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  [bookmark: uid3] Section: 
      Overall Objectives
Overall Objectives

The CAMUS team is focusing on developping, adapting and extending automatic parallelizing and optimizing techniques, as well as proof and certification methods, for the efficient use of current and future multicore processors.

The team's research activities are organized into five main issues that are closely related to reach the following objectives: performance, correction and productivity. These issues are: static parallelization and optimization of programs (where all statically detected parallelisms are expressed as well as all “hypothetical” parallelisms which would be eventually taken advantage of at runtime), profiling and execution behavior modeling (where expressive representation models of the program execution behavior will be used as engines for dynamic parallelizing processes), dynamic parallelization and optimization of programs (such transformation processes running inside a virtual machine), object-oriented programming and compiling for multicores (where object parallelism, expressed or detected, has to result in efficient runs), and finally program transformations proof (where the correction of many static and dynamic program transformations has to be ensured).


[bookmark: uid4] Section: 
      Overall Objectives
Highlights

The CAMUS project reveived positive opinion from the Nancy Grand-Est Comity of Project for the creation of the project-team.
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  [bookmark: uid6] Section: 
      Scientific Foundations
Research directions

The various objectives we are expecting to reach are directly related to the search of adequacy between the sofware and the new multicore processors evolution. They also correspond to the main research directions suggested by Hall, Padua and Pingali in [41] . Performance, correction and productivity must be the users' perceived effects. They will be the consequences of research works dealing with the following issues:


	[bookmark: uid7] Issue 1: Static parallelization and optimization



	[bookmark: uid8] Issue 2: Profiling and execution behavior modeling



	[bookmark: uid9] Issue 3: Dynamic program parallelization and optimization, virtual machine



	[bookmark: uid10] Issue 4: Object-oriented programming and compiling for multicores



	[bookmark: uid11] Issue 5: Proof of program transformations for multicores




Efficient and correct applications development for multicore processors needs stepping in every application development phase, from the initial conception to the final run.

Upstream, all potential parallelism of the application has to be exhibited. Here static analysis and transformation approaches (issue 1) must be processed, resulting in a multi-parallel intermediate code advising the running virtual machine about all the parallelism that can be taken advantage of. However the compiler does not have much knowledge about the execution environment. It obviously knows the instruction set, it can be aware of the number of available cores, but it does not know the effective available resources at any time during the execution (memory, number of free cores, etc.).

That is the reason why a “virtual machine” mechanism will have to adapt the application to the resources (issue 3). Moreover the compiler will be able to take advantage only of a part of the parallelism induced by the application. Indeed some program information (variables values, accessed memory adresses, etc.) being available only at runtime, another part of the available parallelism will have to be generated on-the-fly during the execution, here also, thanks to a dynamic mechanism.

This on-the-fly parallelism extraction will be performed using speculative behavior models (issue 2), such models allowing to generate speculative parallel code (issue 3). Between our behavior modeling objectives, we can add the behavior monitoring, or profiling, of a program version. Indeed current and future architectures complexity avoids assuming an optimal behavior regarding a given program version. A monitoring process will allow to select on-the-fly the best parallelization.

These different parallelizing steps are schematized on figure 1 .

[bookmark: uid12]Figure
	1. Automatic parallelizing steps for multicore architectures	[image: IMG/figure_anglais]



The more and more widespread usage of object-oriented approaches and languages emphasizes the need for specific multicore programming tools. The object and method formalism implies specific execution schemes that translate in the final binary by quite distant elementary schemes. Hence the execution behavior control is far more difficult. Analysis and optimization, either static or dynamic, must take into account from the outset this distortion between object-oriented specification and final binary code: how can object or method parallelization be translated (issue 4).

Our project lies on the conception of a production chain for efficient execution of an application on a multicore architecture. Each link of this chain has to be formally verified in order to ensure correction as well as efficiency. More precisely, it has to be ensured that the compiler produces a correct intermediate code, and that the virtual machine actually performs the parallel execution semantically equivalent to the source code: every transformation applied to the application, either statically by the compiler or dynamically by the virtual machine, must preserve the initial semantics. They must be proved formally (issue 5).

In the following, those different issues are detailed while forming our global and long term vision of what has to be done.


[bookmark: uid13] Section: 
      Scientific Foundations
Static parallelization and optimization
Participants :
      Vincent Loechner, Philippe Clauss, Éric Violard, Alexandra Jimborean.


Static optimizations, from source code at compile time, benefit from two decades of research in automatic parallelization: many works address the parallelization of loop nests accessing multi-dimensional arrays, and these works are now mature enough to generate efficient parallel code [23] .
Low-level optimizations, in the assembly code generated by the compiler, have also been extensively dealt for single-core and require few adaptations to support multicore architectures.
Concerning multicore specific parallelization, we propose to explore two research directions to take full advantage of these architectures. They are described below.

[bookmark: uid14] State of the art

Upstream, an easy interprocedural dependence analysis allows to handle complete programs (but recursivity: recursive functions must be transformed into iterative functions). Concerning iterative control we will use the polyhedral model, a formalism developped these last two decades, which allows to represent the execution of a loop nest by scanning a polytope.

When compiling an application, if it contains loop nests with affine bounds accessing scalars or arrays accessed using affine functions, the polyhedral model allows to:


	[bookmark: uid15] compute the dependence graph, which describes the order in which the dependent instructions must be executed [32] ;



	[bookmark: uid16] generate a schedule, which extracts some parallelism from the dependence graph [33] , [34] ;



	[bookmark: uid17] generate an allocation, which assigns a processor (or a core) to a set of iterations of the loop nest to be scanned.




This last allocation step needs a thorough knowledge of the target architecture, as many crucial choices will result in performance hazards: for example, the volume and flow of inter-processor communications and synchronization; the data locality and the effects of the TLB (Translation Lookaside Buffer) and the various cache levels and distributions; or the register allocation optimizations.
There are many techniques to control these parameters, and each architecture needs specific choices, of a valid schedule, of a parallel loop iterations distribution (bloc-, cyclic-, or tiled), of a loop-unrolling factor, as well as a memory data layout and a prefetch strategy (when available). They require powerfull mathematical tools, such as counting the number of integer points contained in a parametric polytope.

Our own contributions in this area are significant. Concerning schedule and data placement, we proposed new advances in minimizing the number of communications for parallel architectures [51]  and in cache access optimizations [50]  [8] .
We also proposed essential advances in parametric polytope manipulation [9] , [5] , developped the first algorithm to count integer points in a parametric polytope as an Ehrhart polynomial [3] , and proposed successive improvements of this algorithm [10]  [62] . We implemented these results in the free software PolyLib, utilized by many researchers around the world.


[bookmark: uid18] Adapting parallelization to multicore architecture

The first research direction to be explored is multicore specific efficient optimizations. Indeed, multicore architectures need specific optimizations, or we will get underlinear accelerations, or even decelerations. Multicore architectures may have the following properties: specific memory hierarchy, with distributed low-level cache and (possibly semi-) shared high level caches; software-controlled memory hierarchies (memory hints, local stores or scratchpads for example); optimized access to contiguous memory addresses or to separate memory banks; SIMD or vectorial execution in groups of cores, and synchronous execution; higher register allocation pressure when several threads use the same hardware (as in GPGPUs for example); etc.

A schedule and an allocation must be chosen wisely in order to obtain good performances. On NVIDIA GPGPUs, using the CUDA language, Baskaran et al. [22]  obtained interesting results that have been implemented in their PLuTo compiler framework. However, they are based on many empirical and imprecise techniques, and require simulations to fine-tune the optimizations: they can be improved.
Memory hierarchy efficient control is a cornerstone of tomorrow's multicore architectures performance. Compiler-optimizers have to evolve to meet this requirement.

Simulation and (partial-) profiling may however remain necessary in some cases, when static analysis reaches its intrinsic limits: when the execution of a program depends on dynamic parameters, when it uses complex pointer arithmetic, or when it performs indirect array accesses for example (as is often the case in while loops, out of the scope of the classical polyhedral model). In these cases, the compiler should rely on the profiler, and generate a code that interacts with the dynamic optimizer. This is the link with issues 2 and 3 of this research project.


