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2. Overall Objectives

2.1. Main themes
The aim of the Parsifal team is to develop and exploit proof theory and type theory in the specification and
verification of computational systems.

• Expertise: the team conducts basic research in proof theory and type theory. In particular, the team is
developing results that help with automated deduction and with the manipulation and communication
of formal proofs.

• Design: based on experience with computational systems and theoretical results, the team develops
new logical principles, new proof systems, and new theorem proving environments.

• Implementation: the team builds prototype systems to help validate basic research results.

• Examples: the design and implementation efforts are guided by examples of specification and veri-
fication problems. These examples not only test the success of the tools but also drive investigations
into new principles and new areas of proof theory and type theory.

The foundational work of the team focuses on structural and analytic proof theory, i.e., the study of formal
proofs as algebraic and combinatorial structures and the study of proof systems as deductive and computational
formalisms. The main focus in recent years has been the study of the sequent calculus and of the deep inference
formalisms.
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An important research question is how to reason about computational specifications that are written in a
relational style. To this end, the team has been developing new approaches to dealing with induction, co-
induction, and generic quantification. A second important question is of canonicity in deductive systems, i.e.,
when are two derivations “essentially the same”? This crucial question is important not only for proof search,
because it gives an insight into the structure and an ability to manipulate the proof search space, but also for
the communication of proof objects between different reasoning agents such as automated theorem provers
and proof checkers.

Important application areas currently include:

• Meta-theoretic reasoning on functional programs, such as terms in the λ-calculus

• Reasoning about behaviors in systems with concurrency and communication, such as the π-calculus,
game semantics, etc.

• Combining interactive and automated reasoning methods for induction and co-induction

• Verification of distributed, reactive, and real-time algorithms that are often specified using modal
and temporal logics

• Probabilistic and stochastic reasoning systems commonly used in security, networking, and biologi-
cal domains

2.2. Highlights
• Vivek Nigam (PhD from Parsifal September 2009) was awarded an Alexander von Humboldt

scholarship to join Martin Hoffman’s group in LMU (Munich, Germany) for two years (2010-2012)

3. Scientific Foundations

3.1. General overview
There are two broad approaches for computational specifications. In the computation as model approach,
computations are encoded as mathematical structures containing nodes, transitions, and state. Logic is used
to describe these structures, that is, the computations are used as models for logical expressions. Intensional
operators, such as the modals of temporal and dynamic logics or the triples of Hoare logic, are often employed
to express propositions about the change in state.

The computation as deduction approach, in contrast, expresses computations logically, using formulas, terms,
types, and proofs as computational elements. Unlike the model approach, general logical apparatus such as cut-
elimination or automated deduction becomes directly applicable as tools for defining, analyzing, and animating
computations. Indeed, we can identify two main aspects of logical specifications that have been very fruitful:

• Proof normalization, which treats the state of a computation as a proof term and computation
as normalization of the proof terms. General reduction principles such as β-reduction or cut-
elimination are merely particular forms of proof normalization. Functional programming is based on
normalization [49], and normalization in different logics can justify the design of new and different
functional programming languages [28].

• Proof search, which views the state of a computation as a a structured collection of formulas,
known as a sequent, and proof search in a suitable sequent calculus as encoding the dynamics of
the computation. Logic programming is based on proof search [53], and different proof search
strategies can be used to justify the design of new and different logic programming languages [52].

While the distinction between these two aspects is somewhat informal, it helps to identify and classify different
concerns that arise in computational semantics. For instance, confluence and termination of reductions are
crucial considerations for normalization, while unification and strategies are important for search. A key
challenge of computational logic is to find means of uniting or reorganizing these apparently disjoint concerns.
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An important organizational principle is structural proof theory, that is, the study of proofs as syntactic,
algebraic and combinatorial objects. Formal proofs often have equivalences in their syntactic representations,
leading to an important research question about canonicity in proofs – when are two proofs “essentially the
same?” The syntactic equivalences can be used ro derive normal forms for proofs that illuminate not only
the proofs of a given formula, but also its entire proof search space. The celebrated focusing theorem of
Andreoli [29] identifies one such normal form for derivations in the sequent calculus that has many important
consequences both for search and for computation. The combinatorial structure of proofs can be further
explored with the use of deep inference; in particular, deep inference allows access to simple and manifestly
correct cut-elimination procedures with precise complexity bounds.

Type theory is another important organizational principle, but most popular type systems are generally
designed for either search or for normalization. To give some examples, the Coq system [64] that implements
the Calculus of Inductive Constructions (CIC) is designed to facilitate the expression of computational features
of proofs directly as executable functional programs, but general proof search techniques for Coq are rather
primitive. In contrast, the Twelf system [57] that is based on the LF type theory (a subsystem of the CIC),
is based on relational specifications in canonical form (i.e., without redexes) for which there are sophisticated
automated reasoning systems such as meta-theoretic analysis tools, logic programming engines, and inductive
theorem provers. In recent years, there has been a push towards combining search and normalization in the
same type-theoretic framework. The Beluga system [58], for example, is an extension of the LF type theory
with a purely computational meta-framework where operations on inductively defined LF objects can be
expressed as functional programs.

