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2 Overall objectives

2.1 Scientific Context

Critical problems of the 21st century like the search for highly energy efficient or even carbon-neutral,
and cost-efficient systems, or the design of new molecules against extensively drug-resistant bacteria
crucially rely on the resolution of challenging numerical optimization problems. Such problems typically
depend on noisy experimental data or involve complex numerical simulations where derivatives are not
useful or not available and the function is considered as a black-box.

Many of those optimization problems are in essence multiobjective—one needs to optimize simul-
taneously several conflicting objectives like minimizing the cost of an energy network and maximizing
its reliability—and most of the challenging black-box problems are non-convex and non-smooth and
they combine difficulties related to ill-conditioning, non-separability, and ruggedness (a term that char-
acterizes functions that can be non-smooth but also noisy or multi-modal). Additionally, the objective
function can be expensive to evaluate, that is, one function evaluation can take several minutes to hours
(it can involve for instance a CFD simulation).

In this context, the use of randomness combined with proper adaptive mechanisms that notably
satisfy certain invariance properties (affine invariance, invariance to monotonic transformations) has
proven to be one key component for the design of robust global numerical optimization algorithms [53,
39].

The field of adaptive stochastic optimization algorithms has witnessed some important progress over
the past 15 years. On the one hand, subdomains like medium-scale unconstrained optimization may
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be considered as “solved” (particularly, the CMA-ES algorithm, an instance of Evolution Strategy (ES)
algorithms, stands out as state-of-the-art method) and considerably better standards have been estab-
lished in the way benchmarking and experimentation are performed. On the other hand, multiobjective
population-based stochastic algorithms became the method of choice to address multiobjective prob-
lems when a set of some best possible compromises is sought after. In all cases, the resulting algorithms
have been naturally transferred to industry (the CMA-ES algorithm is now regularly used in companies
such as Bosch, Total, ALSTOM, . . . ) or to other academic domains where difficult problems need to be
solved such as physics, biology [57], geoscience [46], or robotics [49]).

ES algorithms also attracted quite some attention in Machine Learning with the OpenAI article
Evolution Strategies as a Scalable Alternative to Reinforcement Learning. It is shown that the training
time for difficult reinforcement learning benchmarks could be reduced from 1 day (with standard RL
approaches) to 1 hour using ES [55].1 Already ten years ago, another impressive application of CMA-ES,
how “Computer Sim Teaches Itself To Walk Upright” (published at the conference SIGGRAPH Asia 2013)
was presented in the press in the UK.

Several of these important advances around adaptive stochastic optimization algorithms rely to a
great extent on works initiated or achieved by the founding members of RandOpt, particularly related to
the CMA-ES algorithm and to the Comparing Continuous Optimizer (COCO) benchmarking platform.

Yet, the field of adaptive stochastic algorithms for black-box optimization is relatively young compared
to the “classical optimization” field that includes convex and gradient-based optimization. For instance,
the state-of-the art algorithms for unconstrained gradient based optimization like quasi-Newton methods
(e.g. the BFGS method) date from the 1970s [37] while the stochastic derivative-free counterpart, CMA-ES
dates from the early 2000s [38]. Consequently, in some subdomains with important practical demands,
not even the most fundamental and basic questions are answered:

• This is the case of constrained optimization where one needs to find a solution x∗ ∈Rn minimizing a
numerical function minx∈Rn f (x) while respecting a number of constraints m typically formulated
as gi (x∗) ≤ 0 for i = 1, . . . ,m. Only somewhat recently, the fundamental requirement of linear
convergence2, as in the unconstrained case, has been clearly stated [28].

• In multiobjective optimization, most of the research so far has been focusing on how to select
candidate solutions from one iteration to the next one. The difficult question of how to generate
effectively new solutions is not yet answered in a proper way and we know today that simply
applying operators from single-objective optimization may not be effective with the current best
selection strategies. As a comparison, in the single-objective case, the question of selection of
candidate solutions was already solved in the 1980s and 15 more years were needed to solve the
trickier question of an effective adaptive strategy to generate new solutions.

• With the current demand to solve larger and larger optimization problems (e.g. in the domain of
deep learning), optimization algorithms that scale linearly (in terms of internal complexity, memory
and number of function evaluations to reach an ϵ-ball around the optimum) with the problem
dimension are nowadays in increasing demand. Not long ago, first proposals of how to reduce
the quadratic scaling of CMA-ES have been made without a clear view of what can be achieved in
the best case in practice. These later variants apply to optimization problems with thousands of
variables. The question of designing randomized algorithms capable to handle problems with one
or two orders of magnitude more variables effectively and efficiently is still largely open.

1The key behind such an improvement is the parallelization of the algorithm (on thousands of CPUs) that is done in such a
way that the communication between the different workers is reduced to only exchanging a vector of permutation of small length
(typically less than 100) containing the ranking of candidate solutions on the function to be optimized. In contrast, parallelization
of backpropagation requires to exchange the gradient vector of the size of the problem (of the order of 106). This reduced
communication time is a decisive factor for the impressive speedup.

2In optimization, linear convergence for an algorithm whose estimate of the optimum x∗ of f at iteration t is denoted xt ,
refers to a convergence where after a certain time (usually once the initialization is forgotten) the following typically holds:
∥xt+1 −x∗∥ ≤ c∥xt −x∗∥ where c < 1. This type of convergence is also called geometric. In the case of stochastic algorithms, there
exist different definitions of linear convergence (depending on whether we consider the expectation of the sequence or we want
a statement that holds with high probability) not strictly equivalent but that always translate the idea that the distance to the
optimum at iteration t +1 is a fraction of the distance to the optimum at iteration t .

https://openai.com/research/evolution-strategies
http://www.huffingtonpost.co.uk/2014/01/14/computer-program-teaches-itself-to-walk_n_4594125.html


4 Inria Annual Report 2023

• For expensive optimization, standard methods are so called Bayesian optimization (BO) algorithms
often based on Gaussian processes. Commonly used examples of BO algorithms are EGO [43],
SMAC [41], Spearmint [56], or TPE [31] which are implemented in different libraries. Yet, our
experience with a popular method like EGO is that many important aspects to come up with a good
implementation rely on insider knowledge and are not standard across implementations. Two EGO
implementations can differ for example in how they perform the initial design, which bandwidth
for the Gaussian kernel is used, or which strategy is taken to optimize the expected improvement.

