
c t i v i t y

te p o r

2010

Theme : Distributed Systems and Services

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Team indes

Informatique Diffuse et Sécurisée

Sophia Antipolis - Méditerranée

http://www.inria.fr
http://www.inria.fr/recherche/equipes/indes.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-sop.fr.html

Table of contents

1. Team . 1
2. Overall Objectives . 1
3. Scientific Foundations .2

3.1. Parallelism, concurrency, and distribution 2
3.2. Web and functional programming 2
3.3. Security of diffuse programs 2

4. Application Domains .2
4.1. Web programming 2
4.2. Multimedia 3
4.3. House Automation 3

5. Software . 3
5.1. Introduction 3
5.2. Functional programming 3

5.2.1. The Bigloo compiler 4
5.2.2. Camloo 4
5.2.3. CFlow 4
5.2.4. The FunLoft language 4

5.3. Web programming 4
5.4. Old software 5

5.4.1. Skribe 5
5.4.2. Scheme2JS 5
5.4.3. ULM 5

6. New Results . 6
6.1. Security 6

6.1.1. Security of Multithreaded Programs by Compilation 6
6.1.2. Secure Information Flow by Self-Composition 6
6.1.3. Robustness Guarantees for Anonymity 6
6.1.4. Automated Code Injection Prevention for Web Applications 7
6.1.5. Secure session calculi 7

6.2. Models and semantics 7
6.2.1. Semantics of concurrent programming 7
6.2.2. Formal semantics for Hop 8

6.3. Functional and concurrent programming 8
6.3.1. Bigloo 8
6.3.2. FunLoft 8
6.3.3. DSL 8
6.3.4. Types and effects 8

6.4. Web programming 9
6.4.1. Hop 9
6.4.2. HopTeX 10
6.4.3. Mirage 10
6.4.4. Orchestration 10
6.4.5. Ordered networks 11

7. Contracts and Grants with Industry . 11
7.1.1. DGE SmartImmo 11
7.1.2. All In My Music 11

8. Other Grants and Activities . 11
8.1.1. STIC-AmSud FMCRYPTO 11
8.1.2. COLOR project MATYSS 11

2 Activity Report INRIA 2010

8.1.3. ANR SETIN ParSec 12
8.1.4. ANR DEFIS ParTout 12
8.1.5. ANR DEFIS PWD 12

9. Dissemination . 12
9.1. Seminars and conferences 12
9.2. Animation 13
9.3. Teaching 14

10. Bibliography .14

1. Team
Research Scientists

Gérard Berry [Research Director, Inria, HdR]
Gérard Boudol [Research Director, Inria, HdR]
Frédéric Boussinot [Research Director, CMA, HdR]
Ilaria Castellani [Research Scientist, Inria]
Tamara Rezk [Research Scientist, Inria]
Bernard Serpette [Research Scientist, Inria]
Manuel Serrano [Team Leader, Research Director, Inria, HdR]

Faculty Member
Christian Queinnec [Professor, University Pierre et Marie Curie - Paris 6, HdR]

Technical Staff
Marcos Dione [Inria]

PhD Students
Pejman Attar [Inria]
Johan Grande [Inria]
Zhengqin Luo [MENRT]
Cyprien Nicolas [Inria]
Gustavo Petri [IP Mobius]

Post-Doctoral Fellow
Thomas Gazagnaire [Inria, since February 28]

Administrative Assistant
Anais Cassino [Inria]

2. Overall Objectives

2.1. Overall Objectives
The goal of the Indes team is to study models for diffuse computing and develop languages for secure
diffuse applications. Diffuse applications, of which Web 2.0 applications are a notable example, are the new
applications emerging from the convergence of broad network accessibility, rich personal digital environment,
and vast sources of information. Strong security guarantees are required for these applications, which
intrinsically rely on sharing private information over networks of mutually distrustful nodes connected by
unreliable media.
Diffuse computing requires an original combination of nearly all previous computing paradigms, ranging from
classical sequential computing to parallel and concurrent computing in both their synchronous / reactive and
asynchronous variants. It also benefits from the recent advances in mobile computing, since devices involved
in diffuse applications are often mobile or portable.
The Indes team contributes to the whole chain of research on models and languages for diffuse computing,
going from the study of foundational models and formal semantics to the design and implementation of
new languages to be put to work on concrete applications. Emphasis is placed on correct-by-construction
mechanisms to guarantee correct, efficient and secure implementation of high-level programs. The research is
partly inspired by and built around Hop, the web programming model proposed by the former Mimosa team,
which takes the web as its execution platform and targets interactive and multimedia applications.

2 Activity Report INRIA 2010

3. Scientific Foundations

3.1. Parallelism, concurrency, and distribution
Concurrency magagement is at the heart of diffuse programming. Since the execution platforms are highly
heterogeneous, many different concurrency principles and models may involved. Asynchronous concurrency
is the basis of shared-memory process handling within multiprocessor or multicore computers, of direct or
fifo-based message passing in distributed networks, and of fifo- or interrupt-based event handling in web-based
human-machine interaction or sensor handling. Synchronous or quasi-synchronous concurrency is the basis of
signal processing, of real-time control, and of safety-critical information acquisition and display. Interfacing
existing devices based on these different concurrency principles within HOP or other diffuse programming
languages will require better understanding of the underlying concurrency models and of the way they can
nicely cooperate, a currently ill-resolved problem.

3.2. Web and functional programming
We are studying new paradigms for programming Web applications that rely on multi-tier functional program-
ming [4]. This research has been initiated in the MIMOSA team, the predecessor of the INDES team, where
we have created the new Web programming environment named HOP. It relies on a single formalism for
programming the server-side and the client-side of the applications as well as for configuring the execution
engine.
HOP is a functional language based on the SCHEME programming language. That is, it is a strict functional
language, fully polymorphic, supporting side effects, and dynamically type-checked. HOP is implemented as
an extension of the BIGLOO compiler that we develop [5]. In the past, we have extensively studied static
analyses (type systems and inference, abstract interpretations, as well as classical compiler optimizations) to
improve the efficiency of compilation in both space and time.

