Projet ESTIME

Estimation de paramètres et modélisation en milieu hétérogène

Rocquencourt
Table des matières

1 Composition de l’équipe 3

2 Présentation et objectifs généraux 4

3 Fondements scientifiques 5
 3.1 Problèmes inverses ... 5
 3.1.1 D’où proviennent les problèmes inverses 5
 3.1.2 Difficultés des problèmes inverses 6
 3.2 Méthodes numériques pour les équations aux dérivées partielles 7
 3.2.1 Éléments finis et volumes finis 7
 3.2.2 Décomposition de domaines 8
 3.2.3 Calcul parallèle .. 8
 3.3 Méthodes numériques en optimisation 9
 3.3.1 Algorithmes de points intérieurs non-linéaires 9
 3.3.2 Autres méthodes numériques 10

4 Domaines d’applications 11
 4.1 Inversion sismique .. 11
 4.2 Imagerie cérébrale ... 12
 4.3 Ecoulement et transport en milieu poreux pour les problèmes d’environnement 13
 4.3.1 Transport de radionucléides autour d’un site de stockage profond ... 14
 4.3.2 Déplacements diphasiques 14
 4.3.3 Identification de conductivités hydrauliques dans un aquifère 15
 4.4 Quelques applications de l’optimisation 15
 4.4.1 Commande optimale d’un engin immergé tracté au bout d’un câble 15
 4.4.2 Conception optimale de verres ophtalmiques 16

5 Résultats nouveaux 16
 5.1 Ecoulements en milieu poreux 16
 5.2 Inversion sismique ... 18
 5.3 Méthodes numériques pour la simulation acoustique 18
 5.4 Méthodes numériques pour l’imagerie cérébrale 18
 5.5 Algorithmes de points intérieurs non linéaires 18
 5.6 Implémentation d’un différentiateur automatique sous Scilab ... 20

6 Contrats industriels (nationaux, européens et internationaux) 23
 6.1 Le consortium Sigma .. 23
 6.2 Inversion sismique et AVO 23
 6.3 Localisation de conduites de gaz souterraines 23
6.4 Transport de radionucléides autour d’un site de stockage profond 23
6.5 Commande optimale d’un engin immergé tracté au bout d’un câble 24
6.6 Conception optimale de verres ophtalmiques 24

7 Actions régionales, nationales et internationales 25
 7.1 Actions nationales ... 25
 7.2 Relations bilatérales internationales ... 26

8 Diffusion de résultats .. 26
 8.1 Animation de la communauté scientifique 26
 8.2 Enseignement universitaire .. 26
 8.3 Autres enseignements .. 27
 8.4 Participation à des colloques, séminaires, invitations 27
 8.5 Diffusion de produits .. 29
 8.6 Conseil en entreprises ... 29

9 Bibliographie .. 30
1 Composition de l’équipe

Responsable scientifique

Jérôme Jaffré [DR, Inria]

Responsable permanent

Michel Kern [CR, Inria]

Assistante de projet (avec le projet Ondes)

Muriel de Bianchi [AJT]

Personnel Inria

François Clément [CR]

Jean-Charles Gilbert [DR]

Conseiller scientifique

Guy Chavent [Professeur, Université de Paris 9]

Collaborateur extérieur

Yann-Hervé De Roeck [Ifremer, Brest ; puis Inria, Rennes]

Chercheur invité

Clovis Gonzaga [Federal University of Santa Catarina, Brésil (du 15/8 au 30/9)]

Chercheurs post-doctorants

Laurent Chauvier [Université de Paris 1; action incitative Opinel (du 1/11 au 31/12)]

Antonio Fuduli [Université della Calabria, Italie; action incitative Opinel (du 1/2 au 31/8)]

Benoît Lavaud [bourse Inria à l’étranger, Université de Tulsa, Oklahoma, États-Unis (jusqu’au 30/6)]
Doctorants

Clarisse Alboin [bourse Inria, Université de Paris 9]
Hend Ben Ameur [ENIT-LAMSIN, Tunis et Inria]
Jean-Marc Cognet [bourse Inria, Université de Paris 9]
Xavier Jonsson [bourse Cifre Essilor, Université de Paris 6]
Elizabeth Karas [Université Santa Catarina, Florianopolis, Brésil (à partir du 1/8)]
Claire Leleu [bourse Ifremer, Université de Paris 9]
Katia Pinchedez [bourse Inria, Université de Paris 11]
Xuewen Wang [bourse Inria, Université de Paris 11]

Stagiaires

Christophe Lemuet [DEA, Université de Paris 6 (du 1/4 au 30/9)]
Georges-Luc Kalpaktchioglou [DEA, Université de Paris 6 (du 1/4 au 30/9)]

2 Présentation et objectifs généraux

La modélisation numérique des milieux hétérogènes nécessite la mise en œuvre d’un certain nombre de méthodes spécifiques.

Le premier exemple d’un tel milieu est le sous-sol. D’une part, on cherche à réaliser des images de sa structure par des méthodes sismiques ou électromagnétiques ; ces problèmes sont par essence des problèmes d’estimation de paramètres. D’autre part, on modélise numériquement divers types d’écoulements en milieu poreux : transport de contaminants pour les problèmes d’environnement, ou déplacements d’hydrocarbures pour l’ingénierie pétrolière.

Le cœur d’un réacteur nucléaire est un autre exemple de milieu hétérogène. Dans ce cas, on étudie son comportement neutronique.

Tous ces problèmes ont une physique compliquée et des techniques appropriées doivent être utilisées pour les modéliser numériquement. De plus, les milieux étudiés sont difficiles d’accès et l’estimation de paramètres joue donc un rôle essentiel dans leur modélisation.

S’appuyant sur l’expertise de ses membres concernant les méthodes numériques et les aspects théoriques et pratiques de l’identification, le projet Estime a pour objectif de mettre au point des méthodes à la fois efficaces et précises pour la résolution des problèmes mentionnés ci-dessus.

Les travaux de l’équipe sont centrés sur les domaines d’applications suivants:

– l’inversion sismique,

– la modélisation numérique des écoulements de fluides en milieu poreux, avec applications aux problèmes d’environnement ou à la simulation de réservoirs pétroliers,
– la modélisation numérique en neutronique,

Quelques autres applications comme l’optimisation de la forme de verres de lunettes sont aussi considérées.

La plupart de ces applications nécessitent de grandes ressources de calcul, et fournissent des exemples naturels pour utiliser le calcul parallèle. Le projet s’intéresse donc aux aspects algorithmiques (décomposition de domaines), ainsi qu’à la mise en œuvre effective de ces méthodes sur divers calculateurs parallèles.

Une autre caractéristique de beaucoup de ces problèmes, notamment en estimation de paramètres, est d’aboutir à une formulation sous forme de problèmes d’optimisation : on cherche à minimiser un critère sous diverses contraintes s’exprimant le plus souvent sous la forme de relations (égalités et inégalités) que doivent vérifier les variables à optimiser. Le projet cherche donc aussi à développer les techniques d’optimisation numérique pour les problèmes de grande taille. Sur ces questions, le projet collabore avec les projets Numopt (UR Rhônes-Alpes), notamment en ce qui concerne le développement de la bibliothèque MODULOFT.

3 Fondements scientifiques

3.1 Problèmes inverses

Mots clés : problème inverse, estimation de paramètre, moindres carrés.

Glossaire :

Problème mal posé Problème dont la solution n’existe pas, ou si elle existe, n’est pas unique ou ne dépend pas de façon continue des données

Moindres carrés On cherche à minimiser l’erreur quadratique entre les mesures réelles et les quantités correspondantes calculées par le modèle pour divers jeux de paramètres

Résumé: Un problème inverse, ou d’estimation de paramètres, consiste à rechercher les coefficients d’une équation aux dérivées partielles, à partir de mesures sur sa solution. Une formulation aux moindres carrés utilisant les techniques de contrôle optimal est une façon naturelle de poser ce problème.

