumas), to characterize
differences between normally developing children and children diagnosed with autism spectrum
disorders. A wide array of EEG tasks will be used and endpoints (i.e. developmental timepoints) will
go beyond the usually accurate diagnosis, focusing on symptom severity and social developmental
scores. With the anesthesiology department at the Lariboisière hospital (A Mebazaa, E Gayat, F
Vallée) and the cognitive neurology unit (C Paquet) we aim at developing EEG-based models of
cognitive decline and dysfunction in two different settings. Postoperative cognitive decline is an
important complication after general anesthesia and its antecedents must be better understood. As
this might be an indicator for a latent neurodegenerative condition, we plan to use our EEG-based
models of both Alzheimer’s Disease and Lewy body dementia in which disease progression is an
important change over time.

This widening scope calls for a more general methodology as compared to our previous work on
DoC. For example, in these conditions involving neurodegenerative problems, we have observed that
both subtle and condition-specific spatial patterns matter more than strong and global amplitude
changes. To approach these challenges we will draw on our latest M/EEG-methods that were
recently developed for population-level modeling of brain health and brain aging [97]. We found that
frequency band-specific spatial patterns of M/EEG power spectra conveyed important information
of cognitive function (memory and cognitive performance) that were not explained by MRI or fMRI.
This was implemented by predicting from a filter-bank of frequency-band-specific source power and
source connectivity features. Core challenges to enable clinical translation include lower SNR and
absence of individual anatomical MRI scans needed for gold-standard source modeling. Through
theoretical analysis, simulations and benchmarks we found [152, 151] that, in M/EEG sensor space,
covariance matrices in combination with spatial filtering techniques and Riemannian embeddings
provide good workarounds for absent anatomical MRI scans. This covariance-based approach allows
to capture fine-grained spatial information related to power and connectivity without performing
biophysics-based source localization. Moreover, Riemannian embeddings make predictive modeling
from M/EEG covariance matrices more robust to noise, whereas their interpretability is more
challenging than that of spatial filters, indicating a direction for further research. Another challenge
is given by the limited numbers of labeled samples for supervised learning and EEG-devices with
small channel numbers, such as monitoring or user-grade EEG with 2-4 electrodes for which
random loss of electrodes can be frequent. In this context, we expect important enhancements
from self-supervised learning approaches [64] and deep learning methods for data-augmentation
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for which we have obtained the first results on non-clinical data. In these settings, the previous
elements from classical approaches such as Riemannian geometry or spatial filtering can be readily
implemented alongside more involved computations and transformations.

4.3.2 MRI-based modeling of clinical endpoints

Image based biomarkers can be objectively measured and are a sign of normal or abnormal processes,
of a condition or disease. Incorporating new potential imaging biomarkers requires several steps,
often in parallel and complementary to each other, to be undertaken for translation into clinical
practice. These can be divided into the following phases after identification: Development and
evaluation, validation, implementation, qualification, and utilization. Our team aims to cross two
main translational gaps, that is, the translation from patients first and then to practice. Our
aim through our current and active projects is to ensure that potential biomarkers, like the clear
delineation of subterritories of the subthalamic nucleus (STN) in pharmaco-resistant Parkinson’s
disease (PD) patients (i.e.candidates for implantation of a deep brain stimulator) are ‘fit for
purpose’ and associated with the clinical endpoint of interest with the overarching goal being to
demonstrated efficacy and health impact. This process is key to the translation into clinical practice
and widespread utilization.

Through the ANR VLFMRI grant we aim to derive new MR imaging-based biomarkers related
to prematurity and abnormal neurodevelopment of hospitalized neonates at low magnetic field (20
mTesla). In this setup, the objective is to perform an almost continuous monitoring to detect early
signs of adverse events including ischemic stroke or encephalopathy (collaboration with Prof. V.
Biran, APHP Robert Debré Hospital). An additional collaboration is already underway with the
AP-HP Henri Mondor Hospital (neuroradiologist Dr B. Bapst, doing part of her PhD at NeuroSpin),
to achieve high-resolution susceptibility weighted imaging (600 µisotropic) in a scan time of 2m30s
for an accurate delineation of the STN in PD patients prior to surgical planning. A database of 123
patients has already been collected using both the standard SWI imaging protocol and ours based
on the SPARKLING technology. This annotated database will be key to compare the diagnosis
power of our solution with that of the current care, analyse to what extent a higher image resolution
is instrumental in providing a more accurate clinical diagnostic, and finally make our protocol more
widely accepted in the clinical practice.

Our key contribution in these projects is to translate to the clinical realm both the SPARKLING
technology on the acquisition side [116, 75] as well as our PySAP software [99] for MR image
reconstruction. In this regard, the recently accepted CEA postdoc funding should help us move the
technology to clinical 7T MR Systems (Magnetom Terra Siemens-Healthineers) in the University
hospital of Poitiers through a nascent collaboration with Prof. Rémy Guillevin. Their interest is to
use the high-resolution SPARKLING SWI protocol at 7T to better delineate the anomalies along
the central vein for the diagnostic of multiple sclerosis as the number of anomalies predicts the
grade/severity of this inflammatory pathology. On a longer perspective, we aim to generalize the
use of our recently DL networks for MR image reconstruction [145, 146] to multiple acquisition
setups and other downstream tasks (e.g. motion correction and correction of off-resonance artifacts
related to B0 inhomogeneities).

4.4 From brain images and bio-signals to quantitative biology and physics
Thanks to the developments in subsection 3.1 and subsection 3.4 we aim to approximate more
accurately the biophysical models underlying MRI and electrophysiological signals. By estimating
quantities grounded in the physics of the data (time, spatial localization, tissue properties) we
ambition to offer more actionable outputs for cognitive, clinical and pharmacological applications.

Technologies like 4D SPARKLING should in the future allow us to carry out both fast high
resolution multi-parametric quantitative imaging (e.g. T1, T2 and proton density mapping) and
laminar (i.e. layer-based) functional imaging in BOLD-fMRI. First, in the mqMRI and fMRI setting,
the fourth dimension is respectively the weighting contrast and time axis. mqMRI imaging enables
a precise quantification of biomarkers such as iron stores in the pathological brain. Measuring
these parameters intra-cortically in Parkinsonian patients defines one of the key challenges in the
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coming years, especially at 7 Tesla, to earlier stratify the PD patients and the evolution of their
disease. Second, a particular attention will be paid to the impact of the developments performed
in subsection 3.1 on the statistical sensitivity of brain activity detection, which eventually defines
the final validation metric of the data acquisition/image reconstruction pipeline. For this purpose,
robust experimental activation protocols such as retinotopic mapping will be used for validation
on the 7T scanner and eventually on the 11.7T Iseult MR system. The finest target resolution is
500 µm isotropic in 3D.

Novel development on bi-level optimization for hyper-parameter selection from subsubsec-
tion 3.1.2 will bring state-of-the-art inverse methods to end users currently facing the difficulty of
performing model selection on empirical data efficiently. This will lead to more accurate quantitative
assessments, in sub-millimeters and milliseconds, of where neural activity occurs.

The line of work on inverse problems should also impact how non-invasive neuroimaging and
electrophysiology, based on MRI, EEG and MEG, is considered by more traditional neurophys-
iologists working with animal data. By considering biophysical models of the data and aiming
to estimate their parameters from empirical recordings our hope is to present estimates of phys-
ical quantities (tissue properties, neural interactions strengths, etc.). The line of work based on
stochastic simulation based inference (SBI) can revolutionize the way MEG, EEG and MRI data are
apprehended. For this line of work we will explore the inversion of the models as offered by major
software such as The Virtal Brain (TVB) [153] or the Human Neocortical Neurosolver (HNN) [132].
A student from the group of Prof. S. Jones at the origin of the HNN software visited the team in
2022.

5 New software and platforms
5.1 New software
5.1.1 MNE

Name: MNE-Python

Keywords: Neurosciences, EEG, MEG, Signal processing, Machine learning

Functional Description: Open-source Python software for exploring, visualizing, and analyzing
human neurophysiological data: MEG, EEG, sEEG, ECoG, and more.

Release Contributions: https://mne.tools/stable/whats_new.html

URL: https://mne.tools/

Contact: Alexandre Gramfort

Partners: HARVARD Medical School, New York University, University of Washington, CEA,
Aalto university, Telecom Paris, Boston University, UC Berkeley, Macquarie University,
University of Oregon, Aarhus University

5.1.2 NeuroLang

Name: NeuroLang

Keywords: Neurosciences, Probabilistic Programming, Logic programming

Functional Description: NeuroLang is a probabilistic logic programming system specialised in
the analysis of neuroimaging data, but not exclusively determined by it.

Release Contributions: https://neurolang.github.io/

URL: https://neurolang.github.io/#

Contact: Demian Wassermann

https://mne.tools/
https://neurolang.github.io/#
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5.1.3 Nilearn

Name: NeuroImaging with scikit learn

Keywords: Health, Neuroimaging, Medical imaging

Functional Description: NiLearn is the neuroimaging library that adapts the concepts and tools
of scikit-learn to neuroimaging problems. As a pure Python library, it depends on scikit-learn
and nibabel, the main Python library for neuroimaging I/O. It is an open-source project,
available under BSD license. The two key components of NiLearn are i) the analysis of
functional connectivity (spatial decompositions and covariance learning) and ii) the most
common tools for multivariate pattern analysis. A great deal of efforts has been put on the
efficiency of the procedures both in terms of memory cost and computation time.