3.3. Security of diffuse programs
The main goal of our security research is to provide scalable and rigorous language-based techniques that can
be integrated into multi-tier compilers to enforce the security of diffuse programs. Research on language-based
security has been carried on before in both the MIMOSA [2] and EVEREST [1] teams. In particular previous
research has focused on controlling information flow to ensure confidentiality.
Typical language-based solutions to these problems are founded on static analysis, logics, provable cryptog-
raphy, and compilers that generate correct code by construction [3]. Relying on the multi-tier programming
language HOP that tames the complexity of writing and analysing secure diffuse applications, we are studying
language-based solutions to prominent web security problems such as code injection and cross-site scripting,
to name a few.

4. Application Domains

4.1. Web programming
Along with games, multimedia applications, electronic commerce, and email, the web has popularized
computers in everybody’s life. The revolution is engaged and we may be at the dawn of a new era of computing
where the web is a central element. The web constitutes an infrastructure more versatile, polymorphic, and
open, in other words, more powerful, than any dedicated network previously invented. For this very reason, it
is likely than most of the computer programs we will write in the future, for professional purposes as well as
for our own needs, will extensively rely on the web.

Team indes 3

In addition to allowing reactive and graphically pleasing interfaces, web applications are de facto distributed.
Implementing an application with a web interface makes it instantly open to the world and accessible from
much more than one computer. The web also partially solves the problem of platform compatibility because
it physically separates the rendering engine from the computation engine. Therefore, the client does not have
to make assumptions on the server hardware configuration, and vice versa. Lastly, HTML is highly durable.
While traditional graphical toolkits evolve continuously, making existing interfaces obsolete and breaking
backward compatibility, modern web browsers that render on the edge web pages are still able to correctly
display the web pages of the early 1990’s.
For these reasons, the web is arguably ready to escape the beaten track of n-tier applications, CGI scripting
and interaction based on HTML forms. However, we think that it still lacks programming abstractions that
minimize the overwhelming amount of technologies that need to be mastered when web programming is
involved. Our experience on reactive and functional programming is used for bridging this gap.

4.2. Multimedia
Electronic equipments are less and less expensive and more and more widely spread out. Nowadays, in
industrial countries, computers are almost as popular as TV sets. Today, almost everybody owns a mobile
phone. Many are equipped with a GPS or a PDA. Modem, routers, NASes and other network appliances are
also commonly used, although they are sometimes sealed under proprietary packaging such as the Livebox or
the Freebox. Most of us evolve in an electronic environment which is rich but which is also populated with
mostly isolated devices.
The first multimedia applications on the web have appeared with the Web 2.0. The most famous ones are
Flickr, YouTube, or Deezer. All these applications rely on the same principle: they allow roaming users to
access the various multimedia resources available all over the Internet via their web browser. The convergence
between our new electronic environment and the multimedia facilities offered by the web will allow engineers
to create new applications. However, since these applications are complex to implement this will not happen
until appropriate languages and tools are available. In the Indes team, we develop compilers, systems, and
libraries that address this problem.

4.3. House Automation
The web is the de facto standard of communication for heterogeneous devices. The number of devices able to
access the web is permanently increasing. Nowadays, even our mobile phones can access the web. Tomorrow it
could even be the turn of our wristwatches! The web hence constitutes a compelling architecture for developing
applications relying on the "ambient" computing facilities. However, since current programming languages do
not allow us to develop easily these applications, ambient computing is currently based on ad-hoc solutions.
Programming ambient computing via the web is still to be explored. The tools developed in the Indes team
allow us to build prototypes of a web-based home automation platform. For instance, we experiment with
controlling heaters, air-conditioners, and electronic shutters with our mobile phones using web GUIs.

5. Software

5.1. Introduction
Most other software packages can be downloaded from the INDES

Web site:
http://www-sop.inria.fr/teams/indes

5.2. Functional programming
Participants: Frédéric Boussinot, Zhengqin Luo, Marcos Dione, Thomas Gazagnaire, Cyprien Nicolas,
Tamara Rezk, Bernard Serpette, Manuel Serrano.

http://www-sop.inria.fr/teams/indes

4 Activity Report INRIA 2010

5.2.1. The Bigloo compiler
The programming environment for the Bigloo compiler [5] is available on the INRIA Web site at the following
URL: http://www-sop.inria.fr/teams/indes/fp/Bigloo. The distribution contains an optimizing compiler that
delivers native code, JVM bytecode, and .NET CLR bytecode. It contains a debugger, a profiler, and various
Bigloo development tools. The distribution also contains several user libraries that enable the implementation
of realistic applications.
BIGLOO was initially designed for implementing compact stand-alone applications under Unix. Nowadays, it
runs harmoniously under Linux and MacOSX. The effort initiated in 2002 for porting it to Microsoft Windows
is pursued by external contributors. In addition to the native back-ends, the BIGLOO JVM back-end has enabled
a new set of applications: Web services, Web browser plug-ins, cross platform development, etc. The new
BIGLOO .NET CLR back-end that is fully operational since release 2.6e enables a smooth integration of
Bigloo programs under the Microsoft .NET environment.

5.2.2. Camloo
Camloo (http://www-sop.inria.fr/members/Thomas.Gazagnaire/) is a caml-light to bigloo compiler, which was
developed few years ago to target bigloo 1.6c. New major releases 0.4.x of camloo have been done to support
bigloo 3.4 and bigloo 3.5. Camloo make it possible for the user to develop seamlessly a multi-language project,
where some files are written in caml-light, in C, and in bigloo. Unlike the previous versions of camloo, 0.4.x
versions do not need a modified bigloo compiler to obtain good performance. Currently, the only supported
backend for camloo is bigloo/C. We are currently rewriting the runtime of camloo in bigloo to get more
portability and to be able to use HOP and camloo together.

5.2.3. CFlow
The prototype compiler “CFlow” takes as input code annotated with information flow security labels for
integrity and confidentiality and compiles to F# code that implements cryptography and protocols that satisfy
the given security specification.
Cflow has been coded in F#, developed mainly on Linux using mono (as a substitute to .NET), and partially
tested under Windows (relying on .NET and Cygwin). The code is distributed under the terms of the CeCILL-B
license (http://www.msr-inria.inria.fr/projects/sec/cflow/index.html).

5.2.4. The FunLoft language
FunLoft is a new programming language in which the focus is put on safety and multicore.
FunLoft is built on the model of FairThreads which makes concurrent programming simpler than usual
preemptive-based techniques by providing a framework with a clear and sound semantics. FunLoft is designed
with the following objectives:

• provide a safe language, in which, for example, data-races are impossible.

• control the use of resources (CPU and memory), for example, memory leaks cannot occur in FunLoft
programs, which always react in finite time.