Additionally, the development of stochastic adaptive methods for black-box optimization has been
mainly driven by heuristics and practice—rather than a general theoretical framework—validated by
intensive computational simulations. Undoubtedly, this has been an asset as the scope of possibilities
for design was not restricted by mathematical frameworks for proving convergence. In effect, powerful
stochastic adaptive algorithms for unconstrained optimization like the CMA-ES algorithm emerged
from this approach. At the same time, naturally, theory strongly lags behind practice. For instance, the
striking performances of CMA-ES empirically observed contrast with how little is theoretically proven on
the method. This situation is clearly not satisfactory. On the one hand, theory generally lifts performance
assessment from an empirical level to a conceptual one, rendering results independent from the problem
instances where they have been obtained. On the other hand, theory typically provides insights that
change perspectives on some algorithm components. Also theoretical guarantees generally increase the
trust in the reliability of a method and facilitate the task to make it accepted by wider communities.

Finally, as discussed above, the development of novel black-box algorithms strongly relies on scientific
experimentation, and it is quite difficult to conduct proper and meaningful experimental analysis. This is
well known for more than two decades now and summarized in this quote from Johnson in 1996

“the field of experimental analysis is fraught with pitfalls. In many ways, the implementation of
an algorithm is the easy part. The hard part is successfully using that implementation to produce
meaningful and valuable (and publishable!) research results.” [42]

Since then, quite some progress has been made to set better standards in conducting scientific experi-
ments and benchmarking. Yet, some domains still suffer from poor benchmarking standards and from
the generic problem of the lack of reproducibility of results. For instance, in multiobjective optimization,
it is (still) not rare to see comparisons between algorithms made by solely visually inspecting Pareto
fronts after a fixed budget. In Bayesian optimization, good performance seems often to be due to insider
knowledge not always well described in papers.

In the context of black-box numerical optimization previously described, the scientific positioning
of the RandOpt ream is at the intersection between theory, algorithm design, and applications. Our
vision is that the field of stochastic black-box optimization should reach the same level of maturity than
gradient-based convex mathematical optimization. This entails major algorithmic developments for
constrained, multiobjective and large-scale black-box optimization and major theoretical developments
for analyzing current methods including the state-of-the-art CMA-ES.

The specificity in black-box optimization is that methods are intended to solve problems characterized
by "non-properties"—non-linear, non-convex, non-smooth, non-Lipschitz. This contrasts with gradient-
based optimization and poses on the one hand some challenges when developing theoretical frameworks
but also makes it compulsory to complement theory with empirical investigations.

On the practical side, our ultimate goal is to provide software that is suitable for researchers and
industry that need to solve practical optimization problems. We see theory also as a means for this end
(rather than only an end in itself) and we also firmly belief that parameter tuning is part of the algorithm
designer’s task.

This shapes, on the one hand, four main scientific objectives for our team:

1. develop novel theoretical frameworks for guiding (a) the design of novel black-box methods and
(b) their analysis, allowing to

2. provide proofs of key features of stochastic adaptive algorithms including the state-of-the-art
method CMA-ES: linear convergence and learning of second order information.
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3. develop stochastic numerical black-box algorithms following a principled design in domains with
a strong practical need for much better methods namely constrained, multiobjective, large-scale
and expensive optimization. Implement the methods such that they are easy to use. And finally, to

4. set new standards in scientific experimentation, performance assessment and benchmarking
both for optimization on continuous or combinatorial search spaces. This should allow in particular
to advance the state of reproducibility of results of scientific papers in optimization.

On the other hand, the above motivates our objectives with respect to dissemination and transfer:

1. develop software packages that people can directly use to solve their problems. This means having
carefully thought out interfaces, generically applicable setting of parameters and termination
conditions, proper treatment of numerical errors, catching properly various exceptions, etc.;

2. have direct collaborations with industrials;

3. publish our results both in applied mathematics and computer science bridging the gap between
very often disjoint communities.

3 Research program

The lines of research we intend to pursue is organized along four axes namely developing novel theoretical
framework, developing novel algorithms, setting novel standards in scientific experimentation and
benchmarking and applications.

3.1 Developing Novel Theoretical Frameworks for Analyzing and Designing Adaptive
Stochastic Algorithms

Stochastic black-box algorithms typically optimize non-convex, non-smooth functions. This is possible
because the algorithms rely on weak mathematical properties of the underlying functions: the algorithms
do not use the derivatives—hence the function does not need to be differentiable—and, additionally,
often do not use the exact function value but instead how the objective function ranks candidate solutions
(such methods are sometimes called function-value-free). (To illustrate a comparison-based update,
consider an algorithm that samples λ (with λ an even integer) candidate solutions from a multivariate
normal distribution. Let x1, . . . , xλ in Rn denote those λ candidate solutions at a given iteration. The
solutions are evaluated on the function f to be minimized and ranked from the best to the worse:

f (x1:λ) ≤ . . . ≤ f (xλ:λ) .

In the previous equation i :λ denotes the index of the sampled solution associated to the i -th best solution.
The new mean of the Gaussian vector from which new solutions will be sampled at the next iteration can
be updated as

m ← 4

λ

λ/4∑
i=1

xi :λ .

The previous update moves the mean towards the λ/2 best solutions. Yet the update is only based
on the ranking of the candidate solutions such that the update is the same if f is optimized or g ◦ f
where g : Im( f ) →R is strictly increasing. Consequently, such algorithms are invariant with respect to
strictly increasing transformations of the objective function. This entails that they are robust and their
performances generalize well.)

Additionally, adaptive stochastic optimization algorithms typically have a complex state space which
encodes the parameters of a probability distribution (e.g. mean and covariance matrix of a Gaussian
vector) and other state vectors. This state-space is a manifold. While the algorithms are Markov chains,
the complexity of the state-space makes that standard Markov chain theory tools do not directly apply.
The same holds with tools stemming from stochastic approximation theory or Ordinary Differential
Equation (ODE) theory where it is usually assumed that the underlying ODE (obtained by proper averaging



6 Inria Annual Report 2023

and limit for learning rate to zero) has its critical points inside the search space. In contrast, in the cases
we are interested in, the critical points of the ODEs are at the boundary of the domain.