Les problèmes inverses sont typiquement mal posés, ce qui donne une grande importance à leur formulation. D’autres difficultés spécifiques sont dues à la grande taille des problèmes rencontrés, au calcul exact du gradient de la fonction coût, au choix de la paramétrisation, ainsi qu’aux questions théoriques liées à l’identifiabilité.

3.1.1 D’où proviennent les problèmes inverses

Considérant une équation aux dérivées partielles ou un système de telles équations, le problème direct consiste à calculer la solution, connaissant les coefficients et les termes sources. Cependant, ces coefficients et ces termes sources sont souvent mal connus. Pour terminer la modélisation, il faut donc encore résoudre le problème inverse : étant données des mesures sur une observation de la solution, calculer une estimation des coefficients et/ou des termes sources de l’équation ou du système d’équations considéré.
La classe de problèmes considérés actuellement porte essentiellement sur l’estimation de coefficients. Ceux-ci peuvent dépendre soit de la variable d’espace, soit du temps, soit être des fonctions de la solution (non-linéarités de l’équation). Le problème d’estimation de paramètres est formulé comme un problème de minimisation au sens des moindres carrés, la variable de minimisation étant le vecteur des paramètres à estimer, et la fonction à minimiser étant une évaluation en norme L^2 de la différence entre l’observation calculée par le modèle avec un jeu donné de paramètres et celle mesurée effectivement. Dans les problèmes abordés le nombre de paramètres sera grand (d’une vingtaine à un million), ce qui conduit à l’utilisation pour l’optimisation de méthodes itératives de type gradient utilisant l’état adjoint.

3.1.2 Difficultés des problèmes inverses

Les problèmes inverses, tels qu’ils viennent d’être rapidement décrits, présentent de nombreuses difficultés liées à leur non-linéarité, à leur taille, au fait qu’ils sont très gourmands en temps de calcul et qu’ils sont souvent mal posés. Ils se formulent comme des problèmes d’optimisation, souvent de grande taille.

Depuis les travaux de J.-L. Lions et de G. Chavent au début des années 70 montrant comment résoudre les problèmes d’estimation de coefficients par les techniques de contrôle optimal, le savoir-faire a considérablement évolué et on peut aujourd’hui identifier les directions de recherche suivantes comme essentielles :

- **Choix de la formulation** : suivant la façon dont est formulé le problème inverse—choix des paramètres à estimer, choix de la fonctionnelle à minimiser—le problème de minimisation associé est plus ou moins bien posé. Une bonne compréhension du problème physique est nécessaire pour faire les bons choix.

- **Choix de la paramétrisation** : c’est souvent un problème non trivial de choisir la représentation discrète des paramètres à estimer. Ce choix a aussi une influence sur le conditionnement du problème de minimisation associé et sur l’unimodalité de la fonction coût, comme l’a montré le succès des paramétrisations multi-échelles.

- **Génération automatique de logiciels** : l’écriture de programmes calculant le gradient par la méthode de l’état adjoint est toujours longue et laborieuse, alors que cette procédure pourrait être automatisée. Deux voies, s’appliquant à des situations différentes sont possibles : génération automatique simultanée des programmes de calcul de la fonction à minimiser et de son gradient—aussi le programme Grad écrit en Maple et développé au sein de Ident et Estime—, ou génération du seul programme de calcul du gradient à partir d’un programme déjà existant de calcul de la fonction à minimiser—voie choisie par exemple par Odysée développé au sein du projet Safir. Cette deuxième voie s’impose quand de gros programmes de calcul existent déjà, alors que la première est plus adaptée quand le simulateur peut être réécrit.

- **Efficacité dans la résolution du problème direct** : dans les problèmes que nous considérons la résolution du problème direct est très coûteuse. On doit donc chercher à améliorer les techniques de résolution de ce problème—amélioration des méthodes numériques, utilisation du parallélisme—ou à utiliser des modèles simplifiés. Une partie de ce travail...
est fait en dehors du projet (par exemple dans le projet Ondes pour la sismique, et dans le projet Aladin pour l’algèbre linéaire).

- Identifiabilité : la question se pose toujours, de façon théorique et pratique, de savoir si les mesures sont suffisantes pour estimer les paramètres que l’on cherche, et comment l’incertitude sur les mesures se répercute sur les paramètres estimés. Les questions de stabilité et d’identifiabilité sont donc au cœur de l’estimation de paramètres et sont intimement liées au choix de la paramétrisation.

- Optimisation : les problèmes inverses se ramenant à des problèmes d’optimisation, il est nécessaire d’avoir à sa disposition des méthodes d’optimisation efficaces adaptées aux difficultés de ses problèmes, en particulier non-linéarité, grande taille, coût important de la fonction à minimiser.

3.2 Méthodes numériques pour les équations aux dérivées partielles

Mots clés : élément fini, volume fini, calcul parallèle, décomposition de domaine.

Glossaire :

Décomposition de domaine Technique de résolution d’un problème qui consiste à partitionner son domaine de définition en plusieurs sous-domaines.

MPI, Message Passing Interface Spécification d’une bibliothèque standard permettant de faire communiquer des processus s’exécutant sur des processeurs différents d’une machine parallèle.

Résumé : Les méthodes de discrétisation appropriées pour les problèmes en milieu hétérogène sont les volumes finis centrés sur les mailles et les éléments finis mixtes ou mixtes-hybrides. Les méthodes de décomposition de domaine sans recouvrement permettent de décomposer le domaine de calcul en sous-domaines sur lesquels sont définis des modèles physiques différents. La mise en œuvre parallèle est une nécessité pour les problèmes de grande taille.

3.2.1 Éléments finis et volumes finis

Les méthodes de volumes finis centrés sur les mailles sont particulièrement adaptées aux problèmes où les coefficients varient beaucoup. C’est le cas, en particulier, des problèmes concernant les écoulements en milieu poreux. Ainsi la composante normale vitesse de Darcy, \(\bar{v} = -K \nabla \bar{P} \), reste régulière même lorsque la perméabilité absolue \(K \) varie beaucoup, pour satisfaire les propriétés de conservation des différents fluides (phases). Cette situation se retrouve dans d’autres applications comme la diffusion neutronique ou les semi-conducteurs. En utilisant les moyennes harmoniques de \(K \), les méthodes de volumes finis centrés sur les mailles permettent d’obtenir de bonnes approximations de la vitesse de Darcy, même lorsque \(K \) varie beaucoup, tout en respectant les propriétés de conservation au niveau de la maille de discrétisation.

Les méthodes d’éléments finis mixtes sont une généralisation de ces méthodes de volumes finis centrés sur les mailles qui, s’appuyant sur des formulations variationnelles, ont permis de
traiter le cas des maillages non-structurés utilisant des mailles triangulaires ou tétraédriques. Les éléments finis mixtes ont permis aussi de traiter le cas où K n’est plus ni un coefficient scalaire ni même une matrice diagonale, mais une matrice pleine en dimension 2 ou 3. Cependant ces méthodes sont plus coûteuses que les méthodes de volumes finis puisqu’il faut résoudre un système linéaire pour déduire la vitesse \vec{u} de la pression P. De plus, étant plus abstraites car basées sur la formulation variationnelle, ces méthodes ont moins d’attrait pour les physiciens.

Une direction de recherche promise explorée actuellement consiste à chercher des transformations algébriques permettant de calculer une approximation mixte en utilisant seulement des inconnues de type volume fini, ce qui permet de concilier la souplesse de l’approximation mixte et l’efficacité numérique des volumes finis (voir [18] pour un premier résultat).

3.2.2 Décomposition de domaines

Les méthodes de décomposition de domaines peuvent être utilisées en vue d’une implémentation parallèle efficace, mais elles peuvent être aussi un outil pour assembler des domaines dans lesquels des modèles physiques différents doivent être utilisés.

