

[image: cover]

phoenix
Programming Language Technology For Communication Services
2010 Research Team Activity Report
	Bordeaux - Sud-Ouest

	 Field :
	 Networks, Systems and Services, Distributed Computing

Theme :
Distributed Systems and Services
Presentation of the
		Project-Team

	Members
	Overall Objectives	[bookmark: uid3]Overall Objectives
	[bookmark: uid7]Highlights

	Scientific Foundations	[bookmark: uid18]Introduction
	[bookmark: uid22]Adaptation Methodologies
	[bookmark: uid23]Adaptation in Systems Software
	[bookmark: uid24]Adaptation Tools and Techniques

	Application Domains	[bookmark: uid26]Introduction
	[bookmark: uid27]Pervasive Computing Systems
	[bookmark: uid33]Telephony Services

	Software	[bookmark: uid35]DiaSuite: a Development Environment for
Pervasive Computing Applications
	[bookmark: uid47]Pantagruel: a Visual Domain-Specific
Language for Ubiquitous Computing

	New Results	[bookmark: uid50]Leveraging Software Architectures
to Guide and Verify the Development of Sense/Compute/Control
Applications
	[bookmark: uid55]A Domain-Specific Approach to
Architecturing Error Handling in Pervasive Computing
	[bookmark: uid60]SIP as a Universal Communication
Bus: A Methodology and an Experimental Study

	Contracts and Grants with Industry	[bookmark: uid65] Designing and developing
simulation capabilities for network-centric systems – Industrial
Fellowship (CIFRE / Thales)
	[bookmark: uid66]Integrating non-functional
properties in a Design Language and its execution environment –
Industrial Fellowship (CIFRE / Thales)
	[bookmark: uid70]SmartImmo: Towards intelligent and
environmentally-friendly buildings (french competitiveness pole)

	Other Grants and Activities	[bookmark: uid72]International Collaborations
	[bookmark: uid75]Visits and Invited Researchers

	Dissemination	[bookmark: uid84]Animation of the scientific community
	[bookmark: uid103]Participation in Popular Science
Events
	[bookmark: uid108]Teaching
	[bookmark: uid111]Presentations and Invitations
	[bookmark: uid117]PhD Thesis

	Bibliography
		Major publications
	Publications of the year
	References in notes

The Phoenix group is located at the INRIA Bordeaux-Sud Ouest center.
Phoenix is an INRIA Project-Team joint with University of Bordeaux and CNRS
(LaBRI, UMR 5800).

Section: Members
Research Scientist
Emilie Balland [INRIA Junior Researcher]
Faculty Member
Charles Consel [Team Leader, Professor, ENSEIRB, HdR]
External Collaborator
Julia Lawall [Associate Professor, University of Copenhagen (DIKU)]
Technical Staff
Benjamin Bertran [Associate Engineer, from December 17, 2007]
Ghislain Deffrasnes [Associate Engineer, from October 1, 2009]
PhD Students
Julien Mercadal [Ministerial scholarship, from
October 1, 2006 to April 30 2010, University of Bordeaux and INRIA
Research Assistant from May 1, 2010 to October 31, 2010]
Zoé Drey [Research Assistant, from November 1, 2009 to April 31, 2010, INRIA and from May 1, 2010 to July 31, 2010, University of Bordeaux]
Damien Cassou [Ministerial scholarship, from October 1, 2007 to September 30, 2010, University of Bordeaux and Research Assistant, from October 1, 2010, University of Bordeaux]
Julien Bruneau [Thales scholarship, from October 1, 2008]
Henner Jakob [INRIA scholarship, from May 1, 2008]
Hongyu Guan [Region scholarship, from February 9, 2009]
Pengfei Liu [INRIA scholarship, from October 1, 2009]
Stéphanie Gatti [Thales scholarship, from February 1, 2010]
Quentin Enard [Thales scholarship, from February 1, 2010]
Post-Doctoral Fellow
Nicolas Loriant [INRIA scholarship, from October 1, 2009, to September 30, 2010]

Administrative Assistant
Sylvie Embolla [Group Assistant, from September 4, 2006]

 Overall Objectives

 	Overall Objectives	[bookmark: uid3]Overall Objectives
	[bookmark: uid7]Highlights

 [bookmark: uid3] Section:
 Overall Objectives
Overall Objectives

A host of networked devices are populating smart spaces that become
prevalent in an increasing number of areas, including supply chain
management (e.g., parcel tracking), monitoring (e.g., building
surveillance and patient monitoring) and home and building automation
(e.g., control of energy consumption). This situation raises a number
of challenges (1) safety and security because of the interweaving of
these smart spaces in our daily life, (2) productivity because of a
high demand of applications matching the wide range of user needs, and
(3) abstraction because of the combination of expertise areas involved
in smart spaces.

To address these challenges, we develop a software engineering
approach that is dedicated to services orchestrating networked devices:

	[bookmark: uid4] the specification of robust orchestrating services based on
innovative Domain-Specific Languages (DSLs),

	[bookmark: uid5] the study of the communication layers underlying these services to
improve flexibility and performance,

	[bookmark: uid6] the application to concrete areas such as pervasive computing or
IP telephony to validate our approach.