[bookmark: uid19] Expressing many potential parallelisms

The dynamic optimizer (issue 3) must be able to exploit various parallel codes to compare them and the best one to choose, possibly swapping from a code to another during execution. The compiler must therefore generate different potentially efficient versions of a code, depending on fixed parameters such as the schedule or the data layout, and dynamic parameters such as the tile size or the unrolling factor.

The compiler then generates many variants of effective parallelism, formally proved by the static analyzer. It may also generate variants of code that have not been formally validated, due to the analyzer limits, and that have to be checked during execution by the dynamic optimizer: hypothetical parallelism. Hypothetical parallelism could be expressed as a piece of code, valid under certain conditions. Effective and hypothetical parallelisms are called potential parallelism. The variants of potential parallelism will be expressed in an intermediate language that has to be discovered.

Using compiler directives is an interesting way to define this intermediate language.
Among the usual directives, we distinguish schedule directives for shared memory architectures (such as the OpenMP(http://www.openmp.org ) parallel directive), and placement directives for distributed memory architectures (for example the HPF(http://hpff.rice.edu ) ALIGN directive). These two types of directives are conjointly necessary to take full profit of multicore architectures. However, we have to study their complementarity and solve the interdependence or conflict that may arise between them. Moreover, new directives should allow to control data transfers between different levels of the memory hierarchy.

We are convinced that the definition of such a language is required in the next advances in compilation for multicore architectures, and there does not exist such an ambitious project to our knowledge. The OpenCL project(http://www.khronos.org/opencl ), presented as an general-purpose and efficient multicore programming environment, is too low-level to be exploitable. We propose to define a new high level language based on compilation directives, that could be used by the skilled programmer or automatically generated by a compiler-optimizer (like OpenMP, recently integrated in the gcc compiler suite).


[bookmark: uid23] Section: 
      Scientific Foundations
Profiling and execution behavior modeling
Participants :
      Alain Ketterlin, Philippe Clauss, Benoît Pradelle.


The increasing complexity of programs and hardware architectures
makes it ever harder to characterize beforehand a given program's
run time behavior. The sophistication of current compilers and the
variety of transformations they are able to apply cannot hide their
intrinsic limitations. As new abstractions like transactional
memories appear, the dynamic behavior of a program strongly
conditions its observed performance. All these reasons explain why
empirical studies of sequential and parallel program
executions have been considered increasingly relevant. Such studies
aim at characterizing various facets of one or several program runs,
e.g., memory behavior, execution phases, etc. In some cases, such
studies characterize more the compiler than the program itself.
These works are of tremendous importance to highlight all aspects
that escape static analysis, even though their results may have a
narrow scope, due to the possible incompleteness of their input data
sets.

[bookmark: uid24] Selective profiling and interaction with the compiler

In its simplest form, studying a given program's run time behavior
consists in collecting and aggregating statistics, e.g., counting
how many times routines or basic blocks are executed, or counting
the number of cache misses during a certain portion of the
execution. In some cases, data can be collected about more abstract
events, like the garbage-collector frequency or the number and sizes of sent and received messages. Such
measures are relatively easy to obtain, are frequently used to
quantify the benefits of some optimization, and may suggest some way
to improve performance. These techniques are now well-known, but
mostly for sequential programs.

These global studies have often been complemented by local,
targeted techniques focused on some program portions, e.g., where
static techniques remain inconclusive for some fixed duration.
These usages of profiling are usually strongly related to the
optimization they complement, and are set up either by the compiler
or by the execution environment. Their results may be used
immediately at run time, in which case they are considered a form of
run time optimization [1] . They can also be used offline to
provide hints to a subsequent compilation cycle, in which case they
constitute a form of profile-guided compilation, a strategy that is
common in general purpose compilers.

For instance, in the context where a set of possible parallelizations
have been provided by the compiler (see issue 1), a profiling
component can easily be made responsible for testing some relevant
condition at run time (e.g., that depends on input data) and for
selecting the best between various versions of the code. Beyond such
simple tasks, we expect that profiling will, at the
beginning of the execution, have enough resources to conduct more
elaborate analyzes. We believe that combining an “open” static
analysis with an integrated profiling component is a promising
approach, first because it may relieve the programmer of a large
part of the tedious task of implementing the distribution of
computations, and second to free the compiler of the obligation to
choose between several optimizations in the absence of enough
relevant data. The main open question here is to define precisely
the respective roles of the compiler and the profiler, and also the
amount and nature of information the former can transmit to the
latter.


[bookmark: uid25] Profiling and dynamic optimization

In the context of dynamic optimization, that is, when the compiler's
abilities have been exhausted, a profiler can still do useful work,
provided some additional capabilities [1] . If it is
able to instrument the code the way, e.g., a PIN-tool
does  [52] , it has access to the whole program, including
libraries (or, for example, the code of a low-level library called
from a scripting language). This means that it has access to
portions of the program that were not under the compiler's control.
The profiler can then perform dynamic inter-procedural analyzes, for
instance to compute dependencies to detect parallelism that wasn't
apparent at compile time because of a function call in the body of a
loop. More generally, if the profiler is able to reconstruct at run
time some representation of the whole program, as
in  [71]  for example, it is possible to let it
search for any construct that can be optimized and/or parallelized
in the context of the current execution. Several virtual machines,
e.g., for Java or Microsoft CLR, have opened this way of optimizing
programs, probably because virtual machines need to maintain an
intermediate, structured representation of the running program.

The possibility of running programs on architectures that include a
large number of computing cores has given rise to new
abstractions  [69] , [43] , [27] .
Transactional memories, for instance, aim at simplifying the
management of conflicting concurrent accesses to a shared memory, a
notoriously difficult problem  [45] . However, the
performance of a transaction-based application heavily depends on
its dynamic behavior, and too many conflicting accesses and
rollbacks, severely affect performance. We bet that the need for
multicore specific programming tools will lead to other
abstractions based on speculative execution. Because of the very
nature of speculation, all these abstractions will require run time
evaluation, and maybe correction, to avoid pathological cases. The
profiler has a central role here, because it can be made responsible
for diagnosing inefficient use of speculative execution, and for
taking corrective action, which means that it has to be integrated
to the execution environment. We also think that the large scope and
almost infinite potential uses of a profiling component may well
suggest new parallel program abstractions, specially targeted at
run time evaluation and adaptation.


[bookmark: uid26] Run time program modeling

When profiling goes beyond simple aggregation of counts, it can, for
example, sample a program's behavior and split its execution into
phases. These phases may help target a subsequent evaluation on a
new architecture  [63] . When profiling
instruments the whole program to obtain a trace, e.g., of memory
accesses, it is possible to use this trace for:


	[bookmark: uid27] simulation, e.g., by varying the parameters of the memory hierarchy,



	[bookmark: uid28] for modeling, e.g., to reconstruct some specific model of the
program  [71] , or to extract dynamic
dependencies that help identifying parallel
sections  [59] .




Handling such large execution
traces, and especially compressing them, is a research topic by
itself  [28] , [54] . Our
contribution to this topic [7]  is unusual in that the
result of compression is a sequence of loop nests where memory
accesses and loop bounds are affine functions of the enclosing
loop indices. Modeling a trace this way leads to slightly better
average compression rates compared to other, less expressive
techniques. But more importantly, it has the advantage to provide a
result in symbolic form, and this result can be further analyzed
with techniques usually restricted to the static analysis of source
code. We plan to apply, in the short term, similar techniques to the
modeling of dynamic dependencies, so as to be able to automatically
extract parallelism from program traces.

This kind of analysis is representative of a new kind of tools than
could be named “parallelization
assistants”  [49] , [59] .
Properties that can't be detected by the compiler but that appear to
hold in one or several executions of a program can be submitted to
the programmer, maybe along a suitable reformulation of its program
using some class of abstraction, e.g., compiler directives. The goal
is to provide help and guidance in adapting source code, in the same
way a classical profiling tool helps pinpoint performance
bottlenecks. Control and data dependencies are fundamental to such a
tool. An execution trace provides an observed reality; for example a
trace of memory addresses. If the observed dynamic dependencies
provide a set of constraints, they also suggest a complete family of
potential correct executions, be they parallel or sequential, and
all these executions are equivalent to the reference execution.
Being able to handle large traces, and representing them in some
manageable way, means being able to highlight medium to large grain
parallelism, which is especially interesting on multicore
architectures and often difficult for compilers to discover, for
example because of the use of pointers and the difficulty of
eliminating potential aliasing. This can be seen as a
machine learning problem, where the goal is to recover a hidden
structure from a large sequence of events. This general problem has
various incarnations, depending on how much the learner knows about
the original program, on the kind of data obtained by profiling, on
the class of structures sought, and on the objectives of the
analysis. We are convinced that such studies will enrich our
understanding of the behavior of programs, and of the programming
concepts that are really useful. It will also lead to useful tools,
and will open up new directions for dynamic optimization.


