

[image: cover]

moscova
Mobility, security, concurrence, verification and analysis
2010 Research Team Activity Report
	Paris - Rocquencourt

	 Field :
	 Algorithmics, Programming, Software and Architecture

Theme :
Programs, Verification and Proofs
Presentation of the
		Project-Team

	Members
	Overall Objectives	[bookmark: uid3]Introduction
	[bookmark: uid4]Highlights

	Scientific Foundations	[bookmark: uid10]Concurrency theory
	[bookmark: uid11]Type systems
	[bookmark: uid12]Formal security

	Application Domains	[bookmark: uid14]Telecoms and Interfaces
	[bookmark: uid15]Software Engineering

	Software	[bookmark: uid17]Memevents-Litmus-Diy-Dont
	[bookmark: uid19]F7 Typechecker
	[bookmark: uid20]OTT: Tool support for the working semanticist
	[bookmark: uid25]Secure Multi-party Sessions
	[bookmark: uid26]Jocaml
	[bookmark: uid29]Hevea

	New Results	[bookmark: uid31]Weak Memory Models
	[bookmark: uid37]Relaxed-Memory Concurrency and Verified Compilation
	[bookmark: uid38]Models of Audit Logs
	[bookmark: uid39]Compiling Information Flow
Security to minimal Trusting Computing Bases
	[bookmark: uid40]Modular Verification of Security Protocol Code by Typing
	[bookmark: uid41]Security Programming with Refinement Types & Mobile Proofs
	[bookmark: uid42]Secure Sessions
	[bookmark: uid43]Integrating Typed and Untyped Code in a
Scripting Language

	Contracts and Grants with Industry	[bookmark: uid45]CRYSP: A Novel Framework for
Collaboratively Building Cryptographically Secure Programs and
their Proofs
	[bookmark: uid51]Grants with Industry
	[bookmark: uid52]National Initiatives
	[bookmark: uid54]European actions
	[bookmark: uid56]International Initiatives

	Dissemination	[bookmark: uid58]Animation of the scientific community
	[bookmark: uid73]Teaching
	[bookmark: uid84]Participations to conferences, Seminars, Invitations

	Bibliography
		Major publications
	Publications of the year
	References in notes

Section: Members
Research Scientists
Jean-Jacques Lévy [Team leader, Senior Researcher (DR) Inria]
Luc Maranget [Research Associate (CR) Inria]
Karthikeyan Bhargavan [Research Associate
(CR) Inria]
James Leifer [Research Associate (CR) Inria]
Francesco Zappa Nardelli [Research
Associate (CR) Inria]

PhD Students
Jade Alglave [MESR grant, Paris 7, until 1/11/2010]
Nataliya Guts [INRIA-MSR grant, Paris 7]
Jérémy Planul [ENS-Lyon, Ecole Polytechnique]

Administrative Assistant
Stéphanie Aubin [Assistant (TR) Inria]

 Overall Objectives

 	Overall Objectives	[bookmark: uid3]Introduction
	[bookmark: uid4]Highlights

 [bookmark: uid3] Section:
 Overall Objectives
Introduction

The research in Moscova which was traditionaly centered around the
theory and practice of concurrent programming in the context of
distributed and mobile systems, is now retargeted around two main
themes: weak memory models and secure distributed computations. Our
ambitious long-term goal is still to program safely concurrent
applications on top of new multi-core architectures and to program
secure global computations on top of wide-area networks.

In in the past years, we designed several concurrent programming
languages (Jocaml, Acute) together with tools to study their
semantics (OTT). Our languages are not as used as the known Java or
C# which allow downloading of programs, but our languages
also allow migrations of active programs. Moreover the join
primitives of Jocaml have been implemented inside polyphonic
C#, in F# and Visual Basic. These studies and
implementations demonstrated that there is still a need for a deep
understanding of the underlying hardware and for an
intensive use of programming primitives for security.

On the concurrency side, our implementations relied on locks and
sequential consistency. This means that the semantics of our
concurrent languages were defined in terms of interleaving of
sequential instruction steps in each thread of programs. However
this is no longer correct with modern architectures which allow
delayed write operations in memory and permutation of reads and
writes not related to the same memory location (TSO, PSO, RMO
architectures). Therefore the semantics of concurrent languages need
be revisited to take into account these new features.

For security, we already looked at programming primitives to define
contracts for multiparty secure sessions or for logs auditing which
could resist to malicious participants in strongly typed programming
languages (Ocaml or F#). Thus the use of these high-level
primitives inside programming languages lighten the burden of close
inspection for complex security protocols. All the effort is now
carried by the correctness proof of the compiling phase from the
source text of programs to low-level exchanges of messages using
cryptographic operations. These correctness proofs are incredibly
complex, and therefore one needs tools to help them. This is a
great part of the work done in 2010 in our project-team. We
developed several versions of the F7 language on top of F#, a
Caml-like language with types annotated by logical formulas. We used
F7 to develop the work on secure audits of logs and to prove the
correctness of implementations of SSL/TLS.

On the software side, we pursue the maintenance for the development
of Jocaml with additional constructs for object-oriented
programming, and for Hevea (a fast LaTeX to HTML translator). We
also continue the development of OTT – one tool for the working
semanticist – which has a growing set of users. More innovative are
the softwares developed along the two main themes of our present
research: the Memevents-Litmus-Diy-Dont suite of tools for
efficient analyses of weak memory models, the F7 typechecker, and
the secure multi-party sessions packages.

In 2010, Khartik Bhargavan won an ERC Starting Grant. His CRYSP
project, described further in this report, aims at Collaboratively
Building Cryptographically Secure Programs and their Proofs.
Pierre-Malo Deniélou defended his thesis (he is now postdoc at
Imperial College), Jade Alglave defended her thesis (she is now
postdoc at Oxford University), and Nataliya Guts will defend her PhD
on 11 January 2011 (and then will start a postdoc at U. of
Maryland). Jérémy Planul (ENS-Lyon and MPRI) accomplished his 2nd
year of PhD.

Since August 2006, J.-J. Lévy is also director of the Microsoft
Research-INRIA Joint Centre, in Orsay. K. Bhargavan, N. Guts,
J. Leifer, J. Planul and F. Zappa Nardelli are also active in this
centre, as members of the Secure Distributed Computations and
their Proofs, headed by C. Fournet (Many members of the Joint
Centre are former members of project-team Moscova).

Finally, we finish at end of 2010 the project PARSEC, funded by the
ANR (Agence Nationale de la Recherche), together with MIMOSA
and LANDE project-teams of INRIA and the team of Roberto Amadio at
CNRS-PPS, U. of Paris 7. This project is coordinated by G. Boudol.

[bookmark: uid4] Section:
 Overall Objectives
Highlights

Moscova is proud of producing the following important results in 2010:

	[bookmark: uid5] 2 PhDs were defended, another one will be defended on January 11, 2011.

	[bookmark: uid6] 1 ERC Starting Grant by K. Bhargavan.

	[bookmark: uid7] 2 papers presented at POPL 2010.

	[bookmark: uid8] 5 new original released softwares.