[bookmark: uid7] Section:
 Overall Objectives
Highlights

	[bookmark: uid8] DiaSuite release in October 2010: this release has been the
occasion for various demonstrations:

	[bookmark: uid9] during scientific events: the Eigth Annual IEEE
International Conference on Pervasive Computing and
Communications [14] (PerCom
2010) and the 25th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications [15] (OOPSLA 2010);

	[bookmark: uid10] during popular science events: laying of the foundation
stone for the INRIA Bordeaux buildings in September and
”fête de la science” in October;

	[bookmark: uid11] during industrial events: INRIA industrial meetings in the
topic of ”industries du numérique pour la santé” in April,
kickoff meetings with Bouygues Telecom in June and September.

	[bookmark: uid12] Initiation of technology transfer with Bouygues Telecom in
December 2010: this transfer will consist of a porting of DiaSuite
on the Bouygues set-top box for domotic applications.

	[bookmark: uid13] Our work in design-driven development received this year a
significant international visibility with the publication in
leading conferences in the domain of object-oriented programming
languages and software engineering:

	[bookmark: uid14] Conference on Object-Oriented Programming Systems,
Languages, and Applications [18] (OOPSLA 2010),

	[bookmark: uid15] International Conference on Software
Engineering [16] (ICSE 2011).

	[bookmark: uid16] Organization of the workshop in Applications of Cognitive
Assistance for Persons with Intellectual Disabilities in
September 2010: this
workshop gives concrete expression to a new application area for
our research group, opening up a host of research opportunities
and collaborations.

 Scientific Foundations

 	Scientific Foundations	[bookmark: uid18]Introduction
	[bookmark: uid22]Adaptation Methodologies
	[bookmark: uid23]Adaptation in Systems Software
	[bookmark: uid24]Adaptation Tools and Techniques

 [bookmark: uid18] Section:
 Scientific Foundations
Introduction

Our proposed project builds upon results previously obtained by
the Compose research group whose aim was to study new approaches to
developing adaptable software components in the domain of systems
and networking. In this section, we review the accomplishments of
Compose, only considering the ones achieved by the current project
members, to demonstrate our expertise in the key areas underlying
our project, namely:

	[bookmark: uid19] Programming language technology: language design and implementation,
domain-specific languages, program analysis and program
transformation.

	[bookmark: uid20] Operating Systems and Networking: design, implementation and
optimization.

	[bookmark: uid21] Software engineering: software architecture, methodologies,
techniques and tools.

By combining expertise in these areas, the research work of the
Compose group contributed to demonstrating the usefulness of
adaptation methodologies, such as domain-specific languages, and the
effectiveness of adaptation tools, such as program specializers. Our
work aimed to show how adaptation methodologies and tools could be
integrated into the development process of real-size software
components. This contribution relied on advances in methodologies to
develop adaptable programs, and techniques and tools to adapt these
programs to specific usage contexts.

[bookmark: uid22] Section:
 Scientific Foundations
Adaptation Methodologies

Although industry has long recognized the need to develop adaptable
programs, methodologies to develop them are still at the research
stage. We have presented preliminary results in this area with a
detailed study of the applicability of program specialization to
various software architectures [33] .
Our latest contributions in this area span from a revolutionary
approach based on the definition of programming languages, dedicated
to a specific problem family, to a direct exploitation of
specialization opportunities generated by a conventional programming
methodology.

[bookmark: id19194] Domain-Specific languages

DSLs represent a promising approach to modeling a problem family. Yet,
this approach currently suffers from the lack of methodology to design
and implement DSLs. To address this basic need, we have introduced the
Sprint methodology for DSL
development [25] . This methodology bridges the
gap between semantics-based approaches to developing general-purpose
languages and software engineering. Sprint is a complete software
development process starting from the identification of the need for a
DSL to its efficient implementation. It uses the denotational
framework to formalize the basic components of a DSL. The semantic
definition is structured so as to stage design decisions and to
smoothly integrate implementation concerns.

[bookmark: id19227] Declaring adaptation

A less drastic strategy to developing efficient adaptable programs
consists of making specific issues of adaptation explicit via a
declarative approach. To do so, we enrich Java classes with
declarations, named adaptation classes, aimed to express
adaptive behaviors [22] . As such, this approach
allows the programmer to separate the concerns between the basic
features of the application and its adaptation aspects. A dedicated
compiler automatically generates Java code that implements the
adaptive features.

[bookmark: id19264] Declaring specialization

When developing components, programmers often hesitate to make them
highly generic and configurable. Indeed, genericity and
configurability systematically introduce overheads in the resulting
component. However, the causes of these overheads are usually
well-known by the programmers and their removal could often be
automated, if only they could be declared to guide an optimizing tool.
The Compose group has worked towards solving this problem.

We introduced a declaration language which enables a component
developer to express the configurability of a component. The
declarations consist of a collection of specialization scenarios that
precisely identify what program constructs are of interest for
specialization. The scenarios of a component do not clutter the
component code; they are defined aside in a specialization
module [28] , [29] , [27] , [30] .

This work was done in the context of C and declarations were intended
to drive our C specializer.