Pour les écoulements finis en milieux poreux, on peut être ainsi amené à utiliser un modèle monophasique dans une partie du domaine qui est saturée, un modèle diphasique ou triphasique dans une région qui est non-saturée, un modèle double porosité là où le milieu est fracturé, et des failles peuvent traverser le milieu. Parfois, même si le modèle ne change pas, une variation brusque du milieu—changement de type de roche—introduit des conditions de transmission non-standard sur l’interface.

Pour ce genre de problèmes, les méthodes de décomposition de domaine sans recouvrement sont appropriées. Elles permettent de faire coïncider les sous-domaines de calcul avec les sous-domaines physiques. Évidemment, ces méthodes doivent pouvoir utiliser des pas de temps locaux car les échelles de temps associées aux différents sous-domaines peuvent varier beaucoup.

3.2.3 Calcul parallèle

Comme cela a été souligné plus haut, aussi bien les problèmes inverses que la modélisation en milieu poreux sont de gros consommateurs de calcul. Il est donc naturel de se tourner vers les techniques utilisant le calcul parallèle, tant pour réduire le temps de calcul, que pour accéder à une mémoire plus importante.

Une classe de méthodes générales pour obtenir des algorithmes parallèles pour la résolution d’équations aux dérivées partielles sont les méthodes de décomposition de domaine. Ces méthodes ont été étudiées de façon intensive dans le cas des problèmes elliptiques. Elles constituent actuellement le moyen le plus général d’obtenir des applications portables et efficaces sur une large gamme d’ordinateurs parallèles. Leur mise en œuvre effective est facilitée par l’existence de bibliothèques telles que MPI. Nous étudions des extensions de leur champ d’application dans différentes directions :

- Pour la simulation d’écoulements en milieu poreux. Il s’agit d’adapter la méthode à des problèmes avec des conditions de raccord non-standards sur l’interface, par exemple conditions de discontinuité, conditions non-linéaires, conditions non-locales.
– Pour le calcul de criticité dans les réacteurs nucléaires qui se formule comme un problème aux valeurs propres non-symétrique. Nous proposons d’étendre à ce problème la méthode de synthèse modale qui n’a été utilisée jusqu’ici que dans le cas d’opérateurs symétriques.

– Pour la propagation des ondes par des méthodes d’éléments finis. L’utilisation des éléments d’ordre élevés développés au sein du projet Ondes conduit à une méthode explicite pour laquelle la mise en œuvre est plus simple que pour les problèmes stationnaires.

3.3 Méthodes numériques en optimisation

Mots clés : optimisation sous contraintes, algorithme de points intérieurs, algorithme de quasi-Newton, différentiation automatique.

Glossaire :

Algorithmes de points intérieurs Méthodes numériques d’optimisation adaptées à la résolution des problèmes soumis à un grand nombre de contraintes d’inégalité. Dans cette approche, les itérés sont maintenus dans l’intérieur du domaine admissible. On les qualifie de non-linéaires s’ils sont conçus pour résoudre des problèmes non linéaires.

Dérivation automatique Méthodes numériques et informatiques permettant de générer un programme calculant en un point les dérivées d’une fonction qui n’est connue que par la donnée d’un autre programme informatique.

Les problèmes inverses ou d’estimation de paramètres considérés dans le projet Estime se formulent en général comme des problèmes d’optimisation d’une fonctionnelle de moindres carrés. C’est pourquoi il existe dans le projet une activité de recherche dans le domaine de l’optimisation.

On s’intéresse ici aux méthodes numériques pour résoudre les problèmes qui reviennent à minimiser un critère scalaire $x \in \mathbb{R}^n \mapsto f(x) \in \mathbb{R}$, les variables à optimiser x devant éventuellement vérifier des contraintes d’égalité $c_E(x) = 0$ et d’inégalité $c_I(x) \leq 0$, où $c_E : \mathbb{R}^n \to \mathbb{R}^{m_E}$ et $c_I : \mathbb{R}^n \to \mathbb{R}^{m_I}$. Nous nous plaçons dans le contexte de l’optimisation différentiable, où les fonctions f, c_E et c_I sont régulières, par exemple de classe C^1.

3.3.1 Algorithmes de points intérieurs non-linéaires

Les méthodes de points intérieurs (PI) sont récemment apparues comme pouvant offrir une approche intéressante pour résoudre des problèmes d’optimisation non-linéaires. Ces méthodes ont été introduites au milieu des années 80 en optimisation linéaire (minimisation d’un critère linéaire sous des contraintes affines). Elles ont donné lieu à de nombreuses études après qu’à la suite des travaux de Karmarkar on ait montré qu’elles pouvaient être beaucoup plus efficaces que l’algorithme du simplexe jusqu’alors utilisé, notamment lorsqu’il y a un grand nombre de contraintes d’inégalité. Les algorithmes adaptés à l’optimisation linéaire sont à présent assez bien stabilisés.
Les succès remportés par les méthodes de PI en optimisation linéaire avec un grand nombre de contraintes ont conduit de nombreux chercheurs à étendre les concepts de base de l’approche à d’autres types de problèmes d’optimisation. Ces dernières années, d’importants efforts ont été fournis pour développer ces techniques en optimisation semi-définie positive (critère linéaire et contraintes de semi-définie positivité sur la valeur matricielle prise par une application affine des inconnues), en optimisation sous contraintes coniques (généralisation du problème précédent), en optimisation convexe, etc.

L’application de l’approche PI aux problèmes d’optimisation non-linéaires généraux est plus récente et constitue une part importante de nos recherches. Ces problèmes sont très difficiles à résoudre, du fait des contraintes d’inégalité, parce que l’on ne sait pas à l’avance quelles vont être les contraintes c_i ($i \in I$) qui seront nulles (on dit actives) en la solution. L’approche par PI repousse astucieusement « à l’infini » cette difficulté liée au choix des contraintes actives, en introduisant un paramètre $\mu > 0$ perturbant les conditions d’optimalité du problème. On fait tendre celui-ci progressivement vers zéro, pour forcer les itérés à se rapprocher de la solution. C’est cette technique qui permet de maîtriser la combinatorie intrinsèque de ces problèmes, liée à la détermination des contraintes actives.

L’action coopérative OPINeL lancée en 1997 est liée à ce thème de recherche. Elle a pour but d’étudier et de contribuer à l’amélioration des méthodes de PI pour résoudre efficacement les problèmes d’optimisation non-linéaires généraux et de tester les algorithmes proposés sur diverses applications.

3.3.2 Autres méthodes numériques

Dans la résolution des grands problèmes, le calcul des dérivées premières et secondes reste une difficulté importante, malgré les progrès réalisés en différentiation automatique. En optimisation, les *méthodes quasi-Newton* ont été conçues pour permettre de construire une approximation d’un hessien à partir de gradients calculés en divers points. On comprend bien en effet que la variation du gradient lorsque l’on passe d’un itéré à l’autre donne de l’information sur les dérivées secondes. Cette technique qui s’est beaucoup développée dans les années 70 et 80 continue à être étudiée pour s’appliquer à des contextes particuliers ou nouveaux. Citons :

- l’optimisation sur les variétés,
- les méthodes de points intérieurs,
- les problèmes de moindres-carrés non linéaires (pour approcher les dérivées secondes des résidus et accélérer ainsi l’algorithme de Gauss-Newton),
- génération dynamique de préconditionneurs quasi-newtoniens dans la résolution de systèmes linéaires en cascade.

Avec la *différentiation automatique*, on cherche au contraire à mettre à la disposition du numérique des outils lui permettant de calculer les dérivées, en principe d’ordre quelconque, d’une fonction qui n’est connue que par un programme informatique. On distingue un mode direct et un mode inverse de différentiation. Le *mode direct* est bien adapté au calcul des dérivées directionnelles d’une fonction à valeurs vectorielles. Le *mode inverse* peut être vu
comme une automatisation de la technique de l’état adjoint. Il permet de calculer toutes les dérivées partielles formant le gradient d’une fonction à valeurs scalaires en un temps qui est du même ordre que celui nécessaire au calcul de la fonction. Il est donc intéressant en optimisation où le gradient est l’objet numérique de base.