• have an efficient implementation which can deal with large numbers of concurrent components.

• benefit from the real parallelism offered by multicore machines.

A first experimental version of the compiler is available on the Reactive Programming. Several benchmarks
are given, including cellular automata and simulation of colliding particles.

5.3. Web programming
Participants: Marcos Dione, Cyprien Nicolas, Manuel Serrano.

http://www-sop.inria.fr/teams/indes/fp/Bigloo
http://www-sop.inria.fr/members/Thomas.Gazagnaire/
http://www.msr-inria.inria.fr/projects/sec/cflow/index.html

Team indes 5

5.3.1. The HOP web programming environment
HOP is a new higher-order language designed for programming interactive web applications such as web
agendas, web galleries, music players, etc. It exposes a programming model based on two computation levels.
The first one is in charge of executing the logic of an application while the second one is in charge of executing
the graphical user interface. HOP separates the logic and the graphical user interface but it packages them
together and it supports strong collaboration between the two engines. The two execution flows communicate
through function calls and event loops. Both ends can initiate communications.
The HOP programming environment consists in a web broker that intuitively combines in a single architecture
a web server and a web proxy. The broker embeds a HOP interpreter for executing server-side code and a HOP
client-side compiler for generating the code that will get executed by the client.
An important effort is devoted to providing HOP with a realistic and efficient implementation. The HOP
implementation is validated against web applications that are used on a daily-basis. In particular, we have
developed HOP applications for authoring and projecting slides, editing calendars, reading RSS streams, or
managing blogs.
HOP has won the software open source contest organized by the ACM Multimedia Conference 2007 (http://
mmc36.informatik.uni-augsburg.de/acmmm2007/). It is released under the GPL license. It is available at http://
hop.inria.fr.

5.4. Old software
5.4.1. Skribe

SKRIBE is a functional programming language designed for authoring documents, such as Web pages or
technical reports. It is built on top of the SCHEME programming language. Its concrete syntax is simple and
looks familiar to anyone used to markup languages. Authoring a document with SKRIBE is as simple as with
HTML or LaTeX. It is even possible to use it without noticing that it is a programming language because of
the conciseness of its original syntax: the ratio markup/text is smaller than with the other markup systems we
have tested.
Executing a SKRIBE program with a SKRIBE evaluator produces a target document. It can be HTML files
for Web browsers, a LaTeX file for high-quality printed documents, or a set of info pages for on-line
documentation.

5.4.2. Scheme2JS
Scm2JS is a Scheme to JavaScript compiler distributed under the GPL license. Even though much effort has
been spent on being as close as possible to R5RS, we concentrated mainly on efficiency and interoperability.
Usually Scm2JS produces JavaScript code that is comparable (in speed) to hand-written code. In order to
achieve this performance, Scm2JS is not completely R5RS compliant. In particular it lacks exact numbers.
Interoperability with existing JavaScript code is ensured by a JavaScript-like dot-notation to access JavaScript
objects and by a flexible symbol-resolution implementation.
Scm2JS is used on a daily basis within HOP, where it generates the code which is sent to the clients (web-
browsers).
Scm2JS can be found here (http://www-sop.inria.fr/indes/scheme2js/)

5.4.3. ULM
ULM (Un langage pour la mobilité) is a language for mobility that was developed in the MIMOSA team.
The ULM Scheme implementation is an embedding of the ULM primitives in the Scheme language. The
bytecode compiler is available on PCs only but there are two ULM Virtual Machines: one for PCs and one
for embedded devices supporting Java 2 Mobile Edition (J2ME) such as most mobile phones. The current
version has preliminary support for a mixin object model, mobility over TCP/IP or Bluetooth Serial Line,
reactive event loops, and native procedure calls with virtual machine reentry. The current version is available
at http://www-sop.inria.fr/teams/mimosa/Stephane.Epardaud/ulm.

http://mmc36.informatik.uni-augsburg.de/acmmm2007/
http://mmc36.informatik.uni-augsburg.de/acmmm2007/
http://hop.inria.fr
http://hop.inria.fr
http://www-sop.inria.fr/indes/scheme2js/
http://www-sop.inria.fr/teams/mimosa/Stephane.Epardaud/ulm

6 Activity Report INRIA 2010

6. New Results

6.1. Security
Participants: Gérard Boudol, Ilaria Castellani, Zhengqin Luo, Tamara Rezk.

6.1.1. Security of Multithreaded Programs by Compilation
Information security is a pressing challenge for mobile code technologies. In order to claim end-to-end security
of mobile code, it is necessary to establish that the code neither intentionally nor accidentally propagates
sensitive information to an adversary. Although mobile code is commonly multithreaded low-level code, the
literature is lacking enforcement mechanisms that ensure information security for such programs. This work
offers a modular solution to the security of multithreaded programs. The modularity is three-fold: we give
modular extensions of sequential semantics, sequential security typing, and sequential security-type preserving
compilation that allow us enforcing security for multithreaded programs. Thanks to the modularity, there are
no more restrictions on multithreaded source programs than on sequential ones, and yet we guarantee that their
compilations are provably secure for a wide class of schedulers.
This work has been published in [12].

6.1.2. Secure Information Flow by Self-Composition
Information flow policies are confidentiality policies that control information leakage through program
execution. A common means to enforce secure information flow is through information flow type systems.
Although type systems are compositional and usually enjoy decidable type checking or inference, their
extensibility is very poor: type systems need to be redefined and proven sound for each new single variation
of security policy and programming language for which secure information flow verification is desired. In
contrast, program logics offer a general mechanism to enforce a variety of safety policies, and for this reason
are favored in Proof Carrying Code, a promising security architecture for mobile code. However, the encoding
of information flow policies in program logics is not straightforward, because they refer to a relation between
two program executions. The purpose of this work is to investigate logical formulations of secure information
flow based on the idea of self-composition that reduces the problem of secure information flow of a program
P to a safety property for a program P’ derived from P.
This work will appear in the special issue of MSCS of PLID [27].