[bookmark: id19354] Specializing design patterns

A natural approach to systematically applying program specialization
is to exploit opportunities offered by a programming methodology. We
have studied a development methodology for object-oriented languages,
called design patterns. Design patterns encapsulate knowledge about
the design and implementation of highly adaptable software. However,
adaptability is obtained at the expense of overheads introduced in the
finished program. These overheads can be identified for each design
pattern. Our work consisted in using knowledge derived from design
patterns to eliminate these overheads in a systematic way. To do so,
we analyzed the specialization opportunities provided by specific uses
of design patterns, and determined how to eliminate these overheads
using program specialization. These opportunities were documented in
declarations, called specialization patterns, and were associated with
specific design patterns [41] . The specialization
of a program composed of design patterns was then driven by the
corresponding declarations. This work was presented in the context of
Java and uses our Java specializer [40] .

[bookmark: id19401] Specializing software architectures

The sources of inefficiency in software architectures can be identified
in the data and control integration of components, because flexibility
is present not only at the design level but also in the
implementation. We proposed the use of program specialization in
software engineering as a systematic way to improve performance and,
in some cases, to reduce program size. We studied several
representative, flexible mechanisms found in software architectures:
selective broadcast, pattern matching, interpreters, layers and
generic libraries. We showed how program specialization can
be applied systematically to optimize these
mechanisms [32] , [33] .

[bookmark: uid23] Section:
 Scientific Foundations
Adaptation in Systems Software

[bookmark: id19446] DSLs in Operating Systems

Integrating our adaptation methodologies and tools into the
development process of real-size software systems was achieved by
proposing a new development process. Specifically, we proposed a new
approach to designing and structuring operating systems
(OSes) [36] . This approach was based on DSLs and
enables rapid development of robust OSes. Such an approach is critically
needed in application domains, like appliances, where new products
appear at a rapid pace and needs are unpredictable.

[bookmark: id19474] Devil - a DSL for device drivers

Our approach to developing systems software applied to the domain of
device drivers. Indeed, peripheral devices come out at a frantic pace,
and the development of drivers is very intricate and error prone. The
Compose group developed a DSL, named Devil (DEvice Interface
Language), to solve these problems;
it was dedicated to the basic communication with a device. Devil
allowed the programmer to easily map device documentation into a
formal device description that can be verified and compiled into
executable code.

From a software engineering viewpoint, Devil captures domain expertise
and systematizes re-use because it offers suitable built-in
abstractions [38] . A Devil description
formally specifies the access mechanisms, the type and layout of data,
as well as behavioral properties involved in operating the
device. Once compiled, a Devil description implements an interface to
an idealized device and abstracts the hardware intricacies.

From an operating systems viewpoint, Devil can be seen as an interface definition language for hardware functionalities. To
validate the approach, Devil was put to
practice [37] : its expressiveness was
demonstrated by the wide variety of devices that have been specified
in Devil. No loss in performance was found for the compiled Devil
description compared to an equivalent C code.

From a dependable system viewpoint, Devil improves safety by enabling
descriptions to be statically checked for consistency and generating stubs
including additional run-time checks [39] .
Mutation analysis were used to evaluate the improvement in driver robustness
offered by Devil. Based on our experiments, Devil specifications were found up
to 6 times less prone to errors than writing C code.

Devil was the continuation of a study of graphic display adaptors for
a X11 server. We developed a DSL, called GAL (Graphics Adaptor
Language), aimed to specify device
drivers in this context [44] . Although
covering a very restricted domain, this language was a very successful
proof of concept.

[bookmark: uid24] Section:
 Scientific Foundations
Adaptation Tools and Techniques

To further the applicability of our approach, we have strengthened and
extended adaptation tools and techniques. We have produced a detailed
description of the key program analysis for imperative specialization,
namely binding-time analysis [24] . This
analysis is at the heart of our program specializer for C, named
Tempo [24] . We have examined the
importance of the accuracy of these analyses to successfully
specialize existing programs. This study was conducted in the context
of systems software [34] .

Tempo is the only specializer which enables programs to be specialized both at
compile time and run time. Yet, specialization is always performed in one
stage. As a consequence, this process cannot be factorized even if
specialization values become available at multiple stages. We present a
realistic and flexible approach to achieving efficient incremental run-time
specialization [31] . Rather than developing
new techniques, our strategy for incremental run-time specialization reuses
existing technology by iterating a specialization process. Our approach has
been implemented in Tempo.

While program specialization encodes the result of early computations into a
new program, data specialization encodes the result of early computations
into data structures. Although aiming at the same goal, namely processing early
computations, these two forms of specialization have always been studied
separately. The Compose group has proposed an extension of Tempo to perform
both program and data specialization [23] . We
showed how these two strategies can be integrated in a single specializer. Most
notably, having both strategies enabled us to assess their benefits,
limitations and their combination on a variety of programs.

Interpreters and run-time compilers are increasingly used to cope with
heterogeneous architectures, evolving programming languages, and dynamically
loaded code. Although solving the same problem, these two strategies are very
different. Interpreters are simple to implement but yield poor performance.
Run-time compilation yields better performance, but is costly to implement. One
approach to reconciling these two strategies is to develop interpreters for
simplicity but to use specialization to achieve efficiency. Additionally, a
specializer like Tempo can remove the interpretation overhead at compile time
as well as at run time. We have conducted experiments to assess the benefits
of applying specialization to interpreters [43] .
These experiments have involved Bytecode and structured-language interpreters.
Our experimental data showed that specialization of structured-language
interpreters can yield performance comparable to that of the compiled code of
an optimizing compiler.