Release Contributions: HIGHLIGHTS - Updated docs with a new theme using furo. - per-
muted_ols and non_parametric_inference now support TFCE statistic. - permuted_ols
and non_parametric_inference now support cluster-level Family-wise error correction. -
save_glm_to_bids has been added, which writes model outputs to disk according to BIDS
convention.

NEW - save_glm_to_bids has been added, which writes model outputs to disk according to
BIDS convention. - permuted_ols and non_parametric_inference now support TFCE statistic.
- permuted_ols and non_parametric_inference now support cluster-level Family-wise error
correction. - Updated docs with a new theme using furo.

See all details in https://nilearn.github.io/stable/changes/whats_new.html

URL: http://nilearn.github.io/

Contact: Bertrand Thirion

Participants: Alexandre Abraham, Alexandre Gramfort, Bertrand Thirion, Elvis Dohmatob,
Fabian Pedregosa Izquierdo, Gael Varoquaux, Loic Esteve, Michael Eickenberg, Virgile Fritsch

5.1.4 Benchopt

Keywords: Mathematical Optimization, Benchmarking, Reproducibility

Functional Description: BenchOpt is a package to simplify, make more transparent and more
reproducible the comparisons of optimization algorithms. It is written in Python but it is
available with many programming languages. So far it has been tested with Python, R, Julia
and compiled binaries written in C/C++ available via a terminal command. If it can be
installed via conda, it should just work!

BenchOpt is used through a simple command line and ultimately running and replicating an
optimization benchmark should be as easy a cloning a repo and launching the computation
with a single command line. For now, BenchOpt features benchmarks for around 10 convex
optimization problems and we are working on expanding this to feature more complex
optimization problems. We are also developing a website to display the benchmark results
easily.

Release Contributions: https://github.com/benchopt/benchopt/releases/tag/1.3.0

Contact: Thomas Moreau

5.1.5 Scikit-learn

Keywords: Clustering, Classification, Regression, Machine learning

http://nilearn.github.io/
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Scientific Description: Scikit-learn is a Python module integrating classic machine learning
algorithms in the tightly-knit scientific Python world. It aims to provide simple and efficient
solutions to learning problems, accessible to everybody and reusable in various contexts:
machine-learning as a versatile tool for science and engineering.

Functional Description: Scikit-learn can be used as a middleware for prediction tasks. For
example, many web startups adapt Scikitlearn to predict buying behavior of users, provide
product recommendations, detect trends or abusive behavior (fraud, spam). Scikit-learn is
used to extract the structure of complex data (text, images) and classify such data with
techniques relevant to the state of the art.
Easy to use, efficient and accessible to non datascience experts, Scikit-learn is an increasingly
popular machine learning library in Python. In a data exploration step, the user can enter a
few lines on an interactive (but non-graphical) interface and immediately sees the results of
his request. Scikitlearn is a prediction engine . Scikit-learn is developed in open source, and
available under the BSD license.

URL: http://scikit-learn.org

Publications: hal-00650905, hal-00856511, hal-01093971

Contact: Olivier Grisel

Participants: Alexandre Gramfort, Bertrand Thirion, Gael Varoquaux, Loic Esteve, Olivier Grisel,
Guillaume Lemaitre, Jeremie Du Boisberranger, Julien Jerphanion

Partners: Boston Consulting Group - BCG, Microsoft, Axa, BNP Parisbas Cardif, Fujitsu, Dataiku,
Assistance Publique - Hôpitaux de Paris, Nvidia

5.1.6 joblib

Keywords: Parallel computing, Cache

Functional Description: Facilitate parallel computing and caching in Python.

URL: https://joblib.readthedocs.io/en/latest/

Contact: Gael Varoquaux

6 New results
6.1 Accelerated acquisition in MRI

Participants: Chaithya Giliyar Radhakrishna, Guillaume Daval-Frérot,
ZAineb Amor, Philippe Ciuciu.

Main External Collaborators: Alexandre Vignaud (CEA/NeuroSpin)
, Pierre Weiss (CNRS, IMT (UMR 5219), Toulouse)
, Aurélien Massire (Siemens-Healthineers, France).

MRI is a widely used neuroimaging technique used to probe brain tissues, their structure and
provide diagnostic insights on the functional organization as well as the layout of brain vessels.
However, MRI relies on an inherently slow imaging process. Reducing acquisition time has been
a major challenge in high-resolution MRI and has been successfully addressed by Compressed
Sensing (CS) theory. However, most of the Fourier encoding schemes under-sample existing k-space
trajectories which unfortunately will never adequately encode all the information necessary. Recently,

http://scikit-learn.org
https://hal.inria.fr/hal-00650905
https://hal.inria.fr/hal-00856511
https://hal.inria.fr/hal-01093971
https://joblib.readthedocs.io/en/latest/
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the Mind team has addressed this crucial issue by proposing the Spreading Projection Algorithm
for Rapid K-space sampLING (SPARKLING) for 2D/3D non-Cartesian T2* and susceptibility
weighted imaging (SWI) at 3 and 7Tesla (T) [115, 116, 4]. These advancements have interesting
applications in cognitive and clinical neuroscience as we already have adapted this approach to
address high-resolution functional and metabolic (Sodium 23Na) MR imaging at 7T – a very
challenging feat [38, 40]. Fig. 1 illustrates the SPARKLING application to anatomical, functional
and metabolic imaging. Additionally, we have shown that this SPARKLING under-sampling strategy
can be used to internally estimate the static B0 field inhomogeneities a necessary component to avoid
the need for additional scans prior to correcting off-resonance artifacts due to these inhomogeneities.
This finding has been published in [16] and a patent application has been filed in the US (US
Patent App. 63/124,911). Ongoing extensions such as Minimized Off Resonance SPARKLING or
MORE-SPARKLING tend to avoid such long-lasting processing by introducing a more temporally
coherent sampling pattern in the k-space and then correcting these off-resonance effects already
during data acquisition [42].

Figure 1: Accelerated acquisition in MRI using the optimization driven SPARKLING
approach. Left: Sketch explaining how the iterative SPARKLING algorithm works, alternating a
gradient descent step to match a target sampling density in k-space with a projection step onto
the hardware constraints (gradient magnitude and slew rate) trajectory-wise or shot-wise. Right:
Numerous applications where SPARKLING has been implemented in real MR pulse sequences
for anatomical susceptibility weighted imaging (center) at 3 Tesla, Sodium imaging (bottom) and
high resolution functional MRI (right) at 7Tesla. Pictures of the main team members (current and
former PhD students) and external collaborators involved in this project.

6.2 Deep learning for MR image reconstruction and artifact correction

Participants: Zaccharie Ramzi, Guillaume Daval-Frérot, Chaithya Giliyar Rad-
hakrishna, Philippe Ciuciu.
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Main External Collaborators: Jean-Luc Starck (CEA/DAp/CosmoStat)
, Mariappan Nadar (Siemens-Healthineers, USA)
, Boris Mailhé (Siemens-Healthineers, USA).

Although CS is used extensively, this approach suffers from a very slow image reconstruction
process, which is detrimental to both patients and rapid diagnosis. To counteract this delay and
improve image quality, as explained in Sec. 3.1 deep learning is used. In 2020 we secured the
second spot in the 2020 brain fastMRI challenge (1.5 and 3T data) [131] with the XPDNet (Primal
Dual Network where X plays the role of a magic card) deep learning architecture. Additionally,
we assessed XPDNet’s transfer learning capacity on 7T NeuroSpin T2 images. However this DL
reconstruction process was limited to Cartesian encoding, thus incompatible with our SPARKLING
related technological push. In 2022, we went therefore further by proposing the NCPD-Net deep
learning architecture for non-Cartesian imaging. NCPD-Net stands for Non-Cartesian Primal
Dual Network and is able to handle both 2D and 3D non-Cartesian k-space data such as those
collected with the full 3D SPARKLING encoding scheme [6]. This progress allowed us to make a
significant leap in image quality when implementing high resolution imaging while maintaining a
high acceleration rate (e.g. 8-fold scan time reduction). Fig. 2 shows how NC-PDNet outperforms
its competitors through an ablation study in 2D spiral and radial imaging and some preliminary
results in 3D anatomical T1-weighted imaging.

Figure 2: Non-Cartesian Primal Dual network for MR image reconstruction. Top
Left: Table comparing the different 2D reconstruction models with respect the image quality
metrics (PSNR and SSIM scores:) from 4-fold undersampled k-space data. The density compen-
sated (DCp) adjoint is the extension of the zero-filled inverse Fourier transform to non-Cartesian
data where we account for variable density sampling. DIP stands for the Deep Image Prior model.
U-net is a standard convolutional neural network (CNN) combined here with the DCp mechanism.
bottom left: Box plot results showing that the best PSNR (in dB) SSIM scores are achieved by the
2D NC-PDNet architecture for both Proton Density (top row) weighted images and Fat Saturated
PD images (bottom row) in both spiral and radial imaging. Top right: Box plot associated
with the 3D imaging results, confirming the superiority of NC-PDNet over the same competitors.
Bottom right: Sagittal view of an anatomical T1-weighted image reconstructed using the different
methods. Zoom-in associated with the red frame localized in the cerebellum to demonstrate the
gain in accuracy using NC-PDNet.