6.1.3. Robustness Guarantees for Anonymity
Anonymous communication protocols must achieve two seemingly contradictory goals: privacy (informally,
they must guarantee the anonymity of the parties that send/receive information), and robustness (informally,
they must ensure that the messages are not tampered). However, the long line of research that defines and
analyzes the security of such mechanisms focuses almost exclusively on the former property and ignores the
latter.
In this work, we initiate a rigorous study of robustness properties for anonymity protocols. We identify and
formally define, using the style of modern cryptography, two related but distinct flavors of robustness. Our
definitions are general (e.g., they strictly generalize the few existent notions for particular protocols) and
flexible (e.g., they can be easily adapted to purely combinatorial/probabilistic mechanisms).
We demonstrate the use of our definitions through the analysis of several anonymity mechanisms (Crowds,
broadcast-based mix-nets, DC-nets, Tor). Notably, we analyze the robustness of a protocol by Golle and Juels
for the dining cryptographers problem, identify a robustness-related weakness of the protocol, and propose
and analyze a stronger version.
This work has been published in [11].

Team indes 7

6.1.4. Automated Code Injection Prevention for Web Applications
We propose a new technique based on multi-tier compilation for preventing code injection in web applications
[29]. It consists in adding an extra stage to the client code generator which compares the dynamically
generated code with the specification obtained from the syntax of the source program. No intervention from
the programmer is needed. No plugin or modification of the web browser is required. The soundness and
validity of the approach are proved formally by showing that the client compiler can be fully abstract. The
practical interest of the approach is proved by showing that the actual implementation in the Hop environment
imposes a performance penalty smaller than those of other techniques for preventing code injection.

6.1.5. Secure session calculi
We have proposed a secure information flow analysis for a session calculus based on the pi-calculus. More
precisely, we have considered a calculus for multiparty sessions with delegation, enriched with security levels
for both session participants and data. The calculus has also been equipped with a form of declassification for
data, as required by most practical applications.
We have defined a type system for this calculus that ensures, besides the expected properties of session
calculi (absence of communication errors and compliance to the protocol), also access control and secure
information flow. Access control means that session participants cannot receive data of security level higher
than or incomparable to their own. For instance, in a session involving a Customer, a Seller and a Bank, the
secret credit card number of the Customer should be communicated to the Bank but not to the Seller. Secure
information flow means that the confidentiality of data must be preserved throughout the session. In particular,
our type system prevents any information leak through the specific constructs of the calculus, which are session
opening, selection, branching and delegation. Finally, we showed that our type system allows exactly those
declassifications that are permitted by the access control policy.
Our work has revealed an interesting interplay between the constraints of security type systems and those used
in session types to ensure classical properties such as communication safety and session fidelity.
This work has been published in [15], and its full version, with complete definitions and proofs, is presented
in [25].

6.2. Models and semantics
Participants: Gérard Berry, Gérard Boudol, Gustavo Petri, Christian Queinnec, Manuel Serrano.

6.2.1. Semantics of concurrent programming
The semantical framework of write-buffering is based on the work presented in 2009 at the POPL conference,
with minor modifications. The framework of speculative computations is based on the work[14] with some
major modifications. In particular, we have included an optimization related to write-buffering commonly
found in current architectures. Also, two programming languages were considered in this framework, a high-
level programming language, supporting locks for critical sections, and a low-level language, which only
supports barriers and a simple compare-and-swap instruction. The interest of having these two languages
is to show that the framework is well suited to modelling both the semantics of a high-level programming
language (like ML for example), and the Instruction Set Architecture (ISA) of a machine architecture, which
usually does not provide locks. In the thesis, Gustavo shows that the speculative semantics presented allows
for many behaviors commonly found in relaxed memory model specifications. Robustness properties are
provided guaranteeing that the speculative execution of programs that meet these properties coincide with
their sequentially consistent execution.
To prove the utility of these two semantical frameworks, and to present existing memory models in an
operational way, Gustavo instantiates both frameworks to model the TSO, PSO and RMO memory models
of Sparc. In fact, the write-buffering framework is not fit for modelling RMO, which motivates the need for
the more general (but more complex as well) framework of speculations. Having instantiations of both PSO
and TSO in both frameworks makes their formal comparison possible. The main result of this work is a –
non-trivial – proof that these instantiations coincide. This work has not been published yet.

8 Activity Report INRIA 2010

6.2.2. Formal semantics for Hop
Following the continuation-based denotational semantics for a sequential subset for HOP [9], we have
conceived a second formal semantics shaped as a small-step operational semantics [13] that covers a wider
part of the language than the denotational one. It supports reasoning about web applications written in the
multi-tier language HOP. In particular, it covers both server side and client side computations, as well as
their interactions, and includes creation of web services, distributed client-server communications, concurrent
evaluation of service requests at server side, elaboration of HTML documents, DOM operations, evaluation of
script nodes in HTML documents and actions from HTML pages at client side.

6.3. Functional and concurrent programming
Participants: Pejman Attar, Frédéric Boussinot, Marcos Dione, Thomas Gazagnaire, Cyprien Nicolas,
Manuel Serrano.

6.3.1. Bigloo
Software distribution: Three new major releases have been made available in 2010: Bigloo-3.3, 3.4, and 3.5.
These releases have introduced the novelties:

• crytography API which implements traditional cryptography algorithms (rsa, dsa, aes, etc) and the
PGP layer.

• Android port enables Bigloo to compile applications for the Android Smartphones equipped with
Arm processors. This port supports native multi-threading.

• Enhanced class support in the interpreter eliminates most of the restrictions that applied to the
object layer when used within the interpreter. That is, from now on, the compiled and interpreted
code support the same constructs for object oriented programming.

• Compilation improvements that produce more efficient code for checking array bounds and
dynamic types.

6.3.2. FunLoft
We have developped the language FunLoft along several axes: separate compilation and extension to higher-
order functions (these are not first class members, but some limitations on them have been suppressed; for
example, functions can be parameters; they still cannot be stored in memory). The new version v0.4 has been
released. A book [24] has been written, entitled “Safe Reactive Programming - The FunLoft Language” which
describes FunLoft and several applications (cellular automata, prey-predator systems, colliding particles,
dataflow programming) in detail. We are currently implementing a simulation of physics which reflects several
aspects of quantum mechanics such as self-interference, state superposition, and particles entanglement.

6.3.3. DSL
We have designed a kernel of an orchestration language, called DSL, which is translated in FunLoft. This
parallel and reactive language is safe and we are in the process of implementing it in several other formalisms
(SugarCubes, ReactiveML, Hop). Communication through the network will be based on HOP. The objective
is to get a multi-formalisms platform for the programming of diffuse systems in heterogeneous environments.
We are designing an extension of DSL to be able to maximize the use of cores by programs, preserving safety.
In this proposal, we consider agents which are autonomous parallel entities which possess a memory. It is
statically proved that each agent’s memory is free from interferences with other agents. Agents are executed
on sites which are composed of several synchronised schedulers, mapped on distinct cores. The number of
cores used by a site is dynamically adapted to the load of agents executed on the site.

