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  [bookmark: uid3] Section: 
      Overall Objectives
Introduction


[bookmark: uid4] Context.

Structural Health Monitoring (SHM) is the whole process of
the design, development and implementation of techniques
for the detection, localization and estimation of damages,
for monitoring the integrity of structures and machines
within the aerospace, civil and mechanical engineering infrastructures
[38] , [56] .
In addition to these key driving application areas, SHM is now spreading
over most transportation infrastructures and vehicles,
within the naval, railway and automobile domains.
Examples of structures or machines to be monitored include
aircrafts, space crafts, buildings, bridges, dams, ships, offshore platforms,
on-shore and off-shore wind farms (wind energy systems),
turbo-alternators and other heavy machineries, ....

The emergence of stronger safety and environmental norms,
the need for early decision mechanisms,
together with the widespread diffusion of sensors of all kinds,
result in a thorough renewal of sensor information processing problems.
This calls for new research investigations within the sensor data
(signal and image) information processing community.
In particular, efficient and robust methods for structural analysis,
non destructive evaluation, integrity monitoring, damage diagnosis
and localization, are necessary for fatigue and aging prevention, and
for condition-based maintenance.
Moreover, multidisciplinary research, mixing information science,
engineering science and scientific computing, is mandatory.
However, most of the SHM research investigations are conducted within
mechanical, civil and aeronautical engineering departments, with
little involvement of advanced data information processing specialists.


[bookmark: uid5] Objectives.

In this context, and based on our background and results on model-based statistical
identification, change detection and vibration monitoring, our objectives
are :


	[bookmark: uid6] Importing knowledge from engineering communities
within our model-based information processing methods;



	[bookmark: uid7] Mixing statistical inference tools (identification, detection, rejection)
with simplified models of aerodynamic effects, thermo-dynamical
or other environmental effects;



	[bookmark: uid8] Involving nonlinearities in the models, algorithms and proofs of performances;



	[bookmark: uid9] Exporting our data processing algorithms within the SHM community, based on specific training actions, on a dedicated free
Scilab toolbox, and an industrial software.





[bookmark: uid10] Industrial and academic relations.


	[bookmark: uid11] Industrial projects:
with SNECMA (F.) and SVIBS (DK).



	[bookmark: uid12] Multi–partners projects
at European level:
on exploitation of flight test data under natural excitation
conditions (FliTE2 - Eurêka),
on structural assessment, monitoring and control (SAMCO Association), on industrial risk reduction (IRIS CP-IP).



	[bookmark: uid13] Academic research:
national project on monitoring civil engineering structures
(CONSTRUCTIF - ACI S&I), French Pôle de compétitivité ASTECH MODIPRO,
European network on system identification (FP5 TMR),
FWO research network on identification and control.





[bookmark: uid14] Section: 
      Overall Objectives
Highlights


	[bookmark: uid15] Transfer : the multi measurements setup merging developed within M. Döhler PhD thesis has been transferred to SVS, DK for inclusion in Artemis Pro 2011.



	[bookmark: uid16] Transfer : COSMAD toolbox has been transferred to SNECMA for in operation use.



	[bookmark: uid17] Research : ISMS, a Marie Curie project (FP7 People program for mobility) has been started.
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  [bookmark: uid19] Section: 
      Scientific Foundations
Introduction

In this section, the main features for the key monitoring issues,
namely identification, detection, and diagnostics, are provided,
and a particular instantiation relevant for vibration monitoring is described.

It should be stressed that the foundations for identification, detection, and
diagnostics, are fairly general, if not generic.
Handling high order linear dynamical systems,
in connection with finite elements models, which call for using
subspace-based methods, is specific to vibration-based SHM.
Actually, one particular feature of model-based sensor information data processing
as exercised in I4S, is the combined use of black-box or semi-physical models
together with physical ones. Black-box and semi-physical models are, for example,
eigenstructure parameterizations of linear MIMO systems,
of interest for modal analysis and vibration-based SHM. Such
models are intended to be identifiable. However, due to the large model orders
that need to be considered, the issue of model order selection is really a
challenge. Traditional advanced techniques from statistics such as the various
forms of Akaike criteria (AIC, BIC, MDL, ...) do not work at all. This gives
rise to new research activities specific to handling high order models.

Our approach to monitoring assumes that a model of the monitored system is available.
This is a reasonable assumption, especially within the SHM areas.
The main feature of our monitoring method is its intrinsic ability
to the early warning of small deviations of a system with respect
to a reference (safe) behavior under usual operating
conditions, namely without any artificial excitation or other external action.
Such a normal behavior is summarized in a reference parameter vector θ0,
for example a collection of modes and mode-shapes.


[bookmark: uid20] Section: 
      Scientific Foundations
Identification



The behavior of the monitored continuous system is assumed to be described by
a parametric model [image: Im1 ${{\#119823 _\#952 ~,~\#952 \#8712 \#920 }}$],
where the distribution of the observations (Z0, ..., ZN)
is characterized by
the parameter vector [image: Im2 ${\#952 \#8712 \#920 }$].
An estimating function, for example of the form :

[image: Im3 ${\#119974 _N{(\#952 )}=1/N~\munderover \#8721 {k=0}NK{(\#952 ,Z_k)}}$]


is such that [image: Im4 ${\#119812 _\#952 {[\#119974 _N{(\#952 )}]}=0}$] for all [image: Im2 ${\#952 \#8712 \#920 }$].
In many situations, [image: Im5 $\#119974 $] is the gradient of a
function to be minimized : squared prediction error,
log-likelihood (up to a sign), ....
For performing model identification on the basis of observations
(Z0, ..., ZN),
an estimate of the unknown parameter is then
[43]  :

[image: Im6 ${\mover \#952 ^_N=arg{{\#952 \#8712 \#920 ~:~\#119974 _N{(\#952 )}=0}}~}$]


Assuming that θ* is the true parameter value,
and that [image: Im7 ${\#119812 _\#952 ^*{[\#119974 _N{(\#952 )}]}=0}$]
if and only if θ = θ* with θ* fixed
(identifiability condition),
then [image: Im8 $\mover \#952 ^_N$] converges towards θ*.
Thanks to the central limit theorem, the vector [image: Im9 ${\#119974 _N{(\#952 ^*)}}$]
is asymptotically Gaussian with zero mean, with covariance matrix Σ
which can be either computed or estimated.
If, additionally, the matrix [image: Im10 ${\#119973 _N=-\#119812 _\#952 ^*{[{\#119974 }_N^'{(\#952 ^*)}]}}$]
is invertible, then using a Taylor expansion and
the constraint [image: Im11 ${\#119974 _N{(\mover \#952 ^_N)}=0}$],
the asymptotic normality of the estimate is obtained :

[image: Im12 ${\sqrt N~{(\mover \#952 ^_N-\#952 ^*)}\#8776 \#119973 _N^{-1}~\sqrt N~\#119974 _N{(\#952 ^*)}}$]


In many applications, such an approach must be improved in the following directions :


	[bookmark: uid21] Recursive estimation: the ability to compute
[image: Im13 $\mover \#952 ^_{N+1}$] simply from [image: Im8 $\mover \#952 ^_N$];



	[bookmark: uid22] Adaptive estimation: the ability to track the true
parameter θ* when it is time-varying.