[bookmark: uid29] Section: 
      Scientific Foundations
Dynamic parallelization and optimization, virtual machine
Participants :
      Philippe Clauss, Alain Ketterlin, Vincent Loechner, Benoît Pradelle, Alexandra Jimborean.


This link in the programming chain has become essential with the advent of the new multicore architectures. Still being considered as secondary with mono-core architectures, dynamic analysis and optimization are now one of the keys for controling those new mechanisms complexity. From now on, performed instructions are not only dedicated to the application functionalities, but also to its control and its transformation, and so in its own interest. Behaving like a computer virus, such a process should rather be qualified as a “vitamin”. It perfectly knows the current characteristics of the execution environment and owns some qualitative information thanks to a behavior modeling process (issue 2). It appends a significant part of optimizing ability compared to a static compiler, while observing live resources availability evolution.

[bookmark: uid30] State of the art

Dynamic analysis and optimization, that is to say simultaneous to the program execution, have motivated a growing interest during the last decade, mainly because of the hardware architectures and applications growing complexity. Indeed, it has become more and more difficult to anticipate any program run simply from its source code, either because its control structures introduce some unknown objects before run (dynamic memory allocation, pointers, ...), or because the interaction between the target architecture and the program generates unpredictable behaviors. This is notably due to the appearance of more optimizing hardware units (prefetching units, speculative processing, code cache, branch prediction, etc.). With multicore architectures, this interest is growing even more. Works achieved in this area for mono-core processors have permitted to establish some classification of the so-called dynamic approaches, either based on the used methodologies or on the objectives.

The first objective for any dynamic approach is to extract some live information at runtime relying on a profiling process. This essential step is the main objective of issue 2 (see sub-section 
	3.3 ).

Identifying some “hotspots” thanks to profiling is then used for performance improvement optimizations. Two main approaches can be distinguished:


	[bookmark: uid31] the profile-guided approach, where analysis and optimization of profile information are performed off-line, that is to say statically. A first run is only performed to extract information for driving a re-compilation. Related to this approach, iterative compilation consists in running a code that has been transformed following different optimization possibilities (nature and sequencing of the applied optimizations), and then in re-compiling the transformed code guided by the collected performance information, and so on until obtaining a “best” program version. In order to promote a rapid convergence towards a better solution, some heuristics or some machine learning mechanisms are used [18] , [58] , [57] . The main drawback of such approaches relates to the quality of the generated code which depends on the reference profiled execution, and more precisely on the used input data set, but also on the used hardware.



	[bookmark: uid32] the on-the-fly approach consists in performing all steps at each run (profiling, analysis and transformation). The main constraint of this approach is that the time overhead has to be widely compensated by the benefits it generates. Several works propose such approaches dedicated to specific optimizations. We personally successfully implemented a dynamic data prefetching system for the Itanium processor [1] .




Although all these works provided some efficient dynamic mechanisms, their adaptation to multicore architectures yields difficult issues, and even challenges them. It is indeed necessary to control interactions between simultaneous tasks, imposing an additional complexity level which can be fateful for a dynamic system, while becoming too costly in time and space.

Some dynamic parallelizing techniques have been proposed in the last years. They are mainly focusing on parallelizing loop-nests, as programs generally spend most of their execution time in iterative structures.

The LRPD test [61]  is certainly one of the foundation strategies. This method consists in speculatively parallelizing loops. Privatization and reduction transformations are applied to promote a successful application of the strategy. During execution, some tests are performed to verify the speculation validity. In case of invalid speculation, the targeted loop is re-executed sequentially. However, the application range is limited to loops accessing arrays; pointers cannot be handled. Moreover the method is not fully dynamic since an initial static analysis is needed.

In [31] , Cintra and Llanos present a speculative parallel execution mechanism for loops, where iteration chunks are executed in sliding windows of n threads. The loops are not transformed and the sequential schedule remains as a reference to define a total order on the speculative threads. In order to verify whether some dependencies are violated during the program run, all data structures qualified as speculative, that is to say those being accessed in read-write mode by the threads, are duplicated for each thread and tagged following those states: not accessed, modified, exposed loaded or exposed loaded and later modified. For example, a read-after-write dependency has been violated if a thread owns a data tagged as exposed loaded or exposed loaded and modified, and if a predecessor thread, following the sequential total order, owns the same data but tagged as modified or exposed loaded and modified, while this data has not yet been committed in main memory. Such an approach can be memory-costly as each shared data structure is duplicated. It can be tricky to adjust verification frequencies to minimize time overhead. Some other methods based on the same principle of verifying speculation relatively to the sequential schedule have been proposed recently as in [65] , where each iteration of a loop is decomposed into a prologue, a speculative body and an epilogue. The speculative bodies are performed in parallel and each body completion induces a verification. This approach seems to be only well suited for loops which bodies represent significant computation time.

Another recent work is the development of SPICE [60]  which is a speculative parallelizing system where an entire first run of a loop is initially observed. This observation serves in determining the values reached by some variables during the run. During a next run of the loop, several speculative threads are launched. They consider as initial values of some variables the values that have been observed at the previous run. If a thread reaches the starting value of another thread, it stops. Thus each thread performs a different portion of the loop. But if the loop behavior changes and if another thread starting value is never reached, the run goes on sequentially until completion.

The main limits of these propositions are:


	[bookmark: uid33] they do not alter the initial sequential schedule since always contiguous instruction blocks are speculatively parallelized;



	[bookmark: uid34] their underlying parallelism is out of control: the characteristics of the generated parallel schedule are completely unknown since they randomly depend on the program instructions, their dependencies and the target machine. If bad performance is encountered, no other parallelization solution can be proposed. Moreover, the effective instruction schedule occurring at program run can significantly vary from one run to another, hence leading to a confusing performance inconsistency.




A strategy that would uniquely be based on a transactional memory mechanism, with rollbacks in the case of data races, yields a totally uncontrolable parallelism where performance can not be ensured and not even strongly expected.

While being based on efficient prediction mechanisms, a better control over parallelization will permit to provide solutions that are well suited to a varying execution context and to parallelize portions of code that can be parallelized only in some particular context. It is indeed crucial to maximize the potential parallelism of the applications to take advantage of the forthcoming processors comprising several tens of cores.


[bookmark: uid35] General objective: building a virtual machine

As it has already been mentioned, dynamic parallelization and optimization can take place inside a virtual machine. All the research objectives that are presented in the following are related to its construction.

Notice that the term of “virtual machine” is employed to group a set of dynamic analysis and optimization mechanisms taking as input a binary code, eventually enriched with specific instructions. We refer to a process virtual machine which main role is dynamic binary optimization from one instruction set to the same instruction set. The taxonomy given in [64]  includes this kind of virtual machine.

Notice that this virtual machine can run in parallel on the processor cores during the four initial phases (see figure 2 ), but also simultaneously to the target application, either by sharing some cores with light processes, or by using cores that are useless for the target application. It will also support a transactional memory mechanism, if available. However the foreseen parallelizing strategies do not depend on such a mechanism since our speculative executions are supposed to be as reliable as possible thanks to efficient prediction models, and since they are supported by a specific and higher level rollback mechanism. Anyway if available, a transactional memory mechanism would allow to take advantage of “nearly perfect” prediction models.

The virtual machine takes as input an intermediate code expressing several kinds of parallelism on several code extracts. Those kinds of parallelism are either effective, that is to say that the corresponding parallel execution is obviously semantically correct, or hypothetical, that is to say that there is still some uncertainty on the parallelism correctness. In this case, this uncertainty will have to be resolved at run time. This intermediate “multi-parallel” code is generated by the static parallelization described subsection 
	3.2 . It also contains generic descriptions of parallelizing or optimizing transformations which parameters will have to be instanciated by the virtual machine, thanks to its knowledge about the target architecture and the program run-time behavior.