Last, since we aim at developing theory that on the one hand allows to analyze the main properties of
state-of-the-art methods and on the other hand is useful for algorithm design, we need to be careful not
to use simplifications that would allow a proof to be done but would not capture the important properties
of the algorithms. With that respect one tricky point is to develop theory that accounts for invariance
properties.

To face those specific challenges, we need to develop novel theoretical frameworks exploiting invari-
ance properties and accounting for peculiar state-spaces. Those frameworks should allow researchers to
analyze one of the core properties of adaptive stochastic methods, namely linear convergence on the
widest possible class of functions.

We are planning to approach the question of linear convergence from three different complementary
angles, using three different frameworks:

• the Markov chain framework where the convergence derives from the analysis of the stability of a
normalized Markov chain existing on scaling-invariant functions for translation and scale-invariant
algorithms [30]. This framework allows for a fine analysis where the exact convergence rate can
be given as an implicit function of the invariant measure of the normalized Markov chain. Yet it
requires the objective function to be scaling-invariant. The stability analysis can be particularly
tricky as the Markov chain that needs to be studied writes asΦt+1 = F (Φt ,Wt+1) where {Wt : t > 0}
are independent identically distributed and F is typically discontinuous because the algorithms
studied are comparison-based. This implies that practical tools for analyzing a standard property
like irreducibility, that rely on investigating the stability of underlying deterministic control models
[50, Chapter 7], cannot be used. Additionally, the construction of a drift to prove ergodicity is
particularly delicate when the state space includes a (normalized) covariance matrix as it is the
case for analyzing the CMA-ES algorithm.

• The stochastic approximation or ODE framework. Those are standard techniques to prove the
convergence of stochastic algorithms when an algorithm can be expressed as a stochastic approx-
imation of the solution of a mean field ODE [33, 32, 47]. What is specific and induces difficulties
for the algorithms we aim at analyzing is the non-standard state-space since the ODE variables
correspond to the state-variables of the algorithm (e.g. Rn ×R>0 for step-size adaptive algorithms,
Rn ×R>0 ×Sn++ where Sn++ denotes the set of positive definite matrices if a covariance matrix is
additionally adapted). Consequently, the ODE can have many critical points at the boundary of its
definition domain (e.g. all points corresponding to σt = 0 are critical points of the ODE) which is
not typical. Also we aim at proving linear convergence, for that it is crucial that the learning rate
does not decrease to zero which is non-standard in ODE method.

• The direct framework where we construct a global Lyapunov function for the original algorithm
from which we deduce bounds on the hitting time to reach an ϵ-ball of the optimum. For this
framework as for the ODE framework, we expect that the class of functions where we can prove
linear convergence are composite of g ◦ f where f is differentiable and g : Im( f ) → R is strictly
increasing and that we can show convergence to a local minimum.

We expect those frameworks to be complementary in the sense that the assumptions required are
different. Typically, the ODE framework should allow for proofs under the assumptions that learning rates
are small enough while it is not needed for the Markov chain framework. Hence this latter framework
captures better the real dynamics of the algorithm, yet under the assumption of scaling-invariance of
the objective functions. Also, we expect some overlap in terms of function classes that can be studied
by the different frameworks (typically convex-quadratic functions should be encompassed in the three
frameworks). By studying the different frameworks in parallel, we expect to gain synergies and possibly
understand what is the most promising approach for solving the holy grail question of the linear con-
vergence of CMA-ES. We foresee for instance that similar approaches like the use of Foster-Lyapunov
drift conditions are needed in all the frameworks and that intuition can be gained on how to establish the
conditions from one framework to another one.
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3.2 Algorithmic developments

We are planning on developing algorithms in the subdomains with strong practical demand for better
methods of constrained, multiobjective, large-scale and expensive optimization.

Many of the algorithm developments, we propose, rely on the CMA-ES method. While this seems
to restrict our possibilities, we want to emphasize that CMA-ES became a family of methods over the
years that nowadays include various techniques and developments from the literature to handle non-
standard optimization problems (noisy, large-scale, . . . ). The core idea of all CMA-ES variants—namely
the mechanism to adapt a Gaussian distribution—has furthermore been shown to derive naturally from
first principles with only minimal assumptions in the context of derivative-free black-box stochastic
optimization [53, 39]. This is a strong justification for relying on the CMA-ES premises while new
developments naturally include new techniques typically borrowed from other fields. While CMA-ES is
now a full family of methods, for visibility reasons, we continue to refer often to “the CMA-ES algorithm”.

3.2.1 Constrained optimization

Many (real-world) optimization problems have constraints related to technical feasibility, cost, etc.
Constraints are classically handled in the black-box setting either via rejection of solutions violating the
constraints—which can be quite costly and even lead to quasi-infinite loops—or by penalization with
respect to the distance to the feasible domain (if this information can be extracted) or with respect to
the constraint function value [35]. However, the penalization coefficient is a sensitive parameter that
needs to be adapted in order to achieve a robust and general method [36]. Yet, the question of how to
handle properly constraints is largely unsolved. Previous constraints handling for CMA-ES were ad-hoc
techniques driven by many heuristics [36]. Also, only somewhat recently it was pointed out that linear
convergence properties should be preserved when addressing constraint problems [28].

Promising approaches though, rely on using augmented Lagrangians [28, 29]. The augmented
Lagrangian, here, is the objective function optimized by the algorithm. Yet, it depends on coefficients
that are adapted online. The adaptation of those coefficients is the difficult part: the algorithm should be
stable and the adaptation efficient. We believe that the theoretical frameworks developed (particularly
the Markov chain framework) will be useful to understand how to design the adaptation mechanisms.
Additionally, the question of invariance will also be at the core of the design of the methods: augmented
Lagrangian approaches break the invariance to monotonic transformation of the objective functions,
yet understanding the maximal invariance that can be achieved seems to be an important step towards
understanding what adaptation rules should satisfy.

3.2.2 Large-scale Optimization

In the large-scale setting, we are interested to optimize problems with the order of 103 to 104 variables.
For one to two orders of magnitude more variables, we will talk about a “very large-scale” setting.