[bookmark: uid23] Section: 
      Scientific Foundations
Detection



Our approach to on-board detection is based on the so-called asymptotic statistical
local approach, which we have extended and adapted
[5] , [4] , [2] .
It is worth noticing that these investigations of ours have been initially motivated
by a vibration monitoring application example.
It should also be stressed that, as opposite to many monitoring approaches,
our method does not require repeated identification for each newly collected
data sample.

For achieving the early detection of small deviations with respect to the normal behavior,
our approach generates, on the basis of the reference parameter vector θ0
and a new data record, indicators which automatically perform :


	[bookmark: uid24] The early detection of a slight mismatch between the model and the data;



	[bookmark: uid25] A preliminary diagnostics and localization of the deviation(s);



	[bookmark: uid26] The tradeoff between the magnitude of
the detected changes and the uncertainty resulting from the estimation error
in the reference model and the measurement noise level.




These indicators are computationally cheap, and thus can be embedded.
This is of particular interest in some applications, such as flutter monitoring,
as explained in module 
	4.4 .

As in most fault detection approaches, the key issue is to design a residual,
which is ideally close to zero under normal operation, and has low sensitivity
to noises and other nuisance
perturbations, but high sensitivity to small deviations, before they
develop into events to be avoided (damages, faults, ...).
The originality of our approach is to :


	[bookmark: uid27] Design the residual basically as a parameter estimating function,



	[bookmark: uid28] Evaluate the residual thanks to a kind of central limit theorem, stating
that the residual is asymptotically Gaussian and reflects the presence of a deviation
in the parameter vector through a change in its own mean vector, which switches from zero
in the reference situation to a non-zero value.




This is actually a strong result, which transforms any detection problem concerning
a parameterized stochastic process into the problem of monitoring the mean
of a Gaussian vector.

 

The behavior of the monitored system is again assumed to be described by
a parametric model [image: Im1 ${{\#119823 _\#952 ~,~\#952 \#8712 \#920 }}$], and the safe behavior
of the process is assumed to correspond to the parameter value θ0.
This parameter often results from a preliminary identification
based on reference data, as
in module 
	3.2 .

Given a new N-size sample of sensors data,
the following question is addressed :
Does the new sample still correspond to the nominal model
[image: Im14 $\#119823 _\#952 _0$] ?
One manner to address this generally difficult question is the following.
The asymptotic local approach consists in deciding between the nominal
hypothesis and a close alternative hypothesis, namely :

[bookmark: uid29] 	[image: Im15 ${\mtext (Safe)~\#119815 _0:~\#952 =\#952 _0~~~~\mtext and~~~~\mtext (Damaged)~\#119815 _1:~\#952 =\#952 _0+\#951 /\sqrt N}$]	(1)




where η is an unknown but fixed change vector.
A residual is generated under the form :

[bookmark: uid30] 	[image: Im16 ${\#950 _N=1/\sqrt N~\munderover \#8721 {k=0}NK{(\#952 _0,Z_k)}=\sqrt N~\#119974 _N{(\#952 _0)}~.}$]	(2)




If the matrix [image: Im17 ${\#119973 _N=-~\#119812 _\#952 _0{[{\#119974 }_N^'{(\#952 _0)}]}}$] converges towards a limit [image: Im18 $\#119973 $],
then the central limit theorem shows  [36]  that the residual
is asymptotically Gaussian :

[bookmark: uid31] 	[image: Im19 ${\#950 _N\mfrac {}{~N\#8594 \#8734 }~~~~\#8594 \mfenced o={  ~\mtable{...}}$]	(3)




where the asymptotic covariance matrix Σ can be estimated,
and manifests the deviation in the parameter vector by a change in its own mean value.
Then, deciding between η = 0 and [image: Im20 ${\#951 \#8800 0}$]
amounts to compute the following χ2-test,
provided that [image: Im18 $\#119973 $] is full rank and Σ is invertible :

[bookmark: uid32] 	[image: Im21 ${\#967 ^2=\mover \#950 ¯^{~T}~{\#119813 }^{-1}~\mover \#950 ¯\#8823 \#955 ~.}$]	(4)




where

[bookmark: uid33] 	[image: Im22 ${\mover \#950 ¯\mover =\#916 {\#119973 }^T~\#931 ^{-1}~\#950 _N~~\mtext and~~\#119813 \mover =\#916 {\#119973 }^T~\#931 ^{-1}~\#119973 }$]	(5)




With this approach, it is possible to decide, with a quantifiable error level,
if a residual value is significantly different from zero, for assessing whether
a fault/damage has occurred.
It should be stressed that the residual and the sensitivity and covariance
matrices [image: Im18 $\#119973 $] and Σ can be evaluated (or estimated) for the nominal model.
In particular, it is not necessary to re-identify
the model, and the sensitivity and covariance matrices
can be pre-computed off-line.


[bookmark: uid34] Section: 
      Scientific Foundations
Diagnostics



A further monitoring step, often called fault isolation,
consists in determining which (subsets of) components
of the parameter vector θ have been affected by the change.
Solutions for that are now described.
How this relates to diagnostics is addressed afterwards.

[bookmark: uid35] Isolation.

The question: which (subsets of) components of θ have changed ?,
can be addressed
using either nuisance parameters elimination methods or a multiple hypotheses testing
approach [34] . Here we only sketch two intuitively simple
statistical nuisance elimination techniques, which proceed by projection and rejection,
respectively.