The Parsifal team investigates both the search and the normalization aspects of computational specifications
using the concepts, results, and insights from proof theory and type theory.

3.2. Focused proof systems
Focusing [29] is a general observation that proofs in sequent calculi can be organized into an alternating pair
of dual phases – negative (sometimes called asynchronous) and positive (sometimes called synchronous). Each
phase consists of a maximal chain of inferences of the the same polarity, i.e., the phases represent synthetic,
macro, or “big step” inference rules for clumps of connectives of the same polarity. For example, focusing
tells us that the top level connective in the formula A⊗ (B ⊕ C), assuming A, B and C are negative, is the
ternary connective −⊗ (−⊕−) instead of the composition of two binary connectives; in particular, B ⊕ C
need not even be considered as a subformula. Indeed, focusing has proven to be crucial in controlling the
search behavior of automated theorem provers [1], [51].

Focusing is very important for logical specifications of computations because synthetic inference rules have a
direct correspondence with computational steps. When a system is encoded logically, we can identify at least
three levels of adequacy of the encoding:

• Global adequacy, wherein the encoding does not necessarily respect the structure of the computation,
but where soundness is ensured globally. For instance, an encoding of one proof system in another
is globally adequate if it preserves truth and provability.

• Full adequacy, where the structure of the entire computation is preserved. For encodings of proof
systems, full adequacy corresponds to a one-to-one correspondence between full proofs in the source
and the target of the encoding.

• Local adequacy, where the structure of individual steps of a computation is preserved, i.e., the
encoding is a bi-simulation. An encoding of a proof system is locally adequate if the encoding
preserves the individual inference rules of the proof system.

Locally adequate encodings give the best indication of the strength and generality of proof systems, but in all
but the most trivial cases such encodings only exist if the target of the encoding is a focused proof system. The
members of the Parsifal team have identified and proved a number of adequacy results in recent years [54],
[48], [56], [18].
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Focusing is therefore an important tool in the study of universality of proof systems. We already know
that linear logic can serve as a uniform meta-language for a number of proof systems, both classical and
intuitionistic, but these encoded systems generally are not able to communicate with each other. Liang and
Miller have been building proof systems for combinations of classical, intuitionistic, and linear logics that
allows proofs in these different systems to communicate via carefully chosen cuts.

3.3. Reasoning about logic specifications
A long term project of members of the Parsifal team has been the design of a powerful logic to reason about
computational specifications written in logic. Coming up with the design of a logic that allows reasoning richly
over relational specifications involving bindings in syntax has been a long standing problem, dating from at
least the early papers by McDowell and Miller [50] [7]. In 2010, Gacek, Miller, and Nadathur (a colleague from
the University of Minnesota) have completed the design the the logic G [39] that extends earlier work on this
topic by including a novel generalization to syntactic identity. This extensions involved adding the “nominal
abstraction” operator. With the addition of this predicate the resulting logic G gained enough expressive power
to allow for natural and declarative descriptions of invariants over logic-based context.

The presence of nominal abstraction in G makes it possible for that logic to express predicates that strongly
resemble those found in Pitt’s “nominal logic” [59]. While G and nominal logic different in several ways, it is
possible to find an interesting subset of both logics that do, in fact, correspond directly. In particular, Gacek
showed [21] that αProlog [37] (a subset of nominal logic) can be directly translated into subset of G.

The G logic is the logic that is implemented by the Abella prover of Andrew Gacek. This implementation
has permitted a large number of example theorems and proofs to be done completely formally within G. As a
result, we have gained a great deal of confidence in the expressive strengths of his logic.

3.4. Deep inference and categorical axiomatizations
Deep inference [42], [43] is a novel methodology for presenting deductive systems. Unlike traditional
formalisms like the sequent calculus, it allows rewriting of formulas deep inside arbitrary contexts. The new
freedom for designing inference rules creates a richer proof theory. For example, for systems using deep
inference, we have a greater variety of normal forms for proofs than in sequent calculus or natural deduction
systems. Another advantage of deep inference systems is the close relationship to categorical proof theory.
Due to the deep inference design one can directly read off the morphism from the derivations. There is no
need for a counter-intuitive translation.

One reason for using categories in proof theory is to give a precise algebraic meaning to the identity of proofs:
two proofs are the same if and only if they give rise to the same morphism in the category. Finding the right
axioms for the identity of proofs for classical propositional logic has for long been thought to be impossible,
due to “Joyal’s Paradox”. For the same reasons, it was believed for a long time that it it not possible to have
proof nets for classical logic. Nonetheless, Lutz Strassburger and François Lamarche provided proof nets for
classical logic in [3], and analyzed the category theory behind them in [45]. In [10] and [62], one can find a
deeper analysis of the category theoretical axioms for proof identification in classical logic. Particular focus
is on the so-called medial rule which plays a central role in the deep inference deductive system for classical
logic.

The following research problems are investigated by members of the Parsifal team:

• Find deep inference system for richer logics. This is necessary for making the proof theoretic results
of deep inference accessible to applications as they are described in the previous sections of this
report.