[bookmark: uid36]Figure
	2. The virtual machine	[image: IMG/figure_vm_anglais]




[bookmark: uid37] Adaptation of the intermediate code to the target architecture

The virtual machine first phase is to adapt this intermediate code to the target multicore architecture. It consists in answering the following questions:


	[bookmark: uid38] What is the suitable kind of parallelism?



	[bookmark: uid39] What is the suitable parallel task granularity?



	[bookmark: uid40] What is the suitable number of parallel tasks?



	[bookmark: uid41] Can we take advantage of a specialized instruction set for some operations?



	[bookmark: uid42] What are the parameter values for some parallelization or optimization?




The multi-parallel intermediate code exhibits different parameters allowing to adapt some parallelizing and optimizing transformations to the target architecture. For example, a loop unrolling will be parametrized by the number of iterations to be unrolled. This number will depend, for example, on the number of available registers and the size of the instruction cache. A parallelizing transformation will depend on several possible parallel instruction schedules. One or several schedules will be selected, for example, depending on the kind of memory hierarchy and the cache sharing among cores.

Concerning hypothetical parallelism, this first phase will reduce the number of these propositions to solutions that are well suited to the target architecture. This phase also instruments the intermediate code in order to install the dynamic mechanisms related to profiling and speculative parallel execution.


[bookmark: uid43] High level parallelization and native code creation

From these target architecture related adaptations, a parallel intermediate code is generated. It contains instructions that are specific to the dynamic optimizing and parallelizing mechanisms, i.e., instrumentation instructions to feed the profiling process as well as calls to speculative execution management procedures. A translation into native code executable by the target processor follows. This translation also allows to keep trace of the code extracts that have to be modified during the run.


[bookmark: uid44] Low level parallelization

The binary version of the code exhibits new parallelism and optimization sources that are specific to the instruction set and to the target architecture capabilities. Moreover, some dynamic optimizations are dedicated to specific instructions, or instruction blocks, as for example the memory reads which time performances can be dynamically improved by data prefetching [1] . Thus the binary code can be transformed and instrumented as well.


[bookmark: uid45] Distribution, execution and profiling

The so built executable code is then distributed among the processor cores to be run. During the run, the instrumentation instructions feed the profiler with information for execution monitoring and for behavior models construction (see subsection 
	3.3 ). An accurate knowledge of the binary code, thanks to the control of its generation, also permits at this step to dynamically control the insertion or deletion of some instrumentation instructions. Indeed it is important to manage execution monitoring through sampling based instrumentations in varying frequencies, following the changing behavior frequency (see in [1]  and [70]  a description of this kind of mechanism), as such instrumentations necessarily induce overheads that have to be minimized.


[bookmark: uid46] Re-parallelization, thread mutation or rollback

Depending on the information collected from instrumentation, and depending on the built prediction models, the profiling phase causes a re-transformation of some code parts, thus causing the mutation of the concerned threads. Such re-transformation is done either on the binary code whether it consists in low level and small modifications, as for example the adjustement of a data prefetching distance, or on the intermediate code if it consists in a complete modification of the parallelizing strategy. For example, such a processing will follow the observation of a bad performance, or of a change in the computing resources availability, or will be caused by the completion of a dependency prediction model allowing the generation of a speculative parallelization. From such a speculative execution, a re-transformation can consist in rolling back to a sequential execution version when the considered hypothetical parallelism, and thus the associated prediction model, has been evaluated wrong.


[bookmark: uid47] Section: 
      Scientific Foundations
Proof of program transformations for multicores
Participants :
      Éric Violard, Julien Narboux, Nicolas Magaud, Vincent Loechner, Alexandra Jimborean.


[bookmark: uid48] State of the art

[bookmark: uid49] Certification of low-level codes.

Among the languages allowing to exploit the power of multicore
architectures, some of them supply the programmer a library of functions
that corresponds more or less to the features of the target architecture :
for example, CUDA(http://www.nvidia.com/object/cuda_what_is.html )
for the architectures of type GPGPU and more recently the standard
OpenCL(http://www.khronos.org/opencl ) that offers a unifying
programming interface allowing the use of most of the existing multicore
architectures or a use of heterogeneous aggregate of such architectures.
The main advantage of OpenCL is that it allows the programmer to write
a code that is portable on a large set of architectures
(in the same spirit as the MPI library for multi-processor architectures).
However, at this low level, the programming model is very close to
the executing model, the control of parallelism is explicit. Proof of program correctness has to take into account low-level mechanisms such as hardware interruptions or thread preemption, which is difficult.

In [36] , Feng et al. propose a logic inspired from the Hoare
logic in order to certify such low-level programs with hardware interrupts
and preempted threads. The authors specify this logic by using the meta-logic
implemented in the Coq proof assistant [21] .


[bookmark: uid52] Certification of a compiler.

The problem here is to prove that transformations or optimizations
preserve the operational behaviour of the compiled programs.

Xavier Leroy in [24] , [47]  formalizes the analyses and optimizations performed by a C compiler: a big part of this compiler is written in the
specification language of Coq and the executable (Caml) code of this compiler
is obtained by automatic extraction from the specification.

Optimizing compilers are complex softwares, particularly in the case of
multi-threaded programs. They apply some subtle code transformations.
Therefore some errors in the compiler may occur and the compiler may produce incorrect executable codes.
Work is to be done to remedy this problem. The technique of validation
a posteriori [66] , [67]  is an interesting alternative
to full verification of a compiler.


[bookmark: uid53] Semantics of directives.

As it was mentioned in subsection 
	3.2.3 , the use of directives is an interesting approach to
adapt languages to multicore architectures. It is a syntactic means to tackle
the increasing need of enriching the operational semantics of programs.

Ideally, these directives are only comments: they do not alter the correction
of programs and they are a good means to improve their performance. They allow
the separation of concerns: correction and efficiency.

However, using directives in that sense and in the context of automatic
parallelization, raises some questions: for example, assuming that directives
are not mandatory, how to ensure that directives are really taken into account?
How to know if a directive is better than another? What is the impact
of a directive on performance?

In his thesis [38] , that was supervised by Éric Violard, Philippe Gerner
addresses similar questionings and states a formal framework in which the
semantics of compilation directives can be defined. In this framework, any directive
is encoded into one equation which is added to an algebraic specification.
The semantics of the directives can be precisely defined via an order relation
(called relation of preference) on the models of this specification.


[bookmark: uid54] Definition of a parallel programming model.

Classically, the good definition of a programming model is based on a semantic
domain and on the definition of a “toy” language associated with a proof system,
which allows to prove the correctness of the programs written in that language.
Examples of such “toy” languages are CSP for control parallelism and [image: Im1 $\#8466 $]
[26]  for data parallelism. The proof systems
associated with these two languages, are extensions of the Hoare logic.

We have done some significant works on the definition of data parallelism
[11] . In particular, a crucial problem for the good definition
of this programming model, is the semantics of the various syntactic constructs
for data locality.
We proposed a semantic domain which unifies two concepts:
alignment (in a data-parallel language like HPF)
and shape (in the data-parallel extensions of C).

We defined a “toy” language, called PEI, that is made of
a small number of syntactic constructs. One of them,
called change of basis, allows the programmer
to exhibit parallelism in the same way as a placement
or a scheduling directive [39] .


[bookmark: uid55] Programming models for multicore architectures.

The multicore emergence questions the existing parallel
programming models.

For example, with the programming model supported by OpenMP,
it is difficult to master both correctness and
efficiency of programs.
Indeed, this model does not allow programmers to take optimal
advantage of the memory hierarchy and some OpenMP directives may induce unpredictable performances or incorrect results.

Nowadays, some new programming models are experienced to help
at designing both efficient and correct programs for multicores.
Because memory is shared by the cores and its
hierarchy has some distributed parts, some works aim at defining a hybrid model,
between task parallelism and data parallelism. For example, languages
like UPC (Unified Parallel C)(http://upc.gwu.edu ) or
Chapel(http://chapel.cs.washington.edu ) combine
the advantages of several programming paradigms.

In particular, the model of memory transactions (or transactional memory
[44] )
retains much attention since it offers the programmer a simple operational semantics
including a mutual exclusion mechanism which simplifies program design.
However, much work remains to define the precise operational meaning
of transactions
and the interaction with the other languages features [53] .
Moreover, this model leaves the compiler a lot of work to reach a
safe and efficient execution on the target architecture. In particular,
it is necessary to control the atomicity of transactions [37] 
and to prove that code transformations
preserve the operational semantics.