The fault vector η is partitioned into an informative part and
a nuisance part, and the sensitivity matrix [image: Im18 $\#119973 $], the Fisher information matrix
[image: Im23 ${\#119813 ={\#119973 }^T~\#931 ^{-1}~\#119973 }$] and the normalized residual
[image: Im24 ${\mover \#950 ¯={\#119973 }^T~\#931 ^{-1}~\#950 _N}$] are partitioned accordingly

[image: Im25 ${\#951 =\mfenced o=( c=) \mtable{...}~,~\#119973 =\mfenced o=( c=) \mtable{...}~,~\#119813 =\mfenced o=( c=) \mtable{...}~,~\mover \#950 ¯=\mfenced o=( c=) \mtable{...}~.}$]


A rather intuitive statistical solution to the isolation problem,
which can be called sensitivity approach, consists in projecting
the deviations in η onto the subspace generated by the components ηa
to be isolated, and deciding between ηa = ηb = 0
and [image: Im26 ${\#951 _a\#8800 0}$], ηb = 0.
This results in the following test statistics :

[bookmark: uid36] 	[image: Im27 ${t_a=\mover \#950 ¯_a^{~T}~\#119813 _{aa}^{-1}~\mover \#950 ¯_a~,}$]	(6)




where [image: Im28 $\mover \#950 ¯_a$] is the partial residual (score).
If [image: Im29 ${t_a\#8805 t_b}$], the component responsible for the fault
is considered to be a rather than b.

Another statistical solution to the problem of isolating ηa consists
in viewing parameter ηb as a nuisance, and using an existing method
for inferring part of the parameters while ignoring and being robust to
the complementary part. This method is called min-max approach.
It consists in replacing the nuisance parameter component ηb
by its least favorable value, for deciding between
ηa = 0 and [image: Im26 ${\#951 _a\#8800 0}$], with ηb unknown.
This results in the following test statistics :

[bookmark: uid37] 	[image: Im30 ${t_a^*=\mover \#950 ¯_a^{~*~T}~\#119813 _a^{*-1}~\mover \#950 ¯_a^{~*}~,}$]	(7)




where [image: Im31 ${\mover \#950 ¯_a^{~*}\mover =\#916 \mover \#950 ¯_a-\#119813 _{ab}~\#119813 _{bb}^{-1}~\mover \#950 ¯_b}$]
is the effective residual (score)
resulting from the regression of the informative partial score [image: Im28 $\mover \#950 ¯_a$]
over the nuisance partial score [image: Im32 $\mover \#950 ¯_b$],
and where the Schur complement [image: Im33 ${\#119813 _a^*=\#119813 _{aa}-\#119813 _{ab}~\#119813 _{bb}^{-1}~\#119813 _{ba}}$]
is the associated Fisher information matrix.
If [image: Im34 ${t_a^*\#8805 t_b^*}$],
the component responsible for the fault is considered to be a rather than b.

The properties and relationships of these two types of tests are investigated
in [29] .


[bookmark: uid38] Diagnostics.

In most SHM applications, a complex physical system, characterized by a generally
non identifiable parameter vector Φ has to be monitored using a simple (black-box)
model characterized by an identifiable parameter vector θ.
A typical example is the vibration monitoring problem in
module 
	4.2 ,
for which complex finite elements models are often available but not identifiable,
whereas the small number of existing sensors calls for identifying only simplified
input-output (black-box) representations. In such a situation,
two different diagnosis problems may arise, namely diagnosis
in terms of the black-box parameter θ and diagnosis in terms of the
parameter vector Φ of the underlying physical model.

The isolation methods sketched above are possible solutions to the former.
Our approach to the latter diagnosis problem is basically a detection approach again,
and not a (generally ill-posed) inverse problem estimation approach
[3] .
The basic idea is to note that the physical sensitivity matrix writes
[image: Im35 ${\#119973 ~\#119973 _{\#934 \#952 }}$], where [image: Im36 $\#119973 _{\#934 \#952 }$] is the Jacobian matrix at Φ0
of the application [image: Im37 ${\#934 \#8614 \#952 (\#934 )}$], and to use the
sensitivity test (6 ) for the components of the parameter vector Φ.
Typically this results in the following type of directional test :

[bookmark: uid39] 	[image: Im38 ${\#967 _\#934 ^2=\#950 ^T~\#931 ^{-1}~\#119973 ~\#119973 _{\#934 \#952 }~{(\#119973 _{\#934 \#952 }^ ... 3 _{\#934 \#952 })}^{-1}~\#119973 _{\#934 \#952 }^T~{\#119973 }^T~\#931 ^{-1}~\#950 \#8823 \#955 ~.}$]	(8)




It should be clear that the selection of a particular parameterization Φ
for the physical model may have a non negligible influence on
such type of tests, according to the numerical conditioning of
the Jacobian matrices [image: Im36 $\#119973 _{\#934 \#952 }$].

As a summary, the machinery in
modules 
	3.2 ,

	3.3 
and 
	3.4 
provides us with a generic framework for designing monitoring algorithms for
continuous structures, machines and processes.
This approach assumes that a model of the monitored system is available.
This is a reasonable assumption within the field of applications described
in module 
	4.2 ,
since most mechanical processes rely on physical principles
which write in terms of equations, providing us with models.
These important modeling and parameterization
issues are among the questions we intend to investigate within
our research program.

The key issue to be addressed within each parametric model class is
the residual generation, or equivalently the choice of the
parameter estimating function.


[bookmark: uid40] Section: 
      Scientific Foundations
Subspace-based identification and detection



For reasons closely related to the vibrations monitoring applications
described in
module 
	4.2 ,
we have been investigating subspace-based methods, for both the identification
and the monitoring of the eigenstructure (λ, φλ)
of the state transition matrix F of a linear dynamical state-space system :

[bookmark: uid41] 	[image: Im39 ${\mfenced o={  \mtable{...},}$]	(9)




namely the [image: Im40 ${(\#955 ,\#981 _\#955 )}$] defined by :

[bookmark: uid42] 	[image: Im41 ${det~{(F-\#955 ~I)}=0,~~{(F-\#955 ~I)}~\#966 _\#955 =0,~~\#981 _\#955 \mover =\#916 H~\#966 _\#955 }$]	(10)




The (canonical) parameter vector in that case is :

[bookmark: uid43] 	[image: Im42 ${\#952 \mover =\#916 \mfenced o=( c=) \mtable{...}}$]	(11)




where Λ is the vector whose elements are the
eigenvalues λ, Φ is the matrix whose columns are
the [image: Im43 $\#981 _\#955 $]'s, and  vec  is the column stacking operator.

Subspace-based methods is the generic name for linear systems identification
algorithms based on either time domain measurements or output covariance matrices,
in which different subspaces of Gaussian random vectors play a
key role  [55] .
A contribution of ours, minor but extremely fruitful, has been to write
the output-only covariance-driven subspace identification method
under a form that involves a parameter estimating function,
from which we define a residual adapted to vibration monitoring
[1] . This is explained next.