In this context, algorithms with a quadratic scaling (internal and in terms of number of function
evaluations needed to optimize the problem) cannot be afforded. In CMA-ES-type algorithms, we
typically need to restrict the model of the covariance matrix to have only a linear number of parameters
to learn such that the algorithms scale linearly in terms of internal complexity, memory and number
of function evaluations to solve the problem. The main challenge is thus to have rich enough models
for which we can efficiently design proper adaptation mechanisms. Some first large-scale variants of
CMA-ES have been derived. They include the online adaptation of the complexity of the model [27, 26].
Yet, the type of Hessian matrices they can learn is restricted and not fully satisfactory. Different restricted
families of distributions are conceivable and it is an open question which can be effectively learned and
which are the most promising in practice.

Another direction, we want to pursue, is exploring the use of large-scale variants of CMA-ES to solve
reinforcement learning problems [55].

Last, we are interested to investigate the very-large-scale setting. One approach consists in doing
optimization in subspaces. This entails the efficient identification of relevant spaces and the restriction
of the optimization to those subspaces.
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3.2.3 Multiobjective Optimization

Multiobjective optimization, i.e., the simultaneous optimization of multiple objective functions, differs
from single-objective optimization in particular in its optimization goal. Instead of aiming at converging
to the solution with the best possible function value, in multiobjective optimization, a set of solutions 3 is
sought. This set, called Pareto-set, contains all trade-off solutions in the sense of Pareto-optimality—no
solution exists that is better in all objectives than a Pareto-optimal one. Because converging towards a set
differs from converging to a single solution, it is no surprise that we might lose many good convergence
properties if we directly apply search operators from single-objective methods. However, this is what
has typically been done so far in the literature. Indeed, most of the research in stochastic algorithms for
multiobjective optimization focused instead on the so called selection part, that decides which solutions
should be kept during the optimization—a question that can be considered as solved for many years in
the case of single-objective stochastic adaptive methods.

We therefore aim at rethinking search operators and adaptive mechanisms to improve existing
methods. We expect that we can obtain orders of magnitude better convergence rates for certain problem
types if we choose the right search operators. We typically see two angles of attack: On the one hand, we
will study methods based on scalarizing functions that transform the multiobjective problem into a set
of single-objective problems. Those single-objective problems can then be solved with state-of-the-art
single-objective algorithms. Classical methods for multiobjective optimization fall into this category, but
they all solve multiple single-objective problems subsequently (from scratch) instead of dynamically
changing the scalarizing function during the search. On the other hand, we will improve on currently
available population-based methods such as the first multiobjective versions of the CMA-ES. Here,
research is needed on an even more fundamental level such as trying to understand success probabilities
observed during an optimization run or how we can introduce non-elitist selection (the state of the art
in single-objective stochastic adaptive algorithms) to increase robustness regarding noisy evaluations
or multi-modality. The challenge here, compared to single-objective algorithms, is that the quality of a
solution is not anymore independent from other sampled solutions, but can potentially depend on all
known solutions (in the case of three or more objective functions), resulting in a more noisy evaluation as
the relatively simple function-value-based ranking within single-objective optimizers.

3.2.4 Expensive Optimization

In the so-called expensive optimization scenario, a single function evaluation might take several minutes
or even hours in a practical setting. Hence, the available budget in terms of number of function evaluation
calls to find a solution is very limited in practice. To tackle such expensive optimization problems, it
is needed to exploit the first few function evaluations in the best way. To this end, typical methods
couple the learning of a surrogate (or meta-model) of the expensive objective function with traditional
optimization algorithms.

In the context of expensive optimization and CMA-ES, which usually shows its full potential when
the number n of variables is not too small (say larger than 3) and if the number of available function
evaluations is about 100n or larger, several research directions emerge. The two main possibilities to
integrate meta-models into the search with CMA-ES type algorithms are (i) the successive injection of the
minimum of a learned meta-model at each time step into the learning of CMA-ES’s covariance matrix and
(ii) the use of a meta-model to predict the internal ranking of solutions. While for the latter, first results
exist, the former idea is entirely unexplored for now. In both cases, a fundamental question is which type
of meta-model (linear, quadratic, Gaussian Process, . . . ) is the best choice for a given number of function
evaluations (as low as one or two function evaluations) and at which time the type of the meta-model
shall be switched.

3.3 Setting novel standards in scientific experimentation and benchmarking

Numerical experimentation is needed as a complement to theory to test novel ideas, hypotheses, the sta-
bility of an algorithm, and/or to obtain quantitative estimates. Optimally, theory and experimentation go
hand in hand, jointly guiding the understanding of the mechanisms underlying optimization algorithms.

3Often, this set forms a manifold of dimension one smaller than the number of objectives.
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Though performing numerical experimentation on optimization algorithms is crucial and a common
task, it is non-trivial and easy to fall in (common) pitfalls as stated by J. N. Hooker in his seminal paper
[40].

In the RandOpt team we aim at raising the standards for both scientific experimentation and bench-
marking.

On the experimentation aspect, we are convinced that there is common ground over how scientific
experimentation should be done across many (sub-)domains of optimization, in particular with respect
to the visualization of results, testing extreme scenarios (parameter settings, initial conditions, etc.), how
to conduct understandable and small experiments, how to account for invariance properties, performing
scaling up experiments and so forth. We therefore want to formalize and generalize these ideas in order to
make them known to the entire optimization community with the final aim that they become standards
for experimental research.

Extensive numerical benchmarking, on the other hand, is a compulsory task for evaluating and
comparing the performance of algorithms. It puts algorithms to a standardized test and allows to
make recommendations which algorithms should be used preferably in practice. To ease this part
of optimization research, we have been developing the Comparing Continuous Optimizers platform
(COCO) since 2007 which allows to automatize the tedious task of benchmarking. It is a game changer
in the sense that the freed time can now be spent on the scientific part of algorithm design (instead of
implementing the experiments, visualization, etc.) and it opened novel perspectives in algorithm testing.
COCO implements a thorough, well-documented methodology that is based on the above mentioned
general principles for scientific experimentation.

