Projet RÉSÉDAS

Outils Logiciels pour les Télécommunications et les Systèmes Distribués

Nancy

2000
<table>
<thead>
<tr>
<th>No</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Composition de l'équipe</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Présentation et objectifs généraux</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Fondements scientifiques</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3.1 Supervision et contrôle</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3.2 Évolution des protocoles et des réseaux</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3.3 Calculs distribués et échange des données entre processeurs</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Domaines d'applications</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>4.1 Supervision et contrôle</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>4.2 Évolution des protocoles et des réseaux</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>4.2.1 Ipv6</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>4.2.2 Réseaux programmables (ou actifs)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>4.2.3 Réseau Ad-hoc</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4.3 Calculs distribués et échange des données entre processeurs</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4.3.1 L'approche MedLey</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>4.3.2 Scilab</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>4.3.3 Problèmes irréguliers à gros grain</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>Logiciels</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>5.1 JSMAN.com</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>5.2 MODERES Java</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>5.3 Ipv6Agent & Ipv6 ANEP</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>5.4 CMISJava API & JTMN</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>5.5 Scilab</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>5.6 Para++</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>5.7 MedLey</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>5.8 SSCRAP</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>5.9 AutoLink et AutoMap</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>5.10 MPC</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Résultats nouveaux</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6.1 Supervision de réseaux et services</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6.2 Évolution des protocoles et des réseaux</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>6.2.1 Ipv6 & Java</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>6.2.2 Réseaux actifs et programmables</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>6.2.3 Réseaux ad-hoc</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>6.3 Calculs distribués et échange des données entre processeurs</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>6.3.1 Interface “Message Passing” au-dessus de CORBA</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>6.3.2 Scilab</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>6.3.3 Portabilité des bibliothèques CGM</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>6.3.4 Factorisation LU creuse en parallèle</td>
<td>30</td>
</tr>
</tbody>
</table>
6.3.5 Transfert des informations complexes .. 30

7 Contrats industriels (nationaux, européens et internationaux) 30
 7.1 ANTARES II .. 30
 7.2 Communications and Systems - Telecommunications 32
 7.3 REVE .. 32
 7.4 AMARRAGE .. 33
 7.5 ANAIS .. 33
 7.6 SPIHD .. 33
 7.7 PAROL .. 34
 7.8 ALCATEL ... 35
 7.9 PROXiTV ... 35

8 Actions régionales, nationales et internationales 35
 8.1 Relations bilatérales internationales 35
 8.2 Actions nationales ... 36
 8.3 Accueil de chercheurs étrangers 37

9 Diffusion de résultats .. 37
 9.1 Animation de la communauté scientifique 37
 9.2 Diffusion des connaissances ... 39
 9.3 Participation à des colloques et jurys de thèse 39

10 Bibliographie ... 40
RÉSÉDAS est un projet du LORIA (UMR 7503) commun au CNRS, à l’INRIA, à l’Université Henri Poincaré Nancy 1, à l’Université Nancy 2 et à l’Institut National Polytechnique de Lorraine.

1 Composition de l’équipe

Responsable scientifique

André Schaff [Professeur, ESIAL - UHP]

Responsable permanent

Olivier Festor [CR INRIA]

Assistante de projet

Josiane Reffort [Adjointe administrative, U. de Nancy 1 - UHP]

Personnel Inria

Isabelle Astic [IE depuis le 01/09/2000]
Stéphane D’Alu [IE depuis le 01/11/99]
Éric Fleury [CR]
Jens Gustedt [DR]
Rachid Hamdane [IE depuis le 01/10/2000]
Abdelhamid Joumdane [IE INRIA/DYADE depuis le 01/10/99]
Nizar Ben Youssef [IE BullSoft depuis le 01/10/99]

Personnel Université

Laurent Andrey [Maître de conférences, U. de Nancy 2]
Isabelle Chrisment [Maître de conférences, U. de Nancy 2]
Johanne Cohen [Maître de conférences, UHP depuis le 01/02/2000]
Jacques Guyard [Professeur, ESIAL - UHP]
Emmanuel Jeannot [Maître de conférences, UHP depuis le 01/10/2000]
Emmanuel Nataf [Maître de conférences, U. de Nancy 2]
Chercheur associé

Michel Cosnard [Professeur, Directeur du LORIA et de l’INRIA Lorraine]

Chercheurs doctorants

Ramzi Azaiez [Boursier tunisien, 2ème année]
Mouna Benaissa [en coopération avec le CRAN]
Ghassan Chaddoud [Boursier syrien, 3ème année]
Laurent Ciarletta [NIST, USA, 3ème année]
Mohamed Essaïdi [Boursier tunisien, depuis le 01/10/2000]
Tawfik Es-sqalli [ATER]
Virginie Galtier [Boursière BDI, 3ème année]
Laura Grigori [Allocataire MESR, 3ème année]
Daniela Grigori [en coopération avec l’avant-projet ECOO, 3ème année]
Hend Koubaa [Boursière tunisienne, 2ème année]
Martial Michel [NIST, USA, 4ème année]
Hassen Sallay [Boursier INRIA, depuis le 01/10/2000]
Radu State [en coopération avec CS-Télécom, 4ème année]

Stagiaires DEA

Mouna Benaïssa [DEA UHP - Nancy I]
Mohamed Essaïdi [DEA UHP - Nancy I]
Azzouz Ezzaïem [DEA UHP - Nancy I]
Hassen Sallay [DEA UHP - Nancy I]
Christopher Scott [DEA UHP - Nancy I]
Stagiaires

Adnane Bahiri [Stage Ingénieur, EMI, Rabat, Maroc]

Naoufal Bentahar [Stage ingénieur, ENSIAS Rabat, Maroc]

Sami Bhiri [Stage Ingénieur, ENSI, Tunis, Tunisie]

Idriss Fadlaoui [Stage ingénieur, ENSIAS Rabat, Maroc]

Rachid Hamdane [Stage ingénieur, ENSIAS Rabat, Maroc]

Tebrizi Haddaoui [Stage Ingénieur, Fac. des Sciences, Tunis, Tunisie]

Anis Koubaa [Stage Ingénieur, SUP-COM, Tunis, Tunisie]

Ole A. Mæhle [Stage diplôme, Univ. de Bergen, Norvège]

Morsi Masmoudi [Stage Ingénieur, Fac. des Sciences, Tunis, Tunisie]

Khalid Oudassi [Stage Ingénieur, EMI, Rabat, Maroc]

2 Présentation et objectifs généraux

Mots clés : réseaux, télécommunication, calcul distribué, environnement de programmation, gestion de réseau, gestion de services, Java, IPv6, OSI, CORBA, passage de messages, placement, services de communication, protocole de communication, RGT, réseaux actifs, spécification formelle, test, validation, WBEM.

Le projet RÉSÉDAS se focalise sur l'étude de solutions innovantes et la conception d'outils logiciels pour faciliter le développement, le déploiement et l'exploitation de services, protocoles et applications distribuées sur des réseaux de télécommunications et des réseaux locaux. Dans ce cadre, le groupe développe des activités sur les trois thèmes suivants :

i) supervision et contrôle des réseaux et services de télécommunication ;

ii) évolution des protocoles et des réseaux ;

iii) calculs distribués et échange des données entre processeurs.

Autour de ces thèmes, le groupe maintient également une compétence sur les méthodes formelles pour les réseaux et les systèmes distribués.
3 Fondements scientifiques

3.1 Supervision et contrôle

Participants : Laurent Andrey, Isabelle Chisimt, Olivier Fesòr [Correspondant], Rachid Hamdane, Abdelhamid Joumdane, Emmanuel Nataf, Hassen Sallay, André Schaff, Radu State, Nizar Ben Youssef.

Mots clés : CIM, CORBA, environnement de programmation, gestion de réseau, gestion de service, Java, OSI, RGT, simulation, spécification formelle, SNMP, test, WBEM, XML.

Glossaire :
CORBA : Common Object Request Broker Architecture
OSI : Open Systems Interconnection
RGT : Réseau de Gestion des Télécommunications
SLM : Service Level Management
SNMP : Simple Network Management Protocol
WBEM : Web-Based Entreprise Management

Résumé :
La supervision et le contrôle sont aujourd'hui des activités centrales dans la planification, le déploiement, l'exploitation et la maintenance des réseaux et services. Longtemps limitée à la gestion des équipements, celle-ci s'est largement développée et englobe aujourd'hui, en plus de la gestion des équipements, celle des réseaux en offrant une vue de l'interconnexion des équipements, des services déployés sur ces réseaux ainsi que des applications qui exploitent les services offerts.

Composante critique des systèmes d'informations, la gestion de réseaux et de services doit répondre à de nombreux défis tels que le passage à très grande échelle, l'intégration de nouvelles approches, l'ouverture aux architectures distribuées et coopératives, la prise en compte de nouveaux paradigmes, le support de nouvelles technologies et s'appliquer naturellement à de nouveaux services, protocoles et besoins des usagers.

La gestion de réseaux et de services regroupe l'ensemble des activités humaines et technologiques mises en place pour assurer le bon fonctionnement de tous les composants logiques et physiques des réseaux dans le but de fournir des services fiables à moindre coût aux usagers. Du point de vue technologique, elle comprend l'ensemble des systèmes conçus pour superviser les composants gérés et agir sur les ressources du système d'informations.

Malgré de nombreux efforts et années de normalisation, plusieurs approches perdurent dans le domaine. Etendue dans l'architecture du RGT, l'approche normalisée OSI est utilisée pour la gestion des réseaux de télécommunications (SDH, GSM, ...). Par contre, l'approche SNMP est largement répandue dans le domaine de la gestion des équipements et celui des réseaux locaux. Les normes TL.1 sont principalement utilisées aux États-Unis pour la gestion de nombreux équipements de télécommunication. Ces diverses approches sont complétées par des solutions propriétaires encore existantes.
Parallèlement à l'existant, de nouveaux paradigmes et technologies émergent et s'appliquent avec succès au domaine de la gestion de réseaux et de services. Des approches basées sur des bus logiciels tels que CORBA ou centrées sur l'exploitation des agents mobiles et/ou des réseaux programmables font leur apparition et des technologies telles que Java, WBEM et XML s'imposent peu à peu.

Reconnue comme l'une des composantes critiques des systèmes d'informations d'aujourd'hui et de demain, la gestion de réseaux et de services doit faire face à de nombreux défis :

- **développer une ingénierie spécifique et fédératrice**

 il n’existe pas à ce jour d’ingénierie spécifique au domaine permettant de concevoir une architecture de gestion indépendante de toute approche ou solution technologique. En effet, actuellement, toute conception se place nécessairement dans le contexte d’une technologie donnée (ex. approche OSI ou SNMP). Il est nécessaire de se pencher sur une telle ingénierie, de contribuer à définir des passerelles entre approches tout en permettant à l’ingénierie de gestion d’utiliser au mieux les nouveaux paradigmes utiles en gestion tels que les réseaux programmables, la gestion coopérative et/ou les nouveaux middleware ;

- **intégrer de nouveaux paradigmes et technologies**

 de nouveaux paradigmes et de nouvelles technologies (Web, Java, CORBA, agents mobiles, XML, réseaux actifs, …) trouvent, dans le domaine de la gestion des réseaux et services, un champ d’application prometteur. Il faut étudier leur apport, l’impact que ces approches ont sur les paradigmes existants et fournir des propositions d’intégration dans une architecture globale de conception de solutions de supervision ;

- **superviser les nouveaux protocoles, services et répondre aux besoins des opérateurs et usagers**

 l’évolution des protocoles et services de communication engendre une forte demande en solutions de supervision et il convient d’étudier et de proposer des solutions pour ces architectures (IPv6, réseaux ad-hoc, services Java, …) De plus, la gestion de services requiert une évolution des paradigmes et technologies. Les approches actuelles ne permettent pas la supervision dynamique centrée sur les services. En effet, elles se focalisent certes sur les composants qui forment un service, mais les traitent le plus souvent en isolation.