 Scientific Foundations

 	Scientific Foundations	[bookmark: uid10]Concurrency theory
	[bookmark: uid11]Type systems
	[bookmark: uid12]Formal security

 [bookmark: uid10] Section:
 Scientific Foundations
Concurrency theory

Milner started the theory of concurrency in 1980 at Edinburgh. He
proposed the calculus of communicating systems (CCS) as an algebra
modeling interaction [34] . This theory was amongst the
most important to present a compositional process
language. Furthermore, it included a novel definition of operational
equivalence, which has been the source of many articles, most of them
quite subtle. In 1989, R. Milner, J. Parrow and
D. Walker [35] introduced a new
calculus, the pi-calculus, capable of handling reconfigurable
systems. This theory has been refined by D. Sangiorgi (Edinburgh/INRIA
Sophia/Bologna) and others. Many variants of the pi-calculus have been
developed since 1989.

We developed a variant, called the
Join-calculus [11] , [12] ,
a variant easier to implement in a distributed environment. Its
purpose is to avoid the use of atomic broadcast to implement fair
scheduling of processes. The Join-calculus allows concurrent and
distributed programming, and simple communication between remote
processes. It was designed with locations of processes and channels.
It leads smoothly to the design and implementation of high-level
languages which take into account low-level features such as the
locations of objects.

The Join-calculus has higher-order channels as in the pi-calculus;
channels names can be passed as values. However there are several
restrictions: a channel name passed as argument cannot become a
receiver; a receiver is permanent and has a single location, which
allows one to identify channel names with their receivers. The loss of
expressibility induced by these restrictions is compensated by joined
receivers. A guard may wait on several receivers before triggering a
new action. This is the way to achieve rendez-vous between
processes. In fact, the notation of the Join-calculus is very near the
natural description of distributed algorithms.

The second important feature of the Join-calculus is the concept of
location. A location is a set of channels co-residing at the same
place. The unit of migration is the location. Locations are structured
as trees. When a location migrates, all of its sub-locations move too.

The Join-calculus, renamed Jocaml, has been fully integrated into
Ocaml. Locations and channels are new features; they may be
manipulated by or can handle any Ocaml values. Unfortunately the newer
versions of Ocaml do not support them. We are still planning for both
systems to converge.

[bookmark: uid11] Section:
 Scientific Foundations
Type systems

Types [36] are used in the theory of programming
languages to guarantee (usually static) integrity of
computations. Types are also used for static analysis of programs. The
theory of types is used in Moscova to ensure safety properties about
abstract values exchanged by two run-time environments; to define
inheritance on concurrent objects in current extensions of Jocaml; to
guarantee access control policies in Java- or C#-like libraries.

[bookmark: uid12] Section:
 Scientific Foundations
Formal security

Formal properties for security in distributed systems started in the
90's with the BAN (Burrows, Abadi, Needham) logic paper. It became
since a very active theory dealing with usual properties such as
privacy, integrity, authentication, anonymity, repudiation,
deniability, etc. This theory, which is not far from Concurrency
theory, is relevant with the new activity of Moscova in the
Microsoft Research-INRIA Joint Centre.

 Application Domains

 	Application Domains	[bookmark: uid14]Telecoms and Interfaces
	[bookmark: uid15]Software Engineering

 [bookmark: uid14] Section:
 Application Domains
Telecoms and Interfaces

Distributed programming with mobility appears in the programming of
the web and in autonomous mobile systems. It can be used for
customization of user interfaces and for communications between
several clients. Telecommunications is an other example application,
with active networks, hot reconfigurations, and intelligent
systems. For instance, France Telecom (Lannion) designs a system
programmed in mobile Erlang.

[bookmark: uid15] Section:
 Application Domains
Software Engineering

Security and Concurrency are two critical issues in software
engineering. Any methodology based on formal verification of secure
operations is fundamental in the ease of development of applications
based on multi-tasking and networking. For instance, Microsoft is much
interested by these topics.

 Software

 	Software	[bookmark: uid17]Memevents-Litmus-Diy-Dont
	[bookmark: uid19]F7 Typechecker
	[bookmark: uid20]OTT: Tool support for the working semanticist
	[bookmark: uid25]Secure Multi-party Sessions
	[bookmark: uid26]Jocaml
	[bookmark: uid29]Hevea

 [bookmark: uid17] Section:
 Software
Memevents-Litmus-Diy-Dont
Participants :
 Jade Alglave, Luc Maranget [correspondant] , Susmit Sarkar [U. of Cambridge, UK] .

We developed a tool suite for our project about Weak Memory
Models (see the relevant section).

In 2009, we implemented three tools: memevents (which checks
our models), litmus (which runs tests on actual machines)
and diy (which generates tests from concise specifications).
This year, we introduced a new tool and three official releases (with
documentation), see [31] . Our releases comprises all tools but
memevents which is kept for our internal usage. The new tool is:

	dont

	(included in diy with a total of 8500
lines of Ocaml, co-developed by Jade Alglave and Luc Maranget)
which automates the analysis of the memory model (for x86 or
Power). It outputs a memory model following the framework
of [24] .

We still access to the Power6 supercomputer in IDRIS (CNRS) for our
tests, but we also bought a Power7 machine in late 2010. It will allow
the new dont to perform deeper explorations of the Power
memory model, and hopefully confirm our model.

A description of litmus will be presented at TACAS'2011
(March–April, Saarbrücken).

A common work by J. Alglave, Delphine Longuet (LRI, Paris Sud) and
L. Maranget on Automatic Memory Model Exploration has also been submitted
to conference. This paper is oriented towards testing with the
dont tool.

[bookmark: uid19] Section:
 Software
F7 Typechecker
Participants :
 Karthikeyan Bhargavan [correspondant] , Cédric Fournet [MSR Cambridge] , Andrew D. Gordon [MSR Cambridge] , Nataliya Guts.

F7 is an enhanced typechecker for the F# programming language that
enables static checking of properties expressed as refinement types.

A refinement type is a base type qualified with a logical formula;
the formula can express invariants, preconditions, and
postconditions. F7 relies on type annotations, including
refinements, provided in specific interface files. While checking
code, F7 generates many logical problems which it solves by
submitting to Z3, an external theorem prover for first-order logic
(de Moura and Bjørner 2008). Finally, F7 erases all refinements and
yields ordinary F# modules and interfaces.

Our main aim is to use F7 for the verification of security-critical
programs. We have used it to verify implementations of access
control mechanisms, multi-party secure sessions, cryptographic
protocols for web services security and federated authentication,
and secure audit logs.

A first version of F7 was released in 2008.

In 2010, in collaboration with Andrew D. Gordon and Cédric Fournet, we
developed the second version of the typechecker with a completely new
set of libraries, as described in our paper “Modular Verification of
Security Protocol Code by Typing”.

In 2010, in collaboration with Nataliya Guts, we extended the
typechecker to support the automated verification of programs that use
both cryptography and higher-order functions, as described in our
paper “Typechecking Higher-Order Security Libraries”.

The typechecker is written in 16000 lines of F#, with an additional
cryptographic library of 9000 lines, and sample code of more than
12000 lines. Of these, the majority of the library and the samples
were written in 2010. The second version of F7 is due to be released
in December 2010.

[bookmark: uid20] Section:
 Software
OTT: Tool support for the working semanticist
Participants :
 Peter Sewell [U. of Cambridge] , Francesco Zappa Nardelli [correspondant] .

Ott is a tool for writing definitions of programming languages and
calculi. It takes as input a definition of a language syntax and semantics, in
a concise and readable ASCII notation that is close to what one would
write in informal mathematics. It generates output:

	[bookmark: uid21] a LaTeX source file that defines commands to build a typeset
version of the definition;

	[bookmark: uid22] a Coq version of the definition;

	[bookmark: uid23] an Isabelle version of the definition; and

	[bookmark: uid24] a HOL version of the definition.