4 Domaines d’applications

4.1 Inversion sismique

Participants : Guy Chavent, François Clément, Michel Kern, Jean-Marc Cognet, Benoît Lavaud, Claire Leleu.

Mots clés : sismique, problème inverse, migration.

Glossaire :

MBTT, Migration-Based TravelTime Nom de la méthode d’inversion sismique développée à l’Inria-Rocquencourt. Après séparation des propriétés de propagation et de réflexion dans les paramètres recherchés, la méthode MBTT consiste essentiellement en l’introduction d’une inconnue de réflectivité en temps de parcours reliée à la réflectivité en profondeur par une étape de migration.

Migration Opération consistant à estimer une image de la réflectivité en profondeur du sous-sol à partir des données de sismiques-réflexion en réalisant une inversion linéaire approchée de l’équation des ondes. Elle dépend d’une hypothèse sur le propagateur dans le milieu.

Propagateur Inconnue représentant la partie lisse du paramètre vitesse de propagation des ondes, c’est-à-dire ses composantes basses fréquences spatiales.

Résumé : Les recherches du projet ont pour but d’automatiser autant que possible l’inversion sismique. Elles sont fondées sur la méthode MBTT associée à différents modèles de propagation : équation des ondes acoustiques, approximation paraxiale, méthode de rayons.

L’inversion sismique consiste à construire une image du sous-sol à partir de la mesure en surface de la réponse de ce sous-sol à des ébranlements sismiques. Ces réponses représentent la réflexion des ondes sismiques sur les interfaces entre les couches géologiques (réflecteurs).

L’état actuel de l’art de l’ingénieur consiste à faire une inversion « manuelle » des données sismiques, manuelle signifiant simplement qu’il n’y a pas d’algorithme conduisant automatiquement à la solution du problème inverse. Par ailleurs, il est certain que ces méthodes rencontrent de grandes difficultés quand la géométrie est compliquée ou dans le cas des fonds marins (problème des réflexions multiples).

L’inversion de données sismiques est a priori un cas particulier d’estimation de paramètres dans une équation aux dérivées partielles : il s’agit d’estimer la vitesse du milieu en chaque point du sous-sol, ce qui donne ainsi l’image cherchée de ce sous-sol. Mais, à la différence de nombre de problèmes d’estimation de paramètres, dans la pratique, l’inversion sismique n’est pas en général un problème mal posé au sens habituel, car les données sont extrêmement redondantes. En effet, une fois que l’on a fait une hypothèse sur la vitesse avec laquelle les ondes acoustiques
se propagent dans le sous-sol, en utilisant un opérateur de migration, les données enregistrées pour chaque tir permettent d’obtenir une image stable du sous-sol, mais limitée à la zone illuminée par le tir considéré. Ces images ne sont acceptables que si elles se superposent bien d’un tir à l’autre, ce qui n’a lieu que si l’hypothèse faite au départ sur la vitesse est correcte. C’est la détermination de cette « vitesse de migration » qui constitue la difficulté principale de l’inversion sismique : il s’agit d’arriver à mettre en cohérence les nombreuses images complexes du sous-sol obtenues à partir d’une campagne sismique pouvant comporter plusieurs centaines de tirs.

Un premier axe de recherche du projet consiste donc à construire des opérateurs de migration, les meilleurs possibles, pour des modélisations de plus en plus complexes (modélisation acoustique par Born+rais, puis par éléments finis, à un, puis deux paramètres de réflectivité inconnus). Cet axe est développé en collaboration avec des équipes de l’Ifremer à Brest (Y.-H. De Roeck) et de l’Institut Liapunov à Novossibirsk (V. Tcheverda, V. Khaidukov et V. Kostin).

La formulation standard par moindres carrés est inefficace pour la détermination d’une vitesse de migration satisfaisante car de nombreux minima locaux rendent impossible la détermination du minimum global par des méthodes d’optimisation locales. Le nombre d’inconnues déterminant (la partie lisse de) la vitesse (quelques centaines à quelques milliers) et le coût d’une évaluation du critère (qui nécessite la résolution d’une équation des ondes par tir) limitent beaucoup l’intérêt des algorithmes d’optimisation globale. On est donc conduit à chercher des reformulations du problème susceptibles d’être résolues par des méthodes d’optimisation locales. Un exemple en est la formulation MBTT (Migration-Based TravelTime) développée dans le projet Ident. Les résultats obtenus avec cette formulation par F. Clément, R.-E. Plessix et B. Lavaud sont extrêmement encourageants. Ils montrent un élargissement spectaculaire du domaine d’attraction du minimum global. Ces résultats demandent à être confirmés maintenant sur des exemples de plus en plus complexes.

Un deuxième axe de recherche consistera donc à exploiter les possibilités ouvertes par ces travaux, l’objectif étant d’arriver à des méthodologies capables d’inverser des données réelles sismiques complexes par des méthodes nécessitant le minimum d’intervention humaine.

Ces deux axes de recherche ont été soutenus depuis 1995 par l’industrie pétrolière sous la forme du consortium SIGMA. Malheureusement les concentrations intervenues récemment dans ce milieu (acquisition d’Amoco par BP et d’Elf par Total Fina) ont amené à arrêter ce consortium début 1999. De nouvelles formes de collaborations sont recherchées pour l’avenir.

4.2 Imagerie cérébrale

Participants : François Clément, Jacques Henry¹, Jean Roberts².

Menée conjointement avec les projets Robotvis et Ondes dans le cadre de l’Action Coopérative 3D-MEG³, l’imagerie cérébrale est un nouveau domaine d’application du projet, qui sera plus amplement détaillé dans les prochains rapports d’activité.

¹. Projet Ondes
². Projet Ondes
³. [http://cermics.enpc.fr/~keriven/3dme/]
L'idée directrice est d'adapter les techniques issues du contrôle optimal développées pour l'inversion sismique : en particulier la minimisation par optimisation locale d'une fonctionnelle d'écart aux données dont le gradient est calculé par état adjoint.

Le problème inverse consiste ici à retrouver les densités de courant qui sont à l'origine de l'activité électromagnétique du cerveau. Il est alors très important de régulariser ce paramètre en en préservant les discontinuités, ainsi que de le contraindre de manière « raisonnable » anatomiquement à partir d'imagerie par résonance magnétique (IRM).

4.3 Ecoulement et transport en milieu poreux pour les problèmes d'environnement

Mots clés : écoulement en milieu poreux, hydrogéologie, pollution, environnement, simulation de réservoir pétrolier, élément fini, volume fini, décomposition de domaine, problème inverse.

Résumé : Les problèmes d’hydrogéologie sont des problèmes d’écoulement en milieu poreux dont la physique peut être très compliquée. L’objectif du projet est la mise au point de techniques performantes pour de tels problèmes, en particulier des méthodes basées sur les éléments finis mixtes et la décomposition de domaine sans recouvrement. Les problèmes d’estimation de paramètres sont aussi très importants car on n’a accès à la connaissance du sous-sol que très localement.

La création récente du projet Estime correspond à un redémarrage de la modélisation numérique d’écoulements en milieu poreux en privilégiant les problèmes d’environnement, alors que dans le passé, l’accent avait été surtout mis sur les problèmes de réservoirs pétroliers.

Notre recherche dans ce domaine est orientée principalement suivant trois directions. Une première direction concerne la mise au point de techniques numériques performantes pour traiter des problèmes à la physique de plus en plus compliquée. Vu le caractère hétérogène du sous-sol, il s’agit d’associer domaines de calcul et régions homogènes et de coupler l’ensemble grâce aux méthodes de décomposition de domaines, avec éventuellement utilisation d’éléments joints quand les maillages ne se raccordent pas. Une deuxième direction concerne la modélisation des milieux fracturés. Ces deux sujets font l’objet d’une collaboration avec J. Roberts du projet Ondes. Enfin nous mentionnerons comme troisième direction de recherche le problème de l’estimation des coefficients apparaissant dans les modèles : perméabilité absolue, perméabilités relatives, pression capillaire à partir des mesures disponibles.