Once the NC-PDNet architecture has been validated for 3D MR image reconstruction, it has
then been combined with physics-driven model to speed up the correction of off-resonance effects
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induced by the inhomogeneities of the static magnetic field B0 [50]. Fig. 3[left column] shows the
signal void in the frontal region of the brain when not applying any correction. The CS correction
yields a limited improvement when constraining its processing time to a little portion (actually 1/70)
of the brute force correction shown in the top right column (Reference). Next, we show that the best
correction of off-resonance artifacts is achieved by combining the NC-PDNet architecture (Network,
4th column in Fig. 3) with non Fourier encoding model in a 70-fold faster process compared to the
reference correction (left column). In contrast, using a standard NC-PDNet architecture that is
not physically informed by the degradation process causing these off-resonance artifacts leads to
oversmoothed correction (cf. middle column in Fig. 3). Overall, this work has demonstrated how
investigating into the combination of physics-informed deep learning architectures was instrumental
in obtaining high image quality in clinically viable processing time.

Figure 3: Deep learning physics-informed correction of off-resonance artifacts during
MR image reconstruction using the NC-PDnet architecture. Illustration on a single SWI
volume (high resolution: 600 µm). Left (red): Compressed Sensing (CS) reconstruction with no
artifact correction, computed in 25min. Center left: CS reconstruction using a reduced non-
Fourier forward model to correct for B0 inhomgoneities in approximately 10min. Middle (purple):
Network or NC-PDnet based reconstruction without physics based knowledge to correct forB0
inhomgoneities (approx. 1min of computation). Center right (blue): NC-PDnet based recon-
struction without physics based knowledge to correct forB0 inhomgoneities (7min of computation).
Right (green): Classical CS reconstruction and off-resonance artifact correction based on an ex-
tended non-Fourier model, which costs 8 hours of computation. The best result is that in the blue
frame.

6.3 Neuroimaging Meta-analyses with NeuroLang: Harnessing the Power
of Probabilistic Logic Languages

Participants: Demian Wassermann, Majd Abdallah, Gaston Zanitti.

Main External Collaborators: Vinod Menon (Stanford University, USA)
, Maria Vanina Martinez (Univ. de Buenos Aires, Argentina).
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Figure 4: On the left, schematic of a NeuroLang-based meta-analysis study [8]. Text and brain
activation coordinates are extracted from a literature database, and input as probabilistic data into
the NeuroLang engine, as well as a brain parcellation to aggregate spatial coordinate information. On
the right, decoding of different brain networks through meta-analyses performed by NeuroLang [8].
For three different brain networks, we show how probable is that a cognitive term is associated
with a network and with no other network in the brain.

Inferring reliable brain-behavior associations requires synthesizing evidence from thousands of
functional neuroimaging studies through meta-analysis. However, existing meta-analysis tools are
limited to investigating simple neuroscience concepts and expressing a restricted range of questions.
Here, we expand the scope of neuroimaging meta-analysis by designing NeuroLang: a domain-
specific language to express and test hypotheses using probabilistic first-order logic programming.
This new result is a developement of our main objective on Probabilistic Knowledge Representation,
described in Subsec. 3.2.2. By leveraging formalisms found at the crossroads of artificial intelligence
and knowledge representation, NeuroLang provides the expressivity to address a larger repertoire of
hypotheses in a meta-analysis, while seamlessly modeling the uncertainty inherent to neuroimaging
data. We demonstrate the language’s capabilities in conducting comprehensive neuroimaging
meta-analysis through use-case examples that address questions of structure-function associations.
The schematic and results of this work can be seen in Fig. 4.

Specifically, we have produced three main advancements. First, we have formally defined
and implemented a scalable query answering system which covers the functional requirements
to address neuroimaging meta-analyses: NeuroLang. This system is described Zanitti et al. [29].
Subsequently, we showed the capabilities of this language by performing a variety of neuroimaging
meta-analyses which confirm and challenge current knowledge on the relationship between different
regions and networks of the brain, and cognitive tasks [8]. Finally, we have used NeuroLang to
shed light onto the organization of the lateral prefrontal cortex [9], and, within the context of our
project LargeSmallBrainNets (see 8.1.1) on the learning process for children with mathematical
disabilities [13].

6.4 Efficient Bilevel optimization solvers

Participants: Mathieu Dagréou, Zaccharie Ramzi, Philippe Ciuciu,
Thomas Moreau.

Main External Collaborators: Pierre Ablin (CNRS/Apple), Samuel Vaiter (CNRS).



26 Inria Annual Report 2022

In recent years, bi-level optimization – solving an optimization problem that depends on
the results of another optimization problem – has raised much interest in the machine learning
community and, particularly, for hyper-parameter tuning, meta-learning or dictionary learning.
This problem is made particularly hard by the fact that computing the gradient of the problem can
be computationally expensive, as it requires to solve the inner problem as well as some large linear
system. In the recent years, several solvers have been proposed to mitigate such cost, in particular
by proposing ways to efficiently approximate the gradient. This year, we proposed two approaches
that advanced the state-of-the-art solvers for such problems. First, we proposed a solver that is
able to share inverse hessian estimate for the resolution of both the inner problem and the linear
system, efficiently leveraging the structure of the problem to reduce the computations. This result
was presented in Ramzi et al. [36]. Then we proposed a stochastic solver for bi-level problems
with variance reduction (e.g. see SABA in Fig. 5), and showed that such algorithm had the same
convergence rate as its single level counter part. This algorithm was presented in Dagréou et al. [3]
and it received an Oral (AR < 5%). These results are prerequisites to scale the resolution of bi-level
optimization problems to larger applications such as the one in neurosciences.
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Figure 5: Comparison of the proposed algorithms SOBA and SABA with other SOTA stochastic
bilevel optimization methods. For each algorithm, we plot the median performance over 10 runs.
The dashed lines are for one loop competitor methods, the dotted lines are for two loops methods
and the solid lines are the proposed methods. Left: hyperparameter selection for `2 penalized
logistic regression on IJCNN1 dataset , Right: data hyper-cleaning on MNIST with p 0.5 corruption
rate. In both experiments, SABA achieves the best performance.

6.5 Benchopt: Reproducible, efficient and collaborative optimization
benchmarks

Participants: Thomas Moreau, Mathieu Dagréou, Zaccharie Ramzi,
Benoit Malézieux, En Lai, Alexandre Gramfort.

Main External Collaborators: Mathurin Massias (Inria, Dante)
, Joseph Salmon (Univ. Montpellier).

Numerical validation is at the core of machine learning research as it allows researchers in this
field to assess the actual impact of new methods, and to confirm the agreement between theory and
practice. Yet, the rapid development of the field poses several challenges: researchers are confronted
with a profusion of methods to compare, limited transparency and consensus on best practices,
as well as tedious re-implementation work. As a result, validation is often very partial, which
can lead to wrong conclusions that slow down the progress of research. We proposed Benchopt, a
collaborative framework to automate, reproduce and publish optimization benchmarks in machine
learning across programming languages and hardware architectures (see Fig. 6). Benchopt simplifies
benchmarking for the community by providing an off-the-shelf tool for running, sharing and
extending experiments. To demonstrate its broad usability, we showcased benchmarks on many
standard learning tasks including `2-regularized logistic regression, Lasso, and ResNet18 training for



Project MIND 27

.PDF

.HTML

.CSV

Figure 6: A visual summary of Benchopt. Benchopt provides the tools to easily manage and
run a benchmark workflow, while decoupling the different parts to make them easily extendable.
Each Solver is run (in parallel) on each Dataset and each variant of the Objective. Results are
exported as a CSV file that is easily shared and can be automatically plotted as interactive HTML
visualizations or PDF figures.

image classification. These benchmarks highlight key practical findings that give a more nuanced
view of the state-of-the-art for these problems, showing that for practical evaluation, the devil is in
the details. This library and the associated benchmarks were presented in Moreau et al. [5].

6.6 Comprehensive decoding mental processes from Web repositories of
functional brain images

Participants: Bertrand Thirion, Raphael Meudec.

Main External Collaborators: Romuald Menuet (Owkin), Jérome Dockès (Univ. Mc Gill)
, Gael Varoquaux (Inria, Soda).

Associating brain systems with mental processes requires statistical analysis of brain activity
across many cognitive processes. These analyses typically face a difficult compromise between
scope—from domain-specific to system-level analysis—and accuracy. Using all the functional
Magnetic Resonance Imaging (fMRI) statistical maps of the largest data repository available, we
trained machine-learning models that decode the cognitive concepts probed in unseen studies.
For this, we leveraged two comprehensive resources: NeuroVault — an open repository of fMRI
statistical maps with unconstrained annotations — and Cognitive Atlas — an ontology of cognition.
We labeled NeuroVault images with Cognitive Atlas concepts occurring in their associated metadata.
We trained neural networks to predict these cognitive labels on tens of thousands of brain images.
Overcoming the heterogeneity, imbalance and noise in the training data, we successfully decoded
more than 50 classes of mental processes on a large test set. This success demonstrates that
image-based meta-analyses can be undertaken at scale and with minimal manual data curation. It
enables broad reverse inferences, that is, concluding on mental processes given the observed brain
activity.

