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2. Overall Objectives

2.1. Main Themes
The aim of the Parsifal team is to develop and exploit the theories of proofs and types to support the
specification and verification of computer systems. To achieve these goals, the team works on several level.

• The team has expertise in proof theory and type theory and conducts basic research in these fields:
in particular, the team is developing results that help with the automation of deduction and with the
formal manipulation and communication of proofs.

• Based on experience with computational systems and theoretical results, the team designs new
logical principles, new proof systems, and new theorem proving environments.

• Some of these new designs are appropriate for implementation and the team works at developing
prototype systems to help validate basic research results.

• By using the implemented tools, the team can develop examples of specifications and verification to
test the success of the design and to help suggest new logical and proof theoretic principles that need
to be developed in order to improve one’s ability to specify and verify.
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The foundational work of the team focuses on the proof theory of classical, intuitionistic, and linear logics
making use, primarily, of sequent calculus and deep inference formalisms. A major challenge for the team is
the reasoning about computational specifications that are written in a relational style: this challenge is being
addressed with the introduction of some new approaches to dealing with induction, co-induction, and generic
judgments. Another important challenge for the team is the development of normal forms of deduction: such
normal forms can be used to greatly enhance the automation of search (one only needs to search for normal
forms) and for communicating proofs (and proof certificates) for validation.

The principle application areas of concern for the team currently are in functional programming (e.g., λ-
calculus), concurrent computation (e.g., π-calculus), interactive computations (e.g., games), and biological
systems.

2.2. Highlights of the year
Alexis Saurin’s PhD thesis has won the Prix de thèse de l’École Polytechnique and the Prix de thÃ¨se ASTI
2009. His thesis, titled Une étude logique du contrôle (appliquée à la programmation fonctionnelle et logique),
was done within the Parsifal team and was advised by Miller.

Dale Miller has been named Editor-in-Chief of the ACM Transactions on Computational Logic.

3. Scientific Foundations

3.1. General Overview
In the specification of computational systems, logics are generally used in one of two approaches. In the
computation-as-model approach, computations are encoded as mathematical structures, containing such items
as nodes, transitions, and state. Logic is used in an external sense to make statements about those structures.
That is, computations are used as models for logical expressions. Intensional operators, such as the modals of
temporal and dynamic logics or the triples of Hoare logic, are often employed to express propositions about
the change in state. This use of logic to represent and reason about computation is probably the oldest and
most broadly successful use of logic in computation.

The computation-as-deduction approach, uses directly pieces of logic’s syntax (such as formulas, terms, types,
and proofs) as elements of the specified computation. In this much more rarefied setting, there are two rather
different approaches to how computation is modeled.

The proof normalization approach views the state of a computation as a proof term and the process of
computing as normalization (know variously as β-reduction or cut-elimination). Functional programming can
be explained using proof-normalization as its theoretical basis [50] and has been used to justify the design of
new functional programming languages [22].

The proof search approach views the state of a computation as a sequent (a structured collection of formulas)
and the process of computing as the process of searching for a proof of a sequent: the changes that take place
in sequents capture the dynamics of computation. Logic programming can be explained using proof search as
its theoretical basis [54] and has been used to justify the design of new logic programming languages [53].

The divisions proposed above are informal and suggestive: such a classification is helpful in pointing out
different sets of concerns represented by these two broad approaches (reductions, confluence, etc, versus
unification, backtracking search, etc). Of course, a real advance in computation logic might allow us merge or
reorganize this classification.

Although type theory has been essentially designed to fill the gap between these two kinds of approaches, it
appears that each system implementing type theory up to now only follows one of the approaches. For example,
the Coq system implementing the Calculus of Inductive Constructions (CIC) uses proof normalization while
the Twelf system [57], implementing the Edinburgh Logical Framework (LF, a sub-system of CIC), follows
the proof search approach (normalization appears in LF, but it is much weaker than in, say, CIC).
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The Parsifal team works on both the proof normalization and proof search approaches to the specification of
computation.

3.2. Proof search in Type Theory
Cross-fertilizing ideas between the proof search approach and the proof normalization approach, Lengrand
has interacted with the TypiCal (INRIA Saclay) and the πr2 (INRIA Rocquencourt) project-teams.

In proof assistants based on the proof normalization approach, or Type Theory, it is a hard challenge to design
and understand their proof search mechanisms. Based on ideas from [49], a major effort has been spent
on using concepts from the proof search approach, like focused proof systems, in order to rationalize the
implemented mechanisms.

By doing so, we have helped improve the Coq system, by impacting the design of the new version of the tool’s
proof engine. One of these proof search mechanisms, known as pattern unification, has again become a hot
topic of Coq’s design, after Lengrand’s use of Coq to specify a particular algorithm has revealed a drastic need
for this missing feature.

It also emerged from Lengrand’s interaction with these project-teams, that bridging Type Theory with the
proof theory developed at Parsifal confirms the need for more extensionality on the functions programmed in
Coq. Efforts to add such extensionality are ongoing.

3.3. A logic for reasoning about logic specifications
Coming up with the design of a logic that allows reasoning richly over relational specifications involving
bindings in syntax has been a long standing problem, dating from at least the early papers by McDowell
and Miller [52] [7], and by Despeyroux, Leleu, Pfenning, and Schürmann [36], [35] [2], [1]. Relational
specifications are popular among many designers and implementers of programming languages and computing
specification languages. Almost invariably since specifications need to deal with syntax containing variable
bindings. Finding a logic appropriate for this domain has gone through many attempts. Pioneer work here
includes work by Despeyroux, Leleu, Pfenning, and Schürmann [2], [1], in the Type Theoretic approach.
McDowell and Miller [51] also presented a start at such a logic, with a proof-search approach in mind.
Later, Tiu and Miller [55], [9] developed the ∇-quantifier that provided a significant improvement to the
expressiveness of logic. Tiu then went on to enrich the possibilities of such a logic as well allowing for more
“nominal” effects to be captured [66], [67].

As described in Section 6.1, the team has recently found completely satisfactory designs for a logic for
reasoning about logic specifications.

3.4. Focused proof systems
Several team members have continued their efforts to understand and apply focusing proof systems. Since
Andreoli’s first focused proof system for full linear logic [23], several efforts have attempted to provide
focused proof systems for intuitionistic and classical logics. Liang and Miller [14] have provided the LJF and
LKF proof systems that appear to be the most general such focusing systems for intuitionistic and classical
logics, respectively. In a second work [18], Liang and Miller have also presented a focusing proof system
for combinations of classical, intuitionistic, and linear logics that manage to uncover the previous three proof
systems as well as allows proofs in these different systems to communicate via the cut inference rule.

Baelde has also focused proof systems found in his PhD thesis [27] to reconstruct and design useful algorithms
used within the model checking literature [15].
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3.5. Deep Inference and Categorical Axiomatizations
Deep inference [44], [45] is a novel methodology for presenting deductive systems. Unlike traditional
formalisms like the sequent calculus, it allows rewriting of formulas deep inside arbitrary contexts. The new
freedom for designing inference rules creates a richer proof theory. For example, for systems using deep
inference, we have a greater variety of normal forms for proofs than in sequent calculus or natural deduction
systems. Another advantage of deep inference systems is the close relationship to categorical proof theory.
Due to the deep inference design one can directly read off the morphism from the derivations. There is no
need for a counter-intuitive translation.