Besides targeting C, we developed the first program specializer for an
object-oriented language. This specializer, named JSpec, processes
Java programs [40] . JSpec is constructed from
existing tools. Java programs are translated into C using our Java
compiler, named Harissa. Then, the resulting C programs are
specialized using Tempo. The specialized C program is executed in the
Harissa environment. JSpec has been used for various applications and
has shown to produce significant speedups [42] .

 Application Domains

 	Application Domains	[bookmark: uid26]Introduction
	[bookmark: uid27]Pervasive Computing Systems
	[bookmark: uid33]Telephony Services

 [bookmark: uid26] Section:
 Application Domains
Introduction

After having explored DSLs in isolated domains in the past, we now generalize
this experience to attack a larger domain, namely, communication services.
Generalizing our work on telephony, we investigated the coordination of
networked entities, whether or not operated by users. The two main
application domains are the pervasive computing systems and the telephony
services.

[bookmark: uid27] Section:
 Application Domains
Pervasive Computing Systems

Pervasive computing systems are being deployed in a rapidly increasing
number of areas, including building automation, assisted living, and
supply chain management. Regardless of their target area, pervasive
computing systems have a typical architectural pattern. They aggregate
data from a variety of distributed sources, whether sensing devices or
software components, analyze a context to make decisions, and carry
out decisions by invoking a range of actuators. Because pervasive
computing systems are standing at the crossroads of several domains
(e.g., distributed systems, multimedia, and embedded systems), they
raise a number of challenges in software development:

	[bookmark: uid28] Heterogeneity. Pervasive computing systems are made of
off-the-shelf entities, that is, hardware and software building
blocks. These entities run on specific platforms, feature various
interaction models, and provide non-standard interfaces. This
heterogeneity tends to percolate in the application code, preventing
its portability and reusability, and cluttering it with low-level
details.

	[bookmark: uid29] Lack of structuring. Pervasive computing systems
coordinate numerous, interrelated components. A lack of global
structuring makes the development and evolution of such systems
error-prone: component interactions may be invalid or missing.

	[bookmark: uid30] Combination of technologies. Pervasive computing systems involve a
variety of technological issues, including device intricacies, complex APIs of
distributed systems technologies and middleware-specific features. Coping with
this range of issues results in code bloated with special cases to glue
technologies together.

	[bookmark: uid31] Dynamicity. In a pervasive computing system, devices may
either become available as they get deployed, or unavailable due to
malfunction or network failure. Dealing with these issues explicitly
in the implementation can quickly make the code cumbersome.

	[bookmark: uid32] Testing. Pervasive computing systems are complicated to
test. Doing so requires equipments to be acquired, tested, configured
and deployed. Furthermore, some scenarios cannot be tested because of
the nature of the situations involved (e.g., fire and smoke). As
a result, the programmer must resort to writing specific code to
achieve ad hoc testing.

[bookmark: uid33] Section:
 Application Domains
Telephony Services

IP telephony materializes the convergence between telecommunications and
computer networks. This convergence is dramatically changing the face of the
telecommunications domain moving from proprietary, closed platforms to
distributed systems based on network protocols. In particular, a telephony
platform is based on a client-server model and consists of a signalling
server that implements a particular signalling protocol (e.g., the Session
Initiation Protocol [21]). A signalling server is able to perform
telephony-related operations that include resources accessible from the
computer network, such as Web resources, databases...This evolution brings
a host of new functionalities to the domain of telecommunications.

Such a wide spectrum of functionalities enables Telephony to be customized with
respect to preferences, trends and expectations of ever-demanding users. These
customizations critically rely on a proliferation of telephony services. In
fact, introducing new telephony services is facilitated by the open nature of
signalling servers, as shown by all kinds of servers in distributed systems.
However, in the context of telecommunications, such evolutions should lead
service programming to be done by non-expert programmers, as opposed to
developers certified by telephony manufacturers. To make this evolution worse,
the existing techniques to program server extensions (e.g., Common Gateway
Interface [20]) are rather low level, involves crosscutting
expertises (e.g., networking, distributed systems, and operating systems) and
requires tedious session management. These shortcomings make the programming of
telephony services an error-prone process, jeopardizing the robustness of a
platform.

 Software

 	Software	[bookmark: uid35]DiaSuite: a Development Environment for
Pervasive Computing Applications
	[bookmark: uid47]Pantagruel: a Visual Domain-Specific
Language for Ubiquitous Computing

 [bookmark: uid35] Section:
 Software
DiaSuite: a Development Environment for
Pervasive Computing Applications
Participants :
 Damien Cassou [correspondent] , Charles Consel, Benjamin Bertran, Julien Bruneau, Julien Mercadal, Nicolas Loriant, Emilie Balland.

Despite much progress, developing a pervasive computing application remains a
challenge because of a lack of conceptual frameworks and supporting tools. This
challenge involves coping with heterogeneous devices, overcoming the
intricacies of distributed systems technologies, working out an architecture
for the application, encoding it in a program, writing specific code to test
the application, and finally deploying it.

DiaSuite is a suite of tools covering the development life-cycle
of a pervasive computing application:

	[bookmark: uid36] Defining an application area. First, an expert defines a
catalog of entities, whether hardware or software, that are specific
to a target area. These entities serve as building blocks to develop
applications in this area. They are gathered in a
taxonomy definition, written in the taxonomy layer of the DiaSpec
language.