La gestion des réseaux et des services se situe à la croisée de nombreux domaines de recherche en informatique, réseaux et télécommunications, domaines sur lesquels s’appuient les solutions proposées. De multiples travaux de recherche sont à mener sur ce domaine fortement concurrentiel et totalement ouvert aujourd’hui.

3.2 Évolution des protocoles et des réseaux

Participants: Laurent Andrey, Ramzi Azaiez, Ghassan Chaddoud, Laurent Ciarletta, Isabelle Chrisment, Johanne Cohen, Olivier Festor, Éric Fleury [Correspondant], Virginie
Galtier, Jens Gustedt, Hend Koubaa, André Schaff.

Mots clés : Internet, IPv6, multimédia, protocole de communication, temps réel, multipoint, services, SNMP, Réseaux actifs, réseau ad-hoc, réseau programmable, Java.

Glossaire :
IPv6 Internet Protocol version 6
SNMP Simple Network Management Protocol

Résumé :
Le monde actuel des réseaux est en pleine mutation. De part l’importance que notre société accorde aux télécommunications, à l’Internet, à la toile, aux applications dites « multimédia », les évolutions des réseaux émergent dans tous les secteurs de la recherche et offrent de nombreux domaines d’application.

IPv6, les réseaux ad-hoc et les réseaux programmables sont les trois architectures de réseaux qui retiennent tout particulièrement notre attention pour :

- faciliter et encourager le déploiement de nouveaux services ;
- maîtriser la mobilité ;
- prendre en compte les besoins de sécurité.

Dans ce contexte, nous travaillons sur les technologies réseau de demain et étudions des protocoles et services utiles aux applications nouvelles que l’on pourra rencontrer sur les futures architectures.

L’évolution rapide des technologies vers des réseaux haut-débit et/ou la vitesse de plus en plus élevée des processeurs ont favorisé le développement de nouvelles classes d’applications comme l’audio, la vidéo conférence et le travail coopératif entrainant de nouveaux besoins en communication. Dans un futur proche, les réseaux devront faire face à une demande croissante de nouveaux services et devront intégrer une architecture logicielle capable de les déployer, de les opérer, de les superviser et de les faire évoluer dans des délais très brefs. La conception d’une telle infrastructure logicielle est l’un des défis majeurs pour les réseaux du futur. En lui donnant ainsi les moyens de différenciation et d’offre de services à valeur ajoutée, la disponibilité du réseau sera le principal critère de réactivité d’un opérateur ou fournisseur de services.

À cette évolution des services et de leurs usages, s’ajoute le développement des aspects mobilité rendu possible grâce aux communications sans fils (WaveLAN, GSM, satellites, ...). L’essor de la mobilité dans les réseaux de communication fait apparaître des besoins envers les services et les protocoles réseaux mais également envers les services déployés sur ces réseaux. Couplées aux nouveaux services tels que la communication de groupe et aux besoins de déploiement dynamique, les architectures pour la mobilité requièrent de nombreux travaux de recherche tels que l’adaptation des services aux réseaux mobiles, la définition de nouveaux protocoles de routage avec garantie de qualité de services, la communication de groupe, le passage à l’échelle et l’étude d’architectures de signalisation ouverte pour le déploiement de nouveaux services.
Le déploiement dynamique de nouveaux services, le support de la mobilité, l’évolution des protocoles de communication de groupes et la nature même des nouvelles applications qui utilisent ces services (télévision numérique terrestre, commerce électronique, ...) requièrent en outre le développement de nouveaux protocoles pour la sécurisation de ces services. De tels composants sont à développer notamment pour les communications de groupes, les réseaux programmables et les espaces intelligents.

Les différents types de réseaux émergents tels qu’IPv6, les réseaux programmables et les réseaux ad-hoc ont en commun de nombreux besoins liés aux trois défis présentés dans cette section. C’est principalement sur ces trois types d’infrastructures que le projet RÉSEDAS développe son activité de recherche.

3.3 Calculs distribués et échange des données entre processeurs

Participants : Michel Cosnard, Tawfik Es-sqalli, Mohamed Essaïdi, Éric Fleury, Jacques Guyard, Laura Grigori, Jens Gustedt [Correspondant], Martial Michel, André Schaff.

Mots clés : calcul distribué, environnement de programmation, évaluation de performance, MPI, passage de messages, placement, PVM, réseau de stations, CORBA, système distribué.

Glossaire :
- **MPI** : Message Passing Interface
- **PVM** : Parallel Virtual Machine
- **CORBA** : Common Object Request Broker Architecture
- **CGM** : Coarse Grained Multiprocessor

Résumé :
Les principaux demandeurs de puissance de calcul se trouvent le plus souvent à l’extérieur de l’informatique : physiciens, chimistes ou mathématiciens. Ils élaborent des modèles mathématiques de plus en plus sophistiqués et gourmands en ressources de calcul, ce qui les conduit tout naturellement vers une implantation parallèle de ces modèles.

Outre l’étude des fondements théoriques appropriés, le but du groupe est de répondre à des besoins concrets par la conception et la réalisation des outils de développement, d’expérimentation.

La conception et l’implantation de programmes sur des machines parallèles sont de plus en plus compliquées. Elles sont rendues plus facilement accessibles aux utilisateurs non informaticiens par la grande disponibilité de bibliothèques de communication permettant en quelque sorte de rendre parallèles les langages séquentiels usuels (C, C++ ou Fortran). Cette approche est basée sur la construction d’une application parallèle en terme de tâches communicantes. Chaque tâche exécute un code séquentiel et coopère avec les autres en utilisant les primitives des bibliothèques de communication. Ce mode de programmation très intuitif demande une certaine expertise pour obtenir des performances raisonnables à l’exécution. De plus, l’utilisation
des bibliothèques peut sembler très simple, mais il faut tenir compte de certains paramètres (taille des buffers, constitution des messages, ...) pour ne pas subir de graves dégradations de performances. Il découle de ce modèle la possibilité de définir des “machines parallèles virtuelles”, constituées d’un ensemble de stations de travail reliées par un réseau comme autant de processeurs d’une machine parallèle. Vue la puissance actuelle des différents processeurs, de tels réseaux représentent en effet un potentiel de calcul intéressant. Mais leur utilisation ne peut se faire naïvement comme une véritable machine parallèle. Les bibliothèques de communication fonctionnent sur le modèle du passage de messages. Elles permettent de gérer de façon dynamique les échanges de données et la synchronisation entre tâches. Parmi les nombreuses bibliothèques de communication existantes, MPI est en train de s’imposer comme standard.

Cette démarche s’inscrit dans ce que l’on appelle le méta-computing, c’est-à-dire la possibilité pour un utilisateur de concevoir, d’implanter et de faire fonctionner des algorithmes de façon transparente sur une machine séquentielle ou dotée d’un parallélisme réel ou virtuel. Les problèmes que l’on peut rencontrer dans ces nouveaux types d’application peuvent être familiers : équilibrage de charge, placement des données, gestion de caches, tolérance aux pannes, mais ces problèmes sont rendus plus pointus et plus ardus par la plus grande taille de l’échelle des domaines considérés et par les performances requises qui conduisent de ce fait à des problèmes de génie logiciel.

Les modèles théoriques classiques de parallélisme ou de calcul distribué (réseaux d’interconnexions spécifiques) couvrent mal ce mode de calcul, et ce n’est que récemment que les informaticiens ont fait des efforts pour suivre cette évolution importante, notamment par les modèles BSP [Val90], et CGM [DFRC96]. Le modèle CGM, Coarse Grained Multiprocessor, est un modèle de parallélisation de type MIMD (Multiple Instruction – Multiple Data) dérivé du modèle BSP. Il a été introduit par Dehne et al [DFRC96]. Son but est de s’abstraire le plus possible de la conception réelle d’une machine parallèle ou d’un réseau de stations, qui pourront être un multi-processeurs (Origin2000), un réseau de processeurs (T3E) ou un réseau de stations de travail (Sun) ou de PCs (Linux).

Bien que négligeant les mesures très fines que BSP propose, le modèle CGM se fonde sur celui-ci par quelques axes tels que la prise en compte du coût élevé des instructions à distance, le pré-requis d’économie de l’utilisation de ressources, la conception d’algorithmes en phases alternantes de calcul local et communication globale, l’hypothèse du gros grain, le pré-requis d’indépendance du nombre de données.

Le but principal du projet est de fournir avec CGM un fondement stable et fiable pour le calcul réparti sur des données irrégulières. Ceci conduit à une recherche théorique, à l’implémentation d’une bibliothèque (nommée SSCRAP, cf section 5.8), à la réalisation et à l’évaluation des expériences sur des grosses données et des variétés de plates-formes.

Un des buts est également de rendre accessible une partie des algorithmes développés pour des modèles à grain fin. En particulier, un grand nombre d’algorithmes sont développés dans le modèle PRAM : ils réduisent une instance de taille n à une de taille εn, $0 < \varepsilon < 1$, et effectuent la récurrence sur cette instance plus petite. Si on résout alors le problème en séquentiel sur

une seule des machines dès que la taille le permet, on remarque qu'un tel algorithme adapté à CGM n'a qu'une profondeur de récurrence de \(\log_p \).

Enfin, nos travaux portent aussi sur les méthodes de parallélisation automatique qui constituent un sujet de recherche en plein développement, en particulier dans le domaine de la compilation automatique à grain fin (instructions) de programmes séquentiels réguliers sur machines parallèles.

4 Domaines d'applications

4.1 Supervision et contrôle

Participants: Laurent Andrey, Ramzi Azaiez, Isabelle Chrismen, Olivier Festor
[Correspondant], Rachid Handane, Abdelhamid Joumdane, Emmanuel Nataf, Hassen Sallay, André Schaff, Radu State, Nizar Ben Youssef.

Résumé:

Le projet RÉSEDAS développe des activités de recherche sur l'ensemble des domaines liés à la gestion de réseaux et de services. Les travaux se divisent en quatre domaines complémentaires:

1. modèles de l'information (conception, validation, intégration, nouvelles approches, nouveaux paradigmes, ingénierie),
2. plates-formes et environnements logiciels (nouvelles technologies pour le RGT, outils d'intégration, agents mobiles, services d'annuaire, bus logiciels orientés messages, . . .),
3. algorithmes et architectures pour la gestion dynamique de services,
4. déploiement et expérimentation (fusion des domaines 1, 2 et 3 sur des cas d'études issus des besoins des réseaux et services).

Dans le domaine de la conception des modèles de l'information, nos travaux portent d'une part sur l'étude et l'enrichissement des modèles existants ainsi que sur les modèles émergents tels que CIM (modèle de l'information standardisé par le Distributed Management Task Force), d'autre part sur la conception d'une ingénierie indépendante de toute approche permettant la conception de modèles génériques traduisibles dans des étapes ultérieures vers différentes approches. De nombreuses études ont notamment porté dans le groupe sur la validation des modèles de l'information et sur l'intégration de modèles issus de différentes approches.

Dans le domaine des plates-formes et nouvelles architectures, nos travaux se concentrent sur l'intégration de la technologie Java dans les architectures existantes ainsi que sur l'utilisation de nouveaux paradigmes tels que les plates-formes à agents mobiles, les réseaux actifs et/ou programmables, les middleware orientés-message (MOM).