One reason for using categories in proof theory is to give a precise algebraic meaning to the identity of proofs:
two proofs are the same if and only if they give rise to the same morphism in the category. Finding the right
axioms for the identity of proofs for classical propositional logic has for long been thought to be impossible,
due to “Joyal’s Paradox”. For the same reasons, it was believed for a long time that it it not possible to have
proof nets for classical logic. Nonetheless, Lutz Straßburger and François Lamarche provided proof nets for
classical logic in [4], and analyzed the category theory behind them in [48]. In [10] and [63], one can find a
deeper analysis of the category theoretical axioms for proof identification in classical logic. Particular focus
is on the so-called medial rule which plays a central role in the deep inference deductive system for classical
logic.

The following research problems are investigated by members of the Parsifal team:

• Find deep inference system for richer logics. This is necessary for making the proof theoretic results
of deep inference accessible to applications as they are described in the previous sections of this
report.

• Investigate the possibility of focusing proofs in deep inference. As described before, focusing is a
way to reduce the non-determinism in proof search. However, it is well investigated only for the
sequent calculus. In order to apply deep inference in proof search, we need to develop a theory of
focusing for deep inference.

• Use the results on deep inference to find new axiomatic description of categories of proofs for various
logics. So far, this is well understood only for linear and intuitionistic logics. Already for classical
logic there is no common accepted notion of proof category. How logics like LINC can be given a
categorical axiomatisation is completely open.

3.6. Proof Nets and Combinatorial Characterization of Proofs
Proof nets are abstract (graph-like) presentations of proofs such that all "trivial rule permutations" are
quotiented away. More generally, we investigate combinatoric objects and correctness criteria for studying
proofs independently from syntax. Ideally the notion of proof net should be independent from any syntactic
formalism. But due to the almost absolute monopoly of the sequent calculus, most notions of proof nets
proposed in the past were formulated in terms of their relation to the sequent calculus. Consequently we could
observe features like “boxes” and explicit “contraction links”. The latter appeared not only in Girard’s proof
nets [42] for linear logic but also in Robinson’s proof nets [60] for classical logic. In this kind of proof nets
every link in the net corresponds to a rule application in the sequent calculus.

The concept of deep inference allows to design entirely new kinds of proof nets. Recent work by Lamarche and
Straßburger [62] and [5] have extended the theory of proof nets for multiplicative linear logic to multiplicative
linear logic with units. This seemingly small step—just adding the units—had for long been an open problem,
and the solution was found only by consequently exploiting the new insights coming from deep inference. A
proof net no longer just mimics the sequent calculus proof tree, but rather an additional graph structure that is
put on top of the formula tree (or sequent forest) of the conclusion. The work on proof nets within the team is
focused on the following two directions

• Extend the work of Lamarche and Straßburger to larger fragments of linear logic, containing the
additives, the exponentials, and the quantifiers.
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• Finding (for classical logic) a notion of proof nets that is deductive, i.e., can effectively be used for
doing proof search. An important property of deductive proof nets must be that the correctness can
be checked in linear time. For the classical logic proof nets by Lamarche and Straßburger [4] this
takes exponential time (in the size of the net). We hope that eventually deductive proof nets will
provide a “bureaucracy-free” formalism for proof search.

3.7. A Systematic Approach to Cut Elimination
One of the main problems of proof theory is to prove cut elimination for new logics. Usually, a cut elimination
proof is a tedious case analysis, and, in general, it is very fragile and not modular [43]. That means that a
minor change in the deductive system makes the cut elimination proof break down, and for every new system
one has to start from scratch.

It is therefore an important research task, to find a more systematic approach to cut elimination proofs. That
is to say, to find general guidelines that ensure the cut elimination property for large classes of systems, in a
similar way as it has been done for display logics [29].

4. Application Domains

4.1. Automated theorem proving
Proving theorems in classical, intuitionistic, and linear logics is an important activity in a number of formal
methods and formalized reasoning domains. While this is a well-worn topic (automated theorem proving for
classical logic dates back to at least the early 1960’s), the team has been developing many new insights into
the structure of proof and to structuring the search for proofs. We are applying at least some of our efforts to
the design of new theorem provers, both automatic and interactive.

4.2. Mechanized metatheory
There has been increasing interest in the international community with the use of formal methods to provide
proofs of properties of programs and entire programming languages. The example of proof carrying code is
one such example. Two more examples for which the team’s efforts should have important applications are the
following two challenges.

Tony Hoare’s Grand Challenge titled “Verified Software: Theories, Tools, Experiments” has as a goal the
construction of “verifying compilers” to support a vision of a world where programs would only be produced
with machine-verified guarantees of adherence to specified behavior. Guarantees could be given in a number
of ways: proof certificates being one possibility.

The PoplMark challenge [25] envisions “a world in which mechanically verified software is commonplace: a
world in which theorem proving technology is used routinely by both software developers and programming
language researchers alike.” The proposers of this challenge go on to say that a “crucial step towards achieving
these goals is mechanized reasoning about language metatheory.” There is clearly a strong overlap in the goals
of this challenge and those of part of the Parsifal team.

5. Software

5.1. Abella
Participant: Andrew Gacek.
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The earliest versions of the Abella theorem prover was written while Gacek was a PhD student at the University
of Minnesota. Now that he is a post doc within Parsifal, he has continued to enhance that prover: in particular,
he has added some additional static checking for theories (simple type checking), provided modularity for
specifications and for theories, and has documented several more example theories. The system is available
via the web and several people and groups are known to be using the prover on a regular basis.

5.2. Tac
Participants: David Baelde, Dale Miller, Zachary Snow, Alexandre Viel.

Given the team’s expertise with the structure of proofs and techniques for automation, we have taken on the
implementation of the TAC prover. This prover, written in OCaml, is currently underdevelopment and has not
yet been released. Its architecture is designed to perform focused proof search of rather limited depth and to
use only “obvious” induction invariants. A goal of this prover is to completely automate a large number of
simple theorems within an inductive and co-inductive setting: proofs of more significant theorems would then
be organized as being simple lists of lemmas. A large class of examples, including those from the POPLMark
challenge [25], are currently being treated by this prover.

6. New Results
6.1. A logic for reasoning about logic specifications

Participants: David Baelde, Andrew Gacek, Dale Miller.

As described in Section 3.3, there has been a decade-long effort to design a logical framework for reasoning
about logic specifications. Finally in 2008 and 2009 team members have reached what appears to be a natural
culmination of this development. In particular, David Baelde’s PhD [27] and Andrew Gacek’s PhD thesis
[37] provided rich analysis of how the ∇-quantification can be related to fixed point definitions and their
associated induction and co-induction inference rules. Baelde has concentrated on proving focusing-style
results that are critical for proof automation and on a minimal generic interpretation of the∇-quantifier. Gacek
has concentrated on a nominal generic interpretation of the ∇-quantifier. We now understand the difference
between these logics: the nominal approach resembles much more closely the approach developed by Pitts
[59].