Additionally, it can be run as a filter, taking a
LaTeX/Coq/Isabelle/HOL source file with embedded (symbolic) terms
of the defined language, parsing them and replacing them by typeset
terms.

The main goal of the Ott tool is to support work on large programming
language definitions, where the scale makes it hard to keep a
definition internally consistent, and to keep a tight correspondence
between a definition and implementations. We also wish to ease rapid
prototyping work with smaller calculi, and to make it easier to
exchange definitions and definition fragments between groups. The
theorem-prover backends should enable a smooth transition between use
of informal and formal mathematics.

The current version of Ott is about 25000 lines of Ocaml. The tool is
available from http://moscova.inria.fr/~zappa/software/ott
(BSD licence).

Since its release in December 2007, the tool has been used in several
projects, including a large proof of type preservation for the Ocaml
language (without modules) done by Scott Owens.

In 2010 we re-engineered the tool, which now reflects the structure of
the source definition in the generated output. This enables
interleaving Ott and theorem-prover definitions, granting extra
flexibility to the user and allowing complex languages to be
defined.

A paper describing the metalanguage used by Ott and its semantics
(including the new backend) appeared in the Journal of Functional
Programming [23] .

[bookmark: uid25] Section:
 Software
Secure Multi-party Sessions
Participants :
 Karthikeyan Bhargavan, Ricardo Corin [Universidad Nacional de Cordoba, Argentina] , Pierre-Malo Deniélou [correspondant, Imperial College] , Cédric Fournet [MSR Cambridge] .

Web page at http://www.msr-inria.inria.fr/projects/sec/sessions/ .

We have designed and implementated a compiler that, given high-level
multiparty session descriptions, generates custom cryptographic
protocols.

Our sessions specify pre-arranged patterns of message exchanges and data
accesses between distributed participants. They provide each
participant with strong security guarantees for all their messages.

Our compiler generates code for sending and receiving these messages,
with cryptographic operations and checks, in order to enforce these
guarantees against any adversary that may control both the network and
some session participants. We furthermore verify that the generated
code is secure by relying on a recent type system for cryptography.
Most of the proof is performed by mechanized type checking, of the
generated code, and does not rely on the correctness of our compiler.
We obtain the strongest session security guarantees to date in a model
that captures the actual details of protocol code.

Two central design goals guide our work on session
implementation. First, all the cryptography required to protect
compromised participants is completely hidden from the application
programmer, who may reason about the behaviour of a distributed system
as if it followed precisely the high level specification. (Thus all
correspondence properties at the abstract level carry through to any
distributed execution.) Second, all low-level network activity is in a
one-to-one relationship with high-level communication, thus no
additional messages are introduced.

Our compiler translates our session language to custom cryptographic
protocols, coded as ML modules (both for F# with .NET cryptographic
libraries, and for Ocaml with OpenSSL libraries), which can be linked to
application code for each party of the protocol. Our compiler combines a
variety of cryptographic techniques and primitives to produce compact
message formats and fast processing.

The compiler consists of about 6000 lines of F#. The trusted libraries
for networking, cryptographic primitives, and principals shared by all
session implementations have 780 lines of code (although their concrete
implementation mostly relies on much-larger system libraries).

[bookmark: uid26] Section:
 Software
Jocaml
Participants :
 Luc Maranget, Xavier Clerc [correspondant] .

Jocaml is an implementation of the join-calculus integrated into
Ocaml. With respect to previous join-language prototypes, the most
salient feature of the new prototype is a better integration into
Ocaml. We achieve binary compatibility with Ocaml, moreover Jocaml
releases now follow Ocaml releases. See previous year reports for
details on Jocaml. Jocaml is avaible
at http://jocaml.inria.fr . The current version is 3.12.0
(released in September [33]).

This new release features an extended Jocaml specific library that
provide programmers with an easier access to concurrency and
distribution:

	[bookmark: uid27] Some utilities to parse command line, organize client-server
connection, etc. This code was written partly by Xavier Clerc,
engineer at INRIA SED department.

	[bookmark: uid28] Some new abstractions of text channels help for writing text
oriented applications.

[bookmark: uid29] Section:
 Software
Hevea
Participant :
 Luc Maranget [correspondant] .

Hevea is a fast translator from full LaTeX to HTML, written in
Ocaml. Hevea is highly configurable with commands written in
LaTeX. Mathematics are rendered with UNICODE characters
for symbols and HTML tables for formatting. Hevea produces HTML 4.0,
enriched by css files. Hevea comes with Hacha companion, which
produces a set of HTML pages (for instance, one page per
chapter). Since it is very efficient and configurable, Hevea is adequate
for on-line manuals or teaching courses.

Hevea (first release in 1997) is still maintained and developed by
Luc Maranget. A continuous (although informal) collaboration exists
around Hevea, including Philip H. Viton (Ohio State University) for
the Windows port and Ralf Treinen (ENS Cachan) for all Debian
developments. For the record, Hevea consists in about 20000 lines
of Ocaml and about 5000 lines of packages sources written in
“almost TeX” (the language understood by Hevea).

This year saw a few developpements around Hevea, mostly for
maintenance.

 New Results

 	New Results	[bookmark: uid31]Weak Memory Models
	[bookmark: uid37]Relaxed-Memory Concurrency and Verified Compilation
	[bookmark: uid38]Models of Audit Logs
	[bookmark: uid39]Compiling Information Flow
Security to minimal Trusting Computing Bases
	[bookmark: uid40]Modular Verification of Security Protocol Code by Typing
	[bookmark: uid41]Security Programming with Refinement Types & Mobile Proofs
	[bookmark: uid42]Secure Sessions
	[bookmark: uid43]Integrating Typed and Untyped Code in a
Scripting Language

 [bookmark: uid31] Section:
 New Results
Weak Memory Models
Participants :
 Jade Alglave, Luc Maranget, Francesco Zappa Nardelli.

Multiprocessors are now dominant, but real multiprocessors do not
provide the sequentially consistent memory that is assumed by most
work on semantics and verification. Instead, they have subtle relaxed
(or weak) memory models, usually described only in ambiguous prose,
leading to widespread confusion.

We developed rigourous and accurate semantics for multiprocessor
programs above three architectures: x86, Power, and ARM. Each covers
the relaxed memory model, instruction semantics, and instruction
decoding, for fragments of the instruction sets, and is mechanised in
HOL or Coq.

A paper resuming our understanding of the x86 memory model appeared in
the Communications of the ACM [22] . Pankaj Pawan, during his 2
month long internship in Moscova, implement a devilish emulator of
x86-TSO. See also a survey at http://moscova.inria.fr/~zappa/projects/weakmemory .

Main of our research effort in 2010 was related with the achievement
of Jade Alglave's PhD and the design and implementation of
corresponding tools. All the axiomatic definition of weak memory
models covers both the x86 and the more relaxed Power model. These
definitions are stated in terms of events structures, which capture
the causality of reads and writes in memory.

We extended the Diy tool suite (http://diy.inria.fr).

This tool suite has three components:

	[bookmark: uid32] Litmus: this is a tool to run small tests in PowerPC or x86 assembly code
against real hardware. It collects the memory states observed during the
execution of these tests, allowing to observe which optimisations are enabled
by the hardware. A tool paper about Litmus has been submitted to TACAS 2011.