Also due to the freely available data from 350+ algorithms benchmarked with the platform, COCO
became a quasi-standard for single-objective, noiseless optimization benchmarking. It is therefore
natural to extend the reach of COCO towards other subdomains (particularly constrained optimization,
many-objective optimization) which can benefit greatly from an automated benchmarking methodology
and standardized tests without (much) effort. This entails particularly the design of novel test suites and
rethinking the methodology for measuring performance and more generally evaluating the algorithms.
Particularly challenging is the design of scalable non-trivial testbeds for constrained optimization where
one can still control where the solutions lies. Other optimization problem types, we are targeting are
expensive problems (and the Bayesian optimization community in particular), optimization problems
in machine learning (for example parameter tuning in reinforcement learning), and the collection of
real-world problems from industry.

Another aspect of our future research on benchmarking is to investigate the large amounts of bench-
marking data, we collected with COCO during the years. Extracting information about the influence of
algorithms on the best performing portfolio, clustering algorithms of similar performance, or the auto-
mated detection of anomalies in terms of good/bad behavior of algorithms on a subset of the functions
or dimensions are some of the ideas here.

Last, we want to expand the focus of COCO from automatized (large) benchmarking experiments
towards everyday experimentation, for example by allowing the user to visually investigate algorithm
internals on the fly or by simplifying the set up of algorithm parameter influence studies.

4 Application domains

Applications of black-box algorithms occur in various domains. Industry but also researchers in other
academic domains have a great need to apply black-box algorithms on a daily basis. Generally, we do
not target a specific application domain and are interested in black-box applications stemming from
various origins. This is to us intrinsic to the nature of the methods we develop that are general purpose
algorithms. Hence our strategy with respect to applications can be considered as opportunistic and our
main selection criteria when approached by colleagues who want to develop a collaboration around
an application is whether we find the application interesting and valuable: that means the application
brings new challenges and/or gives us the opportunity to work on topics we already intended to work on,
and it brings, in our judgement, an advancement to society in the application domain.

The concrete applications related to industrial collaborations we are currently dealing with are:

• With Thales for the theses of Konstantinos Varelas, Paul Dufossé, and Tristan Marty (DGA-CIFRE
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theses). They investigate more specifically the development of large-scale variants of CMA-ES,
constrained-handling for CMA-ES, and the handling of discrete variables within CMA-ES respect-
ively.

• With Storengy, a subsidiary of the ENGIE group, specialized in gas storage for the theses of Cheikh
Touré and Mohamed Gharafi. Different multiobjective applications are considered in this context
but the primary motivation of Storengy is to get at their disposal a better multiobjective variant of
CMA-ES which is the main objective of the developments within the theses.

5 Social and environmental responsibility

5.1 Footprint of research activities

We are concerned about CO2 footprint and discourage oversea conferences when far away. Since the
situation with respect to Covid went back to normal with respect to travelling, we have been dedicated to
travel less than in the past and attend some conferences online.

5.2 Impact of research results

We develop general purpose optimization methods that apply in difficult optimization contexts where
little is required on the function to be optimized. Application domains include optimization and design
of renewable systems and climate change.

Our main method CMA-ES is transferred and widely used. The code stemming from the team is
frequently downloaded (see Section 6). Among the usage of our method and our code, we find naturally
problems in the domain of energy to capture carbon dioxide [51, 48, 52], solar energy [44, 45], or wind-
thermal power systems [54].

Those publications witness the impact of our research results with respect to research questions and
engineering design related to climate change and renewable energy.

6 New software, platforms, open data

The RandOpt team maintains and further develops the two software libraries, CMA-ES and COCO.
As an indicator of the impact of the libraries, Figure1 shows weekly downloads (without mirrors)

from the Python Package Index (PyPI) since July 2021 of Python software packages developed by the
RandOpt team and of the cmaes package developed by Masashi Shibata (the package is directly derived
from RandOpt’s cma package but tailored to machine learning applications). The cma package receives
currently about 40,000 weekly downloads and, as of January 2024, has been downloaded more than six
million times in total.

6.1 New software

6.1.1 COCO

Name: COmparing Continuous Optimizers

Keywords: Benchmarking, Numerical optimization, Black-box optimization, Stochastic optimization

Scientific Description: COmparing Continuous Optimisers (COCO) is a tool for benchmarking algorithms
for black-box optimisation. COCO facilitates systematic experimentation in the field of continu-
ous optimization. COCO provides: (1) an experimental framework for testing the algorithms, (2)
post-processing facilities for generating publication quality figures and tables, including the easy
integration of data from benchmarking experiments of 350+ algorithm variants, (3) LaTeX templates
for scientific articles and HTML overview pages which present the figures and tables.

The COCO software is composed of two parts: (i) an interface available in different programming
languages (C/C++, Java, Matlab/Octave, Python, external support for R) which allows to run and

https://github.com/CMA-ES
https://github.com/numbbo/coco
https://pypi.org/project/cmaes/
https://pypi.org/project/cma
https://pypi.org/project/cma
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Figure 1: Weekly download numbers from the Python Package Index (PyPI) of Python software created
by the RANDOPT team or directly related to their scientific results (based on numbers from pepy.tech).

log experiments on several function test suites (unbounded noisy and noiseless single-objective
functions, unbounded noiseless multiobjective problems, mixed-integer problems, constrained
problems) and (ii) a Python tool for generating figures and tables that can be looked at in every web
browser and that can be used in the provided LaTeX templates to write scientific papers.

Functional Description: The COCO platform aims at supporting the numerical benchmarking of black-
box optimization algorithms in continuous domains. Benchmarking is a vital part of algorithm
engineering and a necessary path to recommend algorithms for practical applications. The COCO
platform releases algorithm developers and practitioners alike from (re-)writing test functions,
logging, and plotting facilities by providing an easy-to-handle interface in several programming
languages. The COCO platform has been developed since 2007 and has been used extensively
within the “Blackbox Optimization Benchmarking (BBOB)” workshop series since 2009. Overall,
350+ algorithms and algorithm variants by contributors from all over the world have been bench-
marked on the platform’s supported test suites so far. The most recent extensions has been towards
constrained problems.