Full proofs of the important meta-theory results of the logic in Gacek’s thesis have been submitted for
publication [41]. Gacek has also provided an implementation of his logic within the Abella prover that he
has worked on as part of his PhD thesis.

We have developed extensive examples of our this new logic: significant examples taken from the π-calculus
have been published in [65] and the Abella distribution contains a large number of examples.

6.2. Two level of logic
Participants: Andrew Gacek, Dale Miller.

Relational descriptions have been widely used in formalizing diverse computational notions, including,
for example, operational semantics, typing, acceptance by non-deterministic machines, etc. Such relational
specifications can be faithfully captured by a (restricted) logical theory over relations. Such a specification
logic can be picked so that it explicitly treats binding in object languages. Once such a logic is fixed, a natural
next question is what devices should be used to prove theorems about specifications written in it. Within the
team, we have a second logic, called the reasoning logic, to reason about provability in the first logic. To be
adequate for this purpose, the reasoning logic should be able to completely encode the specification logic,
including notions of binding, such as quantifiers within formulas, for eigenvariables within sequents, and for
abstractions within terms. To provide a natural treatment of these aspects, the reasoning logic must encode
binding structures as well as their associated notions of scope, free/bound variables, and capture-avoiding
substitution. Furthermore, the reasoning logic should possess strong mechanisms for constructing proofs by
induction and co-induction.
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Within the context of the Gacek’s PhD thesis [37] and the submitted paper [40] by Gacek, Miller, and Nadathur,
the logic G was present: this logic represents relations over λ-terms via definitions of atomic judgments,
contains inference rules for induction and co-induction, and includes a special quantifier called ∇ and a
related generalization of equality over λ-terms called nominal abstraction. The interactive theorem prover
Abella [39] [37] implements G and supports this two-level logic approach to reasoning about computation.
Gacek and others have now contributed a large number of interesting examples showing the utility of using
this two-level approach to reasoning: see the Abella web site for many examples. In particular, the POPLMark
challenge problems 1a and 2a [25] have nice, declarative solutions within Abella.

6.3. New insights into ∇-quantification
Participants: David Baelde, Andrew Gacek, Dale Miller.

The team has been actively extending the scope of effectiveness ∇-quantification. As Tiu and Miller have
shown in [65], the ∇ quantifier (developed in previous years within the team) provides a completely
satisfactory treatment of binding structures in the finite π-calculus. Moving this quantifier to treat infinite
behaviors via induction and co-induction, required new advances in the underlying proof theory of ∇-
quantification.

The team has explored two different approaches to this problem. David Baelde [27], [28] has developed a
minimalist generalization of previous work by Miller and Tiu: he has found what seems to be the simplest
extension to that earlier work that allows ∇ to interact properly with fixed points and their inference rules
(namely, induction and co-induction). His logical approach allows for a rather careful and rigid understanding
of scope in the treatment of the meta-theory of logics and computational specifications.

Another angle has been developed as a result of our close international collaborations. Alwen Tiu, now at
the Australian National University, has developed a logic, called LGω which extends the earlier, “minimal”
approach by introducing the structural rules of strengthening and exchange into the context of generic
variables. As a result, the behavior of bindings becomes much more like the behavior of names more generally,
while still maintaining much of the status as being binders. In combination with our close colleagues at the
University of Minnesota, we have extended this work to include a new definitional principle, called nabla-in-
the-head, that strengthens our ability to declaratively describe the structure of contexts and proof invariants.
This new definitional principle was first presented in [38] and examples of it were presented in [39]. Our
colleague, Andrew Gacek (a PhD student at the University of Minnesota and former intern with Parsifal) has
also built the Abella proof editor that allows for the direct implementation of this new definitional principle.
His system is in distribution and has been used by a number of people to develop examples in this logic.

6.4. Foundational aspects of focusing proof systems
Participants: David Baelde, Kaustuv Chaudhuri, Dale Miller, Alexis Saurin.

Since focusing proof systems seem to be behind much of our computational logic framework, the team has
spent some energies developing further some foundational aspects of this approach to proof systems.

Chuck Liang and Miller have recently finished the paper [6] in which a comprehensive approach to focusing
in intuitionistic and classical logic was developed. In particular, they present a compact sequent calculus
LKU for classical logic organized around the concept of polarization. Focused sequent calculi for classical,
intuitionistic, and multiplicative-additive linear logics are derived as fragments of the host system by varying
the sensitivity of specialized structural rules to polarity information. They identify a general set of criteria
under which cut elimination holds in such fragments. From cut elimination leads to a unified proof of the
completeness of focusing. Furthermore, each sublogic can interact with other fragments through cut. Under
certain circumstances, for example, it is possible for a classical lemma to be used in an intuitionistic proof
while preserving intuitionistic provability. They also examine the possibility of defining some classical-linear
hybrid logics.
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Given the team’s ambitious to automate logics that require induction and co-induction, we have also looked in
detail at the proof theory of fixed points. In particular, David Baelde’s recent PhD thesis [27] contains a number
of important, foundational theorems regarding focusing and fixed points. In particular, he has examined the
logic MALL (multiplicative and additive linear logic). To strengthen this decidable logic into a more general
logic, Girard added the exponentials, which allowed for modeling unbounded (“infinite”) behavior. Baelde
considers, however, the addition of fixed points instead and he has developed the proof theory of the resulting
logic. We see this logic as being behind much of the work that the team will be doing in the coming few years.

Alexis Saurin’s recent PhD [61] also contains a wealth of new material concerning focused proof system. In
particular, he provides a new and modular approach to proving the completeness of focused proof systems as
well as develops the theme of multifocusing.

A particular outcome of our work on focused proof search is the use of maximally multifocused proofs to
help provide sequent calculus proofs a canonicity. In particular, Chaudhuri, Miller, and Saurin have shown
in [32] that it is possible to show that maximally multifocused sequent proofs can be placed in one-to-one
correspondence with more traditional proof net structures for subsets of MALL.

6.5. A completely symmetric approach to proof and refutation
Participants: Olivier Delande, Dale Miller, Alexis Saurin.

A couple of years ago, Miller and Saurin proposed a neutral approach to proof and refutation. The goal was to
describe an entirely neutral setting where a step in a “proof search” could be seen as a step in either building a
proof of a formula or a proof of its negation. The early work was limited to essentially a simple generalization
to additive logic. Delande was able to generalize that work to capture multiplicative connectives as well. His
thesis [11] contains two game semantics for multiplicative additive linear logic (MALL): the first is sequential
and the second is concurrent. The concurrent game was used to capture full completeness results between
MALL (focused) sequent calculus proofs and winning strategies.

The paper [34] provides a detailed description of the sequent approach to both additive and multiplicative
linear logic. In that paper, the search for a proof of B or a refutation of B (i.e., a proof of ¬B) can be carried
out simultaneously: in contrast, the usual approach in automated deduction views proving B or proving ¬B
as two, possibly unrelated, activities. Their approach to proof and refutation is described as a two-player game
in which each player follows the same rules. A winning strategy translates to a proof of the formula and a
counter-winning strategy translates to a refutation of the formula. The game is described for multiplicative and
additive linear logic (MALL). A game theoretic treatment of the multiplicative connectives is intricate and
involves two important ingredients. First, labeled graph structures are used to represent positions in a game
and, second, the game playing must deal with the failure of a given player and with an appropriate resumption
of play. This latter ingredient accounts for the fact that neither player might win (that is, neither B nor ¬B
might be provable).