6.7 Notip: Non-parametric True Discovery Proportion control for brain
imaging

Cluster-level inference procedures are widely used for brain mapping. These methods compare
the size of clusters obtained by thresholding brain maps to an upper bound under the global null
hypothesis, computed using Random Field Theory or permutations. However, the guarantees
obtained by this type of inference-i.e. at least one voxel is truly activated in the cluster-are not
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Figure 7: Decoding exactly-matched labels. We evaluated the AUC of the NNoD model on
37 labels matched in the IBC collection, after training it to decode 96 labels across collections. On
the top, we show decoding maps for some example terms. Terms that are well decoded such as
place maintenance have meaningful maps, whereas terms such as working memory whose neural
correlates are poorly captured get low AUC scores. As the decoding maps do not have a meaningful
scale, we threshold them arbitrarily at the 95th percentile for visualization. Using pre-trained
GCLDA and NeuroSynth models, we compared NNoD results for the labels that also appear in the
vocabulary recognized by these models (NNoD AUCs for terms in the vocabulary intersections are
shown in light orange). Furthermore, NNoD outperforms other methods for most labels.

informative with regards to the strength of the signal therein. There is thus a need for methods
to assess the amount of signal within clusters; yet such methods have to take into account that
clusters are defined based on the data, which creates circularity in the inference scheme. This has
motivated the use of post hoc estimates that allow statistically valid estimation of the proportion of
activated voxels in clusters. In the context of fMRI data, the All-Resolutions Inference framework
introduced in [148] provides post hoc estimates of the proportion of activated voxels. However,
this method relies on parametric threshold families, which results in conservative inference. In this
paper, we leverage randomization methods to adapt to data characteristics and obtain tighter false
discovery control. We obtain Notip: a powerful, non-parametric method that yields statistically valid
estimation of the proportion of activated voxels in data-derived clusters. Numerical experiments
demonstrate substantial power gains compared with state-of-the-art methods on 36 fMRI datasets.
The conditions under which the proposed method brings benefits are also discussed.

Participants: Bertrand Thirion, Alexandre Blain.

Main External Collaborators: Pierre Neuvial (IMT, Univ. Toulouse).
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Figure 8: Comparison of the number of detections between ARI, calibrated Simes and
learned template on fMRI data. Considering brain activity difference for a pair of functional
Magnetic Renance Imaging contrasts ”look negative cue” vs ”look negative rating”, we compute
the largest possible region such that False Discovery Proportion is controled, for the three possible
templates: All-resolution inference, calibrated Simes template and learned template (our solution).
Notice that the number of detections is markedly higher (+ 77%) using the learned template
compared to the calibrated Simes template, and almost three times that of all-resolution inference
procedure.

6.8 Data augmentation for machine learning on EEG

The use of deep learning for electroencephalography (EEG) classification tasks has been rapidly
growing in the last years, yet its application has been limited by the relatively small size of EEG
datasets. Data augmentation, which consists in artificially increasing the size of the dataset during
training, can be employed to alleviate this problem. While a few augmentation transformations
for EEG data have been proposed in the literature, their positive impact on performance is often
evaluated on a single dataset and compared to one or two competing augmentation methods. In
two works published in 2022 we have made progress towards there usage for EEG research. First
in [28], we have evaluated 13 data augmentation approaches through a unified and exhaustive
analysis in two applicative contexts (Sleep medicine and BCI systems). We have demonstrated that
employing the adequate data augmentations can bring up to 45% accuracy improvements in low
data regimes compared to the same model trained without any augmentation. Our experiments
also show that there is no single best augmentation strategy, as the good augmentations differ on
each task and dataset. This brings us towards our second major contribution in this topic. In [37,
45], we proposed two innovative approaches to automatically learn augmentation policies from data.
The AugNet method published at NeurIPS 2022 is illustrated in 9. In this model the parameters of
the augmentation policy are learnt end-to-end with a supervised task and back-propagation, and
doing so reveal the invariance present in the data.

Participants: Alexandre Gramfort, Thomas Moreau, Cedric Rommel.
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Figure 9: General architecture of AugNet. Input data is copied C times and randomly
augmented by the augmentation layers forming the augmentation module. Each copy is then mapped
by the trunk model f, whose predictions are averaged by the aggregation module. Parameters of
both f and the augmentation layers are learned together from the training set.

6.9 Language processing in deep neural networks and the human brain

Deep language algorithms, like GPT-2, have demonstrated remarkable abilities to process text,
and now constitute the backbone of automatic translation, summarization and dialogue. However,
whether and how these models operate in a way that is similar to the human brain remains
controversial. In [12], we showed that the representations of GPT-2 not only map onto the brain
responses to spoken stories, but they also predict the extent to which subjects understand the
corresponding narratives. To this end, we analyzed 101 subjects recorded with functional Magnetic
Resonance Imaging while listening to 70 min of short stories. We then fit a linear mapping model
to predict brain activity from GPT-2’s activations. Doing so, we showed that this mapping reliably
correlates with subjects’ comprehension scores as assessed for each story. Overall, this study
illustrated in 10 shows how deep language models help clarify the brain computations underlying
language comprehension.

While this latter work offers interesting insights in how the brain processes language, it does
not address the question of how it learns it. Indeed, while several deep neural networks have been
shown to generate activations similar to those of the brain in response to the same input, these
algorithms remain largely implausible: they require (1) extraordinarily large amounts of data, (2)
unobtainable supervised labels, (3) textual rather than raw sensory input, and / or (4) implausibly
large memory (e.g. thousands of contextual words). Focusing on the issue of speech processing, in
[32] we tested if self-supervised algorithms trained on the raw waveform constitute a promising
candidate. Specifically, we compared a recent self-supervised architecture, Wav2Vec 2.0, to the
brain activity of 412 English, French, and Mandarin individuals recorded with functional Magnetic
Resonance Imaging (fMRI), while they listened to 1h of audio books. With this work, we showed
that this algorithm learns brain-like representations with as little as 600 hours of unlabelled speech
– a quantity comparable to what infants can be exposed to during language acquisition. Second, its
functional hierarchy aligns with the cortical hierarchy of speech processing. Third, different training
regimes reveal a functional specialization akin to the cortex: Wav2Vec 2.0 learns sound-generic,
speech-specific and language-specific representations similar to those of the prefrontal and temporal
cortices. These elements, resulting from the largest neuroimaging benchmark to date, show how
self-supervised learning can account for a rich organization of speech processing in the brain.

Participants: Alexandre Gramfort, Charlotte Caucheteux.
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Main External Collaborators: Jean-Rémi King (CNRS/Meta AI)
, Christope Pallier (CNRS/CEA Neurospin).

Figure 10: Deep language algorithms predict semantic comprehension from brain ac-
tivity. A. 101 subjects listen to narratives (70 min of unique audio stimulus in total) while
their brain signal is recorded using functional MRI. At the end of each story, a questionnaire is
submitted to each subject to assess their understanding, and the answers are summarized into a
comprehension score specific to each (narrative, subject) pair (grey box). In parallel (blue box
on the left), we measure the mapping between the subject’s brain activations and the activations
of GPT2, a deep network trained to predict a word given its past context, both elicited by the
same narrative. To this end, a linear spatio-temporal model is fitted to predict the brain activity
of each voxel, given GPT2 activations as input. The degree of mapping, called "brain score" is
defined for each voxel as the Pearson correlation between predicted and actual brain activity on
held-out data. B. Brain scores (fMRI predictability) of the activations of the eighth layer of GPT2.
Only significant regions are displayed. C. Brain scores, averaged across fMRI voxels, for different
activation spaces: phonological features (word rate, phoneme rate, phonemes, tone and stress, in
green), the non-contextualized word embedding of GPT2 ("Word", light blue) and the activations
of the contextualized layers of GPT2 (from layer one to layer twelve, in blue). D. Comprehension
and GPT2 brain scores, averaged across voxels, for each (subject, narrative) pair. In red, Pearson’s
correlation between the two (denoted R), the corresponding regression line and the 95% confidence
interval of the regression coefficient. E. Correlations (R) between comprehension and brain scores
over regions of interest. Only significant correlations are displayed (threshold: .05). F. Correlation
scores (R) between comprehension and the subjects’ brain mapping with phonological features
(M (Phonemic) (i), the share of the word-embedding mapping that is not accounted by phonological
features M (Word)−M (Phonemic) (ii) and the share of the GPT2 eighth layer’s mapping not
accounted by the word-embedding M (GPT2)−M (Word) (iii). G. Relationship between the average
GPT2-to-brain mapping (eighth layer) per region of interest (similar to B.), and the corresponding
correlation with comprehension (R, similar to D.). Only regions of the left hemisphere, significant
in both B. and E. are displayed.

7 Bilateral contracts and grants with industry

Participants: Philippe Ciuciu, Guillaume Daval-Frérot, Alexandre Gramfort,
Charlotte Caucheteux, Thomas Moreau.
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7.1 Bilateral contracts with industry
7.1.1 Siemens Healthineers & AI lab (Princeton, USA)

Since Fall 2019, Philippe Ciuciu has actively collaborated with the Siemens-Healthineers AI lab, led
by Mariappan Nadar in the context of the joint supervision of Guillaume Daval-Frérot’s CIFRE PhD
thesis dedicated to Deep learning for off-resonance artifact correction in MR image reconstruction
in the specific application of susceptibility weighted imaging at 3 Tesla. On top of the PhD funding,
this contract has generated 45k€ for Mind and was managed by CEA/NeuroSpin. G. Daval-Frérot’s
PhD defense was held on December, 16 2022. As this first collaboration was successful, we engaged
strategic discussions with the Siemens-Healthineers headquarters (Erlangen, Germany) during
Spring 2022 to pursue this partnership and eventually set up a new one in 2023 with again a CIFRE
PhD thesis starting this Spring. The PhD candidate, M. Ahmed Boughdiri, has been recently
selected. The focus of this PhD thesis will be self-supervised 3D MR image reconstruction still in
the deep learning setting.