Sur la modélisation directe comme sur les problèmes inverses une collaboration suivie existe avec P. Ackerer et R. Mosé de l’Institut de Mécanique des Fluides de l’Université Louis Pasteur à Strasbourg.

4. Projet Ondes
4.3.1 Transport de radionucléides autour d’un site de stockage profond

Un projet à long terme consiste à construire un modèle numérique du déplacement des radionucléides dans le sous-sol autour d’un site de stockage profond de déchets nucléaires dans le cadre d’études dirigées par l’Andra (Agence Nationale pour les Déchets Radioactifs, J. Jaffré fait partie de son Conseil Scientifique). Le déplacement est de type miscible (une seule phase) car les radionucléides sont dissous dans l’eau. Cela conduit à un système couplé de plusieurs équations de type diffusion-convection, modélisant le transport de chacun des radionucléides, et d’une équation elliptique, calculant le champ des vitesses de Darcy. Évidemment, le milieu considéré n’est pas homogène et est en fait composé de diverses couches géologiques. De plus, il faut prendre en compte la présence de fractures qui sont, dans les cas qui nous intéressent, des milieux poreux bidimensionnels de grande perméabilité. Si ces fractures ne sont pas trop nombreuses, on les modélisera individuellement. Lorsqu’elles sont trop nombreuses on doit avoir recours à des modèles appropriés (modèles à double porosité par exemple).

Les méthodes de décomposition de domaines sans recouvrement sont pour nous surtout un moyen de coupler les modèles différents utilisés dans les différentes parties du domaine, y compris les fractures les plus grandes. Elles doivent être associées aux méthodes d’éléments joints pour permettre d’associer entre eux des sous-domaines dont les maillages ne se raccordent pas. Enfin, les échelles de temps pouvant être très différentes suivant les sous-domaines, les techniques de pas de temps locaux doivent être utilisées. Rappelons à ce propos que l’ordre de grandeur de la durée d’une simulation pour le problème considéré est la dizaine de milliers d’années.

4.3.2 Déplacements diphasiques

Malgré sa relative simplicité physique, le modèle des déplacements diphasiques en milieu poreux reste un problème modèle très intéressant. Dans le cas incompressible, il se ramène à une équation de diffusion-convection non-linéaire dont le terme de diffusion dégénère couplée à une équation elliptique.

On s’intéresse au cas d’un milieu hétérogène où les hétérogénéités se traduisent par des discontinuités dans les non-linéarités du système au passage d’un type de roche à l’autre. Cependant certaines quantités restent continues (composante normale des vitesses de Darcy et pression de chacune des phases, pression capillaire) alors que d’autres sont discontinues (saturation et pression globale). Cela conduit naturellement à l’utilisation de techniques de décomposition de domaines sans recouvrement non-linéaires et avec des conditions aux interfaces non-standards.

Pour la discrétisation, les méthodes de volumes finis basées sur les éléments finis discontinus et les éléments finis mixtes-hybrides sont particulièrement appropriées. Dans ce cadre, on utilisera des méthodes de décomposition de domaine sans recouvrement. Là encore, on étudiera l’utilisation de pas de temps locaux appropriés à la physique des différents domaines. Les techniques étudiées devront être assez robustes pour permettre le passage au cas limite sans diffusion capillaire.
4.3.3 Identification de conductivités hydrauliques dans un aquifère

Comme il n’est pas possible d’avoir une connaissance directe des conductivités hydrauliques dans un milieu saturé en eau, il est nécessaire de les estimer à partir des mesures piézométriques disponibles en un certain nombre de puits. Il s’agit en fait de l’estimation du coefficient de diffusion dans une équation parabolique. On utilise pour cela une méthode de moindres carrés.

Cependant, d’une part le nombre de mesures est très insuffisant pour estimer une valeur de conductivité par maille, mais d’autre part ce coefficient est en réalité constant par zone en raison de la géologie, les zones n’étant pas connues. Pour en tenir compte, différentes approches sont possibles. Par exemple, on peut régulariser la fonction à minimiser par la norme L^1 du gradient du paramètre à estimer, comme cela a été proposé par K. Kunisch. Des techniques semblables sont utilisées en traitement d’images. Une autre façon de procéder consiste à utiliser des indicateurs de raffinement introduits par G. Chavent et qui permettraient de découper le domaine en zones où les paramètres sont constants. Ces indicateurs sont calculés à partir du gradient de la fonction à minimiser dépendant d’un paramètre par maille de discrétisation, ce gradient étant calculé par la méthode de l’état adjoint.

4.4 Quelques applications de l’optimisation

Participants : Laurent Chauvier, Jean-Charles Gilbert, Xavier Jonsson.

Mots clés : commande optimale, optimisation de forme.

Les applications de l’optimisation sont nombreuses, variées et constamment renouvelées. La démarche est souvent la suivante. Au départ, le modèle décrit une situation où il s’agit de déterminer un ensemble de paramètres de manière à minimiser un critère. Le plus souvent il s’agit de modèles en dimension infinie. Après discrétisation (en espace et/ou en temps), on se ramène à un problème d’optimisation avec contraintes, en dimension finie, de forme standard.

Outre les problèmes d’estimation de paramètres déjà mentionnés (en sismique et pour les écoulements en milieu poreux), on présente ici trois autres applications en cours d’étude.

4.4.1 Commande optimale d’un engin immergé tracté au bout d’un câble

Le problème est celui de la commande optimale d’un engin sous-marin fixé à l’extrémité d’un câble et remorqué par un navire. Un treuil permet d’enrouler ou de dérouler le câble de manière à faciliter les manœuvres. Ce système est utilisé pour explorer les fonds sous-marins ; la longueur du câble peut donc atteindre plusieurs milliers de mètres. Plus précisément, il s’agit de déterminer une trajectoire du navire amenant le système câble-englout d’une position donnée à une autre, en un temps minimal et en respectant diverses contraintes (évitement d’obstacles, borne sur la tension dans le câble, etc...). Ce travail a été proposé par l’Ifremer (Brest).

Par discrétisation, on transforme ce problème de commande optimale avec contraintes d’inégalité sur l’état en un problème d’optimisation non linéaire de dimension finie écrit sous forme standard. Le nombre de pas de temps étant fixé, il s’agit de minimiser la durée de ceux-ci. Sa résolution s’appuie sur un algorithme de points intérieurs (voir section 3.3.1).

4.4.2 Conception optimale de verres ophtalmiques

Pour concevoir des verres ophtalmiques progressifs destinés à corriger la presbytie, on est amené à déterminer les surfaces du verre de manière à obtenir des propriétés de correction de vision adaptées à un porteur donné (puissance du verre pour la vision de près et de loin, correction de l’astigmatisme, etc...), tout en minimisant certaines aberrations dues entre autres à l’épaisseur du verre et à l’indice du matériau. Cela conduit généralement à un problème de moindres carrés non linéaire où l’on cherche à minimiser les écarts entre des grandeurs de nature géométrique ou optique évaluées en certains points de la surface progressive, et celles souhaitées pour le verre optimisé.

Dans ce travail, proposé par Essilor (Saint-Maur-des-Fossés), nous cherchons à déterminer comment les techniques d’optimisation avec contraintes peuvent simplifier la phase de conception d’un verre progressif et améliorer les propriétés optiques des verres.

5 Résultats nouveaux

5.1 Ecoulements en milieu poreux

Mots clés : fractures, double porosité, décomposition de domaine, problème inverse.

5.1.1 Transport de contaminantss en milieu poreux fracturé

Deux échelles de fracturation sont étudiées : les «petites fractures» (métriques), nombreuses et interconnectées, pour lesquelles on considère un modèle double porosité, et les fractures plus importantes (hectométriques et kilométriques), modélisées individuellement, et dont le couplage avec le reste du milieu poreux est traité par décomposition de domaine.