La gestion de services représente une activité nouvelle au sein du projet. Le processus de gestion de services comprend la mise en place de contrats de services de télécommunication (SLA: Service Level Agreement), la dérivation d'une configuration de mesure des métriques, le
déploiement de cette configuration sur les composants du service (SLM: Service Level Monitoring) et la consolidation des données pour l'émission de rapports aux usagers (SLR: Service Level Reporting). Nous portons nos efforts sur la définition d'algorithmes et de composants logiciels centrés sur l'automatisation de ce processus.

Les études de terrain nous permettent de coupler les travaux des trois thèmes précédents et d'expérimenter nos propositions sur des cas concrets. Cette activité consiste principalement à construire une solution de supervision et de contrôle complète (niveau réseau ou service) pour un besoin donné. Des travaux d'application sont notamment en cours sur IPv6, les réseaux actifs, des réseaux multi-couches (Frame Relay over ATM). D'autres domaines sont en cours d'étude notamment les services de réseaux privés virtuels dynamiques. Les domaines d'application représentent aujourd'hui une activité importante au sein du projet et montrent la synergie entre les différents thèmes de recherche développés dans le projet.

4.2 Evolution des protocoles et des réseaux

Participants : Ramzi Azaiez, Laurent Andrey, Ghassan Chaddoud, Laurent Ciarletta, Isabelle Chrismen, Johanne Cohen, Stéphane D’Alu, Olivier Festor, Éric Fleury [Correspondant], Virginie Galtier, Jens Gustedt, Hend Koubaa, André Schaff.

Résumé :

Face aux défis du domaine, le projet RESEDAS focalise ses études sur trois types de réseaux : le réseau IPv6, les réseaux programmables, les réseaux ad-hoc.

Sur ces architectures, le projet développe et maintient une plate-forme expérimentale et conçoit des propositions d'architectures logicielles, des services et protocoles répondant aux défis que sont : l'insertion et le déploiement de nouveaux services, la prise en compte de la sécurité et la maîtrise de la mobilité.

Une collaboration avec le PRISM débute sur la commutation dans les réseaux optiques.

Bien que les types de réseaux, pour lesquels nous déployons et maintenons trois plate-formes expérimentales, puissent apparaître comme distincts a priori, nous nous efforçons de créer des synergies entre ces trois domaines d'études et types de réseaux qui ne sont pas sans connexion les uns avec les autres. En effet, notre proposition de nœud actif est construite au dessus d’IPv6, la plate-forme ad-hoc et les divers protocoles de routage que nous proposons vont devoir être testés au dessus d’une pile IPv6 et pour finir, les protocoles de mobilité mis en œuvre dans IPv6 vont pouvoir être implantés à l’aide des réseaux programmables et testés en grandeur nature sur la plate-forme ad-hoc. Ces trois points vont être développés plus largement ci-dessous.

La coopération qui s’amorce avec des membres du PRISM, Université de Saint-Quentin en Yvelines porte sur la commutation dans les réseaux optiques. L’architecture de réseaux optiques de télécommunications consiste à connecter des réseaux MAN (ayant la technologie optique WDM) dont la topologie correspond à une union d’anneaux, par un réseau européen

1. Wave Division Multiplexing
WAN. Nous nous intéressons au routage et à l’ordonnancement des messages.

Afin d’obtenir des taux de transmission élevés, les routeurs doivent gérer très rapidement les requêtes sans conserver les paquets. Nous nous concentrons sur la construction d’un protocole de routage qui garantira qu’un paquet émis atteindra sa destination au bout d’un temps fini.

4.2.1 IPv6

La plate-forme IPv6 mise en place au sein du projet RESEDAS est doublement raccordée au réseau expérimental mondial du 6-Bone, d’une part, via le hub régional de l’Université de Strasbourg, d’autre part, via le point d’interconnexion de l’INRIA Rhône-Alpes localisé à Montbonnot. Les domaines d’applications concernent les points suivants :

- **La sécurité des communications de groupes** que la recherche en protocoles se doit d’assurer tout en satisfaisant i un temps minimal de configuration de groupe, ii un trafic aussi réduit que possible, iii un groupe dynamique, ie suppression et ajout d’un membre possible à tout moment, iv l’indépendance des protocoles de routage, v la confidentialité, l’intégrité et l’authentification des données et vi la décentralisation de la gestion du groupe.

- **Le concept de mobilité sur Internet** doit permettre à tout utilisateur de rester connecté même lorsqu’il se déplace. Les mobiles sont souvent liés à des réseaux sans fils favorables aux écoutes et ils ont la possibilité de changer le routage des paquets pour avertir de leur nouvelle position. La mobilité contribue fortement à accroître encore les besoins de sécurité.

- **Le concept de réseaux actifs** est une nouvelle approche pour l’architecture des réseaux et autorise des applications à injecter des programmes à l’intérieur des nœuds du réseau via du code mobile. Ce concept pourrait nous être utile dans le cas de déploiement de nouveaux services ou protocoles que nous souhaitons expérimenter.

- **La supervision coopérative du réseau d’expérimentation national**, le G6-Bone, partie française du 6-Bone, est l’une des contributions du projet RESEDAS sur l’infrastructure IP nouvelle génération porte sur l’utilisation de nouvelles architectures et technologies. Nous nous proposons de définir de manière précise les besoins de supervision dans les domaines de la configuration coopérative entre systèmes autonomes et du monitoring, de proposer une architecture basée sur des technologies actives intégrant les accès standards aux ressources de supervision (SNMP, interface VT100).

- **La différenciation de services** où le modèle traditionnel et le modèle des services intégrés représentent deux extrêmes. Le modèle traditionnel ne fait aucune différence
entre les flux alors que le modèle des services intégrés isole chaque flux qui fait une réservation. La différenciation de services semble être un bon compromis. Nous voulons regarder ce modèle de services différenciés dans le cadre du trafic multicast et mettre en place une architecture permettant un déploiement et une gestion de ces services.

Dans le cadre de la thèse d'Université de Laurent Ciarletta, nous travaillons également en collaboration avec le NIST (National Institute of Standards and Technology) sur les aspects de configuration automatisée, de découverte de services et de sécurité des réseaux dans le contexte des Espaces Intelligents (aussi appelés Smart Space ou Pervasive Computing Environment) ou environnements "omniprésents" et embarqués (UEC : Ubiquitous and Embedded Computing environments).

4.2.2 Réseaux programmables (ou actifs)

Dans ce cadre, le premier domaine d'étude du projet RESEDAS regroupe les travaux visant à concevoir et à fournir un prototype de réseau actif au dessus d'IPv6. Dans cet objectif, un travail sur l'insertion de paquets actifs dans les trames et en-têtes IPv6 est mené et une réalisation sur la plate-forme installée au LORIA est prévue.

Le deuxième domaine d'étude vise à étudier l'apport réel du concept de réseau actif pour le support du déploiement de protocoles de multicast ainsi que du déploiement de solutions protocolaires pour assurer la sécurité dans des communications de groupes.

Le troisième domaine d'application des réseaux actifs dans le projet RESEDAS concerne la supervision et le contrôle. Sur ce point, plusieurs activités de recherche sont développées :

1. une étude sur l'utilisation des réseaux actifs pour la gestion de la configuration des réseaux traditionnels. Nous étudions notamment l'impact de la technologie active sur la supervision de réseaux IP ;

2. un travail d'investigation portant sur l'intérêt d'une architecture de réseau actif pour permettre la mise en place et le déploiement de fonctions de supervision et de contrôle des composants actifs eux-mêmes ;

3. une activité sur la définition d'une architecture pour la gestion de niveau services, réseau et composants d'un réseau actif dans un environnement multi-opérateurs (le réseau actif s'étend d'une part sur un réseau local et d'autre part sur un réseau géré par un opérateur faisant intervenir le niveau contractuel entre opérateurs et usagers dans l'architecture technique de supervision) ;

4. un travail de recherche sur l'utilisation de cette technologie pour la localisation, le déploiement, la configuration et la supervision de services sur des réseaux ad-hoc ;

5. une activité sur la modélisation des ressources processeur utilisées pour l'exécution des paquets actifs afin de permettre une gestion efficace de ce nouveau type de réseau.

Le dernier domaine d’application de nos travaux est celui de l'intégration des paradigmes de gestion dans des architectures de réseaux programmables. Dans ce contexte, nous travaillons
à la définition d’interfaces de programmation pour les différentes fonctions de gestion (configuration, fautes, ...) afin que ces briques entrent comme fournisseurs de services dans une architecture programmable sur un bus logiciel.

Les différentes activités de ce thème sont soutenues par des projets nationaux. La supervision des réseaux actifs est soutenue par un projet CNRS (voir ANAIS). Les travaux sur une architecture de réseau actif sont soutenus par le projet RNRT AMARRAGE. L’utilisation des réseaux actifs en supervision est financée dans le cadre d’une coopération avec le groupe Alcatel.

4.2.3 Réseau Ad-hoc

Dans ce cadre, le premier domaine d’études vise à concevoir et à fournir un protocole de routage spécifique aux caractéristiques des réseaux ad-hoc. La proposition de protocole que l’on développe, nommé JUMBO, est motivée par la prise en compte du partage du médium. Cela est possible en modélisant la topologie comme une union de cliques : tous les nœuds d’une clique peuvent communiquer directement mais lorsque l’un émet, les autres ne peuvent pas émettre. C’est un modèle simplifié de la nature réelle de l’interaction des émissions, mais qui néanmoins a l’avantage d’être le premier protocole les prenant en compte.

Le deuxième point vise à étudier la mise en œuvre de protocoles de multicast dans les réseaux ad-hoc. En fait, l’idée du protocole de routage présenté ci-dessus est née de tentatives d’optimisation de protocoles de multicast sur un réseau ad-hoc. La principale difficulté du routage multicast réside en effet d’une manière générale à ne pas transmettre plusieurs fois par le même médium le même message. Nous allons donc tout naturellement mettre en œuvre un protocole de multicast qui va s’appuyer sur le protocole de routage JUMBO.

Le troisième domaine d’application des réseaux ad-hoc dans le projet RESEDAS porte sur la supervision et le contrôle. Sur ce point, il apparaît intéressant d’étudier des services offerts sur divers nœuds du réseau. Il s’agit alors de mettre en place un système permettant de s’adresser au nœud le plus proche qui propose le service voulu.

4.3 Calculs distribués et échange des données entre processeurs

Participants : Michel Cosnard, Tawfik Es-sqallí, Mohamed Essaïdi, Éric Fleury, Jacques Guyard, Laura Grigori, Jens Gustedt [Correspondant], Martial Michel, André Schaff.

Résumen :
Les buts du groupe en ce domaine sont de fournir des outils de développement, d’expérimentation et des fondements théoriques. Ils doivent être appropriés aux besoins et architectures actuels et permettre de suivre le développement de la conception d’algorithmes jusqu’à la réalisation de logiciels et de leur instrumentation.

La programmation par échange de messages repose essentiellement sur deux concepts : (i) la définition de tâches exécutant en parallèle un code séquentiel et (ii) la définition d’interactions
entre les tâches à l’aide de messages échangés. Sur ces deux points, nous proposons des solutions permettant :

- d’améliorer la phase de conception de l’application parallèle, notamment en ce qui concerne la découpe en tâches et la distribution ;
- d’affranchir au maximum l’utilisateur des choix de schémas de communications et de lui fournir la performance correspondant à l’architecture utilisée.