• Investigate the possibility of focusing proofs in deep inference. As described before, focusing is a
way to reduce the non-determinism in proof search. However, it is well investigated only for the
sequent calculus. In order to apply deep inference in proof search, we need to develop a theory of
focusing for deep inference.
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• Use the results on deep inference to find new axiomatic description of categories of proofs for various
logics. So far, this is well understood only for linear and intuitionistic logics. Already for classical
logic there is no common accepted notion of proof category. How logics like LINC can be given a
categorical axiomatisation is completely open.

3.5. Proof nets and atomic flows
Proof nets and atomic flows are abstract (graph-like) presentations of proofs such that all "trivial rule
permutations" are quotiented away. Ideally the notion of proof net should be independent from any syntactic
formalism. But due to the almost absolute monopoly of the sequent calculus, most notions of proof nets
proposed in the past were formulated in terms of their relation to the sequent calculus. Consequently we could
observe features like “boxes” and explicit “contraction links”. The latter appeared not only in Girard’s proof
nets [40] for linear logic but also in Robinson’s proof nets [60] for classical logic. In this kind of proof nets
every link in the net corresponds to a rule application in the sequent calculus.

The concept of deep inference allows to design entirely new kinds of proof nets. The work by Lamarche and
Strassburger [61], [46] have extended the theory of proof nets for multiplicative linear logic to multiplicative
linear logic with units. This seemingly small step—just adding the units—had for long been an open problem,
and the solution was found only by consequently exploiting the new insights coming from deep inference. A
proof net no longer just mimics the sequent calculus proof tree, but rather an additional graph structure that is
put on top of the formula tree (or sequent forest) of the conclusion. The work on proof nets within the team is
focused on the following two directions:

• Extend the work of Lamarche and Strassburger to larger fragments of linear logic, containing the
additives, the exponentials, and the quantifiers, as started in [63].

• Finding (for classical logic) a notion of proof nets that is deductive, i.e., can effectively be used for
doing proof search. An important property of deductive proof nets must be that the correctness can
be checked in linear time. For the classical logic proof nets by Lamarche and Strassburger [3] this
takes exponential time (in the size of the net). We hope that eventually deductive proof nets will
provide a “bureaucracy-free” formalism for proof search.

• Studying the normalization of proofs in classical logic using atomic flows. Although there is no
correctness criterion they allow to simplify the normalization procedure for proofs in deep inference,
and additionally allow to get new insights in the complexity of the normalization.

3.6. A systematic approach to cut-elimination
One of the main problems of proof theory is to prove cut elimination for new logics. Usually, a cut elimination
proof is a tedious case analysis, and, in general, it is very fragile and not modular [41]. That means that a
minor change in the deductive system makes the cut elimination proof break down, and for every new system
one has to start from scratch.

It is therefore an important research task, to find a more systematic approach to cut elimination proofs. That
is to say, to find general guidelines that ensure the cut elimination property for large classes of systems, in a
similar way as it has been done for display logics [32].

3.7. Proof search in type theory
Cross-fertilizing ideas between the proof search approach and the proof normalization approach, Lengrand
has interacted with the TypiCal (INRIA Saclay) and the πr2 (INRIA Rocquencourt) project-teams.

In proof assistants based on the proof normalization approach, or Type Theory, it is a hard challenge to design
and understand their proof search mechanisms. Based on ideas from [47], a major effort has been spent
on using concepts from the proof search approach, like focused proof systems, in order to rationalize the
implemented mechanisms.
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By doing so, we have helped improve the Coq system, by impacting the design of the new version of the tool’s
proof engine. One of these proof search mechanisms, known as pattern unification, has again become a hot
topic of Coq’s design, after Lengrand’s use of Coq to specify a particular algorithm has revealed a drastic need
for this missing feature.

It also emerged from Lengrand’s interaction with these project-teams, that bridging Type Theory with the
proof theory developed at Parsifal confirms the need for more extensionality on the functions programmed in
Coq. Efforts to add such extensionality are ongoing.

4. Application Domains
4.1. Automated theorem proving

Automated theorem proving has traditionally focused on classical first-order logic, but non-classical logics are
increasingly becoming important in the specification and analysis of software. Most type systems are based on
(possibly second-order) propositional intuitionistic logic, for example, while resource-sensitive and concurrent
systems are most naturally expressed in linear logic.

The members of the Parsifal team have a strong expertise in the design and implementation of performant
automated reasoning systems for such non-classical logics. In particular, the Linprover suite of provers [35]
continue to be the fastest automated theorem provers for propositional and first-order linear logic.

Any non-trivial specification, of course, will involve theorems that are simply too complicated to prove
automatically. It is therefore important to design semi-automated systems that allow the user to give high
level guidance, while at the same time not having to write every detail of the formal proofs. High level proof
languages in fact serve a dual function – they are more readily comprehended by human readers, and they tend
to be more robust with respect to maintenance and continued evolution of the systems. Members of the Parsifal
team, in association with other INRIA teams and Microsoft Research, have been building a heterogeneous
semi-automatic proof system for verifying distributed algorithms (see Section. 5.3).

On a more foundational level, the team has been developing many new insights into the structure of proofs
and the proof searh spaces. Two directions, in particular, present tantalizing possibilities:

• The concept of multi-focusing [36] can be used to expose concurrency in computational behavior,
which can in turn be exploited to prune areas of the proof search space that explore irrelevant
interleavings of concurrent actions.