Concernant le modèle de double porosité, il consiste en une équation en concentration dans un milieu poreux équivalent à laquelle est ajouté un terme de couplage prenant en compte les échanges entre fractures et matrices (milieu entre les fractures). Nous avons exploré plusieurs

5. Projet Ondes
méthodes permettant d’approcher au mieux ce terme de couplage tout en limitant la quantité de calcul ainsi que la place mémoire occupée. Il s’avère que le calcul analytique du terme de couplage est plus approprié qu’un calcul faisant appel à des éléments finis, des volumes finis ou des méthodes spectrales.

Pour traiter les fractures plus importantes, dans la méthode de décomposition de domaine, les fractures sont considérées comme des interfaces qui supportent des conditions de transmission non-locales. De part et d’autre de l’interface, la pression et la concentration sont supposées continues mais les flux sont discontinus (contrairement à une décomposition de domaine classique). Cette année C. Alboin a étendu à une équation du transport de contaminant les techniques mises au point précédemment pour calculer l’écoulement. Nous représentons sur la figure (1) les variations de pression dans un domaine divisé en deux sous-domaines par une fracture. Les vecteurs représentent la vitesse de Darcy qui, comme on peut le constater, est plus forte dans la fracture. Sur la figure (2), on représente la concentration au cours du temps.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig1}
\caption{Pression et vitesse de Darcy}
\end{figure}

On constate que la fracture est drainante mais que peu à peu la concentration s’équilibre entre

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig2}
\caption{Concentration dans les sous-domaines et la fracture}
\end{figure}

la fracture et les sous-domaines pour atteindre un régime stationnaire.
5.1.2 Écoulements diphasiques

Poursuivant ses travaux sur la décomposition de domaines pour des écoulements avec deux types de roche, X. Wang a montré que le schéma semi-implicite utilisé pour traiter la diffusion capillaire donnait lieu à un problème bien posé numériquement.

Par ailleurs un nouvel exemple a été traité pour pouvoir comparer les résultats obtenus par notre méthode avec ceux obtenus par des collègues du CWI.

5.1.3 Eléments finis mixtes et volumes finis

Les éléments finis mixtes de “Raviart-Thomas” de plus bas degré sur des triangles fournissent une méthode de choix pour la simulation de transports de contaminants dans les milieux poreux bidimensionnels. C’est ainsi qu’une reformulation “volumes finis” de cette approximation a été développée, dans le cadre de la collaboration avec l’Institut de Mécanique des Fluides de Strasbourg (voir [8] et [7]). Il s’agit là d’un résultat très attendu, qui permet de concilier la piction de l’approximation mixte avec l’efficacité des méthodes de volume fini, lié à leur faible nombre d’inconnues (une par maille). L’analyse mathématique de cette reformulation a été effectuée à l’Inria cette année (voir [18]), ce qui a permis de montrer que le système d’équations volume fini obtenu était bien posé sous la seule condition que le maillage soit régulier, et suffisamment fin.

5.1.4 Paramétrisation Interactive

5.2 Inversion sismique

Participants : Guy Chavent, François Clément, Jean-Marc Cognet, Claire Leleu.

Mots clés : estimation de la vitesse, estimation de la source, formulation en temps, approximation paraxiale, lissage.

source. Le second axe de recherche a consisté en l’estimation du reste du sous-sol à partir des données réfléchies. L’exploration systématique à partir de différents profils de lenteur initiaux met en évidence (sur des données réelles cette fois) l’élargissement du domaine d’attraction du minimum global favorisé par la formulation MBTT par rapport à la formulation par moindres carrés classique (CLS), cf. Figure 3.

Fig. 3 – Inversion de données sismiques réelles par le code MBTT-FD. La minimisation du critère des moindres carrés est initialisée à différents profils de lenteur (en rouge). Les profils optimaux correspondants sont en bleu pour la formulation classique (CLS, à gauche) et en vert pour la formulation MBTT (à droite). La formulation classique est incapable de retrouver la partie régulière de la lenteur et il est alors difficile de décider de la bonne position du réflecteur aux alentours de 700 mètres. Par contre, pour la formulation MBTT, les profils optimaux sont quasiment tous confondus, sauf à partir du profil initial du bas, ce qui montre les limites de la méthode pour cet exemple.

J.-M. Cognet a poursuivi ses travaux de thèse sous la direction de G. Chavent, Y.-H. De Roeck et F. Clément, après une interruption de dix mois pour cause de service militaire (reprise à l’Inria le 15 septembre 1999). De nouvelles inversions ont été réalisées, à la fois sur données synthétiques et sur données réelles (données SMAVH recueillies par l’Ifremer). Dans les travaux précédents, le propagateur était supposé connu, et on recherchait la source et la réflexivité en temps. Les dernières inversions, ont permis de mettre au point (de manière pratique) un algorithme permettant de rechercher les trois paramètres. L’idée est de rechercher en premier le propagateur, en fixant la source égale à un Dirac, puis de rechercher les deux autres paramètres avec le propagateur ainsi retrouvé. Les résultats sur données synthétiques sont meilleurs lorsque le milieu possède de nombreux réflecteurs.

C. Leleu a poursuivi sa thèse, commencée en Novembre 1997, visant au traitement extensif des données de sismique Très Haute Résolution TriDimensionnelle (THR3D) sous la direction de G. Chavent, Y.-H. De Roeck et F. Clément. Le traitement des données tridimensionnelles réclame a priori des efforts d’implémentation, notamment pour la réduction du temps de calcul. Ainsi, dans un premier temps, nous avons déterminé les spécifications possibles à mettre en œuvre pour alléger les temps de calculs (élaboration d’un masque de réflexivité 3D, notamment). Après avoir implémenté en Fortran 90 le modèle direct tridimensionnel (simulation des trajets des ondes pour un domaine synthétique), calqué sur le modèle bidimensionnel, il
s’est avéré indispensable de reprendre la modélisation 2D qui révélait certaines imprécisions, notamment quant à la forme et à l’amplitude du signal propagé. De plus, il nous semblait indispensable d’étudier les paramétrisations idéales liées à la discrétisation du modèle, toujours dans un souci d’économie de temps de calculs. Ainsi, nous avons défini le modèle mathématique direct, qui a consisté en 2D comme en 3D, à calculer les solutions de l’équation des ondes acoustiques au travers de 2 approximations complémentaires : l’approximation de Born et l’approximation Haute Fréquence. Un soin particulier a été apporté à la prise en compte du terme source dans les solutions. Les choix des valeurs des paramétrisations de notre modèle ont été valides en 2D à l’aide de résultats numériques. L’implantation du « modèle adjoint » tridimensionnel, qui contribuera à l’inversion des données sismiques, vient de débuter récemment.

5.3 Méthodes numériques pour la simulation acoustique

Participants : François Clément, Michel Kern, Georges-Luc Kalpaktioglou, Christophe Lemuet, Fabrice Rouillier.

Mots clés : différences finies, éléments finis, conditions absorbantes, calcul formel.

Les travaux sur la simulation acoustique ont un volet « différences finies » et un volet « éléments finis ».

En ce qui concerne l’aspect différences finies, G.-L. Kalpaktioglou a effectué un stage portant sur l’écriture d’un code de simulation acoustique en Fortran 90 intégrant les techniques récentes de couches parfaitement adaptées (PML) pour traiter le problème des conditions aux frontières artificielles. L’écriture d’une version parallèle par passage de messages (bibliothèque MPI) a également été avancée.

En ce qui concerne l’aspect éléments finis, nous avons poursuivi l’étude des méthodes d’ordre élevé avec condensation de masse en 3D. Rappelons que pour obtenir une formule de quadrature permettant la condensation de masse (et donc l’utilisation de méthodes d’intégration en temps explicites), il faut rajouter des degrés de libertés aux éléments finis usuels. La détermination de l’élément lui-même est complexe, et fait appel à des techniques modernes de calcul formel.