Notre objectif est de définir, expérimenter et valider un environnement de programmation pour le calcul distribué. Les problèmes importants à résoudre sont alors :

Structurer l’application. Les bibliothèques de communication ne fournissent pas de guides ni de méthodes pour modéliser l’application. Il faut incorporer les modèles directement dans les outils de développement ;

Abstraire et simplifier les communications. Les solutions envisagées se situent à deux niveaux : tirer parti des spécificités d’une application pour faire les bons choix de primitives et les simplifier sur le plan syntaxique ;

Valider et prédire. Les méthodes fournies à l’utilisateur doivent lui permettre d’une part de garantir des propriétés de bon fonctionnement de l’application et d’autre part d’évaluer a priori les performances de l’application ;

Affecter et utiliser les ressources. Il est souhaitable et même nécessaire que l’application parallèle fournisse les performances attendues. Pour cela, il faut optimiser les calculs et les communications. Dans le cas des réseaux de stations, l’utilisation d’outils d’administration réseau doit permettre de fournir les informations nécessaires.

4.3.1 L’approche MedLey

Dans le domaine du parallélisme, les communications apparaissent comme un point crucial. La réalisation de ces communications a recours à plusieurs modèles de communication parallèle. Chacun de ces modèles est orienté vers une architecture matérielle, et propose ses propres supports logiciels de communication qui, à leur tour, fournissent plusieurs primitives de communication. Face à cette diversité de modèles et leur richesse, la phase d’implantation des communications est devenue ardue. Elle nécessite une connaissance, voire une maitrise, des primitives de communication utilisées pour atteindre de bonnes performances.

L’un des thèmes de recherche du projet RÉSÉDAS est de libérer l’utilisateur de toutes contraintes d’ordre matériel ou logiciel liées aux communications dans les applications parallèles, et lui garantir de bonnes performances. Ce travail de recherche s’est traduit par la définition d’un nouveau formalisme, le langage MedLey (Message Définition Language), dont l’approche originale est de décrire tout ce qui concerne les échanges entre les tâches d’une application parallèle. À partir de cette description, un outil dérive de façon automatique une implantation des échanges sur le support de communication choisi par l’utilisateur.
4.3.2 Scilab

Logiciel du domaine public développé à l’INRIA dans le cadre du projet Métà-2 (UR de Rocquencourt), Scilab, permet entre autres de faire du calcul scientifique sur une station de travail. Scilab est largement répandu et utilisé par de nombreux scientifiques et ingénieurs. Notre projet vise à étendre les fonctionnalités de Scilab aux plates-formes multi-processeurs. Plus précisément, nous montrons que cette extension, nommée Scilab/=/ et à laquelle le projet RÉSÉDAS a fortement contribué, permet de: (1) conserver l’environnement propre à Scilab; (2) rester dans une approche interactive; (3) développer des codes parallèles dans un langage de haut niveau et garantir leur portabilité; (4) offrir des performances acceptables en terme de puissance de calcul. Du point de vue de l’utilisateur, la parallélisation de Scilab offre un moyen supplémentaire de partager les ressources offertes par un réseau de stations, lui permettant d’augmenter les performances de son application en tirant parti du parallélisme intrinsèque offert par le réseau, tant au niveau des capacités de calcul de machines distantes que de la taille mémoire globale ainsi disponible.

La portabilité et l’interopérabilité de la partie communication de Scilab/=/ est assuré par PVM. Pour la partie calcul algébrique, la flexibilité, la facilité d’utilisation et l’extensibilité de la puissance de calcul est basée sur l’utilisation des bibliothèques parallèles ScALAPACK et PBLAS. Le paramètre d’extensibilité est très important car il se réfère au comportement d’un algorithme avec l’augmentation du nombre de processeurs. L’utilisation de telles bibliothèques garantit à l’utilisateur un parallélisme relativement transparent puisqu’il ne décrit que les distributions des matrices et obtient de très bonnes performances.

Le second point de notre travail est de rendre le parallélisme encore plus transparent pour l’utilisateur. Effectuer un calcul parallèle requiert que les données soient distribuées de façon efficace et bien souvent se pose le problème de la redistribution des données entre deux étapes de calcul. Nous recherchons des méthodes permettant d’évaluer si entre deux phases une redistribution est nécessaire, ce en fonction du volume de données à échanger, du type de calcul à effectuer, des performances du réseau de communication... À terme, ces recherches doivent permettre à l’utilisateur de déclarer uniquement les ressources de calcul dont il dispose et le système doit de lui même (i.e., avec le moins de directives possibles) décider de lancer un calcul en parallèle, de rapatrier ou de redistribuer les données entre deux phases de calcul.

4.3.3 Problèmes irréguliers à gros grain

Les structures de données irrégulières comme les matrices et graphes creux sont beaucoup utilisées dans le calcul scientifique et l’optimisation discrète. L’importance et la variété des domaines d’applications constituent la motivation principale pour la recherche de méthodes de calcul performantes (algorithmes et structures de données). Une approche principale pour l’obtention de bons résultats dans ce cadre est la programmation parallèle. L’équipe RESEDAS poursuit deux différentes voies de recherche pour rendre le traitement des problèmes irréguliers possible en parallèle : la parallélisation automatique et la conception d’algorithmes propres pour le contexte de machines à gros grain.

Pour la parallélisation automatique, nous nous sommes concentrés sur le développement théorique et pratique des algorithmes de factorisation LU des matrices creuses en parallèle en
exploitant les opportunités offertes par les caractéristiques de ces matrices : les nécessités en mémoire de stockage sont plus faibles, le calcul nécessaire est réduit et le parallélisme potentiel est plus important.

Pour les programmes irréguliers à gros grain, la parallélisation automatique est, pour l'essentiel, un problème ouvert aussi bien dans le cadre de l'algorithmique des matrices creuses, que du traitement d’images ou du calcul sur réseau (métacomputing).

La première étape de notre projet est le développement d’algorithmes parallèles pour le calcul numérique sur des matrices creuses. Nous avons conçu et analysé un solveur performant (basé sur MPI/shmem) pour une seule opération (une factorisation LU creuse). La prochaine étape sera d’analyser et de paralléliser une séquence de telles opérations, qui inclut d’autres opérations de base sur des matrices creuses.

 Avec le modèle CGM et la librairie $SSCRAP$ nous donnons un moyen de conception d’algorithmes mieux adaptés aux problèmes irréguliers. Dans un premier temps, il s’agit de concevoir des algorithmes de base pour les graphes, comme le classement de listes, la contraction d’arbres, la répartition des graphes sur des processeurs, les composantes connexes et le coloriage. Nos algorithmes sont conçus pour être robustes, portables et prédictifs.

5 Logiciels

5.1 JSMAN.com

Participants : Laurent Andrey, Nizar Ben Youssef, Olivier Festor [Correspondant], Abdelhamid Joumdane.

Résumé :

JSMAN.com est une initiative du projet RESEDAS visant à promouvoir les logiciels Open Source développés en gestion de réseaux et services au sein du projet. Les logiciels distribués sous le label JSMAN.com bénéficient d’une licence de logiciel libre, disposent d’une documentation complète en ligne (tutoriel, guide de programmation, javadoc et d’un support technique assuré par les membres du projet).

\texttt{jsman} est le site de référence de distribution des logiciels de supervision libre développés par les membres du projet RESEDAS. Les logiciels sont également distribués dans le cadre de l’initiative américaine \texttt{SourceForge}, ce qui rend possible au travers d’une gestion de version distribuée, la création d’une communauté internationale de contribution aux outils.

Lancé en septembre 2000, l’initiative \texttt{JSMAN.com} intègre aujourd’hui deux logiciels du projet : \texttt{CMISJava API} et \texttt{MODERES} décrits dans les sections suivantes. Ces deux logiciels ont été téléchargés plus de 400 fois et nous recevons de nombreux commentaires très positifs sur l’initiative ainsi que sur la qualité des logiciels pour lesquels des contributions externes commencent à apparaître.

5.2 MODERES Java

Participants : Laurent Andrey, Nizar Ben Youssef, Olivier Festor [Correspondant],
Abdelhamid Joumdane.

Résumé :

MODERES est l’acronyme de Managed Object Development Environment by RESedas. C’est un environnement logiciel dédié au développement et à la manipulation de modèles de l’information issus de différentes approches de gestion (OSI, TINA-C, ODMA, WBEM, SNMP ...) que nous développons dans le projet.

Dans sa version 1.2 de fin 1999, MODERES offrait :

- des analyseurs syntaxiques SNMPv1, SNMPv2, GDMO, GRM et MOF ;
- un analyseur sémantique pour GDMO/GRM ;
- un générateur GDMO/GRM ⇒ Tex pour l’impression de spécifications ;
- un générateur GDMO/GRM ⇒ HTML pour la génération de fichiers structurés permettant la navigation dans des modèles de l’information ;
- un générateur GDMO/GRM ⇒ SDL’92 permettant la génération des squelettes d’objets gérés en SDL à partir de leur description semi-formelle en GDMO et GRM ;
- un traducteur de modèles CIM/MOF vers GDMO/ASN.1 ;
- une interface graphique conviviale ;
- une passerelle vers le système d’annuaire LDAP permet à un client MODERES de stocker et de récupérer des spécifications CIM sur un serveur LDAP ;
- un générateur de contenu XML pour des spécifications et instances CIM, permet conformément aux dernières évolutions du standard, de créer à la volée des encapsulations XML pour tout composant CIM.

Les listes de diffusion ainsi que les forums sont maintenus sur SourceForge.

2. utilisateurs ayant indiqué par mail, qu’ils utilisaient l’outil.
5.3 IPv6Agent & IPv6 ANEP

Participants : Isabelle Chrsiment, Stephane D’Alu [Correspondant], Olivier Festor.

Résumé :

IPv6 ANEP constitue la première implémentation au monde du protocole ANEP sur IPv6. L’implémentation comprend:

- un multiplexeur/démultiplexeur ANEP au niveau noyau,
- une interface socket basée sur les identificateurs de type ANEP,
- une interface Java permettant d’émettre et de recevoir des paquets ANEP natifs depuis une machine virtuelle Java.

5.4 CMISJava API & JTMN

Participants : Laurent Andrey, Olivier Festor [Correspondant], Abdelhamid Joumdane, Nizar Ben Youssef, Rachid Hamdane, Nebil Sahli.

Résumé :

CMISJava API est une interface de programmation Java permettant la programmation d’applications de supervision et d’agents s’appuyant sur un service de communication standard défini par l’UIT-T pour l’échange d’informations de gestion. CMISJava API est constitué d’une API générique et repose sur différents protocoles de transport allant des appels de méthode distants de Java (RMI) à toute pile de communication OSI complète supportée dans une plate-forme de supervision disponible sur le marché.

JTMN est l’environnement global construit au dessus de l’interface CMISJava API du côté superviseur et fournit un superviseur générique (navigateur de MIB), une interface graphique de cartographie de réseau ainsi que des composants de programmation liés à l’environnement MODERES.
JTMN fournit un navigateur de bases d’informations de gestion, une interface graphique de manipulation de spécifications et une interface de cartographie d’agents basée sur la Koala Graphics issue du projet KOALA de Sophia-Antipolis. Plusieurs interfaces additionnelles telles que la manipulation de noms et de spécifications sont également fournies dans l’environnement.

L’interface CMISJava API est actuellement à l’étude pour servir de référence dans les interfaces de programmation d’accès au service CMIS dans l’initiative JMX (Java Management Extensions), consortium qui regroupe les principaux fournisseurs de plates-formes de supervision de réseaux dont BullSoft, Computer Associates, IBM, SUN ...

Les travaux réalisés cette année sur ces composants sont :

- une architecture logicielle d’intégration des agents JMX avec les composants de CMIS-Java API,
- une optimisation du traitement des événements dans la boucle interne de traitement de l’interface de communication,
- la création d’un tutoriel pour CMISJava API
- la conception et la réalisation d’un transport XML/HTTP pour les requêtes CMIS.