	[bookmark: uid33] Diy: this is a tool to automatically generate such small tests from concise
specifications. The strength of this tool lies in the fact that it allows to
generate tests highlighting a particular optimisation of a processor. Thus, we
can precisely state what a processor optimises or not. We used this tool to
establish an experimentally sound model for the PowerPC architecture (published
in CAV 2010), which is the subtler existing architecture.

	[bookmark: uid34] Dont: this is an automated front-end, addressing two issues (a paper about
this automated tool will be presented at TACAS'2011):

	[bookmark: uid35] conformance of a machine to a given memory model: the tool automatically
generally the (provably) exact set of tests to run to ensure that a given piece
of hardware conforms to a given memory model (i.e. that the model embraces
indeed all the behaviours observable on the hardware)/

	[bookmark: uid36] automatic exploration of a machine: the tool learns, by incremental
testing, the weak memory model exhibited by a given piece of hardware. This
allows to do model exploration without knowing a priori the model of the
machine, as in the PowerPC case.

In addition, we have implemented all the proofs described in Jade Alglave's
thesis in the Coq proof assistant (see the development at
http://moscova.inria.fr/~alglave/wmm).

[bookmark: uid37] Section:
 New Results
Relaxed-Memory Concurrency and Verified Compilation
Participants :
 Jaroslav Ševčík [U. of Cambridge] , Viktor Vafeiadis [U. of Cambridge] , Peter Sewell [U. of Cambridge] , Jagannathan Suresh [U. of Cambridge] , Francesco Zappa Nardelli.

We studied the semantic design and verified compilation of a C-like
programming language for concurrent shared-memory computation above
x86 multiprocessors. The design of such a language is made
surprisingly subtle by several factors: the relaxed-memory behaviour
of the hardware, the effects of compiler optimisation on concurrent
code, the need to support high-performance concurrent algorithms, and
the desire for a reasonably simple programming model. In turn, this
complexity makes verified (or verifying) compilation both essential
and challenging.

We defined a concurrent relaxed-memory semantics for ClightTSO, an
extension of CompCert's Clight in which the processor memory model
is exposed for high-performance code, and, building on CompCert, we
implemented and validated with correctness proofs a certifying
compiler from ClightTSO to x86. A paper describing our approach has
been accepted in POPL'2011 [30] , while the development is
available from http://www.cl.cam.ac.uk/~pes20/CompCertTSO .

[bookmark: uid38] Section:
 New Results
Models of Audit Logs
Participants :
 Karthikeyan Bhargavan, Cédric Fournet [MSR Cambridge] , Nataliya Guts, Francesco Zappa Nardelli.

In an optimistic approach to security, one can often simplify protocol
design by relying on audit logs, which can be analyzed a
posteriori. Such auditing is widely used in practice, but no formal
studies guarantee that the log information suffices to reconstruct
past runs of the protocol, to reliably detect, and provide evidence
of, any cheating.

In 2009 we developed a generic setup for auditability, and we
understood how type-checking can be used to check auditability.

In 2010 research focused on extending the F7 type-checker for
F#, so that it could easily deal with programs that use cryptography
and recursive data structures. Applications such as X.509 certificate
chains, secure logs for multi-party games, and XML digital signatures
are beyond the reach of automated cryptographic verifiers such as
ProVerif, since they require some form of induction. They can be
verified using refinement types (that is, types with embedded logical
formulas, tracking security events). However, this entails replicating
higher-order library functions and annotating each instance with its
own logical pre- and post-conditions. Instead, we equip higher-order
functions with precise, yet reusable types that can refer to the pre-
and post-conditions of their functional arguments, using generic
logical predicates. We implemented our method by extending the F7
typechecker with automated support for these predicates and we
evaluated our approach experimentally by verifying a series of
security libraries and protocols. Our results have been published in
FCS-PrivMod [32] and APLAS [27] .

Nataliya Guts completed her thesis [21] on "Auditability for
security protocols"; the defense is planned for January 2011.

[bookmark: uid39] Section:
 New Results
Compiling Information Flow
Security to minimal Trusting Computing Bases
Participants :
 Cédric Fournet [MSR Cambridge] , Jérémy Planul.

Modern computer architectures provide hardware support for reducing
dependencies upon Trusting Computing Bases (TCB) and for protecting
privileged operations. We present a security model for these
mechanisms in an imperative language with dynamic loading of code of
programs to make more secure. Then, on top of a preceeding work on the
Cflow (Cryptographic Implementations of Information-Flow Security)
compiler (see last year), we define program transformations to
simulate trusted hosts on untrusted machines by exploiting these
hardware security mechanisms available on modern architectures such as
trusted platform modules (TPM). Thus, we greatly reduce needed trust
assumptions for distributed programs.

A prototype compiler has been developed during a 3-month long
internship at Microsoft Research laboratory in Cambridge (April-July
2010) and is built on top of the Cflow compiler originally developed
by Gurvan Le Guernic (see last year).

This work will be presented at ESOP'2011 (Saarbrücken).

[bookmark: uid40] Section:
 New Results
Modular Verification of Security Protocol Code by Typing
Participants :
 Karthikeyan Bhargavan, Cédric Fournet [MSR Cambridge] , Andrew D. Gordon [MSR Cambridge] .

We propose a method for verifying the security of protocol
implementations. Our method is based on declaring and enforcing
invariants on the usage of cryptography. We develop cryptographic
libraries that embed a logic model of their cryptographic structures
and that specify preconditions and postconditions on their functions
so as to maintain their invariants. We present a theory to justify
the soundness of modular code verification via our method.

We implement the method for protocols coded in F# and
verified using F7, our SMT-based typechecker for refinement types,
that is, types carrying formulas to record invariants. As
illustrated by a series of programming examples, our method can
flexibly deal with a range of different cryptographic constructions
and protocols.

We evaluate the method on a series of larger case studies of
protocol code, previously checked using whole-program analyses based
on ProVerif, a leading verifier for cryptographic protocols. Our
results indicate that compositional verification by typechecking
with refinement types is more scalable than the best domainspecific
analysis currently available for cryptographic code.

[bookmark: uid41] Section:
 New Results
Security Programming with Refinement Types & Mobile Proofs
Participants :
 Nikhil Swamy [MSR Redmond] , Juan Chen [MSR Redmond] , Cédric Fournet [MSR Cambridge] , Karthikeyan Bhargavan, Jean Yang [MIT] .

Several recent papers develop lightweight refinement type systems for
ML-like languages and use them to verify the security of distributed
programs. In these languages, logical formulas flexibly express
policies for confidentiality, integrity, and access
control. Typechecking can then automatically verify programs meant to
enforce these policies; this involves constructing (or checking) a
proof for each of their logical refinement obligations.

These type systems offer diverse flavors of erasure for refinements
and their proofs. In source programs, refinement formulas may be
weakened by subtyping, to enable code reuse in less demanding
contexts. After typechecking, most proofs may be erased for
efficiency. Others may be replaced with cryptographic
evidence. Still, some proofs must be kept at runtime, so that they
may be communicated, stored, and re-checked by other programs.

We propose FERN, a core typed lambda-calculus that support
programming with refinement types, security proofs and erasure. FERN
enables powerful new security programming idioms, and facilitates the
side-by-side comparison of existing flavors of refinement types and
erasure. We prove type soundness and logical consistency, by
embedding FERN formulas into CiC. We also provide a typed embedding
of F7 into FERN.