7.1.2 Facebook AI Research (FAIR)

There is currently a CIFRE PhD between FAIR and Mind (Alexandre Gramfort) to investigate
the differences between deep learning models and the brain, especially considering NLP machine
learning models. As the collaboration is led by Alexandre Gramfort in the team, it is therefore
financially managed by Inria.

7.1.3 Saint Gobain Research (SGR)

There is currently a consulting contract between SGR and Mind (Thomas Moreau) to provide
an expertise in machine learning to process temporal data, numerical optimization and scientific
computing. The expertise is provided one half-day per month, in SGR offices, and it consists in
scientific discussion sessions on the ML projects leaded by SGR data scientists.

8 Partnerships and cooperations

Participants: Demian Wassermann, Bertrand Thirion, Philippe Ciuciu, Alexan-
dre Gramfort.

8.1 International initiatives
8.1.1 Associate Teams in the framework of an Inria International Lab or in the

framework of an Inria International Program

LargeSmallBrainNets

Title: Characterizing Large and Small-scale Brain Networks in Typical Populations Using Novel
Computational Methods for dMRI and fMRI-based Connectivity and Microstructure

Duration: 2019 ->

Coordinator: Vinod Menon (menon@stanford.edu)

Partners:

• Stanford University Stanford (États-Unis)

Inria contact: Demian Wassermann
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Summary: In the past two decades, brain imaging of neurotypical individuals and clinical popula-
tions has primarily focused on localization of function and structures in the brain, revealing
activation in specific brain regions during performance of cognitive tasks through modalities
such as functional MRI. In parallel, technologies to identify white matter structures have
been developed using diffusion MRI. Lately, interest has shifted towards developing a deeper
understanding of the brain’s macroscopic and microscopic architectures and their influence on
cognitive and affective information processing. Using for this resting state fMRI and diffusion
MRI to build the functional and structural networks of the human brain.
The human brain is a complex patchwork of interconnected regions, and graph-theoretical
approaches have become increasingly useful for understanding how functionally connected
systems engender, and constrain, cognitive functions. The functional nodes of the human
brain, i.e. cortical regions, and their structural inter-connectivity, collectively the brain’s
macrostructure or "connectome", are, however, poorly understood. Quantifying in vivo how
these nodes’ microstructure, specifically cellular composition or cytoarchitecture, influences
the cognitive tasks in which these are involved is fundamental problem in understanding the
connectome. Furthermore, the coupling between within and across-subject contributions to
the connectome and cognitive differences hampers the identification and understanding of the
link between brain structure and function, and human cognition.
Critically, there is a dearth of computational methods for reliably identifying functional
nodes of the brain, their micro and macrostructure in vivo, and separating the population
and subject-specific effects. Devising and validating methods for investigating the human
connectome has therefore taken added significance.
The first major goal of this project is to develop and validate appropriate sophisticated
computational and mathematical tools relate the brain’s macrostructure with its function.
Specifically, we will focus on being able to separate population and subject-specific con-
tributions within these models using state-of-the-art human brain imaging techniques and
open-source data from the Human Connectome Project (HCP) and the Adolescent Brain
Cognitive Development study (ABCD). To this end, we will first develop and validate novel
computational tools for (1) formulating and fitting large scale random effect models on graphs
derived from functional and structural connectivity and (2) implement techniques enabling
us to impose different regularization schemes based on sparsity and multicollinearity of the
model parameters.
The second major goal of this project is characterizing the cytoarchitecture of the nodes, i.e.
cortical regions, at the microscopic level and their relationship with the brain’s hemodynamical
function and cognition. For this, we will (1) identify cortical areas with specific cytoarchitecture
in the human cortex and use them to develop diffusion MRI-based models, (2) validate these
models with numerical simulations of the dMRI signal and animal models, and (3) establish
the relationship between cytoarchitecture and hemodynamical function measured from fMRI
and cognition. For this we will leverage multi-shell high-angular diffusion MRI from public
databases such as HCP and ABCD.
Finally, we will use to use our newly developed computational tools to characterize normal
structural and functional brain networks in neurotypical adults. Due to the complementarity
of the cognitive science and imaging techniques expertise the synergy between the two
laboratories of this associate team will allow us to reveal in unprecedented detail the structural
and functional connectivity of the human brain and its relation to cognition.

8.1.2 Inria associate team not involved in an IIL or an international program

NeuroMind

Title: Precision mapping of the Brain by Neuromod & Mind

Duration: 2022 ->

Coordinator: Pierre Bellec (pierre.bellec@criugm.qc.ca)
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Partners:

• Université de Montréal Montréal (Canada)

Inria contact: Bertrand Thirion

Summary: Among the main advances of the last decade, the development of powerful AI systems
for vision, language processing, as well as reinforcement learning, have led to sophisticated
cognitive systems that can be compared to the human brain, and sometimes surpass human
performance. Brain/AI system comparison is a great opportunity for AI and for neuroscience.
One of the most urgent tasks for cognitive neuroscience is thus to put together datasets
that probe the brain system and are comprehensive enough to allow a reliable comparison
of brain activity to the representations generated by AI systems. To address this endeavor,
Parietal and NeuroMod have launched ambitious data acquisitions initiative (individual Brain
CHarting and Courtois Neuromod), that consist in collecting huge amounts of brain data in
few participants. These unprecedented data collection efforts bring novel challenges for data
analysis: handling TB-scale data, automation, and better integration of analysis pipeline.
Software such as Nilearn and MNE increasingly face the challenge of scaling up to larger
datasets. Addressing this challenge in the context of IBC and Courtois Neuromod is thus a
unique opportunity.

8.2 International research visitors
8.2.1 Visits of international scientists

Other international visits to the team

Nicholas Tolley

Status PhD

Institution of origin: Brown University

Country: USA

Dates: January 2022 - July 2022

Context of the visit: 6 months visit

Mobility program/type of mobility: Internship funded by a Chateaubriand fellowship

8.3 European initiatives
8.3.1 Horizon Europe

EBRAIN HEALTH

Title: EBRAIN-HEALTH

Duration: 2023 -> 2026

Coordinator: Petra Ritter (Charité, Berlin)

Partners:

• CHARITE - UNIVERSITAETSMEDIZIN BERLIN
• EBRAINS
• FORSCHUNGSZENTRUM JULICH GMBH
• STICHTING RADBOUD UNIVERSITEIT
• UNIVERSIDAD POMPEU FABRA
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• OSLO UNIVERSITETSSYKEHUS HF
• TP21 GMBH
• FRAUNHOFER GESELLSCHAFT ZUR FORDERUNGDER ANGEWANDTEN FORSCHUNG

EV
• INDOC RESEARCH EUROPE GGMBH
• UNIVERSITAT WIEN
• UNIVERSIDAD COMPLUTENSE DE MADRID
• EODYNE SYSTEMS SL
• ATHINA-EREVNITIKO KENTRO KAINOTOMIAS STIS TECHNOLOGIES TIS

PLIROFORIAS, TON EPIKOINONION KAI TIS GNOSIS
• UNIVERSITETET I OSLO
• STICHTING VUMC
• UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
• ALZHEIMER EUROPE
• INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE

Inria contact: Bertrand Thirion

Summary: The project aims to develop a decentralized, data protection-compliant research
platform capable of simulating some of the brain’s complex neurobiological phenomena.
As part of the project, researchers will collate an array of different types of information,
including data from PET and MRI scans, EEG tests, behavioral studies and lifestyle surveys,
as well as clinical data from thousands of patients and healthy controls. These will be
combined with biological information from knowledge databases and made available for
research purposes. The resultant digital ‘brain twins’ will enable large numbers of researchers
to conduct innovative research within a powerful digital infrastructure.
Thanks to its transparent analytical pipelines, the new research infrastructure will also help
to promote reproducible research.
Furthermore, complex, personalized brain simulations which take into account large quantities
of data may be able to provide a better understanding of the mechanisms underlying brain
function and disorders. Virtual brain modeling may also improve diagnostics and disease
prediction, in addition to enabling the optimization of treatment plans. The project consortium
comprises 20 partners and operates in cooperation with EBRAINS AISBL, the coordinating
entity of the EU-funded flagship ‘Human Brain Project’.