5.5 Scilab

Participant : Éric Fleury [Correspondant].

Résumé :

Scilab est un logiciel du domaine public développé à l’INRIA dans le cadre du projet Méta-2 (INRIA Rocequencourt) permettant entre autre de faire du calcul scientifique sur une station de travail. Scilab// est une version de Scilab permettant de développer des codes parallèles dans un langage de haut niveau (le même que celui de Scilab) et de garantir leur portabilité et des performances acceptables en terme de puissance de calcul.

Scilab// 1.0 est distribué dans la version 2.4 (et supérieure) de Scilab. Il permet de : (1) conserver l’environnement propre à Scilab ; (2) rester dans une approche interactive ; (3) développer des codes parallèles dans un langage de haut niveau et de garantir leur portabilité ; (4) offrir des performances acceptables en terme de puissance de calcul. Du point de vue
de l’utilisateur, la parallélisation de Scilab offre un moyen supplémentaire de partager les ressources offertes par un réseau de stations, lui permettant d’augmenter les performances de son application en tirant parti du parallélisme intrinsèque offert par le réseau, tant au niveau des capacités de calcul de machines distantes que de la taille mémoire globale ainsi disponible. \texttt{scip} est diffusé sur l’internet.

5.6 Para++

Résumé : Para++ est une bibliothèque C++ dont l’objectif est de faciliter l’accès aux bibliothèques traditionnelles de communication par passage de messages.

Développé en collaboration avec Olivier COULAUD du projet Numath, Para++ apporte essentiellement deux simplifications :

- Une simplification sur la structure même de l’application parallèle, grâce à l’introduction d’une hiérarchie dans les tâches la constituant. Para++ intègre notamment des possibilités de programmation M-SPMD (Multiple-SPMD, Single Program Multiple Data);

- Une simplification sur l’utilisation des services de deux bibliothèques de communications : PVM et MPI. Grâce à l’introduction d’objets C++, l’utilisateur peut construire, envoyer et recevoir des messages de manière simplifiée.

La première diffusion de Para++ date de juin 1995. Cette version a été améliorée à plusieurs reprises, conduisant à la diffusion de la bibliothèque actuelle Para++ à travers l’Internet.

Parmi les sites qui ont téléchargé le package, on retrouve beaucoup d’universités (allemandes, américaines et françaises, ainsi que australiennes, africaines, japonaises,…), quelques organismes gouvernementaux, et quelques organismes commerciaux. Une liste de diffusion a été créée pour faire le lien avec les utilisateurs (para++@loria.fr).

5.7 MeDley

Participants : Tawfic Es-sqalli [Correspondant], Éric Fleury, Jacques Guyard.

Résumé : MeDley est un langage de spécification des communications pour les applications parallèles. Son but est de fournir à l’utilisateur une vision abstraite de son application en termes de tâches et d’échanges entre ces tâches indépendamment de l’architecture matérielle et des moyens de communication utilisés.

À partir d’une spécification de communications, le compilateur du langage MeDley [21] génère plusieurs niveaux d’implantation pour différentes primitives de communication.

Une première version de MeDley a été développée et s’appuie sur une implantation de communications en utilisant la bibliothèque d’échange de messages MPI. La deuxième version est en cours de développement et repose sur l’implantation des communications par invocation de méthodes dans le système d’objets distribués CORBA. Cette version utilisera l’ORB comme support de communication.
5.8 **SSCRAP**

Participants: Mohamed Essaïdi, Jens Gustedt [Correspondant].

Résumé: *La librairie SSCRAP est conçue pour faciliter l’implémentation des algorithmes qui sont décrits pour le modèle CGM.*

Il s’agit d’un prototype d’une librairie en C++ développé en collaboration avec Isabelle Guérin Lassous de l’équipe ReMaP. Elle prend en compte les exigences du modèle CGM, v. section 3.3, c’est-à-dire la conception en phases alternantes de calcul local et de communication. Elle réalise une couche d’abstraction entre l’implémentation d’un algorithme tel que conçu par l’utilisateur et la réalisation sur différentes architectures et divers modes de communication.

Une première version de cette librairie est accessible à l’adresse http://www.loria.fr/~gustedt/cgm/, et peut maintenant être superposée à une couche d’envoi de message avec MPI ou mémoire partagé avec des threads POSIX.

5.9 **AutoLink et AutoMap**

Participants: Martial Michel [Correspondant], André Schaff.

Résumé:

AutoLink et AutoMap sont deux outils d’aide au transfert des informations complexes dans l’approche parallélisme par passage de messages.

- AutoMap est basé sur une grammaire qui lit des définitions de types C et génère à partir de celles-ci des types valides pour MPI;
- AutoLink aide l’utilisateur à émettre des types de données conçues, tels des graphes ou arbres contenant des pointeurs en C.

Ces deux outils sont fonctionnels et disponibles sur la page web d’AutoMapetd’AutoLink. Leur version 3.00 permet le transfert des types de données complexes et dynamiques de manière bloquante ou non-bloquante.

5.10 **MPC**

Participants: Tawfik Es-sqalli [Correspondant], Éric Fleury, Jacques Guyard.

Résumé:

MPC (Message Passing in CORBA environment) est une bibliothèque d’échange de messages en C++. Cette bibliothèque repose sur l’utilisation du mécanisme d’invocation de méthodes sur des objets distants du système CORBA.

MPC est une bibliothèque d’échange de messages au-dessus de *CORBA* en C++. Son objectif principal est de remédier à la difficulté de l’utilisation de *CORBA* pour le développement
des applications parallèles tout en profitant des avantages de cette architecture en terme d’interopéralibilité et d’indépendance par rapport à l’environnement de développement matériel et logiciel. Cette bibliothèque propose donc une interface simple et habituelle ainsi qu’un environnement complet pour la programmation par échange de messages dans un environnement CORBA.

Une première implantation de cette bibliothèque a été développée en utilisant le bus CORBA ORBacus. Elle contient un ensemble de primitives de communication point à point et collectives ainsi qu’un outil pour lancer un application utilisant cette bibliothèque et configurer la machine virtuelle.

6 Résultats nouveaux

6.1 Supervision de réseaux et services

Participants : Laurent Andrey, Ramzi Azaiez, Naoufel Bentahar, Isabelle Chrismen, Olivier Festor [Correspondant], Rachid Hamdane, Abdelhamid Joumdane, Emmanuel Nataf, André Schaff, Radu State, Nizar Ben Youssef.

Résumé :

Les travaux du groupe ont porté cette année sur trois points :

- supervision des services à forte dynamlicité,
- architectures et paradigmes Web pour la supervision,
- supervision des réseaux actifs et programmables.

La supervision des réseaux à forte dynamicité a constitué notre axe de recherche principal cette année. Ce travail, réalisé dans le cadre du projet RNRT REVE, a porté sur la définition du concept de service fortement dynamique, l’impact de cette dynamicité sur les approches de supervision traditionnelles et finalement sur la conception de modèles d’architectures logicielles et d’algorithmes capables de supporter les contraintes identifiées précédemment. Le service retenu dans notre étude est un service de diffusion vidéo encapsulé dans des réseaux privés virtuels dynamiques sur ATM/IP dans la boucle locale. Nos contributions sur ce point ont été :

- une étude de la supervision des réseaux privés virtuels dans le monde IP [47],
- une architecture de supervision basée sur les réseaux programmables [35, 33],
- un modèle fédérateur au niveau réseau [36, 34].

Dans le cadre des activités du groupe autour des architectures de supervision basées sur les technologies du Web, nous avons conçu et réalisé le premier prototype WBEM (Web-Based Enterprise Management) entièrement conforme aux standards du DMTF et offrant un transport XML/HTTP [41]. Nous avons également étendu nos composants MODERES et CMISJava API dont les composants novateurs de l’architecture ont été largement publiés [9,
5]. Le détail de ces environnements et des extensions apportées est fourni dans les sections logicielles de ce rapport.

Nos travaux sur la supervision des réseaux actifs se sont poursuivis cette année et ont aboutis à une architecture intégratrice permettant d’une part de supporter la forte dynamicité des déploiements et configurations des services actifs et d’autre part de s’intégrer dans des composants de supervision traditionnels. Nous avons également étendu l’architecture de supervision ANAIS [19].

6.2 Évolution des protocoles et des réseaux

Participants : Laurent Andrey, Ghassan Chaddoud, Laurent Ciarletta, Isabelle Chrisment, Johanne Cohen, Stéphane D’Alu, Olivier Fester, Éric Fleury [Correspondant], Virginie Galtier, Jens Gustedt, Hend Koubaa, André Schaff.

Résumé :
Les principaux résultats et travaux ont porté sur les points suivants :

- pour les aspects liés à IPv6, nos travaux se sont poursuivis sur :
 - les mécanismes de sécurité pour le multicast et pour l’autoconfiguration ;
 - l’intégration des protocoles de réseaux actifs dans l’architecture d’IP nouvelle génération.

- dans le domaine des réseaux actifs, nous avons :
 - intégré le protocole ANEP dans une souche IPv6,
 - étendu notre environnement Java pour la programmation de sockets ANEP,
 - poursuivi nos études sur la supervision des réseaux actifs (voir section supervision)
 - développé nos travaux sur l’évaluation des besoins des applications dans un contexte actif.

- pour l’activité de recherche sur les réseaux ad-hoc, débutée fin 1998 avec notre participation à l’action coopérative COMPAS, notre contribution majeure en 2000, outre la mise en place d’une plate-forme expérimentale via des cartes WaveLan, est la proposition d’un protocole de routage prenant en compte les spécificités adaptées au mode préemptif du médium fourni par Hiperlan.

6.2.1 IPv6 & Java

Sécurité multicast Dans le cadre de nos activités sur la sécurité de communication de groupes dynamiques, nous avons proposé un nouveau protocole, Baal décrit dans les deux articles [12, 11], une solution nouvelle au problème de gestion des clés dans une communication de groupe dynamique. Une seule clé de groupe est utilisée à la fois. Cette solution est basée sur une gestion décentralisée de groupe. En effet, Baal délègue des contrôleurs locaux au niveau des LANs pour jouer le rôle de contrôleur de groupe. Un contrôleur local informe les autres contrôleurs, après tout changement, sur l’état de groupe. Des études comparatives ont montré
que **Baal** change le problème d'extensibilité $O(n)$ par un autre $O(1)$. Par contre, les autres solutions hiérarchiques résolvent le même problème en $O(\log(n))$.

API Java pour IPv6 Nous avons développé une API Java pour IPv6 [13, 31]. Toutes les nouvelles fonctionnalités et améliorations apportées par IPv6 doivent être rendues accessibles aux différentes applications, y compris celles programmées en Java. C'est pour cette raison que nous avons choisi de mettre en œuvre une JVM (*Java Virtual Machine*) compatible IPv6. Avoir une JVM compatible IPv6 permet donc de développer des programmes aussi bien pour IPv4 que pour IPv6, de réutiliser tous les programmes déjà développés et de les exécuter sans modification. De plus, nous avons introduit de nouvelles fonctionnalités, notamment au sein d'IPv6 qui deviennent par là même accessible via notre API. Ceci concerne principalement le multicast pour lequel nous avons proposé de prendre en compte le mapping des adresses multicast IPv4 sur une adresse IPv6 ce qui permet une plus grande intégration entre des hôtes IPv4 et IPv6. Nous avons aussi pris en compte le nouveau format d'URL rendu nécessaire par la façon dont peuvent s'écrire les adresses IPv6.

Espaces intelligents Dans le cadre de sa thèse d'Université, Laurent Ciarletta actuellement au NIST (National Institute of Standards and Technology) travaille sur les aspects de configuration automatisée, de découverte de services et de sécurité des réseaux dans le contexte des Espaces Intelligents.