We have implemented a compiler and runtime system for FERN. In
addition to programs that use the new features of FERN, our compiler
fully supports both F7 and Fine source code. FERN has runtime support
for mobile proofs, thereby enabling refinement type-safe distributed
programming. Selective erasure also produces efficiency gains—our
compiler produces verifiable binaries with 60% code size overhead
for proofs and types, as much as a 45x improvement over prior
compilers, while still enabling efficient bytecode verification.

We evaluate FERN on several applications, including, among others:
data provenance tracking, illustrating the use of proofs at run-time
with a custom proof kernel; verification of higher-order libraries
and their use in the construction of secure implementations of a
variety of cryptographic protocols, including zero-knowledge privacy
schemes and secure multi-party sessions; and several prior
benchmarks, for a quantitative assessment of proofs at runtime.

This paper has been submitted to PLDI'2011.

[bookmark: uid42] Section:
 New Results
Secure Sessions
Participants :
 Karthikeyan Bhargavan, Ricardo Corin [Universidad Nacional de Cordoba, Argentina] , Pierre-Malo Deniélou [Imperial College, London] .

Distributed applications can be structured as parties that exchange
messages according to some pre-arranged communication patterns.
These sessions (or contracts, or protocols) simplify distributed
programming: when coding a role for a given session, each party just
has to follow the intended message flow, under the assumption that
the other parties are also compliant.

In an adversarial setting, remote parties may not be trusted to play
their role. Hence, defensive implementations also have to monitor
one another, in order to detect any deviation from the assigned
roles of a session. This task involves low-level coding below
session abstractions, thus giving up most of their benefits.

We explore language-based support for sessions. We extend the ML
language with session types that express flows of messages between
roles, such that well-typed programs always play their roles. We
compile session type declarations to cryptographic communication
protocols that can shield programs from any low-level attempt by
coalitions of remote peers to deviate from their roles. Our main
result is that, when reasoning about programs that use our session
implementation, one can safely assume that all session peers comply
with their roles—without trusting their remote implementations.

Initial work was presented at CSF'07 [7] ,
TGC'07 [8]
and in a special issue of the Journal of Computer Security [10] .

We have added support for integrity and secrecy support for a global
store, and dynamic principal selection, which enables simple,
abstract reasoning on global control and data flows. In this
setting, we developed novel, mostly-automated security
proof techniques, where our compiler generates type annotations
(from a predicate logic), which are then mechanically checked
against actual executable code.

This work was presented in [6]

[bookmark: uid43] Section:
 New Results
Integrating Typed and Untyped Code in a
Scripting Language
Participants :
 Sylvain Lebresne [Purdue U.] , Johan Ostlund [Purdue U.] , Vitek Vitek [Purdue U.] , Tobias Wrigstad [Purdue U.] , Francesco Zappa Nardelli.

Many large software systems originate from untyped scripting language
code. While good for initial development, the lack of static type
annotations can impact code-quality and performance in the long run.

In collaboration with Jan Vitek and Tobias Wrigstad (Purdue
University), we studied an approach for integrating untyped code and
typed code in the same system to allow an initial prototype to
smoothly evolve into an efficient and robust program. We introduced
like types, a novel intermediate point between dynamic and static
typing. Occurrences of like types variables are checked statically
within their scope but, as they may be bound to dynamic values, their
usage is checked dynamically. Thus like types provide some of the
benefits of static typing without decreasing the expressiveness of
the language.

We provided a formal account of like types in a core object calculus
and evaluated their applicability in the context of a new scripting
language.

A paper describing our approach appeared in
POPL'2010 [29] , while the implementation in the Thorn
programming language (developed by Purdue University and IBM) is
available from http://www.thorn-lang.org .

 Contracts and Grants with Industry

 	Contracts and Grants with Industry	[bookmark: uid45]CRYSP: A Novel Framework for
Collaboratively Building Cryptographically Secure Programs and
their Proofs
	[bookmark: uid51]Grants with Industry
	[bookmark: uid52]National Initiatives
	[bookmark: uid54]European actions
	[bookmark: uid56]International Initiatives

 [bookmark: uid45] Section:
 Contracts and Grants with Industry
CRYSP: A Novel Framework for
Collaboratively Building Cryptographically Secure Programs and
their Proofs

The goal of this grant proposal is to develop a collaborative
specification framework and to build incremental, modular, scalable
verification techniques that enable a group of collaborating
programmers to build an application and its security proof
side-by-side. We propose to validate this framework by developing
the first large-scale web application and full-featured
cryptographic protocol libraries with formal proofs of security.

The five main challenges to be addressed by this project can be summarized as follows.

	[bookmark: uid46] Design a new collaborative security specification framework.
Security specifications for large applications are either non-existent
or monolithic (developed by a single security expert.) Although
collaborative software development has become the norm for application
development, there is no existing framework that enables developers to
collaboratively specify the security of their code. Our first goal
is to design a specification language that can be used to annotate the
security-critical components of source programs. The language must be
expressive enough to capture precise security assumptions for trusted
libraries and precise security requirements for untrusted libraries
and application code. Our second goal is to implement a source code
specification framework where collaborating programmers can add and
modify security specifications collaboratively and incrementally while
keeping their specifications consistent.

	[bookmark: uid47] Design and implement new incremental and modular security
verification techniques. The second challenge is to implement new
verification tools that can prove that a source program meets its
collaborative security specification as both program and specification
evolve. General program verification techniques are unsuitable for
this purpose since they typically require the whole program and its
specification to be verified together and hence do not scale to large
dynamic programs. We require that the verification techniques be
modular, that is, that it be possible for a single developer to verify
a new module without having to verify the full application. We require
that the verification techniques be incremental, that is, that it be
possible to use previous verification result to avoid re-verifying a
particular component unless a change in code or specification makes it
likely to fail.

	[bookmark: uid48] Design and implement tools to extract security-critical components
Large parts of real applications are irrelevant for security. Writing
security specifications for these parts is unnecessary and a waste of
effort. Moreover, by eliminating these parts, we can improve the
scalability of our verification techniques and simplify the program
that needs to be analyzed. Hence, the third challenge of this proposal
is to develop techniques that can automatically identify the
security-critical components of programs. As proof of correctness for
these techniques, we require a theorem that states that any attack on
the source program can be reduced to an attack on one of these
security-critical components.

	[bookmark: uid49] Build the first verified open source cryptographic protocol
library. Most secure networked applications are based upon
implementations of standard cryptographic protocols such as TLS,
SSH, IPSec, or Kerberos. Although the security of all such
applications depends upon the correctness of these protocol
implementations, there is no protocol library for which we have a
proof of correctness. Indeed, implementation flaws are often found
even in widely-distributed and thoroughly-vetted libraries, such as
OpenSSL2. Our fourth challenge is to build the first cryptographic
protocol library with a formal proof of security. Such a library is a
necessary component for building any secure web application. It is
also an excellent test case for collaborative specification and
incremental verification, since each protocol implementation often has
multiple modes and versions implemented by different
developers. Moreover, implementing multiple protocols within the same
library gives us the opportunity to share code and specifications
across protocols.

	[bookmark: uid50] Build the first web applications with formal security proofs. Our
final challenge is the culmination of the goals of this proposal. We
aim to use our specification framework, verification tools, and
verified libraries to build and verify secure web applications. A web
application introduces new challenges for the scalability of our
verification tools. Browsers and web servers are very large programs
and are typically impossible to verify, but the security of an
application should depend only on a small part of these programs. They
are therefore a good test case for our techniques for extracting
security-critical components from web applications.