[bookmark: uid44] Covariance-driven subspace identification.

Let [image: Im44 ${R_i\mover =\#916 \#119812 \mfenced o=( c=) Y_k~Y_{k-i}^T}$] and:

[bookmark: uid45] 	[image: Im45 ${\#8459 _{p+1,q}\mover =\#916 \mfenced o=( c=) \mtable{...}\mover =\#916 Hank\mfenced o=( c=) R_i}$]	(12)




be the output covariance and Hankel matrices, respectively; and:
[image: Im46 ${G\mover =\#916 \#119812 \mfenced o=( c=) X_kY_k^T}$].
Direct computations of the Ri's from the equations (9 )
lead to the well known key factorizations :

[bookmark: uid46] 	[image: Im47 $\mtable{...}$]	(13)





where:

[bookmark: uid47] 	[image: Im48 ${\#119978 _{p+1}{(H,F)}\mover =\#916 \mfenced o=( c=) \mtable{...}~~~\mtext and~~~\#119966 _q{(F,G)}~\mover =\#916 ~{(G~FG~\#8943 ~F^{q-1}G)}}$]	(14)





are the observability and controllability matrices, respectively.
The observation matrix H is then found in the first block-row of
the observability matrix [image: Im49 $\#119978 $].
The state-transition matrix F is obtained from the shift invariance
property of [image: Im49 $\#119978 $].
The eigenstructure (λ, φλ) then results from (10 ).

Since the actual model order is generally not known, this procedure
is run with increasing model orders.


[bookmark: uid48] Model parameter characterization.

Choosing the eigenvectors of matrix F as a basis
for the state space of model (9 )
yields the following representation of the observability matrix:

[bookmark: uid49] 	[image: Im50 ${\#119978 _{p+1}{(\#952 )}=\mfenced o=( c=) \mtable{...}}$]	(15)




where [image: Im51 ${\#916 \mover =\#916 diag{(\#923 )}}$], and
Λ and Φ are as in (11 ).
Whether a nominal parameter θ0 fits
a given output covariance sequence (Rj)j is characterized by
[1] :

[bookmark: uid50] 	[image: Im52 ${\#119978 _{p+1}{(\#952 _0)}~~\mtext and~~\#8459 _{p+1,q}~~\mtext have~\mtext the~\mtext same~\mtext left~\mtext kernel~\mtext space.}$]	(16)




This property can be checked as follows. From the nominal θ0,
compute [image: Im53 ${\#119978 _{p+1}{(\#952 _0)}}$] using (15 ),
and perform e.g. a singular value decomposition (SVD) of [image: Im53 ${\#119978 _{p+1}{(\#952 _0)}}$]
for extracting a matrix U such that:

[bookmark: uid51] 	[image: Im54 ${U^T~U=I_s~~\mtext and~~U^T~\#119978 _{p+1}{(\#952 _0)}=0}$]	(17)




Matrix U is not unique
(two such matrices relate through a post-multiplication
with an orthonormal matrix), but can be regarded
as a function of θ0.
Then the characterization writes:

[bookmark: uid52] 	[image: Im55 ${U{(\#952 _0)}^T~\#8459 _{p+1,q}=0}$]	(18)





[bookmark: uid53] Residual associated with subspace identification.

Assume now that a reference θ0 and a new sample [image: Im56 ${Y_1,\#8943 ,Y_N}$]
are available.
For checking whether the data agree with θ0,
the idea is to compute the empirical Hankel matrix [image: Im57 $\mover \#8459 ^_{p+1,q}$]:

[bookmark: uid54] 	[image: Im58 ${\mover \#8459 ^_{p+1,q}\mover =\#916 Hank\mfenced o=( c=) \mover R^_i,~~~\mover R^_i\mover =\#916 1/{(N-i)}~\munderover \#8721 {k=i+1}NY_k~Y_{k-i}^T}$]	(19)




and to define the residual vector:

[bookmark: uid55] 	[image: Im59 ${\#950 _N{(\#952 _0)}\mover =\#916 \sqrt N~vec\mfenced o=( c=) U{(\#952 _0)}^T~\mover \#8459 ^_{p+1,q}}$]	(20)




Let θ be the actual parameter value for the system which
generated the new data sample, and [image: Im60 $\#119812 _\#952 $] be the expectation when
the actual system parameter is θ.
From (18 ), we know that ζN(θ0) has zero mean
when no change occurs in θ, and nonzero mean if a change occurs.
Thus ζN(θ0) plays the role of a residual.

It is our experience that this residual has highly interesting properties,
both for damage detection [1] 
and localization [3] ,
and for flutter monitoring [8] .


[bookmark: uid56] Other uses of the key factorizations.

Factorization (
	3.5.1 ) is the key for a characterization
of the canonical parameter vector θ in (11 ), and
for deriving the residual.
Factorization (13 ) is also the key for :


	[bookmark: uid57] Proving consistency and robustness results
[6] ;



	[bookmark: uid58] Designing an extension of covariance-driven subspace identification
algorithm adapted to the presence and fusion of non-simultaneously
recorded multiple sensors setups
[7] ;



	[bookmark: uid59] Proving the consistency and robustness of this extension
[9] ;



	[bookmark: uid60] Designing various forms of
input-output covariance-driven subspace identification algorithms
adapted to the presence of both known inputs
and unknown excitations [10] .
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  [bookmark: uid62] Section: 
      Application Domains
Introduction

In this section, the problems we are faced with vibration-based monitoring and
within our two major application domains are briefly described.


[bookmark: uid63] Section: 
      Application Domains
Vibrations-based monitoring



Detecting and localizing damages for monitoring the integrity of structural
and mechanical systems is a topic of growing interest, due to the aging
of many engineering constructions and machines and to increased safety norms.
Many current approaches still rely on visual inspections or local
non destructive evaluations performed manually.
This includes acoustic, ultrasonic, radiographic or eddy-current methods;
magnet or thermal field techniques, .... These experimental approaches
assume an a priori knowledge and the accessibility of a neighborhood
of the damage location.
Automatic global vibration-based monitoring techniques have been
recognized to be useful alternatives to those local evaluations
[38] . However this has led to actual damage
monitoring systems only in the field of rotating machines.