• The use of bounded search, where the bounds can be shown to be complete by meta-theoretic
analysis, can be used to circumvent much of the non-determinism inherent in resource-sensitive
logics such as linear logic. The lack of proofs of a certain bound can then be used to justify the
presence or absence of properties of the encoded computations.

Much of the theoretical work on automated reasoning has been motivated by examples and implementations,
and the Parsifal team intends to continue to devote significant effort in these directions.

4.2. Mechanized metatheory
There has been increasing interest in the use of formal methods to provide proofs of properties of programs
and programming languages. Tony Hoare’s Grand Challenge titled “Verified Software: Theories, Tools,
Experiments” has as a goal the construction of “verifying compilers” for a world where programs would
only be produced with machine-verified guarantees of adherence to specified behavior. Guarantees could be
given in a number of ways: proof certificates being one possibility.

The POPLMark challenge [30] envisions “a world in which mechanically verified software is commonplace:
a world in which theorem proving technology is used routinely by both software developers and programming
language researchers alike.” The proposers of this challenge go on to say that a “crucial step towards achieving
these goals is mechanized reasoning about language metatheory.”
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The Parsifal team has developed several tools and techniques for reasoning about the meta-theory of program-
ming languages. One of the most important requirements for progamming languages is the ability to reason
about data structures with binding constructs upto α-equivalence. The use of higher-order syntax and nomi-
nal techniques for such data structures was pioneered by Miller, Nadathur and Tiu. The Abella system (see
Section. 3.3) implements a refinement of a number of these ideas and has been used to give full solutions to
sections of the POPLMark challenge in addition to fully formal proofs of a number of other theorems in the
meta-theory of the λ-calculus.

Another important feature for the meta-theory of progamming languages is the ability to reason about inductive
and co-inductive data structures and algorithms. While systems such as Coq [64] can represent such inductive
proofs as fixpoints, there is only very primitive support for general automated reasoning over inductive
definitions. The Tac system built in the Parsifal team [16] has been used to investigate automated inductive
theorem proving from a more foundational perspective. Tac can already perform a number of sophisticated
inductive proofs automatically.

Modern programming languages are increasingly incorporating distributed, concurrent, reactive, and real-time
elements. In such languages, it is often necessary to reason not about executions but about behaviors, that is,
it is necessary to compare the behavior of two different programs instead of characterizing all executions of
a single program. The Bedwyr tool [31] built at Parsifal is a symbolic model checker that can automatically
prove behavioral equivalence between π-calculus processes. It is a prototype of the kind of formal tools that
will be necessary for the programming languages of the future.

4.3. Malleable proof languages
One of the benefits of focused proof systems (see Section.3.2) is the ability to treat computational steps as
single synthetic rules. If the computational steps belong to a particular proof search strategy, then it becomes
possible to represent, precisely, the traces of that strategy as synthetic proofs.

Recently, members of the Parsifal team have shown how to specify a large variety of proof systems—including
natural deduction, the sequent calculus, and various tableau and free deduction systems—uniformly using
either focused linear logic [55], [54] or focused intuitionistic logic [44] as the meta-language. In the presence
of induction and co-induction, arbitrary finite computations can be embedded into single synthetic steps [16].

It seems clear that a suitably general focused proof system can serve as a universal proof language for a large
variety of proof systems. We can identify at least the following major challenges:

• Can focused proof systems serve as a framework for broad spectrum proof certificates for such
domains as proof-carrying code or proof-carrying authorization?

• Can one design a proof language based on focused proofs that allows for a variable amount of
verbosity in terms of a tunable trade off between simplicity of the proof checker (or, equivalently,
the amount of search that the proof checker is allowed to perform) and the size of proof certificates?

• Can one design a generic universal proof checker for a large variety of proof systems?

• How does (co)induction in a focused proof system compare to type systems such as Deduction
Modulo [38] or Superdeduction [34] that are parameterized on rewrite systems?

5. Software

5.1. Abella
Participants: Andrew Gacek, Dale Miller.
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The earliest versions of the Abella theorem prover was written while Gacek was a PhD student at the University
of Minnesota. During Gacek’s post doc in the Parsifal team, he and Miller have designed and implemented
more features into this prover. One such feature involves simplifying dependences among variables. More
explicitly, for Abella to correctly capture the relationship between “meta-variables” and binding, the prover
takes several raising steps that are responsible for explicitly accounting for the dependence between these
two kinds of variables. Given the typing discipline of Abella it is possible to statically determine that certain
possible dependences are, in fact, vacuous. Abella is now able to remove these vacuous dependences: such a
simplification makes it possible to make simplify many Abella proofs. Gacek, Miller, and Nadathur have also
published two papers describing the underlying theory of Abella.

For more information, see the Abella home page.