En collaboration avec J.-C. Faugère (LIP 6) et F. Rouiller (Projet Polka), nous avons vérifié qu’il n’existe que deux éléments d’ordre 3, comportant chacun 50 degrés de libertés. Ce résultat confirme une conjecture numérique de W. Mulder. Il a fallu faire appel au logiciel spécialisé dans les calculs de base de Gröbner Fgb développé par J.-C. Faugère, et au logiciel RealSolving de F. Rouiller qui permet de compter exactement le nombre de racines réelles d’un système polynômial, et de les déterminer avec une précision arbitraire. L’un de ces éléments est représenté sur la figure 4.

Simultanément, le stage de C. Lemu et a consisté à implémenter l’élément fini d’ordre 2 (à 23 degrés de libertés) dans un code 3D. Les premiers résultats sont encourageants, mais le code reste encore à valider. Les difficultés sont en grande partie dues non au calcul lui-même mais à l’environnement : maillages et visualisation. Nous envisageons de paralléliser ce code sur le
modèle de ce que nous avions fait en 2D.

5.4 Méthodes numériques pour l'imagerie cérébrale

Participants : François Clément, Olivier Faugeras\(^7\).

Le modèle retenu pour la simulation de l'activité électromagnétique du cerveau consiste en une équation elliptique pour le potentiel électrique et en la loi de Biot et Savart pour le champ magnétique. Deux approches ont été retenues : l’approche volumique et l’approche surfacique. Cette dernière repose sur une approximation de constance par morceaux de la conductivité électrique à l’intérieur de la tête. Pour ces deux approches, nous avons établi, par la technique de l’état adjoint, le gradient de la fonctionnelle par rapport aux paramètres (densité de courant et conductivité électrique) dans le cas continu [21].

5.5 Algorithmes de points intérieurs non linéaires

Participants : Laurent Chauvier, Antonio Fuduli, Jean-Charles Gilbert, Elizabeth Karas.

L. Chauvier, J.-C. Gilbert et A. Fuduli (Université de la Calabre, Italie) ont réalisé une

\(^7\) Projet Robotvis
La première version du code d’optimisation OPINeL (dans le cadre de l’action incitative du même nom) a été destiné à résoudre des problèmes d’optimisation avec contraintes d’égalité et d’inégalité, avec une structure devant permettre à terme de prendre en compte les problèmes de commande optimale de grande taille. L’algorithme est décrit dans la thèse de L. Chauvier [2] et utilise une approche par points intérieurs et recherche linéaire. La version actuelle a donné de bons résultats sur les problèmes de la collection CUTE (comparaison faite avec le code NITRO de Byrd, Hribar et Noceval, qui utilise également une approche par points intérieurs, mais une globalisation par régions de confiance, ne s’adaptant pas aisément aux grands problèmes de commande optimale). Un rapport est en cours de rédaction.

Paul Armand (Univ. de Limoges), J.-C. Gilbert et Sophie Jan-Jégou (Univ. de Toulouse) ont poursuivi l’étude de l’utilisation des techniques quasi-newtoniennes dans le cadre des méthodes de points intérieurs en optimisation convexe. Ces techniques permettent de se passer du calcul des dérivées secondes des fonctions définissant le problème (utile pour les grands problèmes), tout en gardant une bonne vitesse de convergence. Comme nous l’avons mentionné ci-dessus, pour les algorithmes réalisables (itérés dans l’ensemble admissible à chaque itération), nous avons donné des conditions (complémentarité stricte et contrôle précis des conditions d’arrêt des itérations internes) pour que toute la suite des itérés primal-duaux externes converge vers l’unique centre analytique de l’ensemble primal-dual optimal [4]. Les algorithmes non réalisables (les itérés externes n’appartiennent plus nécessairement à l’ensemble admissible) est en cours d’étude.

5.6 Implémentation d’un différentiateur automatique sous Scilab

Participants : Xavier Jonsson, Serge Steer.

De nombreux outils de différentiation automatique existent pour des langages comme Fortran, C/C++, ADA, mais ils supposent tous de la part de l’utilisateur une bonne connaissance de la programmation. Notre but est de permettre à un utilisateur de Scilab, de pouvoir utiliser ces techniques, à moindre coût (sans se plonger dans la littérature du sujet) et de manière transparente (sans écrire une seule ligne de code supplémentaire). Nous avons réalisé deux outils permettant de différencier les routines Scilab.

Le premier outil est une implémentation du mode direct, lequel évalue des dérivées directionnelles du premier ordre d’une fonction. Notre implémentation est construite au moyen de la surcharge des opérateurs et des fonctions de base de Scilab. Les premiers tests ont montré qu’un rapport de 4 entre le temps de calcul des dérivées directionnelles et celui de la fonction
pouvait être atteint, ce qui correspond à la borne maximale pour des codes écrit en Fortran. Nous poursuivons nos investigations sur ces questions de complexité.

Le second outil, est une implémentation du mode inverse, permettant donc l’évaluation efficace des gradients d’une fonction. Cet outil est encore en phase de développement puisqu’il ne traite que des fonctions mono-bloc (sans instruction conditionnelle) et ne contenant pas d’appel à d’autres procédures. À la différence du mode direct, nous avons écrit un générateur de code adjoint, qui produit du code Scilab calculant à la fois la valeur de la fonction et de sa dérivée. Notre générateur est fondé sur un ensemble de routines permettant la traduction des routines Matlab en routines Scilab.

6 Contrats industriels (nationaux, européens et internationaux)

6.1 Le consortium Sigma

Participants : Guy Chavent, François Clément, Michel Kern, Jean-Marc Cognet, Claire Leleu.

6.2 Inversion sismique et AVO

Participants : Guy Chavent, Benoît Lavaud.

6.3 Localisation de conduites de gaz souterraines

Participant : Michel Kern.

Le code Osiris, qui résout le problème inverse de la détection de conduites enterrées par une méthode électromagnétique transitoire a été livré et installé chez Gaz de France.

6.4 Transport de radionucléides autour d’un site de stockage profond

Participants : Clarisse Alboin, Jérôme Jaffré, Jean Roberts. 9

9. Projet Ondes
Les travaux exposés dans la section 5.1.1 ont été effectués dans le cadre d’un contrat avec l’Institut de Protection et de Sécurité Nucléaire (IPSN).

6.5 Commande optimale d’un engin immergé tracté au bout d’un câble

Participants : Laurent Chauvier, Jean-Charles Gilbert.

L. Chauvier a terminé une thèse sur les méthodes de points intérieurs en vue de leur application aux problèmes de commande optimale (voir [2] et § 4.4.1). L’algorithme introduit a été utilisé avec succès pour déterminer la trajectoire optimale d’un navire tractant un câble immergé et la vitesse optimale de bobinage du câble, de manière à faire faire au système navire-câble un demi-tour en temps minimal et à amener le câble en une position et vitesse données après le demi-tour. Le câble doit éviter des obstacles sous-marins au cours de la manœuvre, en particulier tenir compte du relief du fond. Avec un câble de 4000 m et une vitesse nominale du navire de 1 m/s, un demi-tour optimisé prend environ 1 h 30 min.

6.6 Conception optimale de verres ophtalmiques

Participants : Jean-Charles Gilbert, Xavier Jonsson.

Notre travail porte sur le développement et l’amélioration des techniques numériques pour la conception optimale de verres ophtalmiques progressifs. Nous nous intéressons aussi bien à la modélisation des problèmes d’optique ophtalmique exprimés sous forme de problèmes d’optimisation, qu’aux algorithmes d’optimisation numérique résolvant ces problèmes.

En simplifiant volontairement, un verre progressif doit restituer au porteur presbyte une vision correcte aussi bien en vision de près qu’en vision de loin. Une surface progressive est issue d’un travail de conception basé à la fois sur des concepts physiologiques et sur les propriétés optiques d’un verre. La géométrie d’une surface progressive assure un passage continu de la vision de près (bas du verre) à la vision de loin (haut du verre), et doit minimiser les aberrations optiques inévitablement générées lors de la réfraction de la lumière au travers du verre. La conception d’un verre progressif est donc un processus itératif par essai-erreur faisant intervenir de manière fondamentale l’optimisation numérique.