6.3.4. Types and effects
We have designed a type and effect system and a deadlock-free semantics for shared memory concurrency.
We implement it in an ML-like programming language which will be released under the name Tesard. We
are writing a compiler of it, as a fork of Llama Light. (Llama is itself a fork of OCaml which simplifies the
language and the type system and makes the compiler more modular.) The project is in its early stage of
development.

Team indes 9

6.4. Web programming
Participants: Marcos Dione, Zhengqin Luo, Cyprien Nicolas, Tamara Rezk, Bernard Serpette, Manuel
Serrano.

6.4.1. Hop
Software distribution: Three new major branches have been released this year: HOP 2.0.x, 2.1.x, and 2.2.x.
Here is short overview of the changes applied to the system.

• Android port which has consisted in porting the HOP runtime environment to the Android platform
and also in creating a dedicated library that allows HOP to interact with the phone operating system.
As such, it is for instance possible, from a HOP application, to react when a SMS is sent or received,
when the orientation of the phone changes, etc. This is still an ongoing project. The HOP Android
library still needs many extensions. This port greatly expands the range of devices were HOP can
be run because the Android platform is mostly run in the ever-growing markets of cellular phones,
netbooks and tablets.

• Bundle OSGi which allows HOP to be shipped in a bundle and executed as a independant component
inside a Java Virtual Machine.

• Integrated module system which allows HOP client-side and server-side modules to be totally
mixed up. Up to the branch 1.11.x client-side modules and server-side modules were disjoint entities.
With versions 2.x client-side modules may import server-side modules and vice-versa. This major
extension is a breakthrough toward a unified programming model.

• Integrated macro system which allows HOP macros to be defined on both ends of the application.
Combined with the new integrated module system this is the second element that improves the
coherence of the multi-tier programming paradigm advocated by HOP.

• Improved browsers portability, we have improved the portability of the client-side code generated
by HOP. In particular, the generated code now smoothly works with Firefox, WebKit (i.e., Safari and
Google Chrome), and Opera. We have significantly improved the portability for Internet Explorer 8,
but we are waiting the official version 9 of that navigator to conclude that effort.

• Security Manager which allows HOP to automatically detect cross-site scripting. This is the direct
implementation of the formal studies about Code Injection Prevention via Multitiers Compilation
that has not yet been published.

• HSS, the CSS for HOP has been completed. It extends CSS with user defined variables, functions,
and element types. It can also be used with the Hop web development kit in which case, working
hand in hand with the Hop programming language, it can be used to implement skinning or theming
of web applications. HSS has been described in a conference paper [20].

• Remote APIs which allow HOP applications to import remote libraries, that is libraries made
available independently of the HOP distribution. These remote APIs make it easy to implement
mashups with HOP. Currently, we are proposing only a few number of these APIs but they cover a
wide spectrum ranging from MAP API to QR code API, via multimedia APIs. All these libraries are
available on the official HOP distribution site.

These elements are just some highlights amongst all the modifications and improvements applied to the system.
A full list of changes can be found by inspecting the whole ChangeLog file included in the HOP package.
We also worked, within the Smartimmo DGE project, towards making Hop a good choice to develop
applications that can inform their users about their whereabouts in a ’Smart Building’ and allow them to
control the environment. For this we first developed libraries to communicate with the WebServices offering
such functionality, mainly through the SOAP, oBIX and STOMP protocols, widely used in the industry for
such purposes.

10 Activity Report INRIA 2010

Then we developed a demo that, thanks to the new Android port and the previously existing Maemo port,
could run on smartphones. This demo not only made use of WebServices, but also accesed the sensors in the
smartphone itself and used a Phidgets board with sensors attached to simulate a lighting level and temperature
controlling application. For the latter we also developed a wrapper to the C library for accesing and controlling
Phidget boards.

6.4.2. HopTeX
HopTeX is a new application for authoring HTML and LaTeX documents [30]. The content of the document
is expressed in a blending of HTML and a dedicated wiki syntax. The rendering of the document is expressed
by a set of CSS rules. The main originality of HopTex is to consider LaTeX as a new media type for HTML
and to express the compilation from HTML to LaTeX by the means of dedicated style sheet rules.
This implementation extensively relies on two facilities generally only available on the client-side that HOP
also supports on the server-side of the application: DOM manipulations and CSS server-side resolutions.

6.4.3. Mirage
Mirage [17] (http://www.openmirage.org/) is an open-source operating system for constructing secure, high-
performance, reliable network applications across a variety of cloud computing and mobile platforms. Code
can be developed on a normal OS such as Linux or MacOS X, and then compiled into a fully-standalone,
specialized OS kernel that runs under the Xen hypervisor. Since Xen powers most public cloud computing
infrastructure such as Amazon EC2 , this lets your servers elastically scale up massively with little effort on
your part.)
Mirage is based around the OCaml language, with syntax extensions and libraries which provide networking,
storage and concurrency support that are easy to use during development, and map directly into operating
system constructs when being compiled for production deployment.
We have been working on using type-based meta-compilation techniques [[16],[8]] and embedded DSL (for
html https://github.com/samoht/htcaml css https://github.com/samoht/cass as examples) to provide a platform
for developping web-applications on top of mirage.