This grant was awarded by the ERC under its 2010 Starting Independent
Researcher Grant scheme. The amount awarded was 1.4 M Euros over 5
years, beginnind in November 2009. We aim to hire 4 Ph.D. students, 2
Post-docs, and several interns over the course of the project.

[bookmark: uid51] Section:
 Contracts and Grants with Industry
Grants with Industry

see section on Joint Centre with Microsoft Research.

[bookmark: uid52] Section:
 Contracts and Grants with Industry
National Initiatives

[bookmark: uid53] PARSEC

The project PARCSEC, started at end of 2006, is finishing at end
2010. It is a project funded by the ANR (Agence Nationale de la
Recherche), together with MIMOSA, EVEREST, LANDE project-teams of
INRIA and the team of Roberto Amadio at CNRS-PPS, U. of Paris 7. This
project is coordinated by G. Boudol. This project is about the design
of programming languages for distributed applications and their
security properties.

[bookmark: uid54] Section:
 Contracts and Grants with Industry
European actions

[bookmark: uid55] Collaboration with Microsoft

In 2006, we started to work at the Microsoft Research-INRIA Joint
Centre in a common project with Cédric Fournet (MSR Cambridge), Gilles
Barthe (now at IMDEA), Benjamin Grégoire and Santiago Zanella (who
defended his PhD in December 2010). The project is named Secure
Distributed Computations and their Proofs and deals with security,
programming languages theory and formal proofs. This work is still
under active collaboration within all year 2010.

[bookmark: uid56] Section:
 Contracts and Grants with Industry
International Initiatives

We are Équipe Associée with Computer lab at University of Cambridge
(P. Sewell et al).

 Dissemination

 	Dissemination	[bookmark: uid58]Animation of the scientific community
	[bookmark: uid73]Teaching
	[bookmark: uid84]Participations to conferences, Seminars, Invitations

 [bookmark: uid58] Section:
 Dissemination
Animation of the scientific community

	[bookmark: uid59] K. Bhargavan and J. Leifer started a new MSR-INRIA Security
Seminar Series in Nov 2010 to comprise talks by high profile
speakers whose research directly impacts real systems: the hacking
of significant protocols, the design and construction of security
infrastructure, and the security proofs of software and hardware.
Talks include: “Strategic Healthcare Advanced Research Projects for
Security” by Carl Gunter (University of Illinois), “Attacking
ballot secrecy in Helios” by Ben Smyth (University of Birmingham),
and “Baaz – A System for Detecting Access Control
Misconfigurations” by Prasad Naldurg (Microsoft Research India) for
details).

	[bookmark: uid60] J. Leifer was a Program Committee member for JFLA 2011, Journées
francophones des langages applicatifs, which will be held 29 Jan-1
Feb 2011 in La Bresse, France.

	[bookmark: uid61] J.-J. Lévy is director of the Microsoft Research-INRIA Joint Centre,
see http://www.msr-inria.inria.fr . He participated to the
renewal of the Microsoft Research-INRIA agreement for next 4
years. In 2010, he participated to the renewal and creation of new
projects of so-called Track B (3 renewals + creation of 2 new
projects: AzureBrain by G. Antoniu and B. Thirion and CardiacIndex
by A. Crimisini and N. Ayache).

	[bookmark: uid62] J.-J. Lévy is member of the Scientific Committee of the “Fondation
Sciences Mathématiques de Paris” and participates to corresponding
meetings and juries.

	[bookmark: uid63] J.-J. Lévy is member of the Program Committee of Digiteo as
representative of INRIA–Paris-Rocquencourt.

	[bookmark: uid64] J.-J. Lévy participated to the jury of the PhD of Pierre-Malo
Deniélou (Paris 7, January 25), Jade Alglave (Paris 7, November 26),
Gustavo Petri (Sophia-Antipolis, November 29), Santiago Zanella
(ENSMP, December 9).

	[bookmark: uid65] L. Maranget is elected member of Comité technique
paritaire of INRIA, 1 meeting every 2 months about the general
politics of INRIA.

	[bookmark: uid66] F. Zappa Nardelli is member of the Comité Directeur of the
CEA-EDF-INRIA summer schools.

	[bookmark: uid67] F. Zappa Nardelli is the correspondent of the ANR ParSec Project
for the Moscova project-team.

	[bookmark: uid68] F. Zappa Nardelli is the correspondent of the Équipes
associées MM.

	[bookmark: uid69] F. Zappa Nardelli is member of the Comité de Suivi Doctoral
of INRIA Saclay–Île-de-France.

	[bookmark: uid70] F. Zappa Nardelli served in the recruiting committee of a
maîtres de conférences position at PPS, Université Denis
Diderot Paris 7.

	[bookmark: uid71] F. Zappa Nardelli served in the PhD Jury of Eleonora Sibilio,
University of Verona, Italy.

	[bookmark: uid72] F. Zappa Nardelli served in the PhD Jury of Serguei Lenglet,
Université de Grenoble.

[bookmark: uid73] Section:
 Dissemination
Teaching

Our project-team participates to the following courses:

	[bookmark: uid74] K. Bhargavan was Chargé d'Enseignement at École polytechnique,
teaching undergraduate courses on programming languages (2009-2010).

	[bookmark: uid75] October, K. Bhargavan was a visiting lecturer at the Indian
Institute of Technology, New Delhi. He taught a four-week course on
“Formal Security Analysis of Cryptographic Protocol Code”.

	[bookmark: uid76] “Concurrency”, Master Parisien de Recherche en informatique
(MPRI), 2010-2011, at U. of Paris 7, 23 students, (J. Leifer taught
the pi-calculus semantics: 15 hours plus the mid-term exam)

	[bookmark: uid77] “Concurrency”, Master Parisien de Recherche en informatique
(MPRI), 2009-2010, at U. of Paris 7, 30 students, (F. Zappa Nardelli
taught Proof Methods for Concurrent Programs: 12 hours and the final
examination);

	[bookmark: uid78] June, 7-11, F. Zappa Nardelli was teaching assistant at the
Introduction to the Coq proof assistant, CEA-EDF-INRIA summer
school (20 hours, about 30 students), Paris.

	[bookmark: uid79] March 22-26, F. Zappa Nardelli lectured about Weak-Memory Models at the
ECOOP summer school (2 hours, about 30 attendants), Istanbul.

	[bookmark: uid80] March-September, F. Zappa Nardelli supervised the 6 months long M1
internship of Yinjie XU (ENS Ulm) on Automatic Test Generation for
ML.

	[bookmark: uid81] J.-J. Lévy participated to the 2nd Asian-Pacific Summer School
on Formal Methods (23-24 August). He taught “Type free
lambda-calculus” and extended these lectures to a Master Course,
August-September, Tsinghua University, Beijing (15 students, 12h)
http://jeanjacqueslevy.net/courses/tsinghua/lambda .

We also had the following activity related to teaching:

	[bookmark: uid82] L. Maranget coordinates the 3 computer science problems
(4h + 2h + 2h) of the entrance examination at the Ecole
polytechnique in 2010.

	[bookmark: uid83] April 26, J.-J. Lévy gave a talk on Un petit bogue, un
grand boum for students of lycée at Science Ouverte (invited by
François Gaudel), Institut Henri Poincaré, Paris.