	[bookmark: uid37] Architecturing an application. Given a taxonomy, the architect can
design and structure applications. To do so, the DiaSpec
language provides an Architecture Description Language (ADL)
layer [35] . This layer is dedicated to an architectural pattern
commonly used in the pervasive computing domain [26] . Describing
the architecture application allows to further model a pervasive computing
system, making explicit its functional decomposition.

	[bookmark: uid38] Implementing an application. We leverage the taxonomy definition
and the architecture description to provide dedicated support to both the
entity and the application developers. This support takes the form of a Java
programming framework, generated by the DiaGen compiler. The generated
programming framework precisely guides the developer with respect to the
taxonomy definition and the architecture description. It consists of high-level
operations to discover entities and interact with both entities and application
components. In doing so, it abstracts away from the underlying distributed
technologies, providing further separation of concerns.

	[bookmark: uid39] Testing an application. DiaGen generates a simulation support
to test pervasive computing applications before their actual deployment. An
application is simulated in the DiaSim tool, without requiring any code
modification. DiaSim provides an editor to define simulation scenarios and a
2D-renderer to monitor the simulated application. Furthermore, simulated and
actual entities can be mixed. This hybrid simulation enables an application to
migrate incrementally to an actual environment.

	[bookmark: uid40] Deploying a system. Finally, the system administrator deploys the
pervasive computing system. To this end, a distributed systems technology is
selected. We have developed a back-end that currently targets the following
technologies: Web Services, RMI, CORBA and SIP. This targeting is transparent
for the application code. The variety of these target technologies demonstrates
that our development approach separates concerns into well-defined layers.

This development cycle is summarized in the Figure 1 .

[bookmark: uid41]Figure
	1. DiaSuite Development Cycle	[image: IMG/DevCycle]

See also the web page http://diasuite.inria.fr .

[bookmark: id20312] DiaSpec: a Domain-Specific Language for Networked Entities

The core of the DiaSuite development environment is the domain specific
language called DiaSpec and its compiler DiaGen:

	[bookmark: uid42] DiaSpec is composed of two layers:

	[bookmark: uid43] The Taxonomy Layer allows the declaration of entities that are
relevant to the target application area. An entity consists of sensing
capabilities, producing data, and actuating capabilities, providing actions.
Accordingly, an entity description declares a data source for each one of its
sensing capabilities. As well, an actuating capability corresponds to a set of
method declarations. An entity declaration also includes attributes,
characterizing properties of entity instances. Entity declarations are
organized hierarchically allowing entity classes to inherit attributes, sources
and actions. A taxonomy allows separation of concerns in that the expert can
focus on the concerns of cataloging area-specific entities. The entity
developer is concerned about mapping a taxonomical description into an actual
entity, and the application developer concentrates on the application logic.

	[bookmark: uid44] The Architecture Layer is based on an architectural pattern
commonly used in the pervasive computing domain [26] . It consists
of context components fueled by sensing entities. These components process
gathered data to make them amenable to the application needs. Context data are
then passed to controller components that trigger actions on entities. Using
an architecture description enables the key components of an application to be
identified, allowing their implementation to evolve with the requirements
(e.g., varying light management implementations in a controller component to
optimize energy consumption).

	[bookmark: uid45] DiaGen is the DiaSpec compiler and runtime, performs both static
and runtime verifications over DiaSpec declarations and produces a dedicated
programming framework that guides and eases the implementation of components.
The generated framework is independent of the underlying distributed
technology. As of today, DiaGen supports multiple targets: Local, RMI, SIP
and a simulation target (the Web Services and the Corba targets being currently
in development).

[bookmark: id20476] DiaSim: a Parametrized Simulator for Pervasive Computing Applications

[bookmark: uid46]Figure
	2. A screenshot of the DiaSim simulator	[image: IMG/Diasim]

Pervasive computing applications involve both software and integration
concerns. This situation is problematic for testing pervasive computing
applications because it requires acquiring, testing and interfacing a variety
of software and hardware entities. This process can rapidly become costly and
time-consuming when the target environment involves many entities.

To ease the testing of pervasive applications, we are developing a simulator
for pervasive computing applications: DiaSim. To cope with widely heterogeneous
entities, DiaSim is parameterized with respect to a DiaSpec specification
describing a target pervasive computing environment. This description is used
to generate with DiaGen both a programming framework to develop the simulation
logic and an emulation layer to execute applications. Furthermore, a simulation
renderer is coupled to DiaSim to allow a simulated pervasive system to be
visually monitored and debugged. The simulation renderer is illustrated in
Figure 2 .

[bookmark: uid47] Section:
 Software
Pantagruel: a Visual Domain-Specific
Language for Ubiquitous Computing
Participants :
 Zoé Drey [correspondent] , Julien Mercadal, Charles Consel.

[bookmark: uid48]Figure
	3. A screenshot of the Pantagruel graphical editor (2)	[image: IMG/Pantagruel]

Pantagruel aims at easing the description of an orchestration logic between
networked entities of a pervasive environment. First, the developer defines a
taxonomy of entities that compose the environment, This step provides an
abstraction of the entities capabilities and functionalities. Second, the
developer defines the orchestration logic in terms of rules. To facilitate its
programming, we provide a visual domain-specific language based on the
sensor-controller-actuator paradigm. An example of a visual orchestration is
given in Figure 3 where a shower automatically
runs at the right temperature when someone enters the bathroom and closes the
door.