6.6. Subexponentials
Participants: Dale Miller, Vivek Nigam.

The inference rules of a logic define a logical connective in a canonical fashion if the following test is passed:
assume that there are two copies of a logical connective, say a red and blue copy, and assume that both of
these connectives have the same introduction rules. If it is possible to prove that the red and blue versions are
equivalent within the extended proof system, then we say that the connective is defined canonically. In linear
logic, all connectives are canonical in this sense except for the exponentials (!, ?). That is, it is possible to have
many exponentials and they do not need to all support weakening and contraction but some subsets of these
structural rules. Since they do not need to provide all structural rules, we have called these not exponentials
but subexponentials [19].
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Proof theory does not provide canonical solutions for many things in computational logic: for example, the
domain of first-order quantification is seldom addressed by proof theory as well as the exact nature of worlds
within, say, Kripke models. These non-canonical aspects of logic provide, however, important opportunities
for computer scientists to attach structures that they need to logic. Since the exponentials are not canonical,
maybe there are possible exploitations of such non-canonical exponentials in computer science. Nigam and
Miller have provided a partial answer to this question. In particular, they have shown that rich forms of multiset
computation can be supported using subexponentials [19] [12]. In particular, it is possible to specify various
multisets with different locations (identified with different exponentials) and to test them for emptiness. In this
way, linear logic with an array of subexponential can then be used to declaratively and faithfully specify a
wide range of deterministic and non-deterministic algorithms.

6.7. A framework for proof systems
Participants: Vivek Nigam, Dale Miller.

In earlier work by Pimentel and Miller [58], it was clear that linear logic could be used to encode provability
in classical and intuitionistic logics using simple and elegant linear logic theories. Recently, Nigam and Miller
have extended that work to show that by using polarity and focusing within linear logic, it is possible to
account for a range of proof systems, such as, for example, sequent calculus, natural deduction, tableaux,
free deduction, etc. The initial work in this area by Nigam, Pimentel, and Miller only captured relative
completeness whereas the most recent our these papers [56] [12] are able to capture a much more refined notion
of “adequate encoding”, namely, inference rules in one system are captured exactly as (focused) inference rules
in the linear logical framework. In particular, Nigam and Miller argue that linear logic can be used as a meta-
logic to specify a range of object-level proof systems. In particular, they showed that by providing different
polarizations within a focused proof system for linear logic, one can account for natural deduction (normal
and non-normal), sequent proofs (with and without cut), and tableaux proofs. Armed with just a few, simple
variations to the linear logic encodings, more proof systems can be accommodated, including proof system
using generalized elimination and generalized introduction rules. In general, most of these proof systems are
developed for both classical and intuitionistic logics. By using simple results about linear logic, they could
also give simple and modular proofs of the soundness and relative completeness of all the proof systems
considered.

6.8. Modular Systems for Modal Logics
Participant: Lutz Straßburger.

There are modal logics like S4 or K, for which it is rather straightforward to provide a cut-free sequent system,
and there are others, like S5 for which this is difficult or impossible. We (in a joint work with Kai Brünnler,
Univ. Bern) used “nested sequents” [30] (a generalization of hypersequents [24]) to give a completely modular
account to the whole modal cube below S5. That is to say, we have cut-free sequent systems for the basic
normal modal logics formed by any combination of the axioms d, t, b, 4, 5, such that each axiom has a
corresponding rule and each combination of these rules is complete for the corresponding frame conditions.
This result are published in [16].

6.9. Generic cut-elimination for Substructural Logics
Participant: Lutz Straßburger.

We were able (in a joint work with Agata Ciabattoni, TU Wien, and Kazushige Terui, Kyoto University) to
make further progress in the development of a systematic and algebraic proof theory for nonclassical logics.
Continuing the work of [33] we defined a hierarchy on Hilbert axioms in the language of classical linear
logic without exponentials, and gave a systematic procedure for transforming axioms up to the level P ′

3 of
the hierarchy into inference rules in multiple-conclusion (hyper)sequent calculi, which enjoy cut-elimination
under a certain condition. This allows a systematic treatment of logics which could not be dealt with in previous
approaches. Our method also works as a heuristic principle for finding appropriate rules for axioms located at
levels higher than P ′

3. The work is published in [17].
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6.10. A Kleene Theorem for Forest Languages
Participant: Lutz Straßburger.

Kleene’s theorem on the coincidence of the rational and the recognizable languages in a free monoid [47] is
a fundamental result of theoretical computer science. In [20] we present a generalization of Kleene’s theorem
to forest languages, which are a generalization of tree languages. However, our result is not a generalization
of the result by Thatcher and Wright on tree languages [64]. We proposed an alternative approach to the
standard notion of rational (or regular) expression for tree languages. The main difference is that in our new
notion we have only one concatenation operation and only one star-operation, instead of many different ones.
This is achieved by considering forests instead of trees over a ranked alphabet, or, algebraicly speaking, by
considering cartesian categories instead of term-algebras. The main result is that in the free cartesian category
the rational languages and the recognizable languages coincide.

6.11. Computation with meta-variables
Participant: Stéphane Lengrand.

Meta-variables are central in proof search mechanisms to represent incomplete proofs and incomplete objects.
They are used in almost all implementations of proof-related software, yet their meta-theory remains less
explored than that of complete proofs and objects such as in the λ-calculus.

In 2009, Stéphane Lengrand and Jamie Murdoch Gabbay have published in [13] a first proposal for a
computational model taking these features into account.

This proposal, extending the λ calculus with a particular kind of meta-variables originating from nominal logic,
is more sparing than previous approaches like Higher-Order Abstract Syntax, which explicitly represents all
potential dependencies between incomplete objects (this leads to computational inefficiencies as potential
dependencies that are not effectively used still incur a computational cost).

Lengrand and Gabbay’s proposal is only a first step, as it does not have a neat theory of normal forms (i.e.
output values). A more complete version of such a λ-calculus, with incomplete objects and arbitrary binding
dependencies but also with better normalization properties, has been in development since.

6.12. Encoding constrained transition systems
Participants: Kaustuv Chaudhuri, Joëlle Despeyroux.

Joëlle Despeyroux and Kaustuv Chaudhuri have given an encoding of the synchronous stochastic π-calculus
in a hybrid extension of intuitionistic linear logic (called HyLL). Precisely, they have shown that focused
partial sequent derivations in the encoding are in bijection with stochastic traces. The modal worlds are used
to represent the rates of stochastic interactions, and the connectives of hybrid logic are used to represent
the constraints in the stochastic transition rules. These results have been submitted to a journal [31] and an
extended report is available from HAL [21].

One of the most successful applications of the stochastic π-calculus has been in representing signal trans-
duction networks in cellular biology. An interesting application of this work would therefore be the direct
representations of biological processes in HyLL, the original motivation for this line of investigation. Further-
more, other stochastic systems can, at least in principle, be similarly encoded in HyLL, giving us the linguistic
ability to compare and combine systems represented using different stochastic formalisms.