[bookmark: uid58] Refinement of programs.

Refinement [19] , [40]  is a classical approach for gradually
building correct programs: it consists in transforming an initial specification
by successive steps, by verifying that each transformation preserves the
correctness of the previous specification. Its basic principle is to derive simultaneously
a program and its own proof. It defines a formal framework in which some rules and strategies
can be elaborated to transform specifications written by using the same formalism.
Such a set of rules is called a refinement calculus.

Unity [30]  and Gamma [20]  are classical examples
of such formalisms, but they are not especially designed for refining programs
for multicore architectures.
Each of these formalisms is associated with a computing model
and thus each specification can be viewed as a program.
Starting with an initial specification, a proof logic allows a user
to derive a specification which is more suited to the target
architecture.

Refinement applies for the programming of a large range of problems and architectures.
It allows to pass the limitations of the polyhedral model and of automatic parallelization. We designed a refinement calculus to build data parallel programs [68] .


[bookmark: uid59] Main objective: formal proof of analyses and transformations

Our main objective consists in certifying the critical modules of our
optimization tools (the compiler and the virtual machine). First we will prove
the main loop transformation algorithms which constitute the core of our system.

The optimization process can be separated into two stages: the transformations
consisting in optimizing the sequential code and in exhibiting parallelism, and
those consisting in optimizing the parallel code itself.
The first category of optimizations can be proved within a sequential semantics.
For the other optimizations, we need to work within a concurrent semantics.
We expect the first stage of optimizations to produce data-race free code. For the
second stage of optimizations, we will first assume that the input code is
data-race free.
We will prove those transformations using Appel's concurrent separation
logic  [42] . Proving transformations involving program which are not
data-race free will constitute a longer term research goal.


[bookmark: uid60] Proof of transformations in the polyhedral model

The main code transformations used in the compiler and the virtual machine
are those carried out
in the polyhedral model  [46] , [35] .
We will use the Coq proof assistant to formalize proofs of analyses and
transformations based on the polyhedral model.
In  [29] , Cachera and Pichardie formalized nested loops in Coq
and showed how to prove properties of those loops. Our aim is slightly
different as we plan to prove transformations of nested loops in the
polyhedral model.
We will first prove the simplest unimodular transformations, and later
we will focus on more complex transformations which are specific to multicore
architectures.
We will first study scheduling optimizations and then optimizations improving
data locality.


[bookmark: uid61] Validation under hypothesis

In order to prove the correction of a code transformation T it is possible to:


	[bookmark: uid62] prove that T is correct in general, i.e., prove that for all
x, T(x) is equivalent to x.



	[bookmark: uid63] prove a posteriori that the applied transformation has been
correct in the particular case of a code c.




The second approach relies on the definition of a program called validator
which verifies if two pieces of program are equivalent. This program can be modeled
as a function V such that, given two programs c1 and c2, V(c1, c2) = true
only if c1 has the same semantics as c2.
This approach has been used in the field of optimizations certification [56] , [55] . If the validator itself contains a bug then the
certification process is broken. But if the validator is proved formally (as
it was achieved by Tristan and Leroy for the Compcert
compiler  [66] , [67] )
then we get a transformed program which can be trusted in the same way as if the
transformation is proved formally.

This second approach can be used only for the effective parallelism,
when the static analysis provides enough information to parallelize the code.
For the hypothetical parallelism, the necessary hypotheses have to be verified at run time.

For instance, the absence of aliases in a piece of code is
difficult to decide statically but can be more easily decided at run time.

In this framework, we plan to build a validator under hypotheses:
a function V' such that, given two programs c1 and c2 and an hypothesis
H, if V'(c1, c2, H) = true, then H implies that c1 has the same semantics
as c2. The validity of the hypothesis H will be verified dynamically by the
virtual machine. This verification process, which is part of the virtual machine,
will have to be proved as correct as well.


[bookmark: uid64] Rejecting incorrect parallelizations

The goal of the project is to exhibit potential parallelism. The source code can
contain many sub-routines which could be parallelized under some hypothesis that
the static analysis fails to decide. For those optimizations, the virtual machine
will have to verify the hypotheses dynamically.
Dynamically dealing with the potential parallelism can be complex and costly
(profiling, speculative execution with rollbacks). To reduce the overhead of
the virtual machine, we will have to provide efficient methods to rule out
quickly incorrect parallelism. In this context, we will provide hypotheses which
are easy to check dynamically and which can tell when a transformation cannot
be applied, i.e., hypotheses which are sufficient conditions for the non-validity
of an optimization.
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  [bookmark: uid66] Section: 
      Application Domains
Application Domains

Performance being our main objective, our developments' target applications are characterized by intensive computation phases. Such applications are numerous in the domains of scientific computations, optimization, data mining and multimedia.

Applications involving intensive computations are necessarily high energy consumers. However this consumption can be significantly reduced thanks to optimization and parallelization. Although this issue is not our prior objective, we can expect some positive effects for the following reasons:


	[bookmark: uid67] Program parallelization tries to distribute the workload equally among the cores. Thus an equivalent performance, or even a better performance, to a sequential higher frequency execution on one single core, can be obtained.



	[bookmark: uid68] Memory and memory accesses are high energy consumers. Lowering the memory consumption, lowering the number of memory accesses and maximizing the number of accesses in the low levels of the memory hierarchy (registers, cache memories) have a positive consequence on execution speed, but also on energy consumption.
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  [bookmark: uid70] Section: 
      Software
PolyLib

PolyLib(http://icps.u-strasbg.fr/PolyLib )
is a C library of polyhedral functions, that can manipulate unions of
rational polyhedra of any dimension, through the following operations:
intersection, difference, union, convex hull, simplify, image and preimage.
It was the first to provide an implementation of the computation of
parametric vertices of a parametric polyhedron, and the computation of an
Ehrhart polynomial (expressing the number of integer points contained in
a parametric polytope) based on an interpolation method.

It is used by an important community of researchers (in France and the rest
of the world) in the area of compilation and optimization using the polyhedral model.
Vincent Loechner is the maintainer of this software.
It is distributed under GNU General Public License version 3 or later,
and it has a Debian package maintained by Serge Guelton
(Symbiose Projet, IRISA).


[bookmark: uid72] Section: 
      Software
NLR

We have developed a program implementing our loop-nest recognition
algorithm, detailed in [7] . This standalone, filter-like
application takes as input a raw trace and builds a sequence of loop
nests that, when executed, reproduce the trace. It is also able to
predict forthcoming values at an arbitrary distance in the future. Its
simple, text-based input format makes it applicable to all kinds of
data. These data can take the form of simple numeric values, or have
more elaborate structure, and can include symbols. The program is
written is standard ANSI C. The code can also be used as a library.

We have used this code to evaluate the compression potential of loop
nest recognition on memory address traces, with very good results. We
have also shown that the predictive power of our model is competitive
with other models on average. The software is available upon request
to anybody interested in trying to apply loop nest recognition. It has
been distributed to a dozen of colleagues around the world.

We plan on using this software as the base for a new tool we currently
design, for the analysis of parallel traces.


[bookmark: uid73] Section: 
      Software
Dynamic version selector

We are developing a toolchain to automatically select between different
versions of parallel loop nests,
as described in subsection 
	6.1 .
It generates the profiling code and
selection code from a loop nest source code and
different schedules, expressed in the CLooG format.

Benoit Pradelle (PhD) wrote this toolchain, based on python scripts.
It is not yet distributed.


[bookmark: uid74] Section: 
      Software
Binary files decompiler

Our research on efficient memory profiling has lead us to develop a
sophisticated decompiler. This tool analyzes x86-64 binary programs
and libraries, and extracts various structured representations of the
code. It works on a routine per routine basis, and first builds a loop
hierarchy to characterize the overall structure of the algorithm. It
then puts the code into Static Single Assignment (SSA) form to
highlight the fine-grain data-flow between registers and memory.
Building on these, it performs the following analyzes:


	[bookmark: uid75] All memory addresses are expressed as symbolic expressions
involving specific versions of register contents, as well as loop
counters. Loop counter definitions are recovered by resolving
linearly incremented registers and memory cells, i.e., registers
that act as induction variables.