On peut classer les problèmes d’optique ophtalmique en deux types distincts,

- le problème d’optimisation surfaïque consiste à trouver l’équation d’une 2-surface de \mathbb{R}^3 vérifiant un ensemble de caractéristiques géométriques données (courbures locales). On associe à une surface optimisée un nombre qui juge de l’adéquation de celle-ci aux caractéristiques désirées. Ce nombre est déterminé par une fonction d’erreur f qui associe aux n paramètres définissant la surface un jeu de m fonctions r_j que l’on désire annuler. Ce problème se formule, en termes d’optimisation, par un problème de moindres carrés non linéaire

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} \sum_{j=1}^{m} r_j(x)^2$$

où les r_j sont appelés résidus, et dont le nombre est toujours supérieur aux nombre de variables $m \geq n$.

- le problème d’optimisation *optique* consiste à chercher l’équation de deux surfaces constituant le verre ophthalmique, à savoir une face avant (en général progressive), une face arrière (souvent une surface sphérique ou torique) et une épaisseur au centre. C’est un problème numériquement plus complexe, dans la mesure où les caractéristiques désirées sont de nature optique (puissance et astigmatisme du verre), et qu’elles sont déterminées au moyen d’un lancé de rayon au travers du verre optimisé. Il se traduit encore sous la forme d’un problème de moindres carrés non linéaire.

La nature de ces deux problèmes ne permet pas en général de satisfaire toutes les caractéristiques voulues (il y a plus de caractéristiques r_j que de paramètres x), le concepteur est alors amené à privilégier parmi toutes les caractéristiques désirées un ensemble déterminé de caractéristiques r_j (en général liées à des zones du verre que l’on juge importantes d’un point de vue physiologique), en utilisant des pondérations dans la fonction d’erreur f. L’expérience montre qu’il est assez difficile de choisir les poids de manière satisfaisante. On aimerait donc pouvoir contrôler de manière plus fine les propriétés obtenues lors de la phase d’optimisation. C’est ce qu’autorise l’ajout de contraintes à ces problèmes. Cela revient d’une certaine façon à restreindre l’espace des solutions admissibles, ou encore à rechercher une solution du problème sur un sous-ensemble de toutes les surfaces possibles.

Un problème, tout aussi important d’un point de vue industriel, est de contrôler l’épaisseur du verre optimisé. A la fois pour des raisons évidentes de résistance aux chocs, mais aussi pour des raisons esthétiques. Cela se traduit par des contraintes d’inégalité.

Pour traiter ces problèmes nous avons développé un code d’optimisation avec contraintes d’égalité utilisant une méthode de Programmation Quadratique successive avec régions de confiance. Les objectifs initiaux ont été atteints.

7 Actions régionales, nationales et internationales

7.1 Actions nationales

En particulier une collaboration suivie existe avec Ph. Ackerer et R. Mosé de l’Institut de Mécanique des Fluides de l’Université Louis Pasteur à Strasbourg.
7.2 Relations bilatérales internationales

J. Jaffré est co-responsable, avec M. Jaoua, professeur à l’École Nationale d’Ingénieurs de Tunisie et directeur du laboratoire LAMSIN, du projet CMCU entre l’Inria et l’École Polytechnique de Tunisie. Dans le cadre de ce projet dix chercheurs ou thésards tunisiens ont été accueillis à Rocquencourt pour des séjours plus ou moins longs.

8 Diffusion de résultats

8.1 Animation de la communauté scientifique

J.-C. Gilbert a fait partie du conseil scientifique des “7-ième journées du groupe MODE de la SMAI” (conférence annuelle d’optimisation).

J.-C. Gilbert est éditeur associé de la revue SIAM Journal on Optimization.

G. Chavent est éditeur des journaux Computational and Applied Mathematics (Birkhäuser) et Journal of Inverse and Ill-Posed Problems (VSP).

G. Chavent est membre du conseil scientifique de la Division Mathématiques Appliquées de l’Université Technologique de Compiègne.

J. Jaffré est éditeur du journal Computational Geosciences.

M. Kern est l’organisateur du Colloquium de Rocquencourt (voir http://www-rocq.inria.fr/colloquium).

M. Kern est secrétaire du GAMNI (Groupe pour l’Avancement des Méthodes Numériques de l’Ingénieur), un groupe de la SMAI.

M. Kern fait partie du comité scientifique de «Waves 2000, Fifth International Conference on Mathematical and Numerical Aspects of Wave Propagation».

M. Kern a organisé le Séminaire «Calcul Scientifique» des projets Estime, Gamma, M3N, Mostra et Ondes. Ce séminaire a lieu le premier jeudi de chaque mois.

8.2 Enseignement universitaire

- Université de Paris 1, DEA Modélisation et Méthodes Mathématiques en Économie : “Méthodes newtoniennes en optimisation avec contraintes”, 21 h., J.-C. Gilbert.

- Université de Paris 6, DEA Optimisation, Jeux et Modélisation en Économie : “Optimi-

sation numérique”, 15 h., J.-C. Gilbert.
8.3 Autres enseignements

- École des Mines de Paris, 1ère année: Calcul différentiel et Intégration (F. Maisonneuve), M. Kern est chargé de cours.
- École des Mines de Paris, 2e année: Analyse numérique (J. Henry), M. Kern est chargé de cours.
- Pôle universitaire Léonard de Vinci, formation de post-gradués en Calcul Scientifique: Problèmes inverses, G. Chavent (Professeur), M. Kern est assistan de cours.

8.4 Participation à des colloques, séminaires, invitations

- C. Albouin, Deux méthodes numériques pour un milieu fracturé, 11e séminaire de mécanique des fluides numériques, CEA, Saclay, 26-28 janvier.
- C. Albouin, Une approche continue pour la modélisation d’un réseau de fractures: Modèle double porosité, séminaire CRESPO, ENSTA, Paris, mai.
- C. Albouin, Approche continue et discrète pour la modélisation d’un réseau de fractures, 4e journée d’étude sur les milieux poreux, ENSIC, Nancy, 1-2 juin.
- C. Albouin, Deux méthodes numériques pour la simulation de l’écoulement dans les milieux poreux fracturés, réunion INSU-PNRH, Poitiers, 14-15 septembre.
- C. Albouin, Deux outils pour la modéliser l’écoulement et le transport dans les milieux poreux fracturés, poster pour les Journées Scientifiques de l’Andra, Nancy, 7-9 décembre.
- G. Chavent Duality Methods in Inverse Problems, Congrès Annuel du GAMM (Gesellschaft für Augewandte Mathematik und Mechanik), Metz, 12-16 Avril, 1999, conférence invitée.

- C. Leleu, *Validation d’un modèle acoustique 3D Born+ray pour l’estimation de paramètres d’acquisition en sismique réflexion marine*, 31ème congrès d’analyse numérique, Bonascre (09), 17-21 mai.

8.5 Diffusion de produits

Le code M1QN3 a été distribué pour usage académique ou de recherche au National Institute for Water and Atmospheric Research (Ph. Andrews, analyse variationnelle en météorologie); à la Norwegian School of Economics and Business Administration (M. Ussif), à l’Environmental Modeling and Geographic Info. System Laboratory, Norman, USA (B.E. Vieux, identification de paramètres en hydrologie), au Meteorological Research Institute de la Japan Meteorological Agency, Tsukuba, Japon (J. Zhu, assimilation de données en océanographie), à l’Université de Reading, Grande Bretagne (M.Wlasak, assimilation variationnelle de données en météorologie).

8.6 Conseil en entreprises

J. Jaffré est membre du conseil scientifique de l’Andra (Agence Nationale pour la Gestion des Déchets Radioactifs).
9 Bibliographie

Thèses et habilitations à diriger des recherches

Articles et chapitres de livre

Communications à des congrès, colloques, etc.

Rapports de recherche et publications internes