6.4.4. Orchestration
As more and more data becomes available over the web (through open databases, or web sites APIs for
instance), new “mash-ups” applications appear daily. These applications aggregate the data available from
remote web services in order to give a new view or a new usage of this data.
Such web applications are, de facto, distributed, and have to deal with all the typical issues of distributed
programming, e.g. communications, synchronization, fault-tolerance, priorities. Another thing to note is that
in a traditional grid computing environment, one developer has the control on all the resources used by his
program, whereas it is generally not true inside the web environment.
These applications deal with more and more data sources, in case one would be unavailable, or outdated, so
developers have to manage complex external interactions. Metaphorically speaking, they act as a web service
conductors, that is why such new techniques are called “orchestration”.
Dedicated languages, so-called orchestration languages, provide new primitives to express such computations
simply, and provide means to handle failures, timeouts and priorities. The orchestration language considered
so far is Orc, developed at University of Texas at Austin.
We think that Hop can benefit from these primitives, offering a new, and we hope simple, way to program
orchestration and mash-ups. Additionally, existing orchestration languages only provide those primitives on
the server-side, Hop will permit to express orchestration in both server and client sides.
This is an on going thesis project, which is not yet part of the Hop standard distribution. We started by giving
a scheme-oriented syntax of the Orc operators, and then rewrite the Orc semantics with this new syntax. Then
the first implementation consisted of a direct translation of the semantics.
This implementation was difficult to achieve as Orc is actually a data-flow language, whereas Hop is not.
We needed a model to represent how the data would flow from one instruction to another, using dedicated
constructs.

http://www.openmirage.org/
https://github.com/samoht/htcaml
https://github.com/samoht/cass

Team indes 11

We tried to model the semantics using Kahn networks. With this model, each Orc operator is a Kahn process,
and those process are linked using streams.
This implementation is mainly composed of macros, it can run on top of the current Hop language, without
having to modify Hop’s runtime, or the Bigloo compiler itself to support those new constructs.

6.4.5. Ordered networks
Channels of communication in our ordered networds was oriented: in a channel from A to B, A can only write
and B can only read. But, from the implementation point of view, sockets are used to design these channels.
Since sockets are non oriented, we have studied how ordered networks can take benefits of this extra channel
of communication. Behind the fact that the observed gain is not effective, the protocol for closing channels
becomes not evident.
Ordered networks use an order to drive the routing process, but also a strategy for choosing the best neighboors.
Generally, this strategy is based on the order and so on node’s identifier of the network. We have studied a
strategy based on the number of message sent on each channels a node have. When all nodes try to balance
these numbers of message we observe good performances of the network, but without reaching the optimality.
This strategy is particularly important since the performance of the routing process is no more related to a
uniform distribution of the identifiers in the network.

7. Contracts and Grants with Industry

7.1. Contracts and Grants with Industry
7.1.1. DGE SmartImmo

The SmartImmo DGE project of the world class ICT cluster SCS (Solutions Communicantes Sécurisées)
started in 2009. It aimed at controlling and reducing the costs associated with building management. The
duration of the project is 2 years, and the funding is 75k Euros. In the context of this project, the INDES team
will focus on making the Hop Web development kit compatible with industrial house automation systems.

7.1.2. All In My Music
Although this activity has not lead to a contract yet, we have collaborated with a local start-up named All In
My Music that distributes music on-line. Using HOP we have been able to produce a portable software library
that allows the company to ship music more easily on a wide set of devices.

8. Other Grants and Activities

8.1. National initiatives
8.1.1. STIC-AmSud FMCRYPTO

The FMCRYPTO project (for “Formal Methods for Cryptographically Secure Distributed Computations”)
is funded by the STIC-AmSud programme for 2 years, ending December 2010. The partners of this project
are the INDES team at INRIA (coordinator: Tamara Rezk), Universidade Estadual de Campinas in Brazil,
Universidad de Chile in Chile, and Universidad de la Republica in Uruguay.

8.1.2. COLOR project MATYSS
The project MATYSS (Models And TYpes for Secure Sessions), funded by the INRIA Sophia Antipolis
COLOR programme, was extended to year 2010 (due to a late start in 2009). The partners of this project were
the team INDES (coordinator) and the “Semantics and Logic of Computation” group at the Computer Science
Department of the University of Torino.

12 Activity Report INRIA 2010

8.1.3. ANR SETIN ParSec
The PARSEC project (for “Parallélisme et Sécurité”) has been funded by the ANR Sécurité Informatique
programme for 4 years, starting January 2007. The partners of this project are the teams INDES formerly
MIMOSA (coordinator) and EVEREST at INRIA Sophia Antipolis, LANDE at IRISA, MOSCOVA at INRIA
Rocquencourt and CONCURRENCY at the PPS Laboratory of Paris 7 University and CNRS.

8.1.4. ANR DEFIS ParTout
The PARTOUT project (PARTOUT = PARallélisme parTOUT) is funded by the ANR DEFIS programme for
4 years, starting January 2009. The partners of this project are the teams INDES (coordinator), CNAM/Cédric,
and LRI, Université d’Orsay.

8.1.5. ANR DEFIS PWD
The PWD project (for "Programmation du Web diffus") has been funded by the ANR Défis programme for
4 years, starting November 2009. The partners of this project are the teams INDES (coordinator), LIP6 at
University Pierre et Marie Curie and PPS at University Denis Diderot.

9. Dissemination

9.1. Seminars and conferences
Gérard Berry held the Informatics and Digital Sciences Chair at Collège de France, which is co-

financed by INRIA. His course was called “Penser, modéliser et maîtriser le calcul informatique”,
in English “Thinking about, Modeling and Mastering Automatic Computation”. It consisted in a
formal inaugural lecture, followed by eight lectures accompanied by eight seminars from external
personalities, including a presentation of Diffuse Computing and HOP by Manuel Serrano. The
inaugural lecture has been published as a book published in 2009 the lecture notes are available in
[23]. The lecture and seminars are available in video on the Web, see [21]. Gérard Berry also repeated
seven lectures in English at the University of Edinburgh and at the Royal Society of Edinburgh,
accompanied by six seminars of French or British personalities, see [22]. The videos will be made
available on the Web by INRIA. He also repeated five Collège de France lectures at ESIB Beyrouth.
Gérard Berry gave 20 general conferences about the impact of Informatics in the Academic system,
in Industry, in Science, and in the Education community, to academic or industrial audiences. He
contributed to the introduction of Computer Science Teaching in the French education system by co-
defining the Professor Training Program; he gave six conferences to French High Schools students
and professors, and published a paper in the “Textes et documents pour la classe” education journal.
[10].

Gérard Boudol participated in the meetings of the PARSEC project (in January, June and December),
where he gave a talk on his current work with Gustavo Petri. He participated in the ETAPS
Conferences, where the work [14] was presented. He participated in the ANR Colloque “Sytèmes
embarqués, Sûreté de fonctionnement, Sécurité” in Toulouse where he presented the PARSEC
project. He was a member of the jury of the PhD of Christelle Braun (INRIA COMETE), and of
Michael Lienhardt (INRIA SARDES).

Ilaria Castellani visited the university of Torino for one week in January 2010, to pursue collaborative
work within the MATYSS project. In September 2010, she attended the conference CONCUR 2010
in Paris, where she presented the MATYSS work [15]. She also presented this work at one of the
meetings of the ANR project PARSEC.