	[bookmark: uid76] Most conditional branches are also expressed symbolically (with
registers, memory contents, and loop counters). This captures the
control-flow of the program, but also helps in defining what amounts
to loop “trip-counts”, even though our model is slightly more
general, because it can represent any kind of iterative structure.




This tool embodies several passes that, as far as we know, do not
exist in any existing similar tool. For instance, it is able to track
data-flow through stack slots in most cases. It has been specially
designed to extract a representation that can be useful in looking for
parallel (or parallelizable) loops [13] . It is the basis of
several of our studies.

Because binary program decompilation is especially useful to reduce
the cost of memory profiling, our current implementation is based on
the Pin binary instrumenter. It uses Pin's API to analyze
binary code, and directly interfaces with the upper layers we have
developed (e.g., program skeletonization, or minimal profiling).
However, we have been careful to clearly decouple the various layers,
and to not use any specific mechanism in designing the binary analysis
component. Therefore, we believe that it could be ported with minimal
effort, by using a binary file format extractor and a suitable binary
code parser. It is also designed to abstract away the detailed
instruction set, and should be easy to port (even though we have no
practical experience in doing so).

We feel that such a tool could be useful to other researchers, because it
makes binary code available under abstractions that have been
traditionally available for source code only. If sufficient interest
emerges, e.g., from the embedded systems community, or from
researchers working on WCET, or from teams working on software
security, we are willing to distribute and/or to help make it
available under other environments.


[bookmark: uid77] Section: 
      Software
Dynamic depency analyser

We have recently started developing a dynamic dependence analyzer.
Such a tool consumes the trace of memory (or object) accesses, and
uses the program structure to list all the data dependences appearing
during execution. Data dependences in turn are central to the search
for parallel sections of code, with the search for parallel loops
being only a particular case of the general problem. Most current
works of these questions are either specific to a particular analysis
(e.g., computing dependence densities to select code portions for
thread-level speculation), or restricted to particular forms of
parallelism (e.g., typically to fully parallel loops). Our tool tries
to generalize existing approaches, and focuses on the program
structures to provide helpful feedback either to a user (as some kind
of “smart profiler”), or to a compiler (for feedback-directed
compilation). For example, the tool is able to produce a dependence schema
for a complete loop nest (instead of just a loop). It also targets
irregular parallelism, for example analyzing a loop execution to
estimate the expected gain of parallelization strategies like
inspector-executor.

We have developed this tool in relation to our minimal profiling
research project. However, the tool itself has been kept independent
of our profiling infrastructure, getting data from it via a
well-defined trace format. This intentional design decision has been
motivated by our work on distinct execution environments: first on our
usual x86-64 benchmark programs, and second on less regular, more
often written in Java, real-world applications. The latter type of
applications is likely the one that will most benefit from such tools,
because their intrinsic execution environment does not offer enough
structure to allow effective static analysis techniques.
Parallelization efforts in this context will most likely rely on code
annotations, or specific programming language constructs. Programmers
will therefore need tools to help them choose between various
constructs. Our tool has this ambition. We already have a working
tool-chain for C/C++/Fortran programs (or any binary program). We are
in the process of developing the necessary infrastructure to connect
the dynamic dependence profiler to instrumented Java programs. Other
managed execution environments could be targeted as well, e.g.,
Microsoft's .Net architecture, but we have no time and/or workforce to
devote to such time-consuming engineering efforts.


[bookmark: uid78] Section: 
      Software
VMAD software and LLVM

For dynamic analysis and optimization of programs, we developed
a virtual machine called VMAD, and specific passes
to the LLVM compiler suite, plus a modified Clang frontend.
It is fully described in subsection 
	6.2 .

We implemented for now a memory access predictor in loop nests,
based on the computation of linear interpolation functions.
The profiling is very fast compared to other existing tools, as it samples only
the first few iterations of each loop in the nest, then it is
deactivated to return to the original, faster version. Other tools like
PIN or PEBIL do not support such activation/deactivation mechanism.

New annotations for the final user, taken as input by LLVM, and new VMAD modules will be developed, as
these tools have been designed to be very evolving.

Alexandra Jimborean (PhD) and Matthieu Herrmann (Master student)
wrote this software. It is not yet distributed.


[bookmark: uid79] Section: 
      Software
Polyhedral prover
Participants :
      Nicolas Magaud, Julien Narboux, Éric Violard [correspondant] .


We are currently developing a formal proof of
program transformations based on the polyhedral model.
We use the CompCert verified compiler [48] 
as a framework. This tool is written in the
specification language of Coq.
It is connected to the activity
described in section 
	6.7 .
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  [bookmark: uid81] Section: 
      New Results
Dynamic version selector

Adaptive version selection between different parallel versions of
code is necessary when the execution context of a program is not known.
The execution contexts includes all or some of these possibly
variable parameters: the target architecture, the load of the
computer at execution time, and the input data.

We have developed a framework handling loops in the polyhedral model, that
is able to take a runtime decision about which version to execute. It
is based on :


	[bookmark: uid82] the generation of different code versions of a loop nest;



	[bookmark: uid83] an install-time profiling to take into account the architecture
parameters, that builds a parametric ranking table between the
versions;



	[bookmark: uid84] a runtime selection, predicting the load balance and the
execution time of each code version, before executing the best one.




We showed that different versions of a code are required on several
polyhedral loop nest benchmarks, depending on both the target
architecture and the input data. And we showed speedups compared
to any statically chosen version in all execution contexts.
More details are available in the research report
[17] .


[bookmark: uid85] Section: 
      New Results
VMAD and LLVM

The goal is to provide a set of annotations (pragmas) that the user
can insert in the source code to perform low level
analyses (profiling) or optimizations (dynamic parallelisation
for example).

We started the development of a virtual machine and an efficient
implementation of advanced profiling and analysis of programs. VMAD is
organized as a sequence of basic operations, where external modules
associated to specific strategies are dynamically loaded when
required. The program binary files handled by VMAD are previously
instrumented at compile time to include necessary data, instrumentation
instructions and callbacks to the virtual machine. Dynamic information,
such as memory locations of launched modules, are patched at startup in
the binary file.
The LLVM compiler has been extended to automatically instrument programs
to meet the requirements both of VMAD and of the handled/chosen profiling
strategies.

A profiling strategy interpolating the memory addresses accessed in a
loop nest has been run on some of the SPEC2006 and Pointer Intensive
benchmark suites, showing a very low time overhead, in most cases.
More details are available in the research reports
[16]  and [15] , and publication [12] .

We are now working on the development of other profiling and
optimization techniques, and on a generic API that could be used
by the experienced programmer to write his own instrumentations.


[bookmark: uid86] Section: 
      New Results
Static analysis of the memory behavior of executable programs

For the last year and a half, we have been developing techniques to
analyze binary code. The major goal is to find out, from a binary
executable program and its libraries, how executing this program will
use memory. When the program's memory behavior is characterized in
some abstract (and parametrized) way, several studies can be conducted
directly on the binary program, without any need of the source code,
which may be totally or partially unavailable. Our own research topics
have several examples of interesting facts that can be derived
directly. The first example is that of “program skeletonization”, a
lightweight instrumentation strategy to obtain a full memory trace
(e.g., for dynamic dependence analysis, or cache simulation). Another
example is that of the static parallelization of binary code, i.e.,
building a parallelizing compiler that works directly on executable
programs and can thus handle mixed language programs, programs build
with proprietary libraries, and so on. In all cases, it appeared that
obtaining the memory behavior of the binary program was a central
element. Existing systems were rudimentary, and the various techniques
and algorithms that we had to use or develop specifically are
significant enough that we have decided to promote this topic as a
scientific result.

Our approach is to consider a binary program with the program
structures that are commonly used in compiler techniques. The code is
split into basic blocks organized into a control-flow graph, and this
control-flow graph is structured as a hierarchy of loops. This can be
done with well-known, textbook techniques, and many systems have used
a similar approach (even though our experience suggests many of them
fail to deal properly with some binary code specific artifacts, like
irreducible loops). From that point, approaches vary widely, but no
systematic and efficient technique seemed precise and accurate enough.
We have chosen to base the rest of the analysis on the Static Single
Assignment form, which has been tremendously useful in developing
source level or intermediate representation level compiler
optimizations. We have shown that, by not trying to be overly precise
from early on, one can extract an interesting representation of a
binary program from its binary code.