5.2. Tac
Participants: David Baelde, Dale Miller, Zachary Snow, Alexandre Viel.

Given the team’s expertise with the structure of proofs and techniques for automation, we have taken on the
implementation of the TAC prover. This prover, written in OCaml, has been used to prove a range of inductive
theorems in a completely automatic fashion. The architecture, which is the subject of the conference paper
[16], is based on recent work by the team on the structure of focused proofs for induction and co-induction.
A goal of this prover is to completely automate a large number of shallow theorems within an inductive and
co-inductive setting: proofs of more significant theorems would then be organized as being simple lists of
lemmas. While the automatic tactic of this prover will not likely prove particularly hard and deep theorems,
the evidence we have gathered so far is that it is useful for automatically proving a great number of routine
and shallow (but possibly tedious) theorems.

For more information, see the Tac home page.

5.3. TLAPS
Participants: Kaustuv Chaudhuri, Denis Cousineau [INRIA-MSR], Damien Doligez [INRIA Paris-
Rocquencourt, EPI Gallium], Leslie Lamport [Microsoft Research Silicon Valley], Stephan Merz [INRIA
Nancy Grand-Est, EPI Veridis], Hernán Vanzetto [Masters Student, Université Henri Poincaré, Nancy].

The TLA+ Proof System (TLAPS) [20] is a formal proof system for Leslie Lamport’s Temporal Logic of
Actions (TLA), a specification language for distributed, concurrent, reactive, and real time algorithms. It has
been in planning and prototype stages since 2006, and active development started in 2008. The first public
release was made in May 2010. Although the software is still young, it already has both industrial and academic
users.

The TLAPS is based on translation of a high level proof language into proof obligations for various backend
reasoning systems, which include both off the shelf automated reasoning systems (theorem provers, SMT
solvers, etc.) and systems that have been particularly engineered for the TLA language. The backend systems
may produce proofs that are then formally checked in Isabelle/TLA+, an axiomatization of TLA in the Isabelle
proof system. Some backend systems, such as decision procedures for arithmetic, do not currently produce
proofs.

Also in 2010, the TLAPS was integrated into the TLA Toolbox, an integrated development environment (IDE)
for many TLA-related tools, including the TLC model checker. The next public release will include support
for reasoning about liveness, which will involve implementing a new temporal reasoning framework.

For more information, see the TLAPS home page.

6. New Results
6.1. Proof normalization via atomic flows

Participants: Tom Gundersen, Lutz Strassburger.

http://abella.cs.umn.edu/
http://slimmer.gforge.inria.fr/tac/
http://www.msr-inria.inria.fr/~doligez/tlaps
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In a joint work with Alessio Guglielmi (University of Bath), Tom Gundersen and Lutz Strassburger have given
a novel method for normalizing proofs in classical logic, which is based on atomic flows. These are purely
graphical devices that abstract away from much of the typical bureaucracy of proofs. We make crucial use
of the path breaker, an atomic-flow construction that avoids some unpleasant termination problems, and that
can be used in any proof system with sufficient symmetry. We also give an original 2-dimensional-diagram
exposition of atomic flows, which helps us to connect atomic flows with other known formalisms. This work
has been published in LICS 2010 [24].

6.2. Typing lambda-terms with deep inference
Participants: Nicolas Guenot, Lutz Strassburger.

Nicolas Guenot and Lutz Strassburger have been working on extending the Curry-Howard correspondence to
the notion of deep inference. The result is a deductive system for intuitionistic logic within deep inference,
together with a cut elimination procedure on one side, and a term calculus on the other side. The terms are
a variation of lambda terms, and the normalization can simulate beta-reduction, and the rewrite rules are in
one-to-one correspondence to cut elimination reduction rules in the deductive system.

6.3. Subexponential logic
Participants: Kaustuv Chaudhuri, Dale Miller.

Subexponential logics are a family of refinements of classical logic that are each parameterized by a collection
of subexponential connectives arranged in a (pre)order. Although the concept is quite old, Miller and Nigam
have shown in 2009 that focused derivations in subexponential logics can adequately capture computations
in a programming language consisting of loops, iteration, and loads and stores in locations. More generally,
Miller has argued that subexponential logics have the potential to be the building blocks of future specification
languages for logical and computational systems [25].

Chaudhuri has shown that the classical and intuitionistic dialects of polarized subexponential logics have
the same expressive power, in the sense that partial derivations of sequents in one dialect are in one-to-one
correspondence with the partial derivations of the encoding of the sequents in the other dialect. This result
generalizes several known adequacy theorems between particular subexponential logics, and gives a new
adequacy result for encodings of intuitionistic logic in classical linear logic. This result was published in
CSL 2010 [18].

6.4. Dynamic polarity assignment
Participant: Kaustuv Chaudhuri.

It is well known that the polarity of the atomic propositions in linear logic is ambiguous – each atom may
be assigned a polarity arbitrarily without destroying the completeness of focused derivations. If the atoms are
assigned their polarity statically, that is, before proof search, then it is possible to obtain either forward chaining
(also known as program-directed reasoning) or backward chaining (also known as goal-directed reasoning)
semantics for logic programs based on the chosen assignments. However, it is not apparently possible to get
the intersection of these two strategies with purely static assignments. Chaudhuri has shown that delaying the
assignment of atomic polarities until the proof search context can justify a particular assignment can produce
such a combined strategy. This dynamic assignment strategy enjoys all the benefits of forward chaining
(locality, sharing, concurrency), but terminates and gives the same set of answers as backward chaining on
terminating programs. Indeed, we obtain the same semantics as the so-called magic sets transformation of
logic programs that is based on rewriting the original program and queries, but, since polarity assignment only
constrains the proofs and does not alter the programs, we avoid the non-compositional overhead of program
transformation. This work was published in LPAR 2010 [19].
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6.5. Heterogeneous verification for distributed algorithms
Participants: Kaustuv Chaudhuri, Damien Doligez [INRIA Paris-Rocquencourt, EPI Gallium], Leslie Lam-
port [Microsoft Research Silicon Valley], Stephan Merz [INRIA Nancy Grand-Est, EPI Veridis].