6.13. Cut-elimination in classical logic
Participant: Stefan Hetzl.
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A central research topic of the team are the connections between proof theory and computation. A proof-
theoretic method which is often used for modeling computational systems is cut-elimination. The computa-
tional aspects of this procedure are rather well understood for intuitionistic and linear logic while the situation
in classical logic is less satisfactory. [26] shows that in the general case the number of possible computational
interpretations of a classical proof increases as strongly as its computational power and thus provides a lower
bound on the set computations encoded by proof. [46] on the other hand considers proof in classical first-order
logic and Peano arithmetic and derives an upper bound which is characterized by a regular tree grammar. This
grammar can be used as alternative algorithm for computing cut-free proofs and is therefore a contribution to
the reduction of syntax in proof theory.

7. Other Grants and Activities

7.1. Actions nationales
7.1.1. INFER: ANR on the Theory and Application of Deep Inference

Participants: Dale Miller, Lutz Straßburger.

The ANR-project Blanc titled “INFER: Theory and Application of Deep Inference” that is coordinated by
Lutz Straßburger has been accepted in September 2006. Besides Parsifal, the teams associated with this effort
are represented by François Lamarche (INRIA-Loria) and Michel Parigot (CNRS-PPS). Among the list of
theoretical problems there is the fundamental need for a theory of correct identification of proofs, and its
corollary, the development of a really general and flexible approach to proof nets. A closely related problem
is the extension of the Curry-Howard isomorphism to these new representations. Among the list of more
practical problems to be consider is the question of strategy and complexity in proof search, in particular for
higher order systems. These questions are intimately related to how proofs themselves are formulated in these
systems. Given their common grounding in rewriting theory, the proposal plans to deepen the relationship
between deep inference and well established techniques like deduction modulo and unification for quantifiers.
The proposal also plans to explore the formulation and use of more “exotic” logical systems, for example,
non-commutative logics, that have interesting applications, such as in linguistics and quantum computing.

7.1.2. PSI: ANR on Proof Search control in Interaction with domain-specific methods
Participant: Stéphane Lengrand.

Stephane Lengrand is the scientific leader of the ANR-project Jeunes chercheurs entitled “Proof Search control
in Interaction with domain-specific methods”, which was accepted in April 2009. Other founding members are
among the INRIA project-team “TypiCal” : G. Faure and A. Mahboubi. Since the project started, Ph.D. student
has joined the project’s research effort, and funding is available for a one-year post-doc and a three-year Ph.D.,
both starting in September 2010.

7.1.3. CPP: ANR on Confidence, Proofs, and Probabilities
Participants: Ivan Gazeau, Dale Miller.

The ANR Blanc titled “CPP: Confidence, Proofs, and Probabilities” has started 1 October 2009. This
grant brings together the following institutions and individuals: LSV (Jean Goubault-Larrecq), CEA LIST
(Eric Goubault, Olivier Bouissou, and Sylvie Putot), INRIA Saclay (Catuscia Palamidessi, Dale Miller, and
Stephane Gaubert), Supelec L2S (Michel Kieffer and Eric Walter), and Supelec SSE (Gilles Fleury and Daniel
Poulton). This project proposes to study the joint use of probabilistic and formal (deterministic) semantics and
analysis methods, in a way to improve the applicability and precision of static analysis methods on numerical
programs. The specific long-term focus is on control programs, e.g., PID (proportional-integral-derivative)
controllers or possibly more sophisticated controllers, which are heavy users of floating-point arithmetic and
present challenges of their own. To this end, we shall benefit from case studies and counsel from Hispano-Suiza
and Dassault Aviation, who will participate in this project, but preferred to remain formally non-members, for
administrative reasons.
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7.1.4. Panda: ANR on Parallelism and Distribution Analysis
Participant: Dale Miller.

The ANR Blanc titled “Panda: Parallelism and Distribution Analysis” has started 1 October 2009. This project
brings together researchers from INRIA Saclay (Comète and Parsifal), CEA LIST, MeASI as well labs in Paris
(LIPN, PPS, LSV, LIP, LAMA), and on the Mediterranean (LIF, IML, Airbus). Scientifically, this proposal
deals with the validation of concurrent and distributed programs, which is difficult because the number of its
accessible states is too large to be enumerated, and even the number of control points, on which any abstract
collecting semantics is based, explodes. This is due to the great number of distinct scheduling of actions in
legal executions. This adds up to the important size of the codes, which, because they are less critical, are
more often bigger. The objective of this project is to develop theories and tools for tackling this combinatorial
explosion, in order to validate concurrent and distributed programs by static analysis, in an efficient manner.
Our primary interest lies in multithreaded shared memory systems. But we want to consider a number of
other paradigms of computations, encompassing most of the classical ones (message-passing for instance as
in POSIX or VXWORKS) as well as more recent ones.

7.2. Actions internationales
7.2.1. REDO: Redesigning logical syntax

Participants: Nicolas Guenot, Dale Miller, Lutz Straßburger, François Wirion.

The REDO project is an INRIA funded ARC between INRIA Nancy–Grand Est, the University of Bath, and
INRIA Saclay–Île-de-France. It started in January 2009 and lasts 2 years. Coordinator is Lutz Straßburger.

7.2.2. Slimmer: an INRIA and NSF funded international team
Participants: David Baelde, Andrew Gacek, Dale Miller.

Slimmer stands for Sophisticated logic implementations for modeling and mechanical reasoning is an
“Equipes Associées” with seed money from INRIA. This project is initially designed to bring together the
Parsifal personnel and Gopalan Nadathur’s Teyjus team at the University of Minnesota (USA). Separate NSF
funding for this effort has also been awards to the University of Minnesota. We are planning to expand
the scope of this project to include other French and non-French sites, in particular, Alwen Tiu (Australian
National University), Elaine Pimentel (Universidade Federal de Minas Gerais, Brazil) and Brigitte Pientka
(McGill University, Canada).

7.2.3. REUSSI: Research Experiences for US Students at INRIA
Participants: David Baelde, Dale Miller, Zachary Snow.

This is an NSF funded project that places students from USA graduate programs in Computer Science within
INRIA sites for internships ranging from a couple to several months in duration. During the last three summers,
we have used these funds to support the visit of graduate students from the University of Minnesota to the
Parsifal team.

8. Dissemination

8.1. Services to the Scientific Community
8.1.1. Prices and distinctions

Alexis Saurin’s PhD dissertation titled “Une étude logique du contrôle” won the “Prix de thèse ASTI 2009”
as well as the “Prix de thèse de l’Ecole Polytechnique”.

8.1.2. Organization of Conferences and Workshops
Lutz Straßburger organized the first meeting of the REDO project in Palaiseau at LIX, May 26-29, 2009.
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Lutz Straßburger co-organized (with Michel Parigot, PPS) the workshop "Structures and Deduction 2009" in
Bordeaux, July 20–24, 2009. The workshop was part of the ESSLLI’09 summer school.

Lutz Straßburger co-organized (with Paola Bruscoli and Alessio Guglielmi, Bath and Nancy) the second
meeting of the REDO project in Nancy at the Loria, November 16-18, 2009.

Stéphane Lengrand and Dale Miller organized the 2009 International Workshop on “Proof Search in Type
Theories”, affiliated to the CADE international conference which took place in Montréal, Canada, in August
2009.