Pantagruel brings a high-level layer intended to complement existing tools in
the activity of safe orchestration logic description, allowing
novice-programmers to prototype pervasive applications. The Pantragruel
compiler generates code compliant with the DiaSuite toolset. Pantagruel is
being completed by tools aimed at verifying safety properties like termination
and reachability.

See also the web page http://pantagruel.bordeaux.inria.fr .

 New Results

 	New Results	[bookmark: uid50]Leveraging Software Architectures
to Guide and Verify the Development of Sense/Compute/Control
Applications
	[bookmark: uid55]A Domain-Specific Approach to
Architecturing Error Handling in Pervasive Computing
	[bookmark: uid60]SIP as a Universal Communication
Bus: A Methodology and an Experimental Study

 [bookmark: uid50] Section:
 New Results
Leveraging Software Architectures
to Guide and Verify the Development of Sense/Compute/Control
Applications

A software architecture describes the structure of a computing system
by specifying software components and their interactions. Mapping a
software architecture to an implementation is a well known challenge.
A key element of this mapping is the architecture's description of the
data and control-flow interactions between components. The
characterization of these interactions can be rather abstract or very
concrete, providing more or less implementation guidance, programming
support, and static verification.

In this work, we have introduced a notion of behavioral
contract that expresses the set of allowed interactions between
components, describing both data and control-flow
constraints [16] . This declaration is
part of the architecture description, allows generation of extensive
programming support, and enables various verifications. We have
instantiated our approach in an architecture description language for
the domain of Sense/Compute/Control (SCC) applications, and described
associated compilation and verification strategies.

The main contributions of this work are the following:

	[bookmark: uid51] We have introduced a language for behavioral contracts dedicated to
SCC applications.

	[bookmark: uid52] We have shown that behavioral contracts can effectively guide the
implementation of SCC applications by enabling the generation of
highly customized programming frameworks using a dedicated compiler. This
approach ensures the conformance between the architecture and the
implementation, while facilitating software evolution.

	[bookmark: uid53] We have shown that such descriptions are precise enough to verify
safety properties such as information flow reachability or
behavioral invariants.

	[bookmark: uid54] Based on an implementation of behavioral contracts in an ADL
targeting SCC applications, we haved assessed the benefit of behavioral contracts
at a conceptual level and in terms of metrics on the resulting code.

[bookmark: uid55] Section:
 New Results
A Domain-Specific Approach to
Architecturing Error Handling in Pervasive Computing

The challenging nature of error handling constantly escalates as a
growing number of environments consists of networked devices and
software components. In these environments, errors cover a uniquely
large spectrum of situations related to each layer ranging from
hardware to distributed platforms, to software components. Handling
errors becomes a daunting task for programmers, whose outcome is
unpredictable. Scaling up error handling requires to raise the level
of abstraction beyond the code level and the try-catch construct,
approaching error handling at the software architecture level.

We have proposed a novel approach that relies on an Architecture
Description Language (ADL), which is extended with error-handling
declarations [18] .

The main contributions of this work are the following:

	[bookmark: uid56] We have proposed a novel approach that raises the level of
abstraction of error handling from programming to architecturing.
Our approach allows reasoning, and programming is driven by this
extended form of software descriptions.

	[bookmark: uid57] We have extended a domain-specific ADL with declarations
dedicated error handling. These architecture-level declarations
provide a separation between functional and error-handling concerns.
Furthermore, error handling is made specific by decomposing it into
application and system compensation strategies.

	[bookmark: uid58] Architecture descriptions are processed by a compiler that
generates dedicated programming frameworks in Java. We have extended
this compiler to produce additional programming support for
signaling, propagating and treating errors that originate as Java
exceptions. This support makes the programming of error handling
more rigorous and systematic.

	[bookmark: uid59] We have used our approach to develop a variety of dependable
applications in areas including home/ building automation and
healthcare. Our largest case study is a system for managing a 13 500-square meter building, amounting for more than 3 000
LOC.

[bookmark: uid60] Section:
 New Results
SIP as a Universal Communication
Bus: A Methodology and an Experimental Study

In this work, we have proposed a methodology and a programming support
that use the SIP protocol as a universal communication bus in
pervasive computing environments [13] .
In doing so, our work enables homogeneous communications between
heterogeneous distributed entities. We have also presented a
classification of a wide variety of entities in terms of features,
capabilities and network connectors. Based on this classification, a
methodology and a programming support are described for connecting
entities on the SIP communication bus. This work has been validated by
applications using the SIP communication bus to coordinate widely
varying entities, including serial-based sensors (RS232, 1-Wire),
ZigBee devices, X10 devices, PDA, native SIP entities, and software
components.

The main contributions of this work are the following:

	[bookmark: uid61] A classification of a wide variety of entities that facilitates their
integration in the SIP communication bus.

	[bookmark: uid62] A methodology and programming support that make each class of
entities SIP compliant.

	[bookmark: uid63] An experimental study that validates SIP as a communication bus
for pervasive computing environments. This study comprises numerous
entities with vastly varying features and capabilities.