URL: https://github.com/numbbo/coco

Contact: Dimo Brockhoff

Participants: Anne Auger, Asma Atamna, Dejan Tusar, Dimo Brockhoff, Marc Schoenauer, Nikolaus
Hansen, Ouassim Ait Elhara, Raymond Ros, Tea Tusar, Thanh-Do Tran, Umut Batu, Konstantinos
Varelas

Partners: Charles University Prague, Jozef Stefan Institute (JSI), Cologne University of Applied Sciences

6.1.2 CMA-ES

Name: Covariance Matrix Adaptation Evolution Strategy

Keywords: Numerical optimization, Black-box optimization, Stochastic optimization

Scientific Description: The CMA-ES is considered as state-of-the-art in evolutionary computation and
has been adopted as one of the standard tools for continuous optimisation in many (probably
hundreds of) research labs and industrial environments around the world. The CMA-ES is typically
applied to unconstrained or bound-constrained optimization problems and search space dimen-
sion between three and a few hundred. Recent versions can also handle nonlinear constraints.
The method should be applied, if derivative based methods, e.g. quasi-Newton BFGS or conjugate

https://pypi.org/
https://www.pepy.tech/
https://github.com/numbbo/coco
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gradient, (supposedly) fail due to a rugged search landscape, e.g. discontinuities, sharp bends or
ridges, noise, local optima, outliers. If second order derivative based methods are successful, they
are usually much faster than the CMA-ES: on purely convex-quadratic functions, BFGS (Matlabs
function fminunc) is typically faster by a factor of about ten (in number of objective function
evaluations assuming that gradients are not available) and on the most simple quadratic functions
by a factor of about 30.

Functional Description: The CMA-ES is an evolutionary algorithm for difficult non-linear non-convex
black-box optimisation problems in continuous domain.

URL: https://cma-es.github.io/

Contact: Nikolaus Hansen

Participant: Nikolaus Hansen

6.1.3 COMO-CMA-ES

Name: Comma Multi-Objective Covariance Matrix Adaptation Evolution Strategy

Keywords: Black-box optimization, Global optimization, Multi-objective optimisation

Scientific Description: The CMA-ES is considered as state-of-the-art in evolutionary computation and
has been adopted as one of the standard tools for continuous optimisation in many (probably
hundreds of) research labs and industrial environments around the world. The CMA-ES is typ-
ically applied to unconstrained or bounded constraint optimization problems, and search space
dimensions between three and a hundred. COMO-CMA-ES is a multi-objective optimization al-
gorithm based on the standard CMA-ES using the Uncrowded Hypervolume Improvement within
the so-called Sofomore framework.

Functional Description: The COMO-CMA-ES is an evolutionary algorithm for difficult non-linear non-
convex black-box optimisation problems with several (two) objectives in continuous domain.

URL: https://github.com/CMA-ES/pycomocma

Contact: Nikolaus Hansen

6.1.4 MOarchiving

Name: Multiobjective Optimization Archiving Module

Keywords: Mathematical Optimization, Multi-objective optimisation

Scientific Description: Multi-objective optimization relies on the maintenance of a set of non-dominated
(and hence incomparable) solutions. Performance indicator computations and in particular the
computation of the hypervolume indicator is based on this solution set. The hypervolume compu-
tation and the update of the set of non-dominated solutions are generally time critical operations.
The module computes the bi-objective hypervolume in linear time and updates the non-dominated
solution set in logarithmic time.

Functional Description: The module implements a bi-objective non-dominated archive using a Python
list as parent class. The main functionality is heavily based on the bisect module. The class provides
easy and fast access to the overall hypervolume, the contributing hypervolume of each element,
and to the uncrowded hypervolume improvement of any given point in objective space.

URL: https://github.com/CMA-ES/moarchiving

Contact: Nikolaus Hansen

https://cma-es.github.io/
https://github.com/CMA-ES/pycomocma
https://github.com/CMA-ES/moarchiving
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6.2 Open data

The COCO platform allows to generate data sets by running an implementation of an optimization
algorithm on a set of test functions. Those data sets contain a carefully chosen subset of all function
evaluations that an algorithm performed during an experiment, on each test function from a COCO
testbed, instance and dimension. Data sets can be loaded easily with the postprocessing module of COCO
and used to compare the performance of different algorithms. We collect those data sets, curate them
(check that they are clean, add meta-data, . . . ) and make them available to the community. Those data
sets are maintained by Dimo Brockhoff from RandOpt.

In 2023, in total, 25 new algorithm data sets have been added to the publicly accessible database of
COCO. Overall, we have collected 350+ data sets over the years.

7 New results

7.1 Analysis of Adaptive Stochastic Search Algorithms

Participants: Anne Auger, Nikolaus Hansen, Armand Gissler.

The main theoretical achievements of this year relate to our progress in the analysis of the (linear)
convergence of CMA-ES. This theoretical question is open for more than 20 years and seen as the
holy grail by many researchers. It is the main specific long term goal we have announced in our team
proposal while recognizing its difficulty and the risk inherent to it. Following a methodology we have
developed to analyze step-size adaptive ES [14], we solved theoretical challenges to achieve the analysis
of the convergence of CMA-ES. In particular, we achieved the analysis of the irreducibility of underlying
normalized chains, the analysis of the geometric ergodicity by finding an appropriate Lyapunov function
as well as connecting affine-invariance of the algorithm to the linear convergence on convex-quadratic
function. We are currently working on five publications to present the different parts of the proof. One of
them is an extension of the theory of Markov chains to be able to analyze the irreducibility of Markov
chains that are defined on smooth manifold, namely an extension of [34]. We also derived a technical
result to get asymptotic estimations of the eigenvalue and eigenvectors of the covariance matrix for large
condition number as needed in the proof [13].

The proof that we intend to publish includes all the components of the CMA-ES algorithm: step-size
adaptation, cumulation for the step-size and for the covariance matrix update. In order to better appraise
the impact of each component on the performance of the algorithm as well as testing some modifications,
an intensive benchmarking of different variants was undertaken [18].

7.2 Multi-objective optimization

Participants: Anne Auger, Dimo Brockhoff, Mohamed Gharafi, Nikolaus Hansen,
external collaborators: Rodolphe Le Riche (CNRS LIMOS), Tea Tušar
(Jozef Stefan Institute) .

A central theme for the team is the design, analysis, and benchmarking of multiobjective optimization
algorithms. In 2023, we have progressed on the following aspects.