Team indes 13

Thomas Gazagnaire has been invited to give a talk on his experience on using functional programing
in an industrial context at the Ocaml User Meeting in April 2010 and in the INRIA Sardes team
meeting in June 2010. An experience report [19] on this topic has been accepted in the 15th ACM
SIGPLAN International Conference on Functional Programming (ICFP 2010). A general overview
of Mirage [17] has been published in the 2nd USENIX Worshop on Hot Topics in Cloud Computing
in June 2010. The work about type-based meta-compilation [16] has been accepted in March 2010
at the 1st Workshop on Generative Technologies (WGT’2010) and will be published [8] in the
Electronic Notes in Theoretical Computer Science. He Participated to the meta-programing BOF
in the Commercial User of Functional Programming (CUFP 2010) conference. Also, some details
about Mirage’s ML micro-kernels have been presented to the 2010 Workshop on ML in September
2010.

Johan Grande gave a presentation of region-based memory management at the Journées FedeRez 2010.

Zhengqin Luo participated the FMcrypto workshop in Chile in April 2010, where he presented the work
of robustness guarantee of anonymity. In April 2010, he attented the Cosyproof workshop held in
Barbizon. In June 2010, he participated the PLDI conference and APLWACA workshop held in
Toronto, and gave a talk on the work of operational semantics of Hop. In July 2010, he participated
the FLOC conference held in Edinburgh, and he also presented the work of anonymity at CSF.

Gustavo Petri attended the ESOP Conference in Cyprus and presented the work [14].

Christian Queinnec gave an invited presentation at the JFLA’10 conference. Christian Queinnec has
been working on an architecture for mechanized grading: a series of protocols rules a constellation
of servers to offer robustness and tolerance to malicious students’ programs. This work was presented
at CEDU2010 [18].

Tamara Rezk attended a PARSEC meeting in January 2010, where she presented her work on security for
Hop applications. She attended the FMcrypto workshop in Chile in April 2010, where she presented
her work on code injection for web applications. In April 2010, she participated the Cosyproof
workshop held in Barbizon. In November, she presented her work on security for web applications
at IST Lisbon. In December, she participated to the final PARSEC and FMCrypto meetings in Paris
and Campinas respectively.

Manuel Serrano gave several presentations of the HOP system. First, he gave an invited talk at the
European Lisp workshop, a join event with Ecoop 2010. Then, he gave a seminar about HOP
at Microsoft Research Cambridge in June. Finally, he presented diffuse programming in one of
the Seven keys to the digital future, conferences organized by the Royal Society of Edinburgh in
Scotland.

9.2. Animation
Gérard Boudol was a reviewer for the PhD thesis of Jade Alglave (INRIA MOSCOVA). He was also a

member of the jury for a competition for a “Maître de Conférence” position at Paris 7 University.

Frédéric Boussinot is the coordinator of the ANR DEFIS project PARTOUT. He was a referee and
member of the Jury pf the PhD Thesis of Luidnel Maignan (University Paris-Sud 11).

Ilaria Castellani was the coordinator of the COLOR project MATYSS.

Tamara Rezk is the coordinator of the STIC-AmSud FMCrypto project. She was a member of the
programme committees VS-Theory, SAFA (co-chair), and ACM SAC SV track. She is a member of
the Committee of Courses and Coloquiums at Inria. She participates as a selecteur for the platform
MyLibrary at Inria. She was a reviewer for ICFP’10, CCS’10, Esorics’10, and the Journal of Logical
Methods in Computer Science.

Manuel Serrano is the coordinator of the ANR DEFIS project PWD. He serves on the program
committees of the following conferences:

14 Activity Report INRIA 2010

ICDCIT 2011 7th International Conference on Distributed Computing and Internet Technol-
ogy.

ILC 2010 International Lisp Conference.

TOOLS 2010 48th International Conference on Objects, Models, Components, Patterns.

ICFP 2010 15th ACM SIGPLAN International Conference on Functional Programming.

ECOOP 2010 24th European Conference on Object-Oriented Programming.

JFLA 2010 21th journées francophones des langages applicatifs.

Manuel Serrano was a member of the jury of the PhD Thesis of Charlotte Herzeel (Brussels) and he
was a referee and member of the jury of the PhD thesis of Floréal Morandat (Montpellier).

9.3. Teaching
Frédéric Boussinot supervised the summer internship of Pejman Attar, a graduate student of the Univer-

sity of Paris 7, Master MPRI, who worked during 6 months on the language DSL.

Johan Grande is giving 1st and 2nd year algorithmics and programming (Python and Java) tuto-
rial/practical classes at Polytech’Nice (76 hours altogether).

Cyprien Nicolas supervised 30 hours of practical exercises in the course “Introduction to Functionnal
Programming” at the University of Nice.

Christian Queinnec is the directory of the the École doctorale EDITE of the University Pierre et Marie
Curie and he was appointed as action lead on european doctoral school within the EIT KIC ICT.
This year, Christian Queinnec delivered two lectures: one in Master1 on compilation where a
programming language similar to Javascript (with XML as concrete syntax) is interpreted and
compiled into C (both the interpreter and compiler are written in Java). The other lecture in Master2
is on the architecture of web applications.

Tamara Rezk is teaching a course on provable cryptography in the master “Cryptographie et Securit’e”
at University of Nice-Sophia Antipolis. She supevised a project of the student Inza Bamba, from the
master of “Ubiquitous Networking and Computing” and a Phd student, Zhengqin Luo. In November,
she taught a master course on Proof Carrying Code in IST Lisbon.

Manuel Serrano gave a seminar about diffuse and HOP programming in the seminar series associated
with the course of Gérard Berry at Collège de France called “Penser, modéliser et maîtriser le calcul
informatique”. He supervised the summer internship of Cyprien Nicolas, a graduate student of the
University of Nice, Master Ubinet, who worked during 6 months on preparing the integration of
the orchestration language Orc and the multi-tier programming language Hop. Manuel Serrano, in
collaboration with Christian Queinnec, published an article in the French magazine Linux Magazine
France.

10. Bibliography
Major publications by the team in recent years

[1] G. BARTHE, T. REZK, A. RUSSO, A. SABELFELD. Security of Multithreaded Programs by Compilation, in
"ESORICS", 2007, p. 2-18.