A common feature of the structures to be monitored (e.g. civil engineering
structures subject to hurricanes or earthquakes, but also swell, wind and rain;
aircrafts subject to strength and turbulences, ...) is the following.
These systems are subject to both fast and unmeasured variations
in their environment and small slow variations in their vibrating
characteristics.
The available data (measurements from e.g. strain gauges or accelerometers)
do not separate the effects of the external forces from the effect of the structure.
The external forces vary more rapidly than the structure itself (fortunately !),
damages or fatigues on the structure are of interest, while any change
in the excitation is meaningless.
Expert systems based on a human-like exploitation of recorded spectra can hardly work
in such a case : the changes of interest (1% in eigenfrequencies) are visible
neither on the signals nor on their spectra.
A global health monitoring method must rather rely
on a model that will help in discriminating between the two
mixed causes of the changes that are contained in the measurements.

Classical modal analysis and vibration monitoring methods basically process data
registered either on test beds or under specific excitation or rotation speed
conditions. However there is a need for vibration monitoring algorithms devoted
to the processing of data recorded in-operation,
namely during the actual functioning of the considered structure or machine,
without artificial excitation, speeding down or stopping.

Health monitoring techniques based on processing vibration measurements
basically handle two types of characteristics: the structural parameters
(mass, stiffness, flexibility, damping) and the modal parameters
(modal frequencies, and associated damping values and mode-shapes);
see [50]  and references therein.
A central question for monitoring is to compute changes in those
characteristics and to assess their significance.
For the frequencies, crucial issues are then:
how to compute the changes, to assess that the changes are significant,
to handle correlations among individual changes.
A related issue is how to compare the changes in the frequencies obtained
from experimental data with the sensitivity
of modal parameters obtained from an analytical model.
Furthermore, it has been widely acknowledged that, whereas changes
in frequencies bear useful information for damage detection,
information on changes in (the curvature of) mode-shapes is mandatory
for performing damage localization. Then, similar issues
arise for the computation and the significance of the changes.
In particular, assessing the significance of (usually small) changes in
the mode-shapes, and handling the (usually high) correlations among individual
mode-shape changes are still considered as open questions
[50] , [38] .

Controlling the computational complexity of the processing of the collected data
is another standard monitoring requirement, which includes a limited
use of an analytical model of the structure. Moreover, the reduction
from the analytical model to the experimental model (truncated modal space)
is known to play a key role in the success of model-based damage detection and
localization.

The approach which we have been developing, based on the foundations in
modules 
	3.2 –
	3.5 , aims at addressing all the issues and overcoming the limitations above.


[bookmark: uid64] Section: 
      Application Domains
Civil engineering



Civil engineering is a currently renewing scientific research area, which can no longer
be restricted to the single mechanical domain, with numerical codes as its central focus.
Recent and significant advances in physics and physical chemistry
have improved the understanding of the detailed mechanisms of the constitution and
the behavior of various materials (see e.g. the multi-disciplinary general agreement
cnrs-Lafarge). Moreover, because of major economical and societal issues, such as
durability and safety of infrastructures, buildings and networks, civil engineering is
evolving towards a multi-disciplinary field, involving in particular
information sciences and technologies and environmental sciences.

These last ten years, monitoring the integrity of
the civil infrastructure has been an active research topic, including
in connected areas such as automatic control,
for mastering either the aging of the bridges, as in America (US, Canada) and
Great Britain, or the resistance to seismic events and the protection of the
cultural heritage, as in Italy and Greece.
The research effort in France seems to be more recent, maybe because a tendency
of long term design without fatigue oriented inspections, as opposite to
less severe design with planned mid-term inspections.
One of the current thematic priorities of the Réseau de Génie Civil et Urbain
(RGCU) is devoted to constructions monitoring
and diagnostics.
The picture in Asia (Japan, and also China) is somewhat different, in that
the demand for automatic data processing for global SHM systems is much higher,
because recent or currently built bridges are equipped with hundreds if not thousands
of sensors,
in particular the Hong Kong-Shenzen Western Corridor and Stonecutter Bridge projects.

Among the challenges for vibration-based bridges health monitoring,
two major issues are the different kinds of (non measured) excitation sources
and the environmental effects [51] .
Typically the traffic on and under the bridge,
the wind and also the rain, contribute to excite the structure, and influence the
measured dynamics. Moreover, the temperature is also known to affect the eigenfrequencies
and mode-shapes, to an extent which is significant w.r.t. the deviations to be monitored.


[bookmark: uid65] Section: 
      Application Domains
Aeronautics



The aging of aerospace structures is a major current concern
of civilian and military aircraft operators. Another key driving factor for SHM is to increase the operation and support efficiency of an air vehicle fleet.
A SHM system is viewed as a component of a global integrated vehicle
health management
(IVHM) system. An overview of the users needs can be found in
[35] .

Improved safety and performance and reduced aircraft development and operating
costs are other major concerns. One of the critical design objectives
is to clear the aircraft from unstable aero-elastic vibrations (flutter)
in all flight conditions.
This requires a careful exploration of the
dynamical behavior of the structure subject to vibration and
aero-servo-elastic forces. This is achieved via a combination
of ground vibration tests and in-flight tests.
For both types of tests, various sensors data are recorded,
and modal analyses are performed.
Important challenges of the in-flight modal analyses are the limited choices
for measured excitation inputs, and the presence of unmeasured natural
excitation inputs (turbulence). A better exploitation of flight test data
can be achieved by using output-only system identification methods,
which exploits data recorded under natural excitation conditions
(e.g., turbulent), without resorting to artificial control surface
excitation and other types of excitation inputs [10] .

A crucial issue is to ensure that the newly designed airplane is stable
throughout its operating range.
A critical instability phenomenon, known under the name of
“aero-elastic flutter,
involves the unfavorable interaction of aerodynamic, elastic, and inertia
forces on structures to produce an unstable oscillation that often results in
structural failure” [44] .
For preventing from this phenomenon, the airplane is submitted
to a flight flutter testing procedure, with incrementally increasing
altitude and airspeed.
The problem of predicting the speed at which flutter can occur is usually addressed
with the aid of identification methods achieving modal analysis
from the in-flight data recorded during these tests.
The rationale is that the damping coefficient
reflects the rate of increase or decrease in energy in the aero-servo-elastic
system, and thus is a relevant measure of stability.
Therefore, while frequencies and mode-shapes are usually the most important
parameters in structural analysis, the most critical ones in flutter analysis are
the damping factors, for some critical modes. The mode-shapes are usually
not estimated for flutter testing.