Cette recherche est menée le cadre du projet Aroma du NIST dont le but est d'étudier les technologies de découverte de services (JINI, Universal Plug and Play, ...) et de communication sans fils (nomadisme et mobilité) dans une architecture de type "Informatique Ambiante" (Pervasive-Ubiquitous Computing). Cela a été fait par le développement d'un prototype, l'adaptateur Aroma, qui simule les capacités des futures UEC, contrôleurs et périphériques électroniques qui seront embarqués directement dans notre environnement quotidien (vêtements, électroménager, multimédia, ...) et par la création d'un modèle de description de ces environnements [14] qui sert de base à la création d'un simulateur d'Espaces Intelligents. Il s'agit aussi d'intégrer les diverses technologies existantes d'auto-configuration (IPv4 et IPv6) et des mécanismes de niveau supérieur (Overlay Networks) pour obtenir une pile de protocoles cohérente et adaptée à ce type d'architecture. L'ensemble doit être sécurisé et s'intégrer au maximum à l'architecture de sécurité IPSec définie par l'IETF (Internet Engineering Task Force).

6.2.2 Réseaux actifs et programmables

Dans le cadre du projet RNRT AMARRAGE, nous avons conçu une souche ANEP/IPv6 permettant l'échange de paquets actifs en mode natif sur un réseau IPv6 [19, 38]. Une extension de notre environnement Java (JDK) a également été réalisée afin de permettre la réalisation de composants actifs en Java au dessus de notre souche de communication. En octobre 2000, les premiers paquets actifs sur IPv6 ont été échangés entre le LORIA et le LAAS à toulouse, offrant ainsi les premiers nœuds du backbone AMARRAGE.

Nous avons aussi mené des travaux concernant l'apport de l'actif pour la mise en œuvre de protocole de communication multipoint. Les arbres de diffusion représentent une structure
communément employée pour effectuer des communications multipoints. Si l'on veut maintenir une certaine optimalité des arbres de multicast, on doit être en mesure de les adapter aux conditions du réseau, aux évolutions du groupe multicast (JOIN, LEAVE) [8]. Les tables de routage multipoints décrivant cette structure d’arbre doivent donc être dynamiques et un mécanisme de mise à jour et de reconfiguration doit être mis en œuvre [30, 29].

Dans le cadre de son travail de thèse, Virginie Galtier a conçu et développé, d’une part, un module permettant de mesurer très finement l’exécution des paquets actifs, d’autre part, des modèles pour les applications actives sans boucle aléatoire. Ces modèles, composés avec une caractérisation des nœuds, permettent de prévoir le temps d’exécution et autoriseront donc une meilleure gestion des ressources processeurs d’un réseau actif. Le modèle et les premiers résultats sont présentés dans [25] et [10].

6.2.3 Réseaux ad-hoc

Dans le cadre de l’action coopérative ComPaS nous avons proposé un protocole de routage pour les réseaux ad-hoc comme les réseaux Hiperlan type I. Notre algorithme nommé JUMBO (Jointed Unified Multicast & Broadcast Organization), adapté au mode préemptif du médium fourni par Hiperlan, est basé sur une décomposition en clique du réseau. L’idée sous-jacente est que les nœuds d’une clique peuvent communiquer directement mais lorsque l’un émet, les autres ne peuvent pas émettre. Le protocole Hiperlan type I ne nous semble que peu adapté à la mise en œuvre de protocoles de communication de groupes, c’est pourquoi afin de pouvoir développer de tels protocoles nous avons dans un premier temps proposé JUMBO. Ce nouveau protocole devra permettre de développer des algorithmes de multicast efficaces permettant de mieux déployer dans le réseau des arbres de multicast.

En parallèle de ses travaux concernant le routage unicast et multicast [30], nous avons entrepris une étude d’un protocole de déploiement et de localisation de services adapté aux réseaux ad hoc [31]. Les protocoles actuels de déploiement et localisation de services (SLP, JINI...) sont tous basés sur la notion de serveur ce qui est problématique dans un réseau ad hoc puisque tout nœud est susceptible de se déplacer et donc de partir ou d’arriver. Il est donc nécessaire de proposer d’autres approches ou du moins d’étendre le protocole SLP tel qu’il est défini aujourd’hui afin d’éviter les diffusions excessives par inondation dans tout le réseau.

6.3 Calculs distribués et échange des données entre processeurs

Participants : Michel Cosnard, Tawfik Es-sqalli, Sami Bhiri, Éric Fleury, Jacques Guyard, Laura Grigori, Jens Gustedt [Correspondant], Emmanuel Jeannot, Martial Michel, André Schaff.

Résumé :
Les travaux du groupe ont porté principalement cette année sur :
- les tests de performances de l’architecture CORBA et développement d’une bibliothèque d’échange de messages dans un environnement CORBA ;
- les travaux autour de Scilab et de l’approche serveur de calcul ;
- la portabilité des bibliothèques CGM;
- la factorisation LU creuse en parallèle;
- le transfert des informations complexes.

6.3.1 Interface “Message Passing” au-dessus de CORBA

CORBA Dans la norme CORBA (Common Object Request Broker Architecture), l’isolement entre client et serveur, en termes du langage de programmation mis en œuvre, du protocole réseau, de l’infrastructure matérielle et de mécanismes de transport de données, fait sa grande force. De plus, CORBA permet une réelle interopérabilité ce qui n’est pas le cas d’applications développées avec MPI. En outre, le format binaire des types de données est défini par la norme afin de régler les problèmes d’échanges de données entre environnements hétérogènes.

Cependant l’architecture CORBA a beaucoup été critiquée au niveau des performances même s’il en existe des implantations performantes. En tenant compte de tous ces éléments, une évaluation possible s’est avérée nécessaire. Nous avons réalisé des tests pour mesurer et comparer les performances de quelques implantations de CORBA (ORBacus et TAO), de quelques implantations de la bibliothèque MPI (MPICH et LAM) et de PVM sur un réseau de stations afin de faire une comparaison et situer les possibilités de CORBA par rapport à celles des deux bibliothèques MPI et PVM, standards actuels de communication par échange de messages.

Comme conclusion pour l’ensemble de ces tests, on a constaté que CORBA présente des implantations compétitives, voir même meilleures, au point de vue performance que les bibliothèques de communication par échange de messages et que l’ORB est plus robuste que les démons de ces bibliothèques. L’ORB peut gérer plusieurs communications simultanément d’une façon performante, contrairement aux démons de ces bibliothèques.

Vers une interface “Message Passing” Vu les avantages de CORBA que nous avons cités, l’utilisation de cette architecture pour le développement des applications parallèles semble intéressante et peut être envisagée en ajoutant une couche d’abstraction au-dessus de CORBA implantant divers services et primitives du traitement parallèle. Cela semble très bénéfique puisqu’il assure de bonnes performances en plus de l’interopérabilité et la portabilité. C’est dans ce cadre que se situe notre travail concernant le développement de MPC (Message Passing in CORBA environment) [23, 2] qui est une bibliothèque de communication par échange de messages dans un environnement CORBA.

L’objectif d’une telle bibliothèque est, d’une part, de profiter des avantages de CORBA en terme d’interopérabilité et de performance des communications tout en masquant la difficulté de son utilisation en proposant une interface “message passing” semblable à celles des bibliothèques d’échange de messages existantes, et dont la plupart des utilisateurs du parallélisme sont habitués, notamment MPI et PVM ; et d’autre part, offrir une variété des primitives de communications utilisées dans le cadre du calcul parallèle et qui ne sont pas directement disponibles par l’utilisation du mécanisme d’invocation de méthode de CORBA. Ces primitives couvrent en particulier les communications point à point et celles collectives [22] ainsi que la synchronisation.

Une première implantation de cette bibliothèque a été développée en utilisant le bus
CORBA ORBacus. Ses premiers résultats expérimentaux sont encourageants et nous montrent la faisabilité de cette bibliothèque [23].

6.3.2 Scilab/

Outre l’intégration de toutes les fonctionnalités d’une bibliothèque de passage de messages au sein de Scilab, nous avons réalisé l’intégration de Scilab avec Netsolve, permettant ainsi à tout utilisateur de faire exécuter un calcul à distance en demandant à un serveur de trouver une liste de plates-formes capables d’effectuer le calcul, de lancer le calcul sur la plate-forme choisie par l’utilisateur et de rapatrier les résultats une fois le calcul terminé. Les intérêts de ce que l’on nomme communément le « Metacomputing » sont multiples: (i) effectuer des calculs alors que les ressources en espace mémoire ou en puissance de calcul ne sont pas présentes localement; (ii) tester/utiliser telle ou telle bibliothèque de calcul sur ses propres jeux de données sans nécessiter l’installation intégrale des bibliothèques.

Il est maintenant possible au sein de Scilab/ de distribuer des matrices et de travailler dessus comme s’il s’agissait de matrice scalaire classique. Pour cela, un nouveau type de données a été introduit dans Scilab et les opérateurs classiques ainsi que les fonctions d’algèbre linéaire ont été surchargées [20].

6.3.3 Portabilité des bibliothèques CGM

La première implantation de la bibliothèque SSCRAP (cf section 5.8) était basée sur PVM et MPI, bibliothèques classiques de passage de messages sur les réseaux de machines.

Pour garantir la portabilité et l’efficacité sur les différentes plates-formes il apparaît nécessaire d’envisager des alternatives pour pouvoir réaliser la couche communication de la bibliothèque avec un outil adapté à l’architecture cible. Une nouvelle alternative a été réalisée au cours de l’année 2000: l’ajout de la mémoire partagée comme second choix principal pour la communication [40].

Pour cela, toute la couche de communication de la bibliothèque a été automatisée et réécrite en introduisant un niveau d’abstraction supplémentaire. Le but est de rendre facile l’ajout de n’importe quelle autre bibliothèque d’échange de données, basée sur le passage de message ou construite sur de la mémoire partagée.

Effectués cette année [40, 42, 27], des tests sur différentes plates-formes ont bien montré la validité et la portabilité de l’approche CGM en montrant, comme prévu, une accélération des temps de calcul. Mais ces tests ont aussi montré que pour de tels problèmes de nombreuses améliorations restent à apporter pour parvenir à des algorithmes utilisables en pratique.

Nous avons également poursuivi le développement d’algorithmes dans le modèle CGM [28, 45, 26] sur des problèmes spécifiques des données irrégulières, en particulier le classement de liste, la contraction d’arbre et le coloriage de graphes. Le premier et le deuxième sont bien connus pour être « résolus » en théorie (par exemple pour le modèle PRAM) mais également pour se comporter assez mal en pratique. Le troisième est déjà NP-complet en séquentiel, mais il y a des heuristiques séquentielles résolvant le problème avec certaines garanties.
6.3.4 Factorisation LU creuse en parallèle

Dans le cadre de l’algorithmique creuse, la factorisation LU intervient dans beaucoup d’applications scientifiques. Si la matrice à factoriser est non-symétrique, le pivotage partiel est nécessaire pour maintenir la stabilité numérique. Mais à cause de ce pivotage, il est difficile de développer des codes parallèles performants, car le pivotage partiel provoque des ruptures dans l’adressage (faute de cache) et aussi un important déséquilibre de la charge sur les architectures modernes avec une importante hiérarchie des mémoires.