Extracting the memory behavior of a program means constructing a
representation of the program that explicitly expresses how the
program will access memory, in a manner that is amenable to detailed
analysis. The hierarchy of loops provides the global structure, and an
SSA-based symbolic analysis details how the individual memory accesses
vary from one iteration to the other. This requires two analysis
phases after the program is in SSA form. The first phase is mixing
program slicing and forward substitution to express every memory
address symbolically. The second phase focuses on loops and determines
which registers hold values that vary linearly across loop iterations.
The resulting representation is a program where memory accesses are
defined by linear combinations of loop counters and parameters
(specific register versions), with the latter hopefully loop
invariant. This representation is actually very similar to the one
used for static control programs (when applicable), and forms the basis
of almost all parallelization techniques. These results have already
been published [13] , and the conference program committee has
invited us to prepare an extended version of this paper for
publication in an international journal in 2011.

Building on this foundation, we have developed several techniques to
enhance our basic strategy. The major limitation of our strategy, as
just described, is that it restricts itself to address computations
that happen completely inside the registers, ignoring any flow of data to
and from memory. Fully characterizing this traffic being clearly out
of reach (it would mean completely solving a general parametrized
dependence problem), we have chosen to solve a restricted problem:
separating access to the current stack-frame from the accesses to the
rest of the memory. This requires a specific form of points-to
analysis, that is able to determine whether a given address “points
to” a location inside the current stack-frame, or to a location
outside of it. In many cases this lets the system determine that two
memory address expressions either cannot alias, because they
point to separate portions of memory, or may alias, in which case a
simple and conservative comparison of address expressions can decide
whether they designate the same memory location. We solve this problem
with a forward data-flow analysis. It appears that most of the time,
this approach is enough to let the system track the flow of data
through the stack-slots, which, in turn, provides some rough
equivalent to use-def links for these stack slots. When used to derive
symbolic expressions for memory addresses (as explained above), it
lets the slicing process go further back, and lets the induction
variable resolution apply to stack slots. The overall result is that
more loops are completely understood by the decompilation process.


[bookmark: uid87] Section: 
      New Results
Dynamic analysis of the memory behavior of executable programs

Program skeletonization consists in transforming a given program into
another program whose only task is to produce some data that one wants
to observe about the original program. We apply this technique to
memory tracing. If one wants to obtain the complete list of memory
address that the given program accesses, our algorithm builds a new
program that outputs the list of memory addresses. This new program,
called the skeleton, is not equivalent to the original program:
it is restricted to what the user is interested in (in our case,
memory addresses). The rest of the program, e.g., the computation of
results, is simply ignored and does not appear in the skeleton. The
main motivation for skeletonization is practical: instrumenting each
and every memory access in a given program has two main difficulties.
First the original program increases in size, which makes it slower.
Second, since memory accesses are extremely frequent (on every third
instruction execution on average), the instrumentation usually causes
massive slowdowns.

Because we want to reproduce the list of memory addresses for a
given execution, the skeleton's execution needs to somehow depend
on the input data. Program skeletonization is designed to clearly
separate both aspects: the skeleton is directly derived from the
original program only, but it needs an input trace to reproduce a
given execution. However, this input trace may not be composed
exclusively of relevant input data. It may also contain intermediate
computations that have been found too complex for the skeleton to
reproduce, and these intermediate computations may or may not use
input data. The only guarantees provided are: 1) the skeleton is
completely independent of input data, and 2) given its input trace,
the skeleton will faithfully reproduce the stream of memory access
addresses.

Building the skeleton is an immediate application of our decompilation
process (described earlier). Starting with a binary program, the
decompiler provides 1) a linear combination of loop counters and base
registers for each memory access, 2) a simple comparison of a linear
form for all branch conditions that can be parsed, and 3) a set of
base register definitions, that are used in the various expressions.
Building the skeleton is immediate: our algorithm generates one basic
block per basic block in the original program, where it places input
statements where a base register is defined, output statements where
an address is computed, and branches if the basic block ends with a
conditional branch (the condition governing this branch is either
computed or input). Loop counters are also defined and incremented in
the skeleton, but this does not require any input data. Our system
actually generates a C program, giving the C compiler an additional
opportunity to optimize the skeleton code.

Producing the skeleton's input trace is the charge of the original
program, which must be instrumented to output the values of the base
registers. This is a regular instrumentation, obtaining register
values, as well as unknown branch outcomes. Every obtained value is
written out, either to a pipe at the end of which the skeleton is
currently running, or to a file if the trace has to be saved to be
reused later (possibly multiple times).

The overall strategy is interesting in several respects. First, the
skeleton is independent of the input data, which means it is reusable
across executions. Second, the input trace produced by instrumenting
the original program is usually much smaller than the full memory
trace, which makes the original program run with less overhead. This
is true statically (there are less instrumentation points than for
memory instrumentation) and dynamically (since many loops are
completely based on loop invariant registers, a large part of the
execution doesn't use instrumentation code at all). Finally, running
the skeleton is completely independent of the original execution
context, which is not needed anymore since every aspect of it has been
captured in the trace.

A paper describing our approach and system has been accepted for
presentation at the 2011 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS-2011)
[14] , to be held in April.
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Dynamic dependency analysis

Dynamic dependence analysis consists in observing all memory (or
object) accesses performed by a program to detect all the data
dependences that occur. It is essentially incomplete in that it relies
on a specific execution, but can provide insight on the memory
behavior and help designing correct program transformations, e.g., for
parallelization. Dynamic dependence analysis has been used mainly for
detecting parallel, or almost parallel, program sections, and are
often coupled with thread-level speculation. We believe dynamic
dependence analysis can also be extremely useful as an aid to the
programmer, provided the tools are able to extract usable information
on which parts of the program can be parallelized. We plan to make it
a central component to our parallelization assistant project.

In its simplest form, dynamic dependence analysis takes a trace of
memory accesses, and finds in the trace the addresses that have
appeared previously. Every such occurrence is a dependence if any of
the accesses involved is a write. This is barely useful if it is not
related in some way to the structure of the program under scrutiny.
Most previous studies have used “local” structures, keeping, for
instance, a table of memory accesses for each iteration of a loop, and
then testing independence to find out that the loop is parallel (in
the sense that all its iterations could have been run in parallel).
Even when the loop iterations are dependent, a low frequency of
dependence may still make the loop be considered a good candidate for
speculative parallelization.

Our approach is much more focused on the program structure. It
associates to each memory access an execution point that contains an
interleaving of function calls and loop iterations (we call this an
extended stack trace). Given two conflicting accesses, the longest
common prefix of their extended stack trace indicates the “nearest”
program structure that exhibits the dependence (either a function call
or a loop iteration). This has been used in other works, to detect
parallel loops. What is less often noticed is that the remaining
portions of the execution points (i.e., the upper parts of the stacks)
provide detailed information on the respective iterations that carry
the dependence. It is therefore possible to extract complete
dependence schema for loop nests (with dependence distances), and not only for single loops as is
usual. This means that, if dynamic dependence analysis is used in an
interactive tool, more elaborate parallelization strategies can be
suggested.

Another major topic related to dynamic dependence analysis is the
scalability of the approach, which requires heavy instrumentation and
sophisticated and efficient data structures to be usable. Part of the
solution is covered by our other studies on “program
skeletonization” (see above), but much remains to be done to make the
analysis usable in a developer tool. We have started work on using
static analysis of the binary program (and/or debugging information
where available) to reduce the cost of instrumentation and analysis.
Once again, this relies on detecting loops whose memory footprints can
be known by analyzing the code. Fortunately, a large body of theory,
especially on parametric integer programming, can help reduce the
amount of data to process. The idea is to use the static description
of complete parts of the program to update the dependence data
structures. This is again an illustration of a principle that is used
throughout our work, namely the cooperation between static and dynamic
data.
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Binary parallelization

Our basic decompilation mechanism lets us extract loop nests from
binary code. In favorable cases, the loops are fully described, and
every memory access they contain has an associated linear combination
of base register values and loop counters. Such a representation is
enough to apply parallelization techniques based on the polytope
model. These techniques are currently the best known way to derive an
efficient parallel equivalent of the original loop nest. Our goal in
this project is to exploit this similarity of representations, to
build a parallelizing binary-to-binary compiler. Given that we are
able to locate and describe loop nests inside binary programs, the
basic workflow of our compiler is to first extract a suitable
representation of the complete loop nest, then, in a second phase,
apply parallelizing transformations to the model, and then, in the
third and last phase, regenerate binary code for the parallel version
of the loop nest. The rest of the program remains unchanged.