Until the late nineties, most approaches to flutter clearance have led to
data-based methods, processing different types of data.
A combined data-based and model-based method
has been introduced recently under the name of flutterometer.
Based on an aero-elastic state-space model and on frequency-domain transfer
functions extracted from sensor data under controlled excitation,
the flutterometer computes on-line a robust flutter margin using
the μ-method for analyzing
the worst case effects of model uncertainty.
In recent comparative evaluations using simulated and real data
[37] , [45] ,
several data-based methods are shown to fail in accurately predicting flutter
when using data from low speed tests, whereas the flutterometer turns out not
to converge to the true flutter speed during envelope expansion, due to inherent
conservative predictions.

Algorithms achieving the on-line in-flight exploitation
of flight test data are expected to allow a more direct exploration
of the flight domain, with improved confidence and reduced costs.
Among other challenges, one important issue to be addressed on-line is
the flight flutter monitoring problem, stated as the problem of monitoring
some specific damping coefficients.
On the other hand, it is known, e.g. from Cramer-Rao bounds,
that damping factors are difficult to estimate accurately.
For improving the estimation of damping factors,
and moreover for achieving this in real-time during flight tests,
one possible although unexpected route is to rely on detection algorithms
able to decide whether some damping factor decreases below some
critical value or not. The rationale is that detection algorithms usually
have a much shorter response time than identification algorithms.
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  [bookmark: uid67] Section: 
      Software
COSMAD : Modal analysis and health monitoring Scilab toolbox
Participants :
      Laurent Mevel [corresponding person] , Maurice Goursat.


With the help of Yann Veillard, Auguste Sam and Simon Berger, former engineers,
Laurent Mevel and Maurice Goursat have developed a Scilab toolbox
devoted to modal analysis and vibration monitoring
of structures or machines subjected to known or ambient (unknown) excitation
  [48] , [47] .

This software (COSMAD 3.64) has been registered at the APP under the number

IDDN.FR.001.210011.002.S.A.2003.000.20700

and can be down-loaded from http://www.irisa.fr/i4s/cosmad/ .
A list of test-cases (simulators, laboratory test-beds, real structures) for which
COSMAD has been used is available from
http://www.irisa.fr/i4s/cases.pdf .

COSMAD performs the following tasks :


	[bookmark: uid68] Output-only (O/O) subspace-based identification,
The problem is to identify the eigenstructure (eigenvalues and observed components of the
associated eigenvectors) of the state transition matrix of a linear dynamical
system, using only the observation of some measured outputs summarized into
a sequence of covariance matrices corresponding to successive time shifts.
An overview of this method can be found in  [31] ,
and details in
[40] , [54] , [52]  and [53] .



	[bookmark: uid69] Input-output (I/O) subspace-based identification,
The problem is again to identify the eigenstructure, but now using the
observation of some measured inputs and outputs summarized into a sequence
of cross-covariance matrices.
This method is described in [10] .



	[bookmark: uid70] Automatic subspace-based modal analysis, a pre-tuned version of
the O/O and I/O identification methods above.
This is described in  [48] .



	[bookmark: uid71] Automated on-line identification package,
The main question is to react to non stationarities
and fluctuations in the evolution of the modes, especially the damping.
The developed package allows the extraction of such modes
using a graphical interface allowing us to follow the evolution of all
frequencies and damping over time and to analyze their stabilization
diagram (from which they were extracted). Automated modal extraction is
performed based on the automated analysis and classification of
the stabilization diagram.
For this method, see  [32]  and
[49] , [41] .



	[bookmark: uid72] Automatic recursive subspace-based modal analysis,
a sample point-wise version of the O/O and I/O identification algorithms above.
For this method, see  [39] .



	[bookmark: uid73] Subspace-based identification through moving sensors data fusion,
The problem is to identify the eigenstructure based on a joint processing
of signals recorded at different time periods, under different excitations, and with
different sensors pools.
The key principles are described in [7] 
and a consistency result can be found in [9] .



	[bookmark: uid74] Damage detection, working batch-wise,

Based on vibrations measurements processing, the problem is to perform
early detection of small deviations of the structure w.r.t. a reference behavior
considered as normal. Such an early detection of small deviations is mandatory
for fatigue prevention.
The algorithm confronts a new data record, summarized by covariance matrices,
to a reference modal signature. The method is described
in [1] , [3] .



	[bookmark: uid75] Damage monitoring, a sample point-wise version of the damage detection
algorithm above. This is described in  [46] .



	[bookmark: uid76] On-line flutter onset detection,
This algorithm detects that one damping coefficient crosses
a critical value from above. For this method see [8]  [32] .
An extension to detect if some subset of the whole modal parameter vector
varies with respect to a threshold value, applies
directly to monitoring the evolution of a set of frequencies
or a set of damping coefficients with respect to their reference values
[33] , [42] .



	[bookmark: uid77] Modal diagnosis, working batch-wise,
This algorithm finds the modes the most
affected by the detected deviation. For this method,
see [3] .



	[bookmark: uid78] Damage localization,

The problem is to find the part of the structure, and the associated
structural parameters (e.g. masses, stiffness coefficients)
that have been affected by the damage. We state and solve
this problem as a detection problem,
and not an (ill-posed) inverse estimation problem.
This is explained in [3] .



	[bookmark: uid79] Optimal sensor positioning for monitoring.
At the design stage of the monitoring system, a criterion is computed, which quantifies
the relevance of a given sensor number and positioning for the purpose of
structural health monitoring. For this criterion, see
the articles  [30] , [28] .




The modules have been tested by different partners,
especially the French industrial partners, EADS, Dassault and Sopemea, within the
FliTE2 project, by partners from the past CONSTRUCTIF project [52]  and [53] , and within the framework of bilateral contracts
with SNECMA and SVIBS (see modules 
	7.4 
and 
	7.5 ).

This Scilab toolbox continues to play the role of a programming and development environment
for all our newly designed algorithms. Moreover, offering a maintained
Scilab platform turns out to be a crucial factor in convincing industrial partners
to undergo joint investigations with us
or to involve us within partnerships in FP7 integrated projects proposals.
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[bookmark: uid82] Multi measurement setup merging
Participants :
      Michael Döhler, Laurent Mevel.


In Operational Modal Analysis (OMA) of large structures it is often needed to process sensor
data from multiple non-simultaneously recorded measurement setups. As the ambient unmeasured excitation
can be different from setup to setup, the amplitude of the measured data can be different as well. So the data
from all the setups has to be normalized, merged and processed together. With this so-called "PreGER" multisetup system identification, the modal parameters of a structure are obtained, where the covariance- and datadriven Stochastic Subspace Identification (SSI) is used. Furthermore, the uncertainty of the obtained modal parameters is evaluated. See [13]  and [17] . These algorithms have been tested in the IRIS project in collaboration with University of Tokyo , Japan in [18]  on the S101 bridge, a benchmark of the CE.