[bookmark: uid84] Section:
 Dissemination
Participations to conferences, Seminars, Invitations

[bookmark: id21503] Participations to conferences

	[bookmark: uid85] January, 29, J.-J. Lévy, F. Zappa Nardelli attended the ANR
ParSec meeting in Paris.

	[bookmark: uid86] January 19-23, J. Alglave, N. Guts, J.-J. Lévy, L. Maranget
attended the POPL conference in Madrid (Spain). F. Zappa Nardelli
presented his paper.

	[bookmark: uid87] January, K. Bhargavan gave a lecture at the INRIA Rocquencourt
Gallium seminar.

	[bookmark: uid88] March, 25-27, F. Zappa Nardelli visited Cambridge University for
collaboration with Peter Sewell and Suresh Jagannathan.

	[bookmark: uid89] March, K. Bhargavan gave a lecture at the ENS Cachan security
protocols groupe de travail.

	[bookmark: uid90] April 12-16, N. Guts, J.-J. Lévy attended the 37th CosyProofs
(Computational and Symbolic Proofs of Security) School on
theoretical computer science and French-Japanese collaboration
workshop), Barbizon.

	[bookmark: uid91] May, 5-6, F. Zappa Nardelli visited the University of Verona for
collaboration with Massimo Merro.

	[bookmark: uid92] May, 25, N.Guts attended the CryptoForma workshop in Paris. She gave a
talk on Pre- and Post-conditions for Security Typechecking.

	[bookmark: uid93] May, 28, F. Zappa Nardelli gave a talk on Ma mémoire est
faible at the "Unithé ou Café" meeting at INRIA Saclay.

	[bookmark: uid94] June, 22-25, F. Zappa Nardelli attended the ECOOP conference in
Maribor, Slovenia. He lectured at the ECOOP summer school.

	[bookmark: uid95] June 28-29, N. Guts, F. Zappa Nardelli and Pankaj Pawan attended
the ANR ParSec meeting in Sophia-Antipolis. N. Guts gave a talk on
Type Inference for F7. Pankaj Pawan gave a talk on its prototype of
a devilish emulator for x86TSO.

	[bookmark: uid96] June 30, F. Zappa Nardelli attended the Multicore day in Paris.

	[bookmark: uid97] July 9-21, J. Alglave, N. Guts, J. Leifer, J.-J. Lévy,
L. Maranget attended the FLOC conference in Edinburgh. J. Alglave
presented her paper at CAV (co-authored with L. Maranget). N. Guts
gave a talk on Pre- and Post-conditions for Security Typechecking at
FCS PrivMod workshop.

	[bookmark: uid98] September 15-16, J. Leifer attended as an invited speaker SAS
2010, the 17th International Static Analysis Symposium, Perpignan,
France, September 14-16, 2010. He gave a talk “Remembering
Robin...and a short introduction to secure sessions” at a special
session in memory of Robin Milner and Amir Pnueli.

	[bookmark: uid99] September, J. Alglave visited Aquinas Hobor during 2 weeks at
the U. of Singapore. She presented the Diy tool suite, and worked on
with the design of a logic to reason about racy programs with weak
memory models.

	[bookmark: uid100] November, J. Alglave and L. Maranget visited U. of Cambridge
(Peter Sewell, Susmit Sarkar, Derek Williams [engineer at IBM]).

	[bookmark: uid101] November 28, December 1, K. Bhargavan presented a paper at APLAS
2010, Shanghai.

	[bookmark: uid102] December 12-14, F. Zappa Nardelli visited U. of Cambridge.

[bookmark: id21756] Seminars

	[bookmark: uid103] January 26, J.-J. Lévy talked about “Un petit bogue, un grand
boum!” at Ecole Normale Supérieure, Paris.
http://www.diffusion.ens.fr/index.php?res=conf&idconf=2737# ,
vidéo en
http://www.diffusion.ens.fr/video_inc.php?video=2010_01_26_levy.mov

	[bookmark: uid104] February 9, J.-J. Lévy talked about “Preuves de programmes et
méthodes formelles” at the Microsoft TechDays, Paris.

	[bookmark: uid105] September 15, J.-J. Lévy talked about “the MSR-INRIA Joint
Centre” at Microsoft Research Asia, Beijing.

	[bookmark: uid106] December 3, J.-J. Lévy talked about “Proofs, Security, and
Computational Sciences” at the MSR Joint Institutes Workshop,
affiliated to Merging Knowledge, 5th Anniversary, Cosbi, Trento.

[bookmark: id21883] Invited visitors

	[bookmark: uid107] February 17-19, Peter Sewell, Suresh Jagannathan, and Jaroslav
Ševčík visited Rocquencourt for collaboration with
F. Zappa Nardelli.

	[bookmark: uid108] June-July, Pankaj Pawan (IIT Kanpur) was intern student in the
Moscova project team under the supervision of F. Zappa Nardelli.

	[bookmark: uid109] May-September, Yingjie Xu (ENS Ulm) was intern student in the
Moscova project team under the supervision of F. Zappa Nardelli.

	[bookmark: uid110] September, 21-24, Jaroslav Ševčík visited
Rocquencourt for collaboration with F. Zappa Nardelli.

	[bookmark: uid111] November, 14-16, M. Batty (University of Cambridge) visited
Rocquencourt for collaboration with F. Zappa Nardelli. He gave a
talk on the C++ memory model.

	[bookmark: uid112] November 22-December 17, Carl Gunter (University of Illinois)
visited Rocquencourt for collaboration with K. Bhargavan.

	[bookmark: uid113] November, 24-27, Peter Sewell visited Rocquencourt for
collaboration with F. Zappa Nardelli and serving in J. Alglave PhD
Jury.

 Bibliography
[bookmark: Major]Major publications by the team in recent years
	[1][bookmark: moscova-2010-bid31]
	G. Barthe, C. Fournet (editors)
Trustworthy Global Computing, Third Symposium, TGC 2007, Sophia-Antipolis, France, November 5-6, 2007, Revised Selected Papers, Lecture Notes in Computer Science, Springer, 2008, vol. 4912.

 	[2][bookmark: moscova-2010-bid34]
	20th IEEE Computer Security Foundations Symposium, CSF 2007, 6-8 July 2007, Venice, Italy, IEEE Computer Society, 2007.

 	[3][bookmark: moscova-2010-bid35]
	Proceedings of the 22nd IEEE Computer Security Foundations Symposium, CSF 2009, Port Jefferson, New York, USA, July 8-10, 2009, IEEE Computer Society, 2009.

 	[4][bookmark: moscova-2010-bid32]
	P. Ning, P. F. Syverson, S. Jha (editors)
Proceedings of the 2008 ACM Conference on Computer and Communications Security, CCS 2008, Alexandria, Virginia, USA, October 27-31, 2008, ACM, 2008.

 	[5][bookmark: moscova-2010-bid28]
	F. Besson, T. Blanc, C. Fournet, A. D. Gordon.
From Stack Inspction to Access Control: A Security Analysis for Libraries, in: 17th IEEE Computer Security Foundations Workshop, June 2004, p. 61–75.

 	[6][bookmark: moscova-2010-bid17]
	K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, J. J. Leifer.
Cryptographic Protocol Synthesis and Verification for Multiparty Sessions, in: CSF, IEEE Computer Society, 2009, p. 124-140.