8.4 National initiatives
ANR DARLING

Title: DARLING: Distributed adaptation and learning over graph signals

Duration: 2020 ->

Coordinator: Cédric Richard (cedric.richard@unice.fr),Professor 3IA Senior Chair in UCA

Partners:

• Université Côte d’Azur Nice, France
• CNRS, École Normale Supérieure, Lyon, France
• Gipsa-lab, UMR 5216, CNRS, UGA, Grenoble, France
• CentraleSupélec, University of Paris-Saclay, Gif-sur-yvette, France

Inria contact: Philippe Ciuciu
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Summary: The DARLING project will aim to propose new adaptive learning methods, distributed
and collaborative on large dynamic graphs in order to extract structured information of the
data flows generated and/or transiting at the nodes of these graphs. In order to obtain
performance guarantees, these methods will be systematically accompanied by an in-depth
study of random matrix theory. This powerful tool, never exploited so far in this context
although perfectly suited for inference on random graphs, will thereby provide even avenues
for improvement. Finally, in addition to their evaluation on public data sets, the methods
will be compared with each other using two advanced imaging techniques in which two of the
partners are involved: radio astronomy with the giant SKA instrument (Obs. Côte d’Azur)
and MEG brain imaging (Inria MIND at NeuroSpin, CEA Saclay). Sheng Wang as a postdoc
in MIND and Merlin Dumeur as a MIND PhD student in co-tutelle with Matias Palva from
Aalto University, Finland are actually involved in the processing of MEG and S/EEG time
series on graphs, notably to analyze scale-free (i.e. critical and bistability) phenomena across
these graphs and extract potentially new biomarkers for characterizing the pathophysiology
of epileptogenic zone (EZ) in drug resistant epilepsy.

ANR VLFMRI

Title: VLFMRI: Very low field MRI for babies

Duration: 2021 ->

Coordinator: Claude Fermon (CEA Saclay, DRF/IRAMIS/SPECT)

Partners:

• CEA/SHFJ/BIOMAPS, Orsay, France
• CEA/NeuroSpin, Gif-sur-Yvette, France
• APHP Robert Debré hospital, Paris, France
• APHP Bicêtre hospital, Kremlin-Bicêtre, France

Inria contact: Philippe Ciuciu

Summary: VLFMRI aims at developing a very low-field Magnetic Resonance Imaging (MRI)
system as an alternative to conventional high-field MRI for continuous imaging of premature
newborns to detect hemorrhages or ischemia. This system is based on a combination of
a new generation of magnetic sensors based on spin electronics, optimized MR acquisition
sequences (based on the SPARKLING patent, Inria-CEA MIND team at NeuroSpin) and a
open and compatible system with an incubator that will allow to achieve an image resolution
of 1mm3 on a whole baby body in a short scan time. This project is a partnership of three
academic partners and two hospital departments. The different stages of the project are
the finalization of the hardware development and software system, preclinical validation on
small animals and clinical validation. Kumari Pooja has been hired in January 2022 as
research engineer in MIND to interact with the coordinator of this ANR project, Claude
Fermon and design new accelerated acquisition methods for verly low field MRI. Preliminary
encouraging results allow us to retrospectively accelerate MRI acquisition by a factor of 10
without degrading image quality at 2mm isotropic resolution.

KARAIB AI CHAIR

Title: KARAIB: Knowledge And RepresentAtion Integration on the Brain

Duration: 2020 ->

Coordinator: Bertrand Thirion

Partners:
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• INRIA MIND, Gif-sur-Yvette, France

Inria contact: Bertrand Thirion

Summary: Cognitive science describes mental operations, and functional brain imaging provides
a unique window into the brain systems that support these operations. A growing body of
neuroimaging research has provided significant insight into the relations between psychological
functions and brain activity. However, the aggregation of cognitive neuroscience results to
obtain a systematic mapping between structure and function faces the roadblock that cognitive
concepts are ill-defined and may not map cleanly onto the computational architecture of the
brain.
To tackle this challenge, we propose to leverage rapidly increasing data sources: text and
brain locations described in neuroscientific publications, brain images and their annotations
taken from public data repositories, and several reference datasets. Our aim here is to develop
multi-modal machine learning techniques to bridge these data sources.

• Aim 1 develops representation techniques for noisy data to couple brain data with
descriptions of behavior or diseases, in order to extract semantic structure.

• Aim 2 challenges these representations to provide explanations to the observed relation-
ships, based on two frameworks: i) a statistical analysis framework; ii) integration into a
domain-specific language.

• Aim 3 outputs readily-usable products for neuroimaging: atlases and ontologies and
focuses on implementation, with contributions to neuroimaging web-based data sharing
tools.site.

BrAIN AI CHAIR

Title: BrAIN: Bridging Artificial Intelligence and Neuroscience

Duration: 2020 ->

Coordinator: Alexandre Gramfort

Partners:

• INRIA MIND, Gif-sur-Yvette, France

Inria contact: Alexandre Gramfort

Summary: The BrAIN project investigates learning tasks from multivariate EEG and MEG time
series. In clinical or cognitive neuroscience, electromagnetic signals emitted by synchronously
firing neurons are collected by electroencephalography (EEG) or magnetoencephalography
(MEG). Such data, typically sampled at millisecond resolution, are routinely used for clinical
applications such as anesthesia monitoring, sleep medicine, epilepsy or disorders of conscious-
ness. Low cost EEG devices are also becoming commodities with hardware startups such
as DREEM in France or InteraXon in Canada that have collected hundred of thousands of
neural recordings. The field of neuroscience urgently needs algorithms that can learn from
such large and poorly labeled datasets. The general objectives of BrAIN is to develop ML
algorithms that can learn with weak or no supervision on neural time series. It requires con-
tributions to self-supervised learning, domain adaptation and data augmentation techniques,
exploiting the known underlying physical mechanisms that govern the data generating process
of neurophysiological signals.
The BrAIN project is organized around four objectives:

• Learn with no-supervision on noisy and complex multivariate signals
• Learn end-to-end predictive systems from limited data exploiting physical constraints
• Learn from data coming from many different source domains
• Develop high-quality software tools that can reach clinical research



38 Inria Annual Report 2022

9 Dissemination

Participants: Demian Wassermann, Bertrand Thirion, Philippe Ciuciu, Alexan-
dre Gramfort, Thomas Moreau.

9.1 Promoting scientific activities
9.1.1 Scientific events: organisation

Member of the organizing committees

P. Ciuciu June-July 2022: Co-organizer of the summer school AI4SIP (Artificial Intelligence for
Signal Processing) at the Paris-Saclay University, with the support of the Institut Pascal and
the DataIA institute.

B.Thirion June-July 2022: Co-organizer of the summer school AI4SIP (Artificial Intelligence for
Signal Processing) at the Paris-Saclay University, with the support of the Institut Pascal and
the DataIA institute.

9.1.2 Scientific events: selection

P. Ciuciu Member (Representative of the IEEE Signal Processing Society) of the steering commit-
tee of the IEEE International Symposium on Biomedical Imaging. I participated in selecting
the bids for 2022 (Kolkata, IN) 2023 (Cartagena de Indias , CO) and 2024 (Athens, GR).

Member of the conference program committees

P. Ciuciu Area chair for the BISA track in EUSIPCO 2022 as Past-vice chair of this technical
committee.

B. Thirion Area chair for NeurIPS 2022.

A. Gramfort Area chair for ICML 2022, NeurIPS 2022, ICLR 2022.

9.1.3 Journal

Member of the editorial boards

P. Ciuciu Associate Editor (AE) for IEEE Transactions on Medical Imaging (TMI), Senior Area
Editor for IEEE Open Journal on Signal Processing, AE for Frontiers in Neuroscience, section
Brain Imaging Methods.

B. Thirion Associate Editor (AE) for Medical Image Analysis (MIA), Aperture and Transactions
on Machine Learning Research.

A. Gramfort Handling Editor (AE) for NeuroImage, Aperture and Journal on Machine Learning
Research.

Reviewer - reviewing activities

P. Ciuciu IEEE TMI (Bronze reviewer award in 2022), IEEE Signal Processing Magazine, Magnetic
Resonance in Medicine, NeuroImage, MIA, SIAM Imaging Science

D. Wassermann NeuroImage, Brain Structure and Function, Pattern Analysis and Machine
Intelligence (IEEE PAMI), MIA,

https://www.institut-pascal.universite-paris-saclay.fr/en/scientific-programs/ai4sip
https://www.institut-pascal.universite-paris-saclay.fr/en/scientific-programs/ai4sip
https://dataia.eu/
https://www.institut-pascal.universite-paris-saclay.fr/en/scientific-programs/ai4sip
https://www.institut-pascal.universite-paris-saclay.fr/en/scientific-programs/ai4sip
https://dataia.eu/
https://eurasip.org/technical-area-committees/
https://www.embs.org/tmi/editorial-board/
https://signalprocessingsociety.org/publications-resources/ieee-open-journal-signal-processing/advisoryeditorial-board
https://www.journals.elsevier.com/medical-image-analysis/editorial-board
https://www.humanbrainmapping.org/i4a/pages/index.cfm?pageid=4100
https://jmlr.org/tmlr/
https://jmlr.org/tmlr/
https://www.sciencedirect.com/journal/neuroimage
https://www.humanbrainmapping.org/i4a/pages/index.cfm?pageid=4100
https://jmlr.org
https://jmlr.org
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T. Moreau Transactions on Signal Processing, Signal Processing, ICML (outstanding reviewer,
top 10%), NeurIPS.

B. Thirion NeuroImage, Nature Human Behavior, MEdIA, IEEE Transactions on Medical Imag-
ing, Brain Structure and Function, Human Brain Mapping, Nature Communications.