Pour obtenir de meilleures performances (en temps d’exécution) pour une factorisation LU sur systèmes à mémoire distribuée, il est important d’appliquer des techniques d’ordonnancement : partitionner et distribuer d’une manière efficace les matrices creuses. Pour cela, nous avons donné une méthode de construction de graphe de dépendances (DAG) pour l’algorithme de factorisation LU. À partir de ce graphe, nous avons appliqué un algorithme statique d’ordonnancement (DSC) de tâches [18]. Nous avons développé un solveur basé sur des bibliothèques natives BLAS et la librairie MPI. La plate-forme d’exécution est l’Origin2000 du Centre Charles Hermite. Les résultats des tests sur 2 à 16 processeurs nous ont permis de valider notre approche [17, 16].

Les problèmes de la méthodologie d’ordonnancement utilisée actuellement, à savoir (i) la taille importante du DAG et (ii) l’évolution en temps d’exécution en parallèle, peuvent conduire à un important déséquilibre de charge. Pour améliorer ces points nous envisageons de développer une technique de stockage compact du DAG ainsi que de développer des algorithmes d’ordonnancement dynamiques adéquats à ce problème.

6.3.5 Transfert des informations complexes

7 Contrats industriels (nationaux, européens et internationaux)

7.1 ANTARES II

Participants : Laurent Andrey, Naoufel Bentahar, Olivier Festor [Correspondant], Rachid Hamdane, Abdelhamid Joumdane, Nizar Ben Youssef.

L’action ANTARES II étudie l’apport de nouveaux paradigmes dans le domaine des architectures et plates-formes de supervision des réseaux et services. Les principaux paradigmes étudiés et mis en œuvre sont : les réseaux programmables, les bus logiciels orientés messages, la gestion par délégation et les nouveaux modes de coopération entre entités de supervision. Les technologies évaluées sont principalement Java et les nouvelles interfaces de programmation.
associées. L’objectif principal de cette action est d’évaluer l’impact de ces nouveaux paradigmes et technologies sur les architectures existantes en gestion de réseaux, de concevoir de nouvelles organisations coopératives pour la supervision et de démontrer via des prototypes avancés, la synergie entre ces différents mécanismes d’accès, de distribution et de traitement de l’information de supervision.

ANTARES est l’acronyme de *Architectures et Nouvelles Technologies pour l’Administration des Réseaux Et Services*. La première partie de l’action, lancée en janvier 1998 au sein du GIE DYADE s’est terminée en juin 1999 par :

- le portage et intégration de l’interface de programmation Java d’accès au service CMIS (*CMISJava API*) sur la plate-forme *OpenMaster* d’Evidian ;

- une proposition d’intégration des modèles CIM issus de l’approche WBEM dans le monde OSI et la réalisation d’un démonstrateur sous la forme d’un agent d’adaptation.

L’ensemble des composants ont fait l’objet d’un transfert technologique chez le partenaire industriel qui les a intégré dans son offre commerciale.

En juillet 1999, cette action a été renouvelée pour 3 ans. Elle s’appelle ANTARES II et comporte, dans la continuité d’ANTARES, les objectifs suivants :

- standardisation de l’interface de programmation *CmisOverJava* ;

- Evaluation de l’approche WBEM et prototypage d’un agent-toolkit ;

- Conception d’algorithmes d’intégration de domaine pour des modèles de l’information issus de l’approche WBEM ;

- Mise en Open Source des plates-formes CMISJava API et MODERES Java.

Dans le cadre de nos travaux sur JMX, nous avons obtenu des résultats importants sur l’intégration de cette technologie avec le monde OSI. Ceux-ci comprennent :

- une démonstration de faisabilité ;

- la conception d’une API conforme au modèle JMX permettant à des objets gérés d’un agent JMX d’être visibles depuis un superviseur OSI.

Cet environnement est aujourd’hui également candidat à la standardisation dans JMX.

Le troisième résultat tangible de l’action en 2000 a été la première réalisation d’une plate-forme logicielle basée sur la technologie WBEM entièrement conforme aux standards du DMTF.
Cette suite logicielle a été transférée chez Evidian. Nous avons notamment démontré les limites d’XML pour l’interopérabilité entre composants de supervision et validé l’utilisation de services d’annuaires (LDAP) pour le support des classes de supervision persistantes.

Finalement, nous avons réalisé une interface de transport alternatif pour CMIS, basée sur XML/HTTP. Pour cela, nous avons conçu une DTD pour CMIS et ASN.1, réalisé des encodeurs et décodeurs et une encapsulation HTTP. Finalement, nous avons intégré ce transport dans l’interface CmisJavaAPI. Le prototype a également été transféré chez Evidian.

L’architecture globale réalisée dans le cadre de l’action a été publiée dans la revue internationale IEEE JSAC. Les concepts liés à l’interface de programmation CmisJava API ont été publiés dans la conférence IFIP/IEEE NOMS 2000. La diffusion des logiciels est assurée, pour la partie commerciale par Evidian dans la plate-forme OpenMaster et pour les composants Open Source par l’initiative JSMAN.com initiée par les chercheurs du LORIA en accord et en coopération avec les personnels de DYADE et d’Evidian.

S’ajoute à ces publications, notre contribution à la rédaction de trois chapitres dans un ouvrage sur la gestion des réseaux et services à paraître chez Hermès en 2001 sous la collection IC2. Les chapitres que nous avons rédigés dans cet ouvrage portent sur JMX, le modèle CIM et l’approche WBEM.

7.2 Communications and Systems - Telecommunications

Participants: Olivier Festor, André Schaff [Correspondant], Radu State.

Depuis juillet 1998, une collaboration s’est mise en place avec le groupe Communications and Systems (CS-Télécom). Cette coopération s’est concrétisée par une bourse de thèse sur la supervision des réseaux à l’aide de la technologie Java. Plus particulièrement, les travaux visés portent sur la conception d’une architecture Java pour la supervision de réseaux multi-couches (Frame Relay over ATM) et le support des services dynamiques dans les architectures de supervision.

La première partie des objectifs a été atteinte. Les travaux sur les services dynamiques ont abouti à de nombreux résultats (voir section supervision). Ces résultats sont partiellement repris dans le cadre du projet RNRT REVE.

7.3 REVE

Participants: Ghassan Chaddoud, IsabelleChrisment, Olivier Festor [Correspondant], Emmanuel Nataf, Hassen Sallay, Radu State.

REVE est un projet pré-competitif labellisé par le RNRT en juillet 1999. Les partenaires de ce projet sont : CS-Télécom, THEMATIQUE, France Télécom, PRISM, LIP6 et LORIA.

Le principal objectif de REVE est de définir une architecture pour des réseaux privés virtuels dynamiques. Ceci implique, dans le cadre du projet, la définition d’une signalisation groupant communication de groupes et réseaux privés virtuels, la conception et la réalisation d’une architecture de supervision pour de tels services ainsi que l’application de ces concepts à la distribution vidéo sur la boucle locale.
notre contribution concerne l'utilisation d'une architecture réseau programmable pour offrir aux systèmes de commande des réseaux virtuels dynamiques un support de décision sur l'organisation des arbres de multicast ainsi que les protocoles de distribution de clés pour l'authentification.

Les travaux ont débuté en mai 2000. A ce jour, notre contribution comporte une architecture basée sur des réseaux programmables pour le couplage signalisation/supervision dans un contexte de diffusion sur des réseaux ATM.

7.4 AMARRAGE

Participants : Ramzi Azaiez, Isabelle Chriisment, Stéphane D’Alu, Olivier Festor, Éric Fleury, André Schaff [Correspondant].

AMARRAGE est un projet RNRT pré-compétitif labellisé par le RNRT en juillet 1999. Les partenaires de ce projet sont : Thomson CSF Communications, France Télécom, Synchronix, ENST, L2IT, LAAS, LIP6, LORIA, PRISM. Le projet porte sur la conception, la réalisation et le déploiement au niveau national d’une plate-forme de réseau actif dans un objectif d’évaluation de services innovants tels que MPEG4, les protocoles de transport à ordre partiel, de nouveaux services de multicast, de nouvelles architectures de composition et de supervision de services.

Notre tâche est de concevoir et réaliser l’infrastructure active au-dessus d’Ipv6 et de fournir une architecture de supervision active pour cette plate-forme. Le lancement du projet a eu lieu le 1/11/1999.

A ce jour, nous avons terminé la définition de l’architecture, fourni les composants logiciels de communication active aux différents partenaires et conduit avec succès les premiers test d’interopérabilité avec le LAAS à Toulouse.

7.5 ANAIS

Participants : Isabelle Chriisment, Olivier Festor [Correspondant], Éric Fleury.

ANAIS (Active Network Architecture for Internet Service Providers) est un projet soutenu par le programme Télécom du CNRS. Ce projet visait à définir une architecture de supervision pour des réseaux actifs dans l’objectif de permettre un déploiement efficace et sécurisé de services actifs chez un fournisseur de services.

Les travaux réalisés dans le projet ont permis : l’expérimentation de nombreuses plateformes actives disponibles, la définition d’une architecture d’accueil pour services actifs adaptée à notre cahier des charges et la réalisation d’un prototype de supervision. Ces résultats ont également été à l’origine de la création du projet RNRT AMARRAGE.

Ce projet s’est terminé en septembre 2000.

7.6 SPIHD

Participants : Isabelle Chriisment, Olivier Festor, Éric Fleury [Correspondant].

SPIHD, acronyme pour Services et Programmes pour l’Internet Haut Débit est un projet
PRIAMM (*Programme pour la recherche et l’innovation dans l’audiovisuel et le multimédia*) du ministère de l’économie, des finances et de l’industrie. Ce projet se réalise en coopération avec Matra Systèmes & Information, la SEM câble de l’est, France 3, Canalweb, l’INRIA Lorraine et l’École Normale Supérieure de Lyon.

Le principal objectif du projet SPIHD est de développer une approche globale de la chaîne de production et de diffusion des contenus multimédia sur l’Internet haut débit. Le projet SPIHD est destiné à valider techniquement et économiquement la pertinence d’une offre de services de télévision interactive sur l’Internet haut débit. Quatre composants majeurs ont été identifiés pour mener à bien ce projet :

- produire du contenu multimédia ;

- développer les technologies multimédia permettant de gérer des bouquets de services interactifs sur l’Internet haut débit ;

- expérimenter un bouquet de services interactifs sur la boucle locale haut débit gérée par la SEM câble de l’est ;

- valider et évaluer économiquement la pertinence ou les lacunes de l’approche technique choisie et du service expérimental proposé par une étude d’impact.

Notre contribution porte essentiellement sur les analyses nécessaires au projet SPIHD (notamment l’étude des contraintes, protection du contenu, firewall...) et sur les spécifications des outils SPIHD (technologie de multicasting, contraintes sur le contenu web, outils d’indexation, codage des métadonnées...)

7.7 PAROL

Participants : Tawfik Es-sqalli [Correspondant], Emmanuel Nataf.

Le projet PAROL (Plate-forme d’Applications Réparties à Objets Libre) a pour objectifs l’amorçage d’une communauté de développement d’une plate-forme répartie à objets (ou DPE3) selon les principes du logiciel libre, et la mise en place de la base de code initiale pour ce développement.

Les partenaires du projet sont : France Télécom - Cnet, l’INRIA (sous l’impulsion du projet SIRAC) et l’AFNOR.

Les membres de RESEDAS ont contribué bénévolement à ce projet en assurant la conception et le développement d’un service de relations ainsi que d’un service d’événements conformes aux spécifications de l’OMG. D’autres développements ne sont pas planifiés pour le moment sur ce projet.

3. Distributed Processing Environment
7.8 ALCATEL

Participants : Laurent Andrey, Isabelle Chrisment, Stéphane D’Alu, Olivier Festor [Correspondant].