[bookmark: uid83] Fast multi order subspace identification algorithm
Participants :
      Michael Döhler, Laurent Mevel.


Stochastic subspace identification methods are an efficient tool
for system identification of mechanical systems in Operational Modal Analysis
(OMA), where modal parameters are estimated from measured vibrational
data of a structure. System identification is usually done for many successive
model orders, as the true system order is unknown and identification in results
at different model orders need to be compared to distinguish true structural
modes from spurious modes in so-called stabilization diagrams. An algorithm to estimate the system matrices
at multiple model orders has been derived. See [24] .


[bookmark: uid84] Evaluation of confidence intervals and computation of sensitivities for subspace methods
Participants :
      Michael Döhler, Xuan Lam, Laurent Mevel.


In Operational Modal Analysis, the modal parameters (natural frequencies, damping ratios and mode
shapes) obtained from Stochastic Subspace Identification (SSI) of a structure, are afflicted with
statistical uncertainty. Algorithms that automatically compute the confidence intervals of modal parameters allow comparing the quality of covariance- and data-driven SSI. see [22]  in collaboration with Harbin Institut of Technology, China and [14] . A variant of this approach has been derived for the Eigenvalue-Realization-Algorithm (ERA) [27] .


[bookmark: uid85] Automated monitoring of vibration characteristics
Participants :
      Michael Döhler, Xuan Lam, Laurent Mevel.


Hongguang Zhu master SISAE, helped Michael Döhler implementing algorithms for confidence interval computation and turning the code into an efficient implementation after some recent development in this field, then able to handle a significant higher model order in the algorithm with a faster computation. This is a delivery of the IRIS FP7 project as well as source of potential collaborations [22] .


[bookmark: uid86] Section: 
      New Results
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[bookmark: uid87] Damage detection and temperature rejection
Participants :
      Michael Döhler, Xuan Lam, Laurent Mevel.


Previous works on damage detection, already detailed in the 2009 activity report have been published. See [21]  and [11]  in collaboration with LCPC, and
[20]  in collaboration with LMS, Be and the RISOE lab in Poland. Finally, see [12]  in collaboration with Harbin Institute of China.


[bookmark: uid88] Modular identification and damage detection for large structures
Participants :
      Michael Döhler, Laurent Mevel.


In Operational Modal Analysis (OMA) of large structures it is often needed to process sensor data from multiple non-simultaneously recorded measurement setups, especially in the case of large structures.. In this work [16] , a new efficient variant of the PreGER algorithm is presented that avoids
the numerical explosion of the calculation by using a modular approach, where the data from the measurement setups is processed setup by setup and not at the same time. Furthermore, a new efficient variant of the subspace-based stochastic damage detection for multiple measurement setups is presented. See [15] .


[bookmark: uid89] Robust subspace damage detection
Participants :
      Michael Döhler, Laurent Mevel.


Subspace methods enjoy some popularity, especially in mechanical
engineering, where large model orders have to be considered. In the context
of detecting changes in the structural properties and the modal parameters
linked to them, some subspace based fault detection residual has been recently
proposed and applied successfully. However, most works assume that the unmeasured
ambient excitation level during measurements of the structure in the
reference and possibly damaged condition stays constant, which is not possible
in any application. This paper addresses the problem of robustness of such
fault detection methods. A subspace-based fault detection test is derived
that is robust to excitation change but also to numerical instabilities that
could arise easily in the computations. See [25] .


[bookmark: uid90] Section: 
      New Results
Instability monitoring of aeronautical structures


[bookmark: uid91] Ground resonance monitoring for hinged-blades helicopters
Participants :
      Ahmed Jhinaoui, Laurent Mevel.


Works on the problem of helicopter ground resonance and the prediction
of related instability zones relay generally on online modal analysis,
neglecting thus the problem of model's uncertainties. In this work, an on-line
algorithm of detection, built on the CUSUM test, is proposed. A numerical application
to simulation data is then reported. A mechanical model is used
for simulation and is extended to the class of helicopters with
damped structures. See [26] .


[bookmark: uid92] Crystal clear SSI for automated monitoring of aerospace engines
Participants :
      Maurice Goursat, Michael Döhler, Laurent Mevel.


We revisit the problem of the modal analysis of space launchers Ariane 5. The case of space
launchers is a typical example of a complex structure with sub-structures strongly and quickly varying in time. This
issue becomes especially important in e.g. estimation of damping of aerospace vehicles. Recently, a new implementation of the subspace identification method has been proposed, leading to cleaner and more stable stabilization diagrams (licenced to SVIBS, DK). See [19] .


[bookmark: uid93] Optimal input design for identification and detection
Participants :
      Alireza Esna Ashari, Laurent Mevel, Albert Benveniste.


Output only techniques rely on the presence on unknown turbulence, which may or may not be enough to excite the system. A new approach for applying artificial input to the system for maximizing detection and identifiability has been developed.
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FP7-NMP CP-IP 213968-2 IRIS
Participants :
      Michael Döhler, Laurent Mevel, Xuan Lam.
Contract INRIA 3947





I4S is involved in the core consortium of FP7-NMP Large Scale Integrated Project.

IRIS (Integrated European Industrial Risk Reduction System), which helds its kick off meeting in October 2008.
This project has been elaborated within the framework of the SAMCO association. I4S is involved in the online monitoring sub-project.

The FP7 IRIS project about Risk assessment involves 40 partners and is headed by Helmut Wenzel, VCE (Austria), a SME company. INRIA is involved in Group 3 about Structural Health Monitoring. I4S works with Sheffield University and BAM (Germany) for development of tools for structural damage detection for bridges and wind farms. Laurent Mevel is also member of the core IRIS Vision group, and is responsible of the scientific coherency of the project.


[bookmark: uid96] Section: 
      Contracts and Grants with Industry
SIMS
Participants :
      Laurent Mevel, Michael Döhler.




I4S has signed a collaborative agreement with SVIBS. This leads to SVIBS bringing INRIA into a 12 year long SHM project in Canada with ambitious objectives of producing some full internet based structural health monitoring project with potential applications to buildings, hospitals and of course, the collection of bridges monitored by the Ministry of Transportation of British Columbia. This work is performed with help of DDS, Belgium and SVIBS, DK. This will implement INRIA algorithms in a SHM system, and will provide a large scale outdoor demonstration for I4S. I4S is subcontractor of SVS. Contract has to be signed.


[bookmark: uid97] Section: 
      Contracts and Grants with Industry
PhD CIFRE with Dassault Aviation
Participant :
      Laurent Mevel.