 	[7][bookmark: moscova-2010-bid14]
	R. Corin, P.-M. Deniélou, C. Fournet, K. Bhargavan, J. J. Leifer.
Secure Implementations for Typed Session Abstractions, in: 20th IEEE Computer Security Foundations Symposium (CSF'07), Venice, Italy, IEEE, July 2007, p. 170–186.
http://www.msr-inria.inria.fr/projects/sec/sessions/

 	[8][bookmark: moscova-2010-bid15]
	R. Corin, P.-M. Deniélou.
A Protocol Compiler for Secure Sessions in ML, in: TGC, G. Barthe, C. Fournet (editors), Lecture Notes in Computer Science, Springer, 2007, vol. 4912, p. 276-293.

 	[9][bookmark: moscova-2010-bid33]
	R. Corin, P.-M. Deniélou, C. Fournet, K. Bhargavan, J. J. Leifer.
Secure Implementations for Typed Session Abstractions, in: CSF, IEEE Computer Society, 2007, p. 170-186.

 	[10][bookmark: moscova-2010-bid16]
	R. Corin, P.-M. Deniélou, C. Fournet, K. Bhargavan, J. J. Leifer.
A secure compiler for session abstractions, in: Journal of Computer Security, 2008, vol. 16, no 5, p. 573-636.

 	[11][bookmark: moscova-2010-bid2]
	C. Fournet, G. Gonthier.
The Reflexive Chemical Abstract Machine and the Join-Calculus, in: Proceedings of the 23rd Annual Symposium on Principles of Programming Languages (POPL), (St. Petersburg Beach, Florida), ACM, January 1996, p. 372–385.

 	[12][bookmark: moscova-2010-bid3]
	C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, D. Rémy.
A Calculus of Mobile Agents, in: CONCUR '96: Concurrency Theory (7th International Conference), Pisa, Italy, U. Montanari, V. Sassone (editors), LNCS, Springer, August 1996, vol. 1119, p. 406–421.

 	[13][bookmark: moscova-2010-bid25]
	C. Fournet, C. Laneve, L. Maranget, D. Rémy.
Inheritance in the join calculus, in: Journal of Logics and Algebraic Programming, September 2003, vol. 57, no 1–2, p. 23–29.

 	[14][bookmark: moscova-2010-bid29]
	A. Hobor, A. Appel, F. Zappa Nardelli.
Oracle Semantics for Concurrent Separation Logic, in: 17th European Symposium on Programming (ESOP'08), April 2007.

 	[15][bookmark: moscova-2010-bid26]
	J. J. Leifer, G. Peskine, P. Sewell, K. Wansbrough.
Global abstraction-safe marshalling with hash types, in: Proc. 8th ICFP, 2003, Extended Abstract of INRIA Research Report 4851.
http://hal.inria.fr/inria-00071732/fr/

 	[16][bookmark: moscova-2010-bid30]
	M. Merro, F. Zappa Nardelli.
Behavioural theory for Mobile Ambients, in: Journal of ACM, November 2005, vol. 52, no 6, p. 961–1023.

 	[17][bookmark: moscova-2010-bid27]
	M. Qin, L. Maranget.
Expressive Synchronization Types for Inheritance in the Join Calculus, in: Proceedings of APLAS'03, Beijing China, LNCS, Springer, November 2003.

 	[18][bookmark: moscova-2010-bid24]
	S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Braibant, M. O. Myreen, J. Alglave.
The semantics of x86-CC multiprocessor machine code, in: POPL, 2009, p. 379-391.

[bookmark: year]Publications of the year
Doctoral Dissertations and Habilitation Theses
	[19][bookmark: moscova-2010-bid20]
	J. Alglave.
A Shared Memory Poetics, Université Denis Diderot Paris 7, December 2010.

 	[20][bookmark: moscova-2010-bid19]
	P.-M. Deniélou.
Sûreté des abstractions et Sessions sécurisées dans les langages distribués, Université Denis Diderot Paris 7, January 2010.

 	[21][bookmark: moscova-2010-bid13]
	N. Guts.
Auditability for security protocols, Université Denis Diderot Paris 7, January 2011.

Articles in International Peer-Reviewed Journal
	[22][bookmark: moscova-2010-bid9]
	P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, M. O. Myreen.
x86-TSO: A Rigorous and Usable Programmer's Model for x86 Multiprocessors, in: Communications of the ACM, July 2010, vol. 53, no 7, p. 89–97, (Research Highlights).

 	[23][bookmark: moscova-2010-bid7]
	P. Sewell, F. Zappa Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, R. Strniša.
Ott: Effective Tool Support for the Working Semanticist, in: Journal of Functional Programming, January 2010, vol. 20, no 1, p. 70–122, Invited submission from ICFP 2007.

International Peer-Reviewed Conference/Proceedings
	[24][bookmark: moscova-2010-bid6]
	J. Alglave, L. Maranget, S. Sarkar, P. Sewell.
Fences in Weak Memory Models, in: CAV, 2010.

 	[25][bookmark: moscova-2010-bid21]
	J. Alglave, L. Maranget, S. Sarkar, P. Sewell.
Litmus: Running Tests Against Hardware, in: TACAS, 2011.

 	[26][bookmark: moscova-2010-bid22]
	K. Bhargavan, C. Fournet, A. D. Gordon.
Modular Verification of Security Protocol Code by Typing, in: ACM Symposium on Principles of Programming Languages (POPL'10), 2010, p. 445–456.

 	[27][bookmark: moscova-2010-bid12]
	K. Bhargavan, C. Fournet, N. Guts.
Typechecking Higher-Order Security Libraries, in: Proc. APLAS, Lecture Notes in Computer Science, Springer-Verlag, 2010.

 	[28][bookmark: moscova-2010-bid23]
	C. Fournet, J. Planul.
Compiling Information Flow Security to minimal Trusting Computing Bases, in: European Symposium on Programming (ESOP'11), 2011.

 	[29][bookmark: moscova-2010-bid18]
	T. Wrigstad, F. Zappa Nardelli, S. Lebresne, J. Ostlund, J. Vitek.
Integrating Typed and Untyped Code in a Scripting Language, in: POPL, 2010, p. 377-388.

 	[30][bookmark: moscova-2010-bid10]
	J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, P. Sewell, S. Jagannathan.
Relaxed-Memory Concurrency and Verified Compilation, in: POPL 2011, 2011, to appear.

Other Publications
	[31][bookmark: moscova-2010-bid5]
	J. Alglave, L. Maranget, S. Sarkar, P. Sewell.
diy, release 3.0, October 2010, Software and documentation available at.
http://diy.inria.fr/

 	[32][bookmark: moscova-2010-bid11]
	K. Bhargavan, C. Fournet, N. Guts.
Pre- and Post-Conditions for Security Typechecking, in: Workshop on Foundations of Security and Privacy (FCS-PrivMod 2010), 2010.

 	[33][bookmark: moscova-2010-bid8]
	L. Maranget, L. Mandel, M. Qin.
JoCaml release 3.12.0, September 2010.
http://jocaml.inria.fr/

[bookmark: References]References in notes
	[34][bookmark: moscova-2010-bid0]
	R. Milner.
Communication and Concurrency, International Series on Computer Science, Prentice Hall, 1989.

 	[35][bookmark: moscova-2010-bid1]
	R. Milner, J. Parrow, D. Walker.
A Calculus of Mobile Processes, Parts I and II, in: Journal of Information and Computation, September 1992, vol. 100, p. 1–77.

 	[36][bookmark: moscova-2010-bid4]
	B. C. Pierce.
Types and Programming Languages, The MIT Press, 2002.

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