In the context of our collaboration with the company Storengy for the PhD thesis of Mohamed Gharafi,
we developed a surrogate-model-based version of our COMO-CMA-ES algorithm [12] in order to deal with
the high evaluation time of solutions in many real-world problems. The integration of the single-objective
lq-CMA-ES algorithm [7] into COMO-CMA-ES resulted in the COMO-lq-CMA-ES, presented in [17].
Numerical experiments on simple, biobjective functions and on the bbob-biobj test suite of the COCO
platform revealed an average improvement of 20-60% on the latter and a six times faster convergence
rate on the double sphere function with default population size (and 20 times faster convergence with a
four times larger population size).

https://numbbo.github.io/data-archive/bbob/
https://numbbo.github.io/data-archive/bbob/
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After we co-organized the “Many-Criteria Optimization and Decision Analysis (MACODA)” workshop
in 2019 at the Lorentz Center (The Netherlands), the plan arose to publish the results of the workshop’s
discussions in a book in order to “develop a vision for the next decade of MACODA research”. This
book has been eventually published in 2023 with Springer under the title “Many-Criteria Optimization
and Decision Analysis—State-of-the-Art, Present Challenges, and Future Perspectives” [20]. Besides co-
editing the book, we contributed to its introductory chapter in which we introduced the basic notations
and definitions, wrote briefly about the state of the art in many-criteria optimization (i.e. when more
than three objective functions or criteria have to be simultaneously optimized), and gave an overview of
the history of the field’s first two decades [21].

Related to the benchmarking aspects of multiobjective optimization, we gave two tutorials on bench-
marking multiobjective algorithms at the EMO and GECCO conferences together with Tea Tušar [24]. We
also benchmarked the multiobjective Borg algorithm within a student project [16]. Finally, our publicly
available Python module for archiving and hypervolume calculcations (moarchiving), continues to get
picked up after its release in 2020 with, on average, 5 downloads per day on PyPi, the python package
index.

7.3 Benchmarking: methodology and the Comparing Continuous Optimziers Plat-
form (COCO)

Participants: Anne Auger, Dimo Brockhoff, Lorenzo Consoli, Armand Gissler,
Nikolaus Hansen, Tristan Marty, external collaborators: Olaf Mers-
mann (TH Köln), Tea Tušar (Jozef Stefan Institute) .

Benchmarking is an important task in optimization in order to assess and compare the performance
of algorithms as well as to motivate the design of better solvers. We are leading the benchmarking of
derivative free solvers in the context of difficult problems: we have been developing methodologies and
testbeds as well as assembled this into a platform automatizing the benchmarking process. This is a
continuing effort that we are pursuing in the team.

The COCO platform, developed at Inria since 2007, aims at automatizing numerical benchmarking
experiments and the visual presentation of their results. The platform consists of an experimental part
to generate benchmarking data (in various programming languages) and a postprocessing module (in
Python), see Figure 2. At the interface between the two, we provide data sets from numerical experiments
of 300+ algorithms and algorithm variants from various fields (quasi-Newton, derivative-free optimization,
evolutionary computing, Bayesian optimization) and for various problem characteristics (noiseless/noisy
optimization, single-/multi-objective optimization, continuous/mixed-integer, . . . ).

We have been using the platform in the past to initiate workshop papers during the ACM-GECCO
conference as well as to collect algorithm data sets from the entire optimization community (350+ so far
over the different test suites). This was not different in 2023 with a new workshop held at the ACM-GECCO
conference in Lisbon, Portugal where six workshop papers have been presented. Overall, 25 new data
sets on the existing test suites have been collected in 2023 from the workshop participants. Our own
contributions were as follows.

The first contribution, a comparison of the Borg algorithm on the multiobjective test suite [16] stems
from a student project in our "Derivative-free Optimization" lecture. On the noiseless bbob suite, A. Gissler
experimented with several variants of the CMA-ES algorithm to see how much certain simplifications,
that help his theoretical analysis of the algorithm, affect the algorithm’s performance in practice [18]. In
the context of the PhD thesis of Tristan Marty, we benchmarked the performance of the latest CMA-ES
python implementation (pycma version 3.3.0) on COCO’s bbob-mixint test suite [19]. The results show
substantial improvement since the last benchmarked version of pycma from 2019. The latest CMA-ES
version is now competitive with other mixed integer algorithms.

After we released the first constrained test suite within COCO in 2022, a new box-constrained test
suite has been introduced in 2023 by the organizers of the Workshop on Strict Box-Constrained Black-
Box Optimization. We contributed to this workshop by benchmarking the two constraint-handling
mechanisms of the CMA-ES algorithm, implemented in its python module, on this newly introduced
sbox-cost suite and compared their performance on the classical, unconstrained bbob suite, which is
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Figure 2: Structural overview of the COCO platform. COCO provides all black parts while users only have
to connect their solver to the COCO interface in the language of interest, here for instance Matlab, and
to decide on the test suite the solver should run on. The other red components show the output of the
experiments (number of function evaluations to reach certain target precisions) and their post-processing
and are automatically generated.

the basis of the sbox-cost suite [15]. To this end, the sbox-cost test suite has been made available with
COCO.

In addition, Lorenzo Consoli worked on providing a C implementation of the bbob-noisy test suite
for the current version of COCO. To assert the long-term maintenance of the platform, we further initiated
our first in-person COCO code and documentation sprint which we held during one week in late October
2023 together with all main contributors of the platform. Our second sprint will take place on November
25–29, 2024 in Dagstuhl, Germany.

8 Bilateral contracts and grants with industry

Participants: Anne Auger, Dimo Brockhoff, Nikolaus Hansen, Tristan Marty, Mo-
hamed Garafi.