8.1.3. Editorial activity
Dale Miller has the following editorial duties.

• Theory and Practice of Logic Programming. Member of Advisory Board since 1999. Cambridge
University Press.

• ACM Transactions on Computational Logic (ToCL). Editor-in-chief (since July 2009) and area editor
for Proof Theory (since 1999). Published by ACM.

• Journal of Functional and Logic Programming. Permanent member of the Editorial Board since
1996. MIT Press.

• Journal of Logic and Computation. Associate editor since 1989. Oxford University Press.

8.1.4. Participation in program committees
Dale Miller was a program committee member for the following conferences.

• GaLoP IV: Games for Logic and Programming Languages, 28 - 29 March, York, UK.

• ICALP 09: International Colloquium on Automata, Languages and Programming, Rhodes, Greece,
July.

• LSFA 2009: Fourth Logical and Semantic Frameworks, with Applications, part of RDP 2009, 28
June-3 July, Brasília, Brazil.

• LAM 2009: Logics for Agents and Mobility, August, Los Angeles. A workshop associated to
LICS09.

• CSL 2009: 18th Annual Conference of the European Association for Computer Science Logic, 7-11
September, Coimbra, Portugal.

• Workshop on Games, Dialogue and Interaction, 28-29 Sept, Université Paris 8.

8.1.5. Invited talks at Conferences or Workshops
Dale Miller has been invited to speak at the following meetings.

• Colloquium on Games, Dialogue and Interaction, Université Paris 8, 28-29 September 2009.

• LAM 2009: Logics for Agents and Mobility. A workshop associated to LICS09. 9-10 August 2009.

8.2. Teaching
Dale Miller co-teaches the course “Logique Linéaire et paradigmes logiques du calcul” in the masters program
MPRI (“Master Parisien de Recherche en Informatique”) (2004-2009). Miller also taught a graduate level
course on “Proof systems for linear, intuitionistic, and classical logic.” Dipartimento di Informatica, Universitá
Ca’ Foscari di Venezia, 15-24 April 2009.

Stéphane Lengrand teaches the course “Logique formelle et Programmation Logique” at the École d’ingénieur
ESIEA (2009). He teaches lab sessions in the main computer science curriculum of the Ecole Polytechnique.
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8.3. Evaluation
Dale Miller has been on the PhD jury for the following three students:

• Denis Cousineau, Ecole Polytechnique, 1 Dec 2009 (examinateur).

• Xiaochu Qi, Computer Science Department, University of Minnesota, 9 September 2009 (external
examiner).

• Andrew Gacek, Computer Science Department, University of Minnesota, 8 September 2009 (exter-
nal examiner).

8.4. Internship supervision
Miller is currently supervising Anne-Laure Schneider (Poupon) (master student from ENS Paris) on the topic
of dialog games for classical logic and Anders Starcke Henriksen (PhD student from Cophenhagen) on the
application of focusing proof systems.

9. Bibliography
Major publications by the team in recent years

[1] J. DESPEYROUX, P. LELEU. Recursion over Objects of Functional Type, in "Special issue of MSCS on
‘Modalities in Type Theory’", vol. 11, no 4, August 2001.

[2] J. DESPEYROUX, F. PFENNING, C. SCHÜRMANN. Primitive Recursion for Higher-Order Abstract Syntax, in
"Theoretical Computer Science (TCS)", vol. 266, no 1-2, September 2001, p. 1–57.

[3] R. DYCKHOFF, S. LENGRAND. Call-by-Value λ-calculus and LJQ, in "Journal of Logic and Computation",
vol. 17, no 6, 2007, p. 1109–1134.

[4] F. LAMARCHE, L. STRASSBURGER. Naming Proofs in Classical Propositional Logic, in "Typed Lambda
Calculi and Applications, TLCA 2005", P. URZYCZYN (editor), LNCS, vol. 3461, Springer-Verlag, 2005, p.
246–261.

[5] F. LAMARCHE, L. STRASSBURGER. From Proof Nets to the Free *-Autonomous Category, in "Logical Methods
in Computer Science", vol. 2, no 4:3, 2006, p. 1–44, http://arxiv.org/pdf/cs.LO/0605054.

[6] C. LIANG, D. MILLER. Focusing and Polarization in Linear, Intuitionistic, and Classical Logics, in "Theoret-
ical Computer Science", vol. 410, no 46, 2009, p. 4747–4768 US .

[7] R. MCDOWELL, D. MILLER. Reasoning with Higher-Order Abstract Syntax in a Logical Framework, in "ACM
Trans. on Computational Logic", vol. 3, no 1, 2002, p. 80–136, http://www.lix.polytechnique.fr/Labo/Dale.
Miller/papers/mcdowell01.pdf.

[8] R. MCDOWELL, D. MILLER, C. PALAMIDESSI. Encoding transition systems in sequent calculus, in "Theoret-
ical Computer Science", vol. 294, no 3, 2003, p. 411–437, http://www.lix.polytechnique.fr/Labo/Dale.Miller/
papers/tcs97.pdf.

[9] D. MILLER, A. TIU. A proof theory for generic judgments, in "ACM Trans. on Computational Logic", vol. 6,
no 4, October 2005, p. 749–783, http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tocl-nabla.pdf.

http://arxiv.org/pdf/cs.LO/0605054
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/mcdowell01.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/mcdowell01.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tcs97.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tcs97.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tocl-nabla.pdf


Project-Team Parsifal 15

[10] L. STRASSBURGER. On the Axiomatisation of Boolean Categories with and without Medial, in "Theory and
Applications of Categories", vol. 18, no 18, 2007, p. 536–601, http://arxiv.org/abs/cs.LO/0512086.

Year Publications
Doctoral Dissertations and Habilitation Theses

[11] O. DELANDE. Symmetric Dialogue Games in the Proof Theory of Linear Logic, Ecole Polytechnique, October
2009, http://www.lix.polytechnique.fr/~delande/thesis.xhtml, Ph. D. Thesis FR .

[12] V. NIGAM. Exploiting non-canonicity in the sequent calculus, Ecole Polytechnique, September 2009, http://
www.lix.polytechnique.fr/~nigam/thesis/Vivek_Nigam_phd.pdf, Ph. D. Thesis FR .

Articles in International Peer-Reviewed Journal

[13] M. GABBAY, STÉPHANE. LENGRAND. The lambda-context Calculus, in "Information and Computation", vol.
207, no 12, 2009, p. 1369–1400 GB .

[14] C. LIANG, D. MILLER. Focusing and Polarization in Linear, Intuitionistic, and Classical Logics, in "Theoret-
ical Computer Science", vol. 410, no 46, 2009, p. 4747–4768, http://dx.doi.org/10.1016/j.tcs.2009.07.041US.

International Peer-Reviewed Conference/Proceedings

[15] D. BAELDE. On the proof theory of regular fixed points, in "TABLEAUX 09: Automated Reasoning with
Analytic Tableaux and Related Methods", M. GIESE, A. WALLER (editors), LNAI, no 5607, 2009, p. 93–107,
http://www.lix.polytechnique.fr/~dbaelde/productions/pool/baelde09tableaux.pdf NO .