B. Thirion NeuroImage, Journal of Neural Engineering, Data In Brief

9.1.4 Invited talks

P. Ciuciu

• June 2022: LIONS lab at EPFL (Lausanne, CH)

• July 2022: Plenary speaker at the 13th FORTH scientific retreat (Heraklion, GR)

D. Wassermann

• Johns Hopkins University, USA

• Stanford University, USA

T. Moreau

• March 2022: LJK seminar at UGA (Grenoble, France)

• June 2022: CSD seminar at ENS Paris (Paris, France)

• Invited talk at Curves and Surfaces (Arcachon, France)

• July 2022: invited talk for AI4SIP workshop at Institut Pascal (Orsay, France)

B.Thirion

• March 2022: SousSoucis Days, Institut Mathématique de Toulouse

• May 2022: HBP WP1 conference, Paris

• November 2022: ML for Life Science, Montpellier

• December 2022: plenary talk at MAIN conference, Montreal

A.Gramfort

• March 2022: Invited talk, UCL ML seminar, London

• June 2022: Brain and Spine Institute (ICM) symposium “Computational and mathe-
matical approaches for neuroscience”, Paris, France

• July 2022: invited talk for AI4SIP workshop at Institut Pascal (Orsay, France)

• August 2022: Invited talk Biomag conference, Birmingham, UK

9.1.5 Scientific expertise

P. Ciuciu : European expert reviewer for the European Innovation Council Accelerator ac-
tions (main track: AI and health).

A. Gramfort : External reviewer for the European Research Council (ERC).

https://twitter.com/EPFL_Imaging/status/1536365782707445760
https://www.forth.gr/13th-forth-retreat/program.html
https://www-ljk.imag.fr/spip.php?article35&id=620c0d92274a11a06dfa82fe&type=SEMINAIRE
https://csd.ens.psl.eu/
https://cs2022.sciencesconf.org/resource/page/id/5
https://www.universite-paris-saclay.fr/sites/default/files/2022-03/20call_for_participants_IPa.pdf
https://www.universite-paris-saclay.fr/sites/default/files/2022-03/20call_for_participants_IPa.pdf
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9.1.6 Research administration

P. Ciuciu

• Member of the Board of Directors at NeuroSpin (CEA).
• Member of the steering committee of the CEA cross-disciplinary research program on

numerical simulation and AI.

B. Thirion

• Délégué Scientifique of Inria Saclay Center
• Member of ENS Paris-Saclay Scientific Council
• Member of Inria Commission évaluation

A. Gramfort

• Membre du comité des programmes de l’Institut de Henry Poincaré (IHP)
• Membre du pôle B de l’école doctorale de l’Université Paris-Saclay
• Responsable du Center for Data Science (CDS) de l’institut DataIA en charge des data

challenges
• Représentant Inria au sein du comité opérationnel du cendre d’IA Hi!Paris d’IP Paris

9.2 Teaching - Supervision - Juries
P. Ciuciu

• Instructor at the 14th IEEE EMBS summer school on Biomedical Imaging (St Jacut de
la Mer, FR) on Computational MRI.

• Instructor at the AI4SIP summer school (Orsay, FR) on Computational MRI.
• Lecturer at the M2 ATSI (CentraleSupelec, ENS Paris-Saclay): Medical imaging course
• Lecturer at the Institut d’Optique Graduate School (3rd year, Signal & Images major).

D. Wassermann

• Master MVA (École Polytechnique, École Normale Superiore, Centrale Supelec): Graph-
ical Models

• Master in Biomedical Engineering (Université Paris Descartes): Quantification in Neu-
roImaging

T. Moreau

• Master Data Science (IPP): Datacamp.

B.Thirion

• MVA Master (École Polytechnique, École Normale Superiore, Centrale Supelec): Brain
Function

• NeuroEngineering Master (UPSaclay): fMRI data analysis
• Instructor at the AI4SIP summer school (Orsay, FR)
• Instructor at MAIN 2022 conference Tutorial session

A.Gramfort

• Master: Optimization for Data Science, 23h, Msc 2 Data Science Master Ecole Polytech-
nique, France

• Master: DataCamp, 30h, Msc 2 Data Science Master Ecole Polytechnique, France

http://conferences.imt-atlantique.fr/ieeess/index.php?pid=13
https://www.institut-pascal.universite-paris-saclay.fr/en/scientific-programs/ai4sip
https://www.institut-pascal.universite-paris-saclay.fr/en/scientific-programs/ai4sip
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• Master: Source Imaging with EEG and MEG, 4h, Msc 2 in Biomedical Engineering at
Université de Paris Cité

• Master: EEG and MEG data processing, 4h, Msc 2 in NeuroEngineering at UPSaclay,
France

• Doctoral School: Machine learning for biosignals, 3h, Summer School Hi!Paris, Palaiseau,
France

• Instructor at MAIN 2022 conference Tutorial session on machine learning for MEG/EEG
• Instructor at the AI4SIP summer school (Orsay, FR)

9.2.1 Supervision

P. Ciuciu

• Dr Z. Ramzi (with J.-L. Starch, CEA), PhD 2019-2022
• Dr G. Daval-Frérot (with A. Vignaud, CEA), PhD 2019-2022
• C. Giliyar Radhakrishna, PhD 2020-2023 (defense planned in April 2023)
• M. Dumeur (with M. Palva, Aalto Univ), PhD in cotutelle (4y), 2020-2024
• Z. Amor (with A. Vignaud, CEA) PhD 2019-2023
• A. Waguet (with T. Druet, CEA) PhD 2019-2023
• P.-A. Comby (with A. Vignaud, CEA), PhD 2021-2024
• Maja Pantic (with A. Vignaud, CEA), PhD resigned in Dec 2022 for personal reasons

after obtaining an UDOPIA scholarship in June 2022.
• Serge Brosset, (with Z. Saghi, CEA) PhD 2022-2025
• W. Omezzine, M1 INSA Toulouse, (June - Sep 2022)
• Maja Pantic M2, Univ Paris-Saclay (Apr - Sep 2022)

D. Wassermann

• L. Rouillard, PhD 2021-2023
• M. Jallais, PhD 2019-2022
• G. Zanitti, PhD 2020-2023
• C. Fang (with J-R Li), PhD 2020-2023
• R. Meudec (with B. Thirion), PhD 2021-2023
• A. Le Bris, M2 Telecom ParisTech, 2022

T. Moreau

• B. Malézieux, PhD 2020-2023 (with M. Kowalski)
• C. Allain, PhD 2021-2024 (with A. Gramfort)
• M. Dagréou, PhD 2021-2024 (with S. Vaiter and P. Ablin)
• F. Michel, PhD 2022-2025 (with M. Kowalski)
• E. Lai, 3A Ecole Polytechnique, 2022 (with A. Gramfort and J.-C. Pesquet)
• M. Nargeot, L2 Université de Bordeaux, 2022

B. Thirion

• Alexandre Pasquiou, PhD 2020-2023 (with C.Pallier)
• Alexis Thual, PhD 2020-2023 (with S. Dehaene)
• Ahmad Chamma, PhD 2021-2023 (with D.Engemann)
• Raphael Meudec, PhD 2021-2024 (with D.Wassermann)

https://www.institut-pascal.universite-paris-saclay.fr/en/scientific-programs/ai4sip
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• Thomas Chapalain, PhD 2021-2024 (with E.Eger)
• Alexandre Balin, PhD 2021-2024 (with P.Neuvial)

A. Gramfort
• Charlotte Caucheteux, PhD 2020-2023 (with J.R. King)
• Omar Chehab, PhD 2020-2023 (with A. Hyvarinen)
• Cédric Allain, PhD 2021-2024 (with T.Moreau)
• Apolline Mellot, PhD 2021-2024 (with D.Engemann)
• Julia Linhart, PhD 2021-2024 (with P.Rogrigues)
• Theo Gnassounou, PhD 2022-2025 (with R.Flamary)
• Ambroise Heurtebise, PhD 2022-2025 (with P.Ablin)

9.2.2 Juries

P. Ciuciu : External reviewer of the PhD thesis defended by Thomas Sanchez (EPFL, Lausanne,
CH) in April 2022.

D. Wassermann : Examinator for the PhD thesis defended by J. Ringard at École Polytechnique.

T. Moreau : Examinator for the PhD thesis defended by L. Dragoni at Université Côte d’Azure
(Nice, France) in May 2022.

B. Thirion External reviewer of the PhD thesis defended by Frederico Bertoni (Sorbonne Univer-
sité), in Febuary 2022

A. Gramfort External reviewer of the PhD thesis defended by Martin Grignard (Université de
Liège, Belgique), in September 2022

A. Gramfort External reviewer of the PhD thesis defended by Jean-Yves Franceschi (Sorbonne
Université), in Febuary 2022

A. Gramfort External reviewer of the PhD thesis defended by Ali Hashemi (TU Berlin), in
September 2022

A. Gramfort External reviewer of the HdR defended by Levgen Redko (Université St Etienne),
in July 2022

A. Gramfort Examinator for the PhD thesis defended by Theo Desbordes (Sorbonne Université),
in Dec 2022.

A. Gramfort Examinator for the PhD thesis defended by Antoine Collas (Université Paris-Saclay),
in Nov 2022.

9.3 Popularization
B.Thirion Les Vendredi de Gif, March 2022 Où va l’intelligence artificielle ?

B.Thirion L’université populaire d’Antony, November 2022, Où va l’intelligence artificielle ?