[2] G. BOUDOL, I. CASTELLANI. Noninterference for Concurrent Programs and Thread Systems, in "Theoretical
Computer Science", 2002, vol. 281, no 1, p. 109-130.

Team indes 15

[3] C. FOURNET, T. REZK. Cryptographically sound implementations for typed information-flow security, in
"Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008", San Francisco, California, USA, January 7-12 2008, p. 323-335.

[4] M. SERRANO, E. GALLESIO, F. LOITSCH. HOP, a language for programming the Web 2.0, in "Proceedings
of the First Dynamic Languages Symposium", Portland, Oregon, USA, October 2006.

[5] M. SERRANO. Bee: an Integrated Development Environment for the Scheme Programming Language, in
"Journal of Functional Programming", May 2000, vol. 10, no 2, p. 1–43.

Publications of the year
Doctoral Dissertations and Habilitation Theses

[6] G. PETRI. Operational Semantics of Relaxed Memory Models, Université de Nice - Sophia Antipolis, November
2010.

Articles in International Peer-Reviewed Journal

[7] G. BOUDOL. Typing termination in a higher-order concurrent imperative language, in "Information and
Computation", 2010, vol. 208, p. 716-736.

[8] T. GAZAGNAIRE, A. MADHAVAPEDDY. Dynamics for ML using Meta-Programming, in "Electonic Notes in
Theoritical Computer Science", 2010.

[9] M. SERRANO, C. QUEINNEC. A multi-tier semantics for Hop, in "Higher Order and Symbolic Computation
(HOSC)", 2010 [DOI : 10.1007/S10990-010-9061-9].

Articles in National Peer-Reviewed Journal

[10] G. BERRY. Seven Keys to the Digital Future, in "Textes et documents pour la classe", 2010, no 997.

International Peer-Reviewed Conference/Proceedings

[11] G. BARTHE, A. HEVIA, Z. LUO, T. REZK, W. B.. Robustness Guarantees for Anonymity, in "CSF", 2010,
p. 91-106.

[12] G. BARTHE, T. REZK, A. RUSSO, A. SABELFELD. Security of Multithreaded Programs by Compilation, in
"ESORICS’07 Special Issue in ACM Transactions on Information and System Security (TISSEC)", 2010.

[13] G. BOUDOL, Z. LUO, T. REZK, M. SERRANO. Towards Reasoning for Web Applications: an Operational
Semantics for Hop, in "Proceedings of the first Workshop on Analysis and Programming Languages for Web
Applications and Cloud Applications (APLWACA’10)", Toronto, Canada, Jun 2010.

[14] G. BOUDOL, G. PETRI. A Theory of Speculative Computation, in "ESOP", LNCS, 2010, p. 165-184.

[15] S. CAPECCHI, I. CASTELLANI, M. DEZANI-CIANCAGLINI, T. REZK. Session Types for Access and
Information Flow Control, in "CONCUR’10", P. GASTIN, F. LAROUSSINIE (editors), Lecture Notes in
Computer Science, Springer Verlag, 2010, vol. 6269, p. 237-252.

16 Activity Report INRIA 2010

[16] T. GAZAGNAIRE, A. MADHAVAPEDDY. Statically-typed value persistence for ML, in "Proceedings of the
Workshop on Generative Technologies (WGT’2010)", March 2010.

[17] A. MADHAVAPEDDY, R. MORTIER, R. SOHAN, T. GAZAGNAIRE, S. HAND, T. DEEGAN, D. MCAULEY,
J. CROWCROFT. Turning down the LAMP: software specialisation for the cloud, in "Proceedings of the
2nd USENIX conference on Hot topics in cloud computing", Berkeley, CA, USA, HotCloud’10, USENIX
Association, 2010, p. 11–11.

[18] C. QUEINNEC. An Infrastructure for Mechanised Grading, in "CSEDU 2010 – Proceedings of the second
International Conference on Computer Supported Education", Valencia, Spain, Apr 2010, vol. 2, p. 37–45, Cf.
archive HAL.

[19] D. SCOTT, R. SHARP, T. GAZAGNAIRE, A. MADHAVAPEDDY. Using functional programming within
an industrial product group: perspectives and perceptions, in "Proceedings of the 15th ACM SIGPLAN
international conference on Functional programming", New York, NY, USA, ICFP ’10, ACM, 2010, p. 87–92
[DOI : 10.1145/1863543.1863557].

[20] M. SERRANO. HSS: a Compiler for Cascading Style Sheets, in "12th Sigplan International Conference on
Principles and Practice of Declarative Programming (PPDP)", Hagenberg, Austria, Jul 2010.

Scientific Books (or Scientific Book chapters)

[21] G. BERRY. Penser, modéliser et maîtriser le calcul informatique, vidéos, 2010, http://www.college-de-france.
fr/default/EN/all/cha_inf2009.

[22] G. BERRY. Seven Keys to the Digital Future, 2010, http://idea.ed.ac.uk/future/.

[23] G. BERRY. Penser, modéliser et maîtriser le calcul informatique, notes de cours, in "Annales du Collège de
France", Collège de France, 2010.

[24] F. BOUSSINOT. Safe Reactive Programming - The FunLoft Language, Lambert Academic Pub., 2010.

Research Reports

[25] S. CAPECCHI, I. CASTELLANI, M. DEZANI-CIANCAGLINI, T. REZK. Session Types for Access and
Information Flow Control, Inria, 2010, http://hal.archives-ouvertes.fr/inria-00511304/PDF/RR-7368.pdf.

Scientific Popularization

[26] M. SERRANO, C. QUEINNEC. HTML5 Video portable avec Heb, in "Gnu Linux Magazine France", Jan 2010,
no 129.

Other Publications

[27] G. BARTHE, P. D’ARGENIO, T. REZK. Secure Information Flow by Self Composition, 2010, to appear.

[28] F. BOUSSINOT. The FunLoft Language, 2010.

[29] Z. LUO, T. REZK, M. SERRANO. Automated Code Injection Prevention for Web Applications, 2010,
Submitted.

http://www.college-de-france.fr/default/EN/all/cha_inf2009
http://www.college-de-france.fr/default/EN/all/cha_inf2009
http://idea.ed.ac.uk/future/
http://hal.archives-ouvertes.fr/inria-00511304/PDF/RR-7368.pdf

Team indes 17

[30] M. SERRANO. HopTeX - Compiling HTML to LaTeX with CSS, 2010, Submitted.