[16] K. BRÜNNLER, L. STRASSBURGER. Modular Sequent Systems for Modal Logic, in "TABLEAUX 09:
Automated Reasoning with Analytic Tableaux and Related Methods", M. GIESE, A. WALLER (editors),
LNAI, no 5607, Springer, 2009, p. 152–166, http://www.iam.unibe.ch/~kai/Papers/2009mssml.pdf CH .

[17] A. CIABATTONI, L. STRASSBURGER, K. TERUI. Expanding the Realm of Systematic Proof Theory, in
"Computer Science Logic, CSL’09", E. GRÄDEL, R. KAHLE (editors), Lecture Notes in Computer Science,
vol. 5771, Springer, 2009, p. 163–178, http://dx.doi.org/10.1007/978-3-642-04027-6_14.

[18] C. LIANG, D. MILLER. A Unified Sequent Calculus for Focused Proofs, in "LICS: 24th Symp. on Logic in
Computer Science", 2009, p. 355–364, http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/liang09lics.
pdf US .

[19] V. NIGAM, D. MILLER. Algorithmic specifications in linear logic with subexponentials, in "ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming (PPDP)", 2009, p. 129–140, http://www.
lix.polytechnique.fr/Labo/Dale.Miller/papers/ppdp09.pdf PT .

[20] L. STRASSBURGER. A Kleene Theorem for Forest Languages, in "Language and Automata Theory and
Applications, LATA’09", A. H. DEDIU, A.-M. IONESCU, C. MARTÍN-VIDE (editors), LNCS, vol. 5457,
Springer, 2009, p. 715–727, http://dx.doi.org/10.1007/978-3-642-00982-2_61.

Research Reports

http://arxiv.org/abs/cs.LO/0512086
http://www.lix.polytechnique.fr/~delande/thesis.xhtml
http://www.lix.polytechnique.fr/~nigam/thesis/Vivek_Nigam_phd.pdf
http://www.lix.polytechnique.fr/~nigam/thesis/Vivek_Nigam_phd.pdf
http://dx.doi.org/10.1016/j.tcs.2009.07.041
http://www.lix.polytechnique.fr/~dbaelde/productions/pool/baelde09tableaux.pdf
http://www.iam.unibe.ch/~kai/Papers/2009mssml.pdf
http://dx.doi.org/10.1007/978-3-642-04027-6_14
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/liang09lics.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/liang09lics.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/ppdp09.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/ppdp09.pdf
http://dx.doi.org/10.1007/978-3-642-00982-2_61


16 Activity Report INRIA 2009

[21] K. CHAUDHURI, J. DESPEYROUX. A Hybrid Linear Logic for Constrained Transition Systems with Applica-
tions to Molecular Biology, INRIA, 2009, http://hal.inria.fr/inria-00402942/en/, Research ReportFR.

References in notes

[22] S. ABRAMSKY. Computational Interpretations of Linear Logic, in "Theoretical Computer Science", vol. 111,
1993, p. 3–57.

[23] J.-M. ANDREOLI. Logic Programming with Focusing Proofs in Linear Logic, in "Journal of Logic and
Computation", vol. 2, no 3, 1992, p. 297–347.

[24] A. AVRON. The method of hypersequents in the proof theory of propositional non-classical logics, in "Logic:
from foundations to applications: European logic colloquium", Clarendon Press, 1996, p. 1–32.

[25] B. E. AYDEMIR, A. BOHANNON, M. FAIRBAIRN, J. N. FOSTER, B. C. PIERCE, P. SEWELL, D. VYTINIO-
TIS, G. WASHBURN, S. WEIRICH, S. ZDANCEWIC. Mechanized Metatheory for the Masses: The PoplMark
Challenge, in "Theorem Proving in Higher Order Logics: 18th International Conference", LNCS, Springer-
Verlag, 2005, p. 50–65.

[26] M. BAAZ, S. HETZL. On the non-confluence of cut-elimination, 2009, manuscript AT .

[27] D. BAELDE. A linear approach to the proof-theory of least and greatest fixed points, Ecole Polytechnique,
December 2008, Ph. D. Thesis FR .

[28] D. BAELDE. On the Expressivity of Minimal Generic Quantification, in "LFMTP 2008: International Work-
shop on Logical Frameworks and Meta-Languages: Theory and Practice", A. ABEL, C. URBAN (editors),
2008, p. 16–31, http://hal.inria.fr/inria-00284186/en/US.

[29] N. D. BELNAP, JR.. Display Logic, in "Journal of Philosophical Logic", vol. 11, 1982, p. 375–417.

[30] K. BRÜNNLER. Deep Sequent Systems for Modal Logic, in "Advances in Modal Logic", G. GOVERNATORI,
I. HODKINSON, Y. VENEMA (editors), vol. 6, College Publications, 2006, p. 107–119, http://www.aiml.net/
volumes/volume6/Bruennler.ps.

[31] K. CHAUDHURI, J. DESPEYROUX. A Hybrid Linear Logic for Constrained Transition Systems, June 2009,
Submitted FR .

[32] K. CHAUDHURI, D. MILLER, A. SAURIN. Canonical Sequent Proofs via Multi-Focusing, in "Fifth IFIP
International Conference on Theoretical Computer Science", G. AUSIELLO, J. KARHUMÄKI, G. MAURI,
L. ONG (editors), IFIP International Federation for Information Processing, vol. 273, Boston: Springer,
September 2008, p. 383–396, http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tcs08trackb.pdf IT .

[33] A. CIABATTONI, N. GALATOS, K. TERUI. From axioms to analytic rules in nonclassical logics, in "23th
Symp. on Logic in Computer Science", IEEE Computer Society Press, 2008, p. 229–240.

[34] O. DELANDE, D. MILLER, A. SAURIN. Proof and refutation in MALL as a game, May 2009, http://dx.doi.
org/10.1016/j.apal.2009.07.017, Accepted to the Annals of Pure and Applied LogicFR.

http://hal.inria.fr/inria-00402942/en/
http://hal.inria.fr/inria-00284186/en/
http://www.aiml.net/volumes/volume6/Bruennler.ps
http://www.aiml.net/volumes/volume6/Bruennler.ps
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tcs08trackb.pdf
http://dx.doi.org/10.1016/j.apal.2009.07.017
http://dx.doi.org/10.1016/j.apal.2009.07.017


Project-Team Parsifal 17

[35] J. DESPEYROUX, P. LELEU. A modal λ-calcul with iteration and case constructs, in "proceedings of the
annual Types for Proofs and Programs seminar", Springer-Verlag LNCS 1657, March 1998.

[36] J. DESPEYROUX, F. PFENNING, C. SCHÜRMANN. Primitive Recursion for Higher-Order Abstract Syntax,
in "proceedings of the TLCA 97 Int. Conference on Typed Lambda Calculi and Applications, Nancy, France,
April 2–4", P. DE GROOTE, J. R. HINDLEY (editors), Springer-Verlag LNCS 1210, April 1997, p. 147–163.

[37] A. GACEK. A Framework for Specifying, Prototyping, and Reasoning about Computational Systems, Univer-
sity of Minnesota, 2009, Ph. D. Thesis.