9.3.1 Internal or external Inria responsibilities

D. Wassermann COERLE Scientific representative for Inria Saclay Île-de-France; Representative
at the Graduate School in Computer Science of Université Paris-Saclay for Inria Saclay
Île-de-France.

T. Moreau President of the Inria Saclay CUMI; Representative for Inria Saclay in the commission
for the development of the national computational resources.

A. Gramfort Membre de la comission d’évaluation technologique (CDT) du centre de Saclay

A. Gramfort Representant de l’Inria Saclay dans le comité opérationnel de Hi!Paris
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10 Scientific production
10.1 Major publications
[1] M. Abdallah, G. Zanitti, V. Iovene and D. Wassermann. ‘Functional gradients in the human

lateral prefrontal cortex revealed by a comprehensive coordinate-based meta-analysis’. In:
eLife (2022). doi: 10.7554/eLife.76926. url: https://hal.inria.fr/hal-03544221.

[2] C. Caucheteux, A. Gramfort and J.-R. King. ‘Deep language algorithms predict semantic
comprehension from brain activity’. In: Scientific Reports (29th Sept. 2022). doi: 10.1038
/s41598-022-20460-9. url: https://hal.archives-ouvertes.fr/hal-03361426.

[3] M. Dagréou, P. Ablin, S. Vaiter and T. Moreau. ‘A framework for bilevel optimization
that enables stochastic and global variance reduction algorithms’. In: Advances in Neural
Information Processing Systems (NeurIPS). New Orleans, United States, 28th Nov. 2022.
url: https://hal.archives-ouvertes.fr/hal-03562151.

[4] C. Giliyar Radhakrishna, P. Weiss, G. Daval-Frérot, A. Massire, A. Vignaud and P. Ciuciu.
‘Optimizing full 3D SPARKLING trajectories for high-resolution T2*-weighted Magnetic
Resonance Imaging’. In: IEEE Transactions on Medical Imaging (8th Aug. 2022). url:
https://hal.inria.fr/hal-03090471.

[5] T. Moreau, M. Massias, A. Gramfort, P. Ablin, P.-A. Bannier, B. Charlier, M. Dagréou,
T. Dupré La Tour, G. Durif, C. F. Dantas, Q. Klopfenstein, J. Larsson, E. Lai, T. Lefort,
B. Malézieux, B. Moufad, B. T. Nguyen, A. Rakotomamonjy, Z. Ramzi, J. Salmon and
S. Vaiter. ‘Benchopt: Reproducible, efficient and collaborative optimization benchmarks’. In:
NeurIPS 2022 - 36th Conference on Neural Information Processing Systems. New Orleans,
United States, 28th Nov. 2022. url: https://hal.archives-ouvertes.fr/hal-03830604.

[6] Z. Ramzi, C. Giliyar Radhakrishna, J.-L. Starck and P. Ciuciu. ‘NC-PDNet: a Density-
Compensated Unrolled Network for 2D and 3D non-Cartesian MRI Reconstruction’. In:
IEEE Transactions on Medical Imaging (20th Jan. 2022). doi: 10.1109/TMI.2022.3144619.
url: https://hal.inria.fr/hal-03188997.

[7] C. Rommel, J. Paillard, T. Moreau and A. Gramfort. ‘Data augmentation for learning
predictive models on EEG: a systematic comparison’. In: Journal of Neural Engineering
(11th Nov. 2022). doi: 10.1088/1741-2552/aca220. url: https://hal.archives-ouvert
es.fr/hal-03853329.

10.2 Publications of the year
International journals

[8] M. Abdallah, V. Iovene, G. Zanitti and D. Wassermann. ‘Meta-Analysis of the Functional
Neuroimaging Literature with Probabilistic Logic Programming’. In: Scientific Reports
(2022). doi: 10.1038/s41598-022-21801-4. url: https://hal.archives-ouvertes.fr
/hal-03590714.

[9] M. Abdallah, G. Zanitti, V. Iovene and D. Wassermann. ‘Functional gradients in the human
lateral prefrontal cortex revealed by a comprehensive coordinate-based meta-analysis’. In:
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36623.

[11] A. Blain, B. Thirion and P. Neuvial. ‘Notip: Non-parametric True Discovery Proportion
control for brain imaging’. In: NeuroImage 260 (2022), p. 119492. doi: 10.1016/j.neuroim
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[12] C. Caucheteux, A. Gramfort and J.-R. King. ‘Deep language algorithms predict semantic
comprehension from brain activity’. In: Scientific Reports (29th Sept. 2022). doi: 10.1038
/s41598-022-20460-9. url: https://hal.archives-ouvertes.fr/hal-03361426.

[13] H. Chang, L. Chen, Y. Zhang, Y. Xie, C. de Los Angeles, E. Adair, G. Zanitti, D. Wassermann,
M. Rosenberg-Lee and V. Menon. ‘Foundational number sense training gains are predicted
by hippocampal–parietal circuits’. In: Journal of Neuroscience 42.19 (2022), JN-RM-1005–21.
doi: 10.1523/JNEUROSCI.1005-21.2022. url: https://hal.inria.fr/hal-03670987.

[14] O. Chehab, A. Défossez, L. Jean-Christophe, A. Gramfort and J.-R. King. ‘Deep Recurrent
Encoder: an end-to-end network to model magnetoencephalography at scale’. In: Neurons,
Behavior, Data analysis, and Theory (30th Sept. 2022). doi: 10.51628/001c.38668. url:
https://hal.inria.fr/hal-03808304.

[15] D. Chyzhyk, G. Varoquaux, M. Milham and B. Thirion. ‘How to remove or control confounds
in predictive models, with applications to brain biomarkers’. In: GigaScience 11 (12th Mar.
2022). doi: 10.1093/gigascience/giac014. url: https://hal.inria.fr/hal-03607651.

[16] G. Daval-Frérot, A. Massire, B. Mailhé, M. Nadar, A. Vignaud and P. Ciuciu. ‘Iterative
static ∆B0 field map estimation for off-resonance correction in non-Cartesian susceptibility
weighted imaging’. In: Magnetic Resonance in Medicine 88.4 (23rd June 2022), pp. 1592–1607.
doi: 10.1002/mrm.29297. url: https://hal.inria.fr/hal-03929306.

[17] A. Delorme, R. Oostenveld, F. Tadel, A. Gramfort, S. Nagarajan and V. Litvak. ‘Editorial:
From Raw MEG/EEG to Publication: How to Perform MEG/EEG Group Analysis With
Free Academic Software’. In: Frontiers in Neuroscience 16 (13th Apr. 2022). doi: 10.3389
/fnins.2022.854471. url: https://hal.archives-ouvertes.fr/hal-03876924.

[18] C. Giliyar Radhakrishna, P. Weiss, G. Daval-Frérot, A. Massire, A. Vignaud and P. Ciuciu.
‘Optimizing full 3D SPARKLING trajectories for high-resolution T2*-weighted Magnetic
Resonance Imaging’. In: IEEE Transactions on Medical Imaging (8th Aug. 2022). url:
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[19] B. Hebling Vieira, F. Liem, K. Dadi, D. Engemann, A. Gramfort, P. Bellec, R. C. Craddock,
J. Damoiseaux, C. Steele, T. Yarkoni, N. Langer, D. Margulies and G. Varoquaux. ‘Predicting
future cognitive decline from non-brain and multimodal brain imaging data in healthy and
pathological aging’. In: Neurobiology of Aging 118 (Oct. 2022), pp. 55–65. doi: 10.1016/j
.neurobiolaging.2022.06.008. url: https://hal.inria.fr/hal-03808175.

[20] C. Herate, P. Brochard, F. de Vathaire, M. Ricoul, B. Martins, L. Laurier, J.-R. Deverre,
B. Thirion, L. Hertz-Pannier and L. Sabatier. ‘The effects of repeated brain MRI on
chromosomal damage’. In: European Radiology Experimental 6.12 (3rd Mar. 2022). doi:
10.1186/s41747-022-00264-2. url: https://hal.inria.fr/hal-03599454.

[21] M. Jallais, P. L. Coelho Rodrigues, A. Gramfort and D. Wassermann. ‘Inverting brain
grey matter models with likelihood-free inference: a tool for trustable cytoarchitecture
measurements’. In: Journal of Machine Learning for Biomedical Imaging (8th May 2022),
pp. 1–27. doi: 10.48550/arXiv.2111.08693. url: https://hal.inria.fr/hal-03417406.

[22] S.-L. Liew, B. Lo, M. Donnelly, A. Zavaliangos-Petropulu, J. Jeong, G. Barisano, A. Hutton,
J. Simon, J. Juliano, A. Suri et al. ‘A large, curated, open-source stroke neuroimaging dataset
to improve lesion segmentation algorithms’. In: Scientific Data 9.1 (Dec. 2022), p. 320. doi:
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[23] R. Menuet, R. Meudec, J. Dockès, G. Varoquaux and B. Thirion. ‘Comprehensive decoding
mental processes from Web repositories of functional brain images’. In: Scientific Reports
12.7050 (Dec. 2022). doi: 10.1038/s41598-022-10710-1. url: https://hal.inria.fr/h
al-03666470.

[24] S. Mrah, M. Descoteaux, M. Wager, A. Boré, F. Rheault, B. Thirion and E. Mandonnet.
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