 Contracts and Grants with Industry

 	Contracts and Grants with Industry	[bookmark: uid65] Designing and developing
simulation capabilities for network-centric systems – Industrial
Fellowship (CIFRE / Thales)
	[bookmark: uid66]Integrating non-functional
properties in a Design Language and its execution environment –
Industrial Fellowship (CIFRE / Thales)
	[bookmark: uid70]SmartImmo: Towards intelligent and
environmentally-friendly buildings (french competitiveness pole)

 [bookmark: uid65] Section:
 Contracts and Grants with Industry
 Designing and developing
simulation capabilities for network-centric systems – Industrial
Fellowship (CIFRE / Thales)
Participants :
 Charles Consel, Julien Bruneau.

The goal of this project is to provide simulation capabilities for
testing network-centric systems. To achieve this goal, a formal
description of the component behavior of such system must be defined.
Hybrid testing (combining virtual and real) of components, data and
scenarios, as well as observability tools for component-tools will be
studied in this project.

Models, DSLs and protocols for modeling a network-centric system will
be designed and developed during this project. A dedicated framework
for the simulation must also be provided. Finally, the simulation of a
system must allow to qualify the functional logic of this system.

[bookmark: uid66] Section:
 Contracts and Grants with Industry
Integrating non-functional
properties in a Design Language and its execution environment –
Industrial Fellowship (CIFRE / Thales)
Participants :
 Charles Consel, Emilie Balland, Stéphanie Gatti, Quentin Enard.

The goal of this project is to add non-functional properties in the
Diaspec language and in the Diagen generator. More especially, these
non-functional properties are considered on three different levels:

	[bookmark: uid67] The component level. The non-functional properties define
temporal, physical and software constraints restrictive for a
component.

	[bookmark: uid68] The component coupling level. The component coupling
level. The non-functional properties define the dependency between
the components as well as the Quality of Service provided and
required by each component of the environment.

	[bookmark: uid69] The software architecture level. The software
architecture level. The non-functional properties describe the
resources that must be allocated to a component (memory, processing
capacity). They also define the necessary resources for a component
to interact with other components (network QoS).

This work will be illustrated and validated with a concrete
application in the avionics domain.

[bookmark: uid70] Section:
 Contracts and Grants with Industry
SmartImmo: Towards intelligent and
environmentally-friendly buildings (french competitiveness pole)
Participants :
 Charles Consel, Benjamin Bertran, Ghislain Deffrasnes.

The SmartImmo project gathers research groups in pervasive systems and french
companies working in the building construction, installation, and management.
This project led by Orange Labs aims to make a building able to “communicate”
with its occupants and to be environmentally-friendly (e.g., automatic
temperature adjusting).

The main objectives of this project are to design a M2M (Machine-To-Machine)
box for the heterogeneous equipment communication and to build several services
on top of this platform. This project is funded by the SCS (Secured
Communicating Solutions), a french pole of competitiveness.

 Other Grants and Activities

 	Other Grants and Activities	[bookmark: uid72]International Collaborations
	[bookmark: uid75]Visits and Invited Researchers

 [bookmark: uid72] Section:
 Other Grants and Activities
International Collaborations

We have been exchanging visits and publishing articles with the
following collaborators.

	[bookmark: uid73] Julia Lawall, DIKU, University of Copenhagen (Denmark, Copenhagen).

	[bookmark: uid74] Walid Taha, Rice University (US, Houston).

[bookmark: uid75] Section:
 Other Grants and Activities
Visits and Invited Researchers

The Phoenix group has been visited by:

	[bookmark: uid76] Anne-Françoise Le Meur (Associate Professor at the University of
Lille, member of the ADAM INRIA project team) from February 15, 2010
to February 16, 2010;

	[bookmark: uid77] Julia Lawall (Associate Professor at the University of Copenhagen,
Denmark) from March 21, 2010 to March 23, 2010;

	[bookmark: uid78] Xavier Blanc (former Associate Professor at the Pierre and Marie
Curie University, Paris) on the 18th of March 2010;

	[bookmark: uid79] Vicente Sanchez-Leighton (consultant Hyptique, Paris) from
September 13, 2010 to September 14, 2010;

	[bookmark: uid80] Arne Svensk (University of Lund, Sweden) from September 13, 2010 to
September 14, 2010;

	[bookmark: uid81] Stefan Parry Carmien (consultant Fatronik, San Sebastian, Spain)
from September 13, 2010 to September 14, 2010;

	[bookmark: uid82] Yves Lachapelle and Dany Lussier-Desrochers (University of Québec,
Trois-Rivières, Canada) from September 13, 2010 to
September 14, 2010.