The TLA+ Proof System (TLAPS), developed at the INRIA-MSR joint centre in association with a number
of other INRIA teams, was released publicly. Chaudhuri designed and implemented the proof manager
component of the tool that interprets high level TLA+ proofs and delegates sub-problems to various backend
verifiers. The TLAPS was described in a paper published in IJCAR 2010 [20] and its construction was
elaborated and demonstrated further in an invited talk (given by Merz) at ICTAC 2010 [14]. Merz has also
demonstrated the TLAPS at a tutorial during IFM 2010.

One of the goals of this project was to give fully formalized correctness proofs of well known distributed
algorithms such as Lamport’s Bakery Algorithm for distributed mutual exclusion and the Paxos algorithm for
distributed consensus. In 2009, the safety part of the correctness of the Bakery algorithm was successfully
proved; this proof, initially several thousands of lines long, has been used as a benchmark for further
development of the TLAPS and has now shrunk to less than 100 lines after improvements to backend
reasoning; in the near future, we will be able to eliminate essentially the entire proof by using a new SMT
backend, now in development.

In 2010, significant progress has also been made in proving a number of Paxos algorithms correct, including a
novel unpublished version of Paxos that is Byzantine fault tolerant.

6.6. Complexity of λ-terms and intersection types
Participants: Stéphane Lengrand, Alexis Bernadet.

New complexity results have emerged from the study, in the framework of non-idempotent type systems, of
how lambda-calculi manage resources.

It is well-known that strongly normalising terms of the λ-calculus can be characterized by a type system using
intersections. A term is of type A ∩B if it is both of type A and type B.

Intersections are usually considered idempotent in that A ∩A = A. But recent studies have suggested that
dropping this property would enrich types with quantitative information.

The first result is a refinement, with quantitative information, of the characterisation of strongly normalising
terms : the relevant complexity measure here λ-terms is the worst-case complexity (the length of longest
reduction sequences). This quantitative information can now be read directly from typing trees. This result is
accepted for publication at the FOSSACS’2011 conference [33].

This unveiled a tight connection between non-idempotent intersections and the way data are erased and
duplicated in λ-calculus, suggesting a move to the framework with explicit substitutions. These allow a finer-
grained control of erasure and duplication in λ-calculus. The second result is a lift of the first one to the
explicit substitution framework, where our analysis of resource management becomes finer-grained and more
interesting.

The third result is a new set of semantical tools for λ-calculi, based on filters and orthogonality techniques.
These tools simplify previously known proofs of strong normalisation for traditional typing systems like
System F. λ-terms typable in System F are strongly normalising and therefore typable with intersection
types. In other words, the infinite polymorphism given by System F is in practice always reduced to the
finite polymorphism given by intersection types. Our tools explain how.

6.7. A focused sequent calculus interacting with decision procedures
Participants: Stéphane Lengrand, Mahfuza Farooque, Clément Houtmann.

This line of research pertains to the ANR-project PSI (described below).

http://ifm2010.loria.fr
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Inspired by techniques from SAT-modulo-theory, we have designed a focused sequent calculus that can interact
with theory-specific decision procedures. Such a procedure is assumed to be able to decide the consistency,
with respect to a particular theory, of conjunctions of atomic propositions (with free variables) written in the
theory’s syntax.

Our sequent calculus organises an interplay between a syntactic equality and a semantical / theory-based
equality. It is modular over the theories considered and the decision procedures plugged-in.

We conjecture that the instance of our modular sequent calculus with the procedure known as Congruence
Closure is sound and complete with respect to classical logic with Leibniz’s equality.

We have a candidate system for making this sequent calculus suitable for proof-search using meta-variables
and syntactic unification, whose cohabitation with theories is difficult (and is therefore absent from SAT-
modulo-theory solvers).

6.8. Towards a stochastic linear logic for biological computation
Participants: Kaustuv Chaudhuri, Joëlle Despeyroux.

In previous work, Joëlle Despeyroux and Kaustuv Chaudhuri have given an encoding of the synchronous
stochastic π-calculus in a hybrid extension of intuitionistic linear logic (called HyLL). Precisely, they have
shown that focused partial sequent derivations in the encoding are in bijection with stochastic traces. The
modal worlds are used to represent the rates of stochastic interactions, and the connectives of hybrid logic are
used to represent the constraints in the stochastic transition rules. These results were presented in an extended
report, available from HAL [27].