Débuté en juillet 2000, mais signé seulement début novembre 2000, ce projet de coopération entre les membres du projet RESEDAS et le groupe Alcatel porte sur la conception et la réalisation d’une architecture basée sur les réseaux actifs pour la supervision d’un environnement de routeurs IP.

Le projet comporte deux phases. La première consiste à concevoir et prototyper une application de mesure de performance à l’aide de la technologie active. Cette première permet l’évaluation de différentes plates-formes actives généralistes pour la supervision et l’identification de besoins spécifiques pour la supervision d’environnements IP. La seconde phase du projet qui va démarrer en février 2000, vise à définir un environnement d’exécution propre dédié au support de fonctions de supervision.

Nous travaillons actuellement au prototypage de la première phase sur l’environnement ASP développé à l’ISI de l’Université de Californie du Sud.

7.9 PROXiTV

Participants : Éric Fleury [Correspondant].

PROXiTV est un projet européen IST. Le projet PROXiTV travaille à l’établissement et à la proposition d’une solution Internet et télévision haut débit en exploitant les boucles locales haut débit. L’idée première est d’offrir une solution globale pour mettre à disposition d’un large public connecté directement à partir de leur TV ou de leur PC des services interactifs. Les buts sont de construire une infrastructure de diffusion pour le multimédia, de développer des services interactifs orientés contenu sachant tirer parti des accès haut débit et de mettre en œuvre une plate-forme de test grandeur nature sur trois boucles locales ADSL (VIENNA, LINZ et STEYR), de mettre en place des expérimentations B-to-C (Business to Client) de services WEB interactifs en haute définition (TV ou VOD).

La contribution du LORIA porte essentiellement sur l’optimisation des routes et sur les politiques d’ordonnancement à mettre en œuvre pour respecter les différents types de contraintes imposées par les fournisseurs de contenu.

8 Actions régionales, nationales et internationales

8.1 Relations bilatérales internationales

Nous maintenons depuis plusieurs années des relations avec de nombreux partenaires au niveau international.

Depuis septembre 1996, des relations de travail sont établies dans le domaine de la gestion des réseaux et services avec le département réseaux de l’ENSIAS et de l’EMI à Rabat au Maroc.

Depuis plusieurs années, des travaux de recherche sont menés avec le NIST (National Institute of Standards and Technology) à Washington. En 1999-2000, dans le cadre de sa
thèse d’Université dans le domaine du calcul distribué sur réseaux de stations hétérogènes, Martial MICHEL y a effectué sa troisième année. Il y a développé des outils prenant en charge l’échange de structures de données complexes et dynamiques par les bibliothèques MPI. Les logiciels développés et des informations complémentaires sont disponibles depuis le site d’AutoMapetd’AutoLink. Virginie GALTIER, en troisième année de thèse, y travaille sur l’évaluation des besoins des applications actives dans un cadre de réseaux actifs. Laurent CHARLETTA, également en troisième année de thèse, y travaille sur les Smart Spaces et la découverte de services.

Nous maintenons de nombreux autres contacts avec des laboratoires et universités (U. du Delaware (USA), U. de Montréal (Canada), CRIM, INRS Télécom à Montréal, U. Colorado at Denver (USA), U. Bergen (Norvège), U. Surrey (Grande-Bretagne)) sans que ces contacts soient toujours officiellement formalisés.

Le groupe RÉSÉDAS et l’ESIAL – École Supérieure d’Informatique et Applications de Lorraine – participent depuis plusieurs années à EUNICE, groupement des écoles et universités européennes développant des activités d’enseignement et de recherche sur le domaine des réseaux et télécommunications. Dans sa version actuelle, EUNICE se traduit par l’organisation annuelle d’une école d’été et regroupe des laboratoires, universités et écoles de la plupart des pays européens.

Depuis octobre 1999, nous participons via DYADE au consortium JMX regroupant les principaux industriels de plates-formes de supervision. Notre activité au sein de ce consortium porte sur la définition d’interfaces de programmation Java pour le RGT. Nous sommes Specification Chair pour ces interfaces.

8.2 Actions nationales

Nous participons aux réunions de RHDM (Réseaux Haut Débit et Multimédia) qui fait partie du pôle Réseaux et systèmes du GdR ARP (Architecture, Réseaux et système, Parallélisme). Dans le cadre de l’animation, nous assurons la correspondance pour le groupe de travail réseaux programmables au sein du GDR RHDM. Nous maintenons également un serveur WEB ainsi qu’une liste de diffusion pour permettre aux chercheurs francophones d’échanger des informations sur la recherche en réseaux actifs.

Dans le cadre des programmes télécoms du CNRS, nous développons également une action de recherche sur la supervision et le contrôle des réseaux actifs.

Nous participons aux réunions de TAROT (Techniques algorithmiques, réseaux et d’optimisation pour les télécommunications), action transversale thématique du GdR ARP (Architecture, Réseaux, Parallélisme) où l’ensemble de la communauté française intéressée par les aspects algorithmiques, structurels ou d’optimisation liés aux réseaux, et plus spécifiquement aux télécommunications, peut présenter ses travaux.

Nous participons aux réunions de Grappes (Architecture, systèmes, outils et applications pour réseaux de stations de travail hautes performances), action transversale thématique du

4. Centre de Recherche en Informatique de Montréal
GdR ARP (Architecture, Réseaux, Parallélisme), qui s’intéresse aux stations de travail interconnectées par des réseaux locaux à très hautes performances (« grappes »).

Nous participons à un groupe de travail sur l’étude des réseaux tout-optiques entre les équipes Grafcom du LRI (Université Paris-Sud), OpPALL du Prism (Université de Saint-Quentin), Opal du LAMI (Université d’Évry), sans que ces contacts soient toujours officiellement formalisés.

Nous avons également participé à la réunion du lancement du projet PAROL (Plate-forme d’Applications Réparties à Objets Libre) au CNET et qui a pour objectifs l’amorçage d’une communauté de développement d’une plate-forme répartie à objets (ou DPE - Distributed Processing Environment). Dans ce cadre, nous avons pris en charge l’implantation des services d’événement et de relation du bus CORBA Jonathan.

Nous participons à deux \textsc{actionscoopérativesdeladirectionscientifiquedel’INRIA}: \textsc{Communications multi-points et qualité de service dans les réseaux locaux sans fil \textsc{ComPaS}}, et \textsc{Outils de Résolution Appliquée aux Grands Calcults Numériques \textsc{OURAGAN}}.

Nous sommes également partenaires dans deux projets RNRT (AMARRAGE et REVE).

8.3 Accueil de chercheurs étrangers

Nous avons accueilli le Professeur Paul Amer de l’Université du Delaware, spécialiste de l’Internet et des protocoles à ordre partiel, pour une période d’un mois, la Professeure Rachida Dssouli de l’Université de Montréal, spécialiste des tests de protocoles, pour une période de deux mois, le professeur Vladimir Nemchenko de l’Université d’Etat Technique de Radiélectronique de Kharkiv (Ukraine), spécialiste des tests et diagnostics, pour une période d’un mois [46], le Professeur Chai Keong Toh du Georgia Institute of Technology (Atlanta), spécialiste des réseaux ad-hoc, pour quelques jours ainsi que le doctorant Ole A. Mæhle de l’Université de Bergen (Norvège) pour 1 mois.

9 Diffusion de résultats

9.1 Animation de la communauté scientifique

Les membres du projet sont impliqués dans différents colloques et congrès et participent régulièrement à des jurys de thèse.

I. Chrisment est membre du RHDM (GDR-ARP) et y anime le pôle réseaux actifs. Elle est également très active au sein du G6, groupement français des chercheurs et industriels travaillant sur l’évolution de l’Internet.

O. Festor participe également au pôle réseaux actifs du GDR-ARP réseaux actifs. Il est membre du comité de programme du Colloque Francophone sur la Gestion de Réseaux et Ser-

J. GUSTEDT est éditeur en charge de la section « graph algorithms » et de la publication électronique du journal \textsc{DiscreteMathematicsandTheoreticalComputerScience}. Il est également membre du comité de pilotage de la conférence bi-annuelle \textsc{ORDAL}, <<\textsc{OrderAlgorithmsandApplications}}. En 2000, il était membre des comités de programme des conférences \textsc{SWAT}, ScandinavianWorkshoponAlgorithmicTheory, qui a eu lieu à Bergen, Norvège, en juillet 2000, et \textsc{ICGT}, InternationalConferenceonGraphTheory, qui a eu lieu à Marseille en août 2000. Il a également participé au comité de mise en place du nouveau Centre Charles Hermite, et anime la commission d’achat de ce même Centre.

J. GUYARD est responsable de l’opération « Méthodes et outils pour les communications dans les applications de calcul distribué et parallèle » du Centre Lorrain de Compétence en Modélisation et Calcul à Hautes Performances (Centre Charles HERMITE).

9.2 Diffusion des connaissances

Vu que nos domaines de compétence et de recherche sont actuellement très sollicités par les divers établissements d’enseignement nancéens, tous les membres du projet RÉSEDAS y assurent de nombreux cours et travaux dirigés. En particulier les enseignants-chercheurs effectuent souvent plus d’un service complet d’enseignement dans leurs établissements d’origine: IUT, DEUG, licence, maîtrise, IUP ou École d’Ingénieurs. De ce fait, nous ne détaillons ci-dessous que les cours qui sont plus en relation avec nos activités de recherches.

Au DEA Informatique et en commun avec la 3e année ESIAL, E. FLEURY et I. CHRISMENT assurent le cours sur *Les protocoles de Télécommunications*, J. GUSTEDT celui sur *Algorithmes et programmation des systèmes distribués*.

En 3e ESIAL, J. GUYARD et T. ES-SQALLI assurent le cours *Concurrence, Parallélisme et Distribution* et A SCHAFF celui sur *Analyse et Comparaison des Systèmes Distribués* ainsi que le suivi de tous les projets industriels et stages. O. FESTOR et E. NATAF ont assuré le module *Supervision et Contrôle dans les Télécommunications*, cours également assuré en IUP-GEII.

I. CHRISMENT, O. FESTOR, E. FLEURY, N. BEN YOUSSEF, L. ANDREY et E. NATAF contribuent à la rédaction de divers livres sur Java, l’évolutions des protocoles Internet et la supervision des réseaux.

9.3 Participation à des colloques et jurys de thèse

Colloques, séminaires
Olivier FESTOR a donné un cours sur la technologie JMX à l’école d’été EUNICE à Twente, Pays-Bas en septembre 2000.

Jens GUSTEDT a donné des conférences aux Journées Informatiques de Metz, au Workshop on Graph-Theoretic Concepts in Computer Science, Konstanz, Allemagne, et au 4th Workshop on Algorithm Engineering, Saarbrücken, Allemagne.

Jurys de thèse, commission de spécialistes
O. FESTOR est membre de la commission de spécialistes 27e section de l’Université Louis Pasteur de Strasbourg et il a été membre de la commission de recrutement des ingénieurs de l’INRIA Lorraine en 1999. Il a également été rapporteur de la thèse EPFL/EURECOM de Morsy CHEIKROUHOU.

E. FLEURY a été membre du jury de thèse de T. ES-SQALLI (Nancy 1).

J. GUSTEDT était membre du jury de thèse de Olivier RAYNAUD (Montpellier 2), de la commission de spécialistes 27e section de l’INPL et de la commission de recrutement de l’INRIA Lorraine en 2000.

J. GUYARD a été rapporteur de la thèse d’Emmanuel MUNIER (UHP Nancy). Il est membre de la CSE 27e de l’UHP de Nancy.

10 Bibliographie

Livres et monographies

Thèses et habilitations à diriger des recherches

Articles et chapitres de livre

Communications à des congrès, colloques, etc.

Rapports de recherche et publications internes