8.1 Bilateral contracts with industry

• Contract with the company Storengy funding the PhD thesis of Mohamed Gharafi in the context of
the CIROQUO project (2021–2024)

• Contract with Thales for the CIFRE PhD thesis of Tristan Marty (2023–2026)

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Visits of international scientists

Other international visits to the team
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Olaf Mersmann

Status: professor

Institution of origin: Cologne University of Applied Sciences

Country: Germany

Dates: October 23–27, 2023

Context of the visit: 1st COCO code and documentation sprint

Mobility program/type of mobility: research stay

Tea Tušar

Status: researcher

Institution of origin: Jozef Stefan Institute

Country: Slovenia

Dates: October 23–27, 2023

Context of the visit: 1st COCO code and documentation sprint

Mobility program/type of mobility: research stay

9.2 European initiatives

9.2.1 Other european programs/initiatives

CA22137 - Randomised Optimisation Algorithms Research Network (ROAR-NET)

Participants: Anne Auger, Dimo Brockhoff, Nikolaus Hansen.

Title: Randomised Optimisation Algorithms Research Network (ROAR-NET)

Partner Institution(s): institutions from 30+ European countries

Date/Duration: 2023–2027

Additionnal info/keywords: Randopt is involved in this EU COST action project (2023–2027) by particip-
ating in several working groups and by Anne Auger co-leading the working group on mixed-integer
optimization.

9.3 National initiatives
CIROQUO

Participants: Dimo Brockhoff, Mohamed Gharafi, Nikolaus Hansen.

Title: CIROQUO ("Consortium Industriel de Recherche en Optimisation et QUantification d’incertitudes
pour les données Onéreuses")

Partner Institution(s): six other academic and five industrial partners, including Storengy

Date/Duration: 2021–2024

Additionnal info/keywords: Randopt is involved in the context of the PhD thesis of Mohamed Gharafi
which is financed by the company Storengy.
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10 Dissemination

Participants: Anne Auger, Dimo Brockhoff, Nikolaus Hansen.

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

General chair, scientific chair

• Anne Auger, Dimo Brockhoff, Nikolaus Hansen: co-organizer of the Blackbox Optimization Bench-
marking workshop at the ACM-GECCO 2023 conference, together with Paul Dufossé, Olaf Mers-
mann, Petr Pošik, and Tea Tušar

• A. Auger co-organized the Dagstuhl seminar on benchmarking "Challenges in Benchmarking
Optimization Heuristics"

• A. Auger, member of the scientific committee of the 21st French-German-Spanish Conference on
Optimization (FGS2024)

• A. Auger: co-organizer of the Dagstuhl seminar 24271 Theory of Randomized Optimization Heurist-
ics in June/July 2024, together with Tobias Glasmachers, Martin S. Krejca, and Johannes Lengler

• D. Brockhoff: co-organizer of the Lorentz Center workshop "Benchmarking in Multi-Criteria Op-
timization (BeMCO)", April 2024, Leiden, the Netherlands, together with Michael Emmerich, Boris
Naujoks, Robin Purshouse, and Tea Tušar

Member of the organizing committees

• A. Auger member of the ACM SIGEVO board

• A. Auger elected member of the business committee of SIGEVO.

10.1.2 Scientific events: selection

Chair of conference program committees

• D. Brockhoff: GECCO 2024 track chair for the EMO track, together with Tapabrata Ray

• D. Brockhoff: GECCO 2023 track chair for the EMO track, together with Hiroyuki Sato

Reviewer

• D. Brockhoff: reviewer for the conferences GECCO and FOGA in 2023 and PPSN 2024

• A. Auger: reviewer at the conference GECCO and PPSN 2024.

10.1.3 Journal

Member of the editorial boards

• A. Auger and N. Hansen member of the editorial board of Evolutionary Computation Journal, since
2009

• D. Brockhoff and N. Hansen: Associate Editors for ACM Transactions on Evolutionary Learning and
Optimization, since 2019
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Reviewer - reviewing activities The three permanent members are frequent reviewers for major journals
in Evolutionary Computation. Anne Auger is a frequent reviewer of mathematical optimization journal
(JOGO, SIAM OPT). We additionally review papers in Machine Learning related to optimization for JMLR,
Machine Learning.

10.1.4 Invited talks

Keynote at ECTA 2023 "Assessment and Evaluation of Empirical and Scientific Data" [25]

10.1.5 Scientific expertise

• Dimo Brockhoff: National Science Centre Poland

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• Master: A. Auger, “Derivative-free Optimization”, 22.5h ETD, niveau M2 (Optimization Master of
Paris-Saclay)

• Master: D. Brockhoff, “Algorithms and Complexity”, 36h ETD, niveau M1 (joint MSc with ESSEC
“Data Sciences & Business Analytics”), CentraleSupelec, France

• Master: D. Brockhoff, “Advanced Optimization”,36h ETD, niveau M2 (joint MSc with ESSEC “Data
Sciences & Business Analytics”), CentraleSupelec, France

• Bachelor: A. Auger, "Convex Optimization and Control", Bachelor of Ecole Polytechnique, 3rd year.

Tutorials

• An Introduction to Scientific Experimentation and Benchmarking, tutorial at the GECCO conference
in 2023 (A. Auger and N. Hansen) [23]

• Benchmarking Multiobjective Optimizers 2.0, tutorial at the GECCO 2023 conference (D. Brockhoff
and T. Tušar) [24]

• Benchmarking Multiobjective Optimizers 2.0, tutorial at the EMO 2023 conference (D. Brockhoff
and T. Tušar)

• CMA-ES and Advanced Adaptation Mechanisms, tutorial at the GECCO conference in 2023 (Y. Akimoto
and N. Hansen) [22]

10.2.2 Supervision

• PhD in progress: Armand Gissler, "Analysis of covariance matrix adaptation methods for random-
ized derivative free optimization" (2021–), supervisors: Anne Auger and Nikolaus Hansen

• PhD in progress: Mohamed Gharafi (Jan. 2022–), supervisors: Nikolaus Hansen and Dimo Brockhoff

• PhD in progress: Tristan Marty (Jan. 2023–), supervisors: Anne Auger and Nikolaus Hansen

10.2.3 Juries

• A. Auger member of the CRCN jury of Inria Saclay.

• A. Auger, president of the jury of Pablo JIMENEZ.

• A. Auger, member of the COS Professeur Université Calais.

https://ecta.scitevents.org/?y=2023
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10.3 Popularization

10.3.1 Internal or external Inria responsibilities

• A. Auger: member of the BCEP of Inria Saclay

• D. Brockhoff: member of the CDT in Saclay

• D. Brockhoff: member of the CUMI in Saclay
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