One of the most successful applications of the stochastic π-calculus has been in representing signal trans-
duction networks in cellular biology. An interesting application of this work would therefore be the direct
representations of biological processes in HyLL, the original motivation for this line of investigation. Further-
more, other stochastic systems can, at least in principle, be similarly encoded in HyLL, giving us the linguistic
ability to compare and combine systems represented using different stochastic formalisms.

This year, a new definition of the stochastic constraints part of the logic was given. While the new definition
is more general than the previous one, it is still not yet satisfactory; More work is needed to provide hyll with
the expressiveness of the traditional temporal logic used to reason on biological computations.

7. Other Grants and Activities

7.1. National initiatives
7.1.1. INFER: ANR on the Theory and Application of Deep Inference

Participants: Dale Miller, Lutz Straßburger.

The ANR-project Blanc titled “INFER: Theory and Application of Deep Inference” that is coordinated by
Lutz Straßburger has been accepted in September 2006. Besides Parsifal, the teams associated with this effort
are represented by François Lamarche (INRIA-Loria) and Michel Parigot (CNRS-PPS). Among the list of
theoretical problems there is the fundamental need for a theory of correct identification of proofs, and its
corollary, the development of a really general and flexible approach to proof nets. A closely related problem
is the extension of the Curry-Howard isomorphism to these new representations. Among the list of more
practical problems to be consider is the question of strategy and complexity in proof search, in particular for
higher order systems. These questions are intimately related to how proofs themselves are formulated in these
systems. Given their common grounding in rewriting theory, the proposal plans to deepen the relationship
between deep inference and well established techniques like deduction modulo and unification for quantifiers.
The proposal also plans to explore the formulation and use of more “exotic” logical systems, for example,
non-commutative logics, that have interesting applications, such as in linguistics and quantum computing.
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7.1.2. PSI: ANR on Proof Search control in Interaction with domain-specific methods
Participant: Stéphane Lengrand.

Stephane Lengrand is the scientific leader of the ANR-project Jeunes chercheurs entitled “Proof Search control
in Interaction with domain-specific methods”, which started in September 2009. Other founding members are
among the INRIA project-team “TypiCal” : G. Faure and A. Mahboubi. Since the project started, a Ph.D.
student has joined the project’s research effort, and another one (Mahfuza Farooque) has been recruited on
the project’s funds for three years, starting on 1 October 2010. A one-year post-doc position, funded by
the project, has been offered to a candidate who should be joining the team in 2011. The project aims at
organising the interaction between generic proof-search techniques as developed at Parsifal with decision
procedures for specific theories. The project has set up a regular workgroup with experts on SAT-modulo-
theory and developers of the Alt-Ergo solver at the INRIA project-team “Proval”. Importing techniques from
SAT-modulo-theory (or automated reasoning) to a framework where proof objects are being dynamically
constructed by proof-search is the desired objective of this collaboration for the PSI-project. This objective
converges with theirs in their efforts to extend the capabilities of the Alt-Ergo solver.

7.1.3. CPP: ANR on Confidence, Proofs, and Probabilities
Participants: Ivan Gazeau, Dale Miller.

The ANR Blanc titled “CPP: Confidence, Proofs, and Probabilities” has started 1 October 2009. This
grant brings together the following institutions and individuals: LSV (Jean Goubault-Larrecq), CEA LIST
(Eric Goubault, Olivier Bouissou, and Sylvie Putot), INRIA Saclay (Catuscia Palamidessi, Dale Miller, and
Stephane Gaubert), Supelec L2S (Michel Kieffer and Eric Walter), and Supelec SSE (Gilles Fleury and Daniel
Poulton). This project proposes to study the joint use of probabilistic and formal (deterministic) semantics and
analysis methods, in a way to improve the applicability and precision of static analysis methods on numerical
programs. The specific long-term focus is on control programs, e.g., PID (proportional-integral-derivative)
controllers or possibly more sophisticated controllers, which are heavy users of floating-point arithmetic and
present challenges of their own. To this end, we shall benefit from case studies and counsel from Hispano-Suiza
and Dassault Aviation, who will participate in this project, but preferred to remain formally non-members, for
administrative reasons.

7.1.4. Panda: ANR on Parallelism and Distribution Analysis
Participant: Dale Miller.

The ANR Blanc titled “Panda: Parallelism and Distribution Analysis” has started 1 October 2009. This project
brings together researchers from INRIA Saclay (Comète and Parsifal), CEA LIST, MeASI as well labs in Paris
(LIPN, PPS, LSV, LIP, LAMA), and on the Mediterranean (LIF, IML, Airbus). Scientifically, this proposal
deals with the validation of concurrent and distributed programs, which is difficult because the number of its
accessible states is too large to be enumerated, and even the number of control points, on which any abstract
collecting semantics is based, explodes. This is due to the great number of distinct scheduling of actions in
legal executions. This adds up to the important size of the codes, which, because they are less critical, are
more often bigger. The objective of this project is to develop theories and tools for tackling this combinatorial
explosion, in order to validate concurrent and distributed programs by static analysis, in an efficient manner.
Our primary interest lies in multithreaded shared memory systems. But we want to consider a number of
other paradigms of computations, encompassing most of the classical ones (message-passing for instance as
in POSIX or VXWORKS) as well as more recent ones.