The first phase, called the raising phase, relies on our
decompilation techniques. Given a binary program, the loops are
located and brought (or “raised”) to a data structure containing
linear memory access functions and loop bounds. All functions may
reference loop invariant registers, whose definitions are also
precisely located, thanks to the SSA form. The first step is to remove
unnecessary instructions: since all memory accesses are expressed as
functions, the parts of the program that participate in actually
computing these functions becomes useless. We have employed a basic
slicing technique to select the instructions that need to be
preserved. Starting from instructions that write either to memory or a
register that is live on exit of the loop, our algorithm follows all
possible paths through definitions that are required for the written
values to be computed. Redundant instructions (i.e., those that have
not been visited during the slicing) are removed. The remaining
instructions are all necessary for the transformed program to have the
same effect as the original program. These instructions, as well as
the loop nest structure, are translated into C-like code. Various
other transformations are also applied in order to “clean up” the
extracted program and make it usable by the next phase.

The second phase, called the parallelization phase, takes as
input our C-like loop nest filled with affine accesses to a unique
array (the memory). It then performs a complete parallelization
analysis, including dependence analysis and scheduling. We have left
this part to an external tool, not developed by our team [25] .
This tool is a state-of-the-art parallelizer, and provides the basic
infrastructure. However, its use is, from our point of view, a
temporary solution: it will be complemented by various other tools in
the future. The result of this phase is a new program, augmented with
compiler directives (typically, OpenMP directives).

The third and last phase, called the lowering phase, consists
in reproducing executable code. As we have seen, most of the work
happens during the first phase (because parallelization is performed
by a “real” compiler). However, conceptually, it is relevant to
consider it a distinct phase. It mostly consists in ensuring that all
groups of instructions that have an effect are actually present in the
result. It mostly involves translating low-level instructions
extracted from the binary code into C code that are guaranteed to be
propagated almost directly into the final program. It also involves
creating a new executable including the modified code and ensure the
correct integration inside the code that is copied verbatim. This
phase is mostly technical, even though it has led us to develop
several techniques that may be reused in other contexts.

This project is especially interesting because it provides a new view
on parallelization (very few attempts have been made at
general-purpose, binary-to-binary compilers). Its main contribution is
to make parallelization a service of the execution environment,
instead of a feature of the compiler. Any user of the operating system
can benefit from our parallelizer, whatever compiler they used to
produce the original sequential programs, and whatever library they
used, even for programs that use components written in different
languages and/or compiled with different compilers. Deferring the
parallelization to the execution environment opens up several new
research directions, which we plan to explore as soon as possible. It
also allows the parallelization to take into account the target
architecture.
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Proof of polyhedral transformations
Participants :
      Nicolas Magaud, Julien Narboux, Éric Violard.


We work with two members of the GALLIUM team:
Alexandre Pilkiewicz, PhD student, and François Pottier, senior researcher
at INRIA. This work aims at integrating the polyhedral transformations
into the compiler CompCert.

This integration is based on an ad hoc language called LOOPS.
This language, designed by Alexandre Pilkiewicz, is a small abstract language
(without concrete syntax) allowing to express the affine loop nests
to which the polyhedral transformations apply.
It is provided with a small-step operational semantics.

We use this language to separate proofs about polyhedral transformations
from the actual intermediate languages of the compiler hence some proofs
can be developped independently of CompCert.

The integration in CompCert takes place at the level of the intermediate
language Csharpminor (cf. fig 3 ): the affine loop nests
are first extracted from the intermediate code Csharpminor and translated into LOOPS.
Once transformed while preserving their semantics, these loop nests are then translated back into Csharpminor.

We developed an extension of CompCert who extracts affine loop nests and
performs the operation of transplantation. This extension is still rudimentary: only
a restricted class of affine loop nests is recognized and translated into LOOPS.

We now work to establish the proof in Coq that,
if the transformation in LOOPS is correct, then
the transformed Csharpminor program
has the same behavior as the original one.

We will have to deal with the problem of potential overflows in loop bounds computations. This problem is overlooked in the litterature about polyhedral model. We will have to generate some sufficient conditions to prevent overflow and check at runtime these conditions to guarrantee that the new program has the same behaviour as the original.
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	3. Integration within CompCert	[image: IMG/proof-overview]
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National Initiatives

Philippe Clauss, Alain Ketterlin and Vincent Loechner are involved in the proposition of an INRIA Large Wingspan Project (Action d'Envergure Nationale) entitled “Software for multicores and hardware accelerators” and regrouping several french teams doing researches in compilers, parallel computing and program optimization.
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International Initiatives

Since 2005, there has been a strong partnership between CAMUS and the team LAFHIS from the University of Buenos Aires, Argentina. The persons involved in this collaboration are: Philippe Clauss, Vincent Loechner and Alain Ketterlin from the CAMUS team; Sergio Yovine and Diego Garbervetsky from the LAFHIS team (http://www.lafhis.dc.uba.ar ). Martin Rouaux, who is an argentinian student, has began his PhD work in September 2010. This thesis is co-supervised by Diego Garbervetsky and Philippe Clauss. Martin Rouaux has spent four months in the CAMUS team between August and November 2010. His PhD subject is to develop a framework dedicated to analyzing precisely the object accesses made in object-oriented programs, in order to identify memory dependences and parallelization opportunities. The investigated approach is based on the improvement of static analysis techniques thanks to the support of dynamic analyses.

Memory behavior analysis of object-oriented programs is the common issue of both teams. From 2007 to 2009, in our joint project from ECOS-Sud “Japiqay”, we developped an original approach to evaluate statically the maximum amount of memory consumed by a java program using dynamic memory allocation [4] .

This year, we submitted an international cooperation project MINCYT/INRIA/CNRS “QUATRIX” that was accepted. It will allow us to do some PhD students exchanges in the next months.
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Animation of the scientific community

Julien Narboux and Nicolas Magaud organized a one day meeting of the french working group Language, Types, and Proofs of the GDR GPL(https://lsiit-cnrs.unistra.fr/gdr-ltp-2010/index.php/Accueil ).

Julien Narboux participated in the program committee of ADG 2010(https://lsiit-cnrs.unistra.fr/adg2010/index.php/Main_Page ) and SCGD 2011(http://webs.uvigo.es/fbotana/scdg2011 ).

Philippe Clauss participates to the program committee of the First International Workshop on Polyhedral Compilation Techniques, IMPACT 2011(http://impact2011.inrialpes.fr ), that will be held in April 2011.

Philippe Clauss participated to the following jurys in 2010:

Table 
	1. 	Date	Thesis	Candidate	Place	Role	Sept. 3	PhD	C. Ballabriga	Univ. Toulouse	Rewiever	Oct. 29	PhD	Q. Meunier	Univ. Grenoble	President	Déc. 9	PhD	D. Hardy	Univ. Rennes I	Examiner	Déc. 15	HDR	N. Wicker	Univ. Strasbourg	“Garant” & Examiner
The PhD works taking place currently in the CAMUS team are:


	[bookmark: uid102] Started December 2008: Benoît Pradelle, Dynamic parallelization for multicore architectures;



	[bookmark: uid103] Started October 2009: Alexandra Jimborean, Advanced parallelization tools for multicore programming;



	[bookmark: uid104] Started October 2010: Martìn Rouaux, Memory behavior capture for the parallelization of object-oriented programs, in co-supervision with the University of Buenos Aires and Prof. Diego Garbervetsky.
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Teaching

As Professor and Assistant Professors at the University of Strasbourg, Philippe Clauss, Nicolas Magaud, Julien Narboux and Éric Violard each gave more than 200 hours of lectures. Benoît Pradelle, as Assistant teacher (moniteur), also gave about 64 hours of lectures.

Julien Narboux gave a lecture about Interactive Theorem Proving at master 1 level and a lecture about Certification of Programs at master 2 level.
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