Following the FliTE2 project, discussions are under way about a joint PhD thesis between INRIA and Dassault Aviation. The thesis will pursue the work achieved in FliTE2 and starts in January 2011 funded by Dassault Aviation.


[bookmark: uid98] Section: 
      Contracts and Grants with Industry
SNECMA
Participants :
      Maurice Goursat, Laurent Mevel.




Contracts INRIA signed in December 2009 (2009-alloc 4589) and July 2010 (2010-alloc 5110).

In 2007, I4S has investigated for SNECMA an identification case study on some undisclosed engine structure.
Successful results yield to the delivery of the COSMAD toolbox for internal evaluation at SNECMA.
The end goal is the use of COSMAD in the industrial process of SNECMA. Internal evaluation of COSMAD has been performed inhouse by SNECMA in 2008. A contract has been signed and some software package will be developed to suit SNECMA needs in 2010. Work on the SNECMA prototype has been performed in 2009 and 2010.


[bookmark: uid99] Section: 
      Contracts and Grants with Industry
SVIBS
Participants :
      Laurent Mevel, Michael Döhler.
Annual agreement INRIA-SVIBS 2381 + contract 4329





SVIBS (Structural Vibration Solutions A/S) is a company located in Aalborg, Denmark,
having strong connections with the Department of Civil Engineering of University of British Columbia, CA (Prof. Carlos Ventura).

SVIBS and I4S are investigating how to link the modal analysis software ARTeMIS of SVIBS and COSMAD. Through an annual agreement, I4S gets a license of ARTeMIS
in exchange to offer support for integrating our damage detection software into SVIBS software
and offerings. A contract has been signed, where I4S provides algorithms and expertise for integration within a damage
detection structural health monitoring system and SVIBS does the implementation. This technology transfer has been funded by the ministry of transportation of British Columbia, Canada. The work is supervised by UBC, CA. The end product will be a web based structural health monitoring system for in operation bridges.

I4S is doing technology transfer towards SVIBS to implement I4S technologies into ARTEMIS Extractor Pro. This is done under a royalty agreement between INRIA and SVIBS . First achievements include the implementation of the so called Crystal Clear SSI, a subspace variant, with much lower signal to noise ratio, and whose interest in the mechanical engineering community is very high. Other I4S algorithms are currently under review to be integrated within ARTEMIS. SVIBS and I4S are also related in the related IAPP ISMS and the SIMS project.
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  [bookmark: uid101] Section: 
      Other Grants and Activities
Regional Initiatives
Participants :
      Laurent Mevel, Michael Döhler.


I4S is working together with LCPC, Nantes on the problem of temperature rejection for civil structure monitoring[21] . Many different initiatives are on going.


[bookmark: uid102] Section: 
      Other Grants and Activities
National Initiatives

[bookmark: uid103] Pôle de Compétitivité ASTECH MODIPRO
Participants :
      Maurice Goursat, Laurent Mevel.
Contract INRIA 4162





I4S is implied in a national project for aircraft SHM starting Fall 2009. This project will improve on monitoring procedures developed in previous projects to provide some algorithms for use in Dassault Aviation aircraft monitoring procedures. I4S works together with Qinghua Zhang of INRIA Rocquencourt, project team SISYPHE, on this topic.


[bookmark: uid104] Collaboration with LCPC
Participant :
      Laurent Mevel.


I4S is related to the forthcoming project FUI SIPRIS (Systèmes d'Instrumentation pour la prévention des risques), lead by Advitam.


[bookmark: uid105] Collaboration with ALEA, EPI Team at Inria Bordeaux Center
Participants :
      Laurent Mevel, Meriem Zghal.


I4S has started a 2 year collaboration with EPI ALEA on using particular filtering in vibration analysis. A new engineer has been hired for that task, starting October 2010.


[bookmark: uid106] Collaboration with ISAE
Participants :
      Laurent Mevel, Ahmed Jhinaoui.


A new PhD student, Ahmed Jhinaoui has started a new thesis on helicopter instability. This thesis is codirected by professor Morlier from ISAE, France. This thesis is funded by FP7-NMP Large Scale Integrated Project
IRIS.


[bookmark: uid107] Section: 
      Other Grants and Activities
European Initiatives

[bookmark: uid108] FP7-NMP CP-IP 213968-2 IRIS
Participants :
      Michael Döhler, Laurent Mevel, Xuan Lam.


I4S is involved in the core consortium of FP7-NMP Large Scale Integrated Project
IRIS (Integrated European Industrial Risk Reduction System), which held its kick off meeting in October 2008. This project has been elaborated within the framework of the SAMCO association. I4S is involved in the online monitoring sub-project. PhD student, Xuan Binh Lam, is finishing his thesis on uncertainty quantification for system identification.PhD student, Michael Döhler is also deeply involved in that project.

Two visits lasting each one week occurred in 2010. Falk Hille from BAM visited us to work with M. Döhler on topics relevant to IRIS. Bijaya Jaishi from Sheffield University visited us in Spring 2010 on the same topics. M. Döhler visited University of Tokyo, department of Civil Engineering in November 2010.


[bookmark: uid109] ISMS, FP7 Marie Curie IAPP
Participants :
      Michael Döhler, Laurent Mevel.


In 2009, a proposal has been submitted with SVS, University of British Columbia and I4S to develop a framework for handling structural health monitoring methods. This proposal implies some long stay of the concerned people, Laurent Mevel and Michael Döhler for I4S abroad. Palle Andersen and one of its engineer from SVS are assumed to stay 9 months at INRIA, for tighten integration of COSMAD and ARTEMIS software. The proposal has been rated 88/100 and ranked A in the final selection procedure. The project has been signed on August 1st 2010 and has been running from September 1st. Michael Döhler is spending 5 months in 2010-2011 in Danemark.


[bookmark: uid110] Section: 
      Other Grants and Activities
International Initiatives

[bookmark: uid111] SIMS, Canada
Participants :
      Michael Döhler, Laurent Mevel.


A new project called SIMS is currently ongoing on vibration analysis and monitoring in Canada. This project is funded by Ministry of Transport, British Columbia, Canada. It implies deep collaboration with University of British Columbia, Canada. This project has connexions with partners of IRIS project, including University of Tokyo, Japan.


[bookmark: uid112] Collaboration on damage localization and monitoring with Boston University
Participants :
      Michael Döhler, Laurent Mevel, Luciano Gallegos.


This collaboration involves a new PhD student, Luciano Gallegos, and is involving Professor Bernal from University of Boston, USA. Professor Bernal visited us for one week in 2010.
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