7.2. European initiatives
7.2.1. Structural and Computational Proof Theory

Participants: Kaustuv Chaudhuri, Nicolas Guenot, Dale Miller, Lutz Straßburger.
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Structural is an ANR-FWF project submitted to the “Programme Blanc International Annexe projets franco-
autrichiens.” This project, which involves Parsifal, the University of Paris 7, and the University of Vienna, was
accepted in December 2010 and will start in 2011.

7.3. International initiatives
7.3.1. REDO: Redesigning logical syntax

Participants: Nicolas Guenot, Dale Miller, Lutz Straßburger, François Wirion.

The REDO project is an INRIA funded ARC between INRIA Nancy Grand Est, the University of Bath, and
INRIA Saclay – Île-de-France. It started in January 2009 and lasts 2 years. Coordinator is Lutz Straßburger.

7.3.2. Slimmer: an INRIA and NSF funded international team
Participants: David Baelde, Andrew Gacek, Dale Miller.

Slimmer stands for Sophisticated logic implementations for modeling and mechanical reasoning is an “Equipe
Associée” with seed money from INRIA. This project is initially designed to bring together the Parsifal
personnel and Gopalan Nadathur’s Teyjus team at the University of Minnesota (USA). Separate NSF funding
for this effort has also been awards to the University of Minnesota. We are planning to expand the scope
of this project to include other French and non-French sites, in particular, Alwen Tiu (Australian National
University), Elaine Pimentel (Universidade Federal de Minas Gerais, Brazil) and Brigitte Pientka (McGill
University, Canada).

8. Dissemination

8.1. Scientific co-ordination
• Dale Miller has served on the following programme committees:

1. LPAR-17: 17th International Conference on Logic for Programming, Artificial Intelli-
gence, and Reasoning, Yogyakarta, Indonesia, 11–15 October

2. IFIP-TCS 2010: International Conference on Theoretical Computer Science, part of the
World Computer Congress in Brisbane, Australia, 20–23 September

3. Workshop on Proof Systems for Program Logics, FLoC 2010, Edinburgh, United King-
dom, 10 July

4. Workshop on Logics for Agents and Mobility, FLoC 2010, Edinburgh, United Kingdom,
15 July

5. Workshop on Proof-Search in Type Theories, FLoC 2010, Edinburgh, United Kingdom,
15 July

6. Workshop on Programming Languages for Mechanized Mathematics Systems (PLMMS),
5 July

He also serves on the editorial board of the following journals:

– ACM Transactions on Computational Logic (ToCL). Editor-in-Chief since 1 June 2009;
Area editor for Proof Theory since 1999

– Journal of Automated Reasoning, published by Springer. Member of Editorial Board since
2010

– Journal of Applied Logic, published by Elsevier. Area editor for “Type Theory for Theorem
Proving Systems” since 2003

– Journal of Logic and Computation, published by Oxford University Press. Associate editor
since 1989



14 Activity Report INRIA 2010

– Journal of Functional and Logic Programming, published by European Association for
Programming Languages and Systems (EAPLS). Permanent member of the Editorial
Board. 1996–2010

His other professional duties include:

– Member of the “comité d’enseignement et recherche du Département d’Informatique de
l’École Polytechnique (DIX)”, from October 2010

– Member of the “comité de sélection sur le poste 27PR90 ‘Logique et vérification”’ at
Rennes 1, May 2010.

– Member of the “comité de programmes”, Digiteo, during 2010

• Stéphane Lengrand has served on the following programme committees:

1. LICS-25: Twenty-Fifth Annual IEEE Symposium on Logic In Computer Science (LICS
2010), Edinburgh, United Kingdom, 11–14 July

2. Workshop on Proof-Search in Type Theories, FLoC 2010, Edinburgh, United Kingdom,
15 July

3. Workshop on Classical Logic and Computation, colocated with MFCS’2010 and
CSL’2010, Brno, Czech Republic, 21–22 August

• Lutz Straßburger organized the third REDO meeting in Bath, UK, 14–16 September

• Kaustuv Chaudhuri serves on the “commission développement technologique (CDT)” for INRIA
Saclay – Île-de-France since February 2010

Parsifal has also hosted the following short term scientific visitors:

• Murdoch J. Gabbay, Lecturer, Heriott-Watt University, Edinburgh, United Kingdom, 2–5 January &
4–9 October & 27-31 October & 11–18 November & 22–28 December,

• Dan R. Ghica, Senior Lecturer, University of Birmingham, United Kingdom, 14–25 November

• Chuck Liang, Associate Professor, Hofstra University, NY, USA, 22 June – 2 July & 9–18 December

• Gopalan Nadathur, Professor, University of Minnesota, MN, USA, 17–30 May and 3–9 December
2010.

8.2. Teaching
• Dale Miller taught 12 hours at MPRI (Master Parisien de Recherche en Informatique) in the Course

2-1: Logique linéaire et paradigmes logiques du calcul.

• Dale Miller taught 10 hours in a graduate course at the University of Milan for one week in March
2010.

• Lutz Straßburger taught a course Introduction to Proof Theory at ESSLLI 2010 in Copenhagen in
August 2010.
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