[38] A. GACEK, D. MILLER, G. NADATHUR. Combining generic judgments with recursive definitions, in "23th
Symp. on Logic in Computer Science", F. PFENNING (editor), IEEE Computer Society Press, 2008, p. 33–44,
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08a.pdf US .

[39] A. GACEK, D. MILLER, G. NADATHUR. Reasoning in Abella about Structural Operational Semantics
Specifications, in "LFMTP 2008: International Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice", A. ABEL, C. URBAN (editors), 2008, p. 75–89, http://arxiv.org/pdf/0804.3914.pdf
US .

[40] A. GACEK, D. MILLER, G. NADATHUR. A two-level logic approach to reasoning about computations,
November 2009, http://arxiv.org/pdf/0911.2993.pdf, Submitted 16 November US .

[41] A. GACEK, D. MILLER, G. NADATHUR. Nominal abstraction, August 2009, http://arxiv.org/abs/0908.1390,
Extended version of LICS 2008 paper. Submitted US .

[42] J.-Y. GIRARD. Linear Logic, in "Theoretical Computer Science", vol. 50, 1987, p. 1–102.

[43] J.-Y. GIRARD. Proof Theory and Logical Complexity, Volume I, Studies in Proof Theory, vol. 1, Bibliopolis,
edizioni di filosofia e scienze, 1987.

[44] A. GUGLIELMI. A System of Interaction and Structure, in "ACM Trans. on Computational Logic", vol. 8, no

1, 2007.

[45] A. GUGLIELMI, L. STRASSBURGER. Non-commutativity and MELL in the Calculus of Structures, in
"Computer Science Logic, CSL 2001", L. FRIBOURG (editor), LNCS, vol. 2142, Springer-Verlag, 2001,
p. 54–68.

[46] S. HETZL. On the form of witness terms, 2009, Submitted.

[47] S. C. KLEENE. Representation of events in nerve nets and finite automata, in "Automata Studies", C. E.
SHANNON, J. MCCARTHY (editors), Princeton, N.J., 1956, p. 3–40.

[48] F. LAMARCHE, L. STRASSBURGER. Constructing free Boolean categories, in "Proceedings of the Twentieth
Annual IEEE Symposium on Logic in Computer Science (LICS’05)", 2005, p. 209–218.

[49] STÉPHANE. LENGRAND, R. DYCKHOFF, J. MCKINNA. A sequent calculus for Type Theory, in "Proceedings
of the 15th Annual Conference of the European Association for Computer Science Logic (CSL’06)", Z. ESIK
(editor), Lecture Notes in Computer Science, vol. 4207, Springer-Verlag, September 2006, p. 441–455.

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08a.pdf
http://arxiv.org/pdf/0804.3914.pdf
http://arxiv.org/pdf/0911.2993.pdf
http://arxiv.org/abs/0908.1390


18 Activity Report INRIA 2009

[50] P. MARTIN-LÖF. Constructive Mathematics and Computer Programming, in "Sixth International Congress
for Logic, Methodology, and Philosophy of Science, Amsterdam", North-Holland, 1982, p. 153–175.

[51] R. MCDOWELL, D. MILLER. Cut-elimination for a logic with definitions and induction, in "Theoretical
Computer Science", vol. 232, 2000, p. 91–119.

[52] R. MCDOWELL, D. MILLER. A Logic for Reasoning with Higher-Order Abstract Syntax, in "Proceedings,
Twelfth Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland", G. WINSKEL (editor),
IEEE Computer Society Press, July 1997, p. 434–445.

[53] D. MILLER. Forum: A Multiple-Conclusion Specification Logic, in "Theoretical Computer Science", vol. 165,
no 1, September 1996, p. 201–232.

[54] D. MILLER, G. NADATHUR, F. PFENNING, A. SCEDROV. Uniform Proofs as a Foundation for Logic
Programming, in "Annals of Pure and Applied Logic", vol. 51, 1991, p. 125–157.

[55] D. MILLER, A. TIU. A Proof Theory for Generic Judgments: An extended abstract, in "Proc. 18th IEEE
Symposium on Logic in Computer Science (LICS 2003)", IEEE, June 2003, p. 118–127, http://www.lix.
polytechnique.fr/Labo/Dale.Miller/papers/lics03.pdf.

[56] V. NIGAM, D. MILLER. A framework for proof systems, March 2009, Extended version of IJCAR08 paper.
Submitted FR .

[57] F. PFENNING, C. SCHÜRMANN. System Description: Twelf — A Meta-Logical Framework for Deductive
Systems, in "16th Conference on Automated Deduction, Trento", H. GANZINGER (editor), LNAI, no 1632,
Springer, 1999, p. 202–206.

[58] E. PIMENTEL, D. MILLER. On the specification of sequent systems, in "LPAR 2005: 12th International
Conference on Logic for Programming, Artificial Intelligence and Reasoning", Lecture Notes in Artificial
Intelligence, no 3835, 2005, p. 352–366, http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lpar05.
pdf.

[59] A. M. PITTS. Nominal Logic, A First Order Theory of Names and Binding, in "Information and Computation",
vol. 186, no 2, 2003, p. 165–193.

[60] E. P. ROBINSON. Proof Nets for Classical Logic, in "Journal of Logic and Computation", vol. 13, 2003, p.
777–797.

[61] A. SAURIN. Une étude logique du contrôle (appliquée à la programmation fonctionnelle et logique), Ecole
Polytechnique, September 2008, Ph. D. Thesis FR .

[62] L. STRASSBURGER, F. LAMARCHE. On Proof Nets for Multiplicative Linear Logic with Units, in "Computer
Science Logic, CSL 2004", J. MARCINKOWSKI, A. TARLECKI (editors), LNCS, vol. 3210, Springer-Verlag,
2004, p. 145–159.

[63] L. STRASSBURGER. What could a Boolean category be?, in "Classical Logic and Computation 2006 (Satellite
Workshop of ICALP’06)", S. VAN BAKEL (editor), 2006, http://www.lix.polytechnique.fr/~lutz/papers/
medial-kurz.pdf.

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics03.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics03.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lpar05.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lpar05.pdf
http://www.lix.polytechnique.fr/~lutz/papers/medial-kurz.pdf
http://www.lix.polytechnique.fr/~lutz/papers/medial-kurz.pdf


Project-Team Parsifal 19

[64] J. W. THATCHER, J. B. WRIGHT. Generalized Finite Automata Theory with an Application to a Decision
Problem of Second-Order Logic, in "Math. Systems Theory", vol. 2, 1968, p. 57–81.

[65] A. TIU, D. MILLER. Proof Search Specifications of Bisimulation and Modal Logics for the π-calculus,
February 2009, http://arxiv.org/abs/0805.2785, Accepted by ACM ToCL AU .

[66] A. TIU. A Logic for Reasoning about Generic Judgments, in "Int. Workshop on Logical Frameworks and
Meta-Languages: Theory and Practice (LFMTP’06)", A. MOMIGLIANO, B. PIENTKA (editors), 2006.

[67] A. TIU. On the Role of Names in Reasoning about λ-tree Syntax Specifications, in "LFMTP 2008: International
Workshop on Logical Frameworks and Meta-Languages: Theory and Practice", A. ABEL, C. URBAN
(editors), 2008, p. 32–46.

http://arxiv.org/abs/0805.2785