 Dissemination

 	Dissemination	[bookmark: uid84]Animation of the scientific community
	[bookmark: uid103]Participation in Popular Science
Events
	[bookmark: uid108]Teaching
	[bookmark: uid111]Presentations and Invitations
	[bookmark: uid117]PhD Thesis

 [bookmark: uid84] Section:
 Dissemination
Animation of the scientific community

Charles Consel has been involved in the following events as:

	[bookmark: uid85] Program Committee member of

	[bookmark: uid86] ICWS 2010 (IEEE International Conference on Web Services),

	[bookmark: uid87] ICMT 2010 (International Conference on Model Transformation),

	[bookmark: uid88] NFM 2010 (Second NASA Formal Methods Symposium),

	[bookmark: uid89] PSIEtA 2010 (Workshop on Programming Support Innovations for Emerging
Distributed Applications, satellite event of SPLASH 2010),

	[bookmark: uid90] SLE 2010 (International Conference on Software Language Engineering),

	[bookmark: uid91] GPCE 2010 (International Conference on Generative Programming and Component Engineering),

	[bookmark: uid92] Guest Editor for the Annals of Telecommunications, Springer;

	[bookmark: uid93] Member of the scientific commitee on “GDR génie de la programmation du
logiciel” (CNRS);

	[bookmark: uid94] Member of the steering committee of the International
Conference on Generative Programming and Component Engineering
(GPCE);

	[bookmark: uid95] Member of the IFIP WG 2.11 on Program Generation;

	[bookmark: uid96] Member of the INRIA working group on research and perspectives in the
domain “Réseaux, systèmes et services, calcul distribué”.

	[bookmark: uid97] President of the selection committee for the associate professor
position at ENSEIRB-IPB.

Charles Consel has participated in the following thesis defense committees:

	[bookmark: uid98] Jesper Andersen, University of Copenhagen, Denmark, February,

	[bookmark: uid99] Dima Aladidi, University of Concordia, Canada, January,

	[bookmark: uid100] Tien Dung Cao, University of Bordeaux, December (president of
the PhD thesis defense committee).

Emilie Balland has been involved as a Program Committee member in:

	[bookmark: uid101] WASDeTT 2010 (3d workshop on Academic Software Development
Tools and Techniques, satellite of ASE 2010);

	[bookmark: uid102] LDTA 2010 (10th Workshop on Language Descriptions, Tools and
Applications, satellite of ETAPS 2010).

[bookmark: uid103] Section:
 Dissemination
Participation in Popular Science
Events

Participation of the Phoenix INRIA project team in the following
events:

	[bookmark: uid104] “1000 chercheurs” national event in Paris,

	[bookmark: uid105] “Unité ou Café” talk at the INRIA Bordeaux Sud-Ouest
research center,

	[bookmark: uid106] ”Visage des Sciences” regional event in Aquitaine,

	[bookmark: uid107] Demonstrations of DiaSuite during the “Fête de la
science” national event.

[bookmark: uid108] Section:
 Dissemination
Teaching

Charles Consel has been teaching Master level courses on:

	[bookmark: uid109] Domain-Specific Languages and Program Analysis;

	[bookmark: uid110] Telephony over IP (related protocols, the SIP protocol, existing
programming interfaces). Students are also offered practical labs on various
industrial-strength telephony platforms. These labs are supervised by Benjamin
Bertran and Julien Bruneau.

Charles Consel and Damien Cassou have been teaching a course on Architecture
Description Languages.

Emilie Balland has been teaching a Master level course on Software
Development guided by modeling and verification.

[bookmark: uid111] Section:
 Dissemination
Presentations and Invitations

Charles Consel gave a number of invited presentations:

	[bookmark: uid112] at Concordia University (Montreal, Canada) in January 2010,

	[bookmark: uid113] at the University of Waterloo for the ninth meeting of the IFIP WG
2.11 in December 2010.

Emilie Balland gave a number of invited presentations:

	[bookmark: uid114] at the University of Halmstad (Sweden) in July 2010,

	[bookmark: uid115] at the annual seminar of the Pareo research group in November
2010,

	[bookmark: uid116] at the University of Waterloo for the ninth meeting of the IFIP WG
2.11 in December 2010.

[bookmark: uid117] Section:
 Dissemination
PhD Thesis

One student of the Phoenix group obtained his PhD in 2010:

	[bookmark: uid118] Zoé Drey, “Vers une méthodologie dédiée à l'orchestration
d'entités communicantes” [11] .

 Bibliography
[bookmark: Major]Major publications by the team in recent years
	[1][bookmark: phoenix-2010-bid34]
	D. Cassou, E. Balland, C. Consel, J. Lawall.
Leveraging Software Architectures to Guide and Verify the Development of Sense/Compute/Control Applications, in: ICSE'11: Proceedings of the 33rd International Conference on Software Engineering, Honolulu United States, ACM, 2011, to appear.
http://hal.inria.fr/inria-00537789

 	[2][bookmark: phoenix-2010-bid40]
	C. Consel.
From A Program Family To A Domain-Specific Language, Lecture Notes in Computer Science, State-of-the-Art Survey, Springer-Verlag, 2004, no 3016, p. 19–29.
http://phoenix.labri.fr/publications/papers/dagstuhl-consel.pdf

 	[3][bookmark: phoenix-2010-bid42]
	C. Consel, J. Lawall, A.-F. Le Meur.
A Tour of Tempo: A Program Specializer for the C Language, in: Science of Computer Programming, 2004.
http://phoenix.labri.fr/publications/papers/tour-tempo.ps.gz

 	[4][bookmark: phoenix-2010-bid39]
	C. Consel, L. Réveillère.
A Programmable Client-Server Model: Robust Extensibility via DSLs, in: Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE 2003), Montréal, Canada, IEEE Computer Society Press, November 2003, p. 70–79.
http://phoenix.labri.fr/publications/papers/Consel-Reveillere_ase03.pdf

 	[5][bookmark: phoenix-2010-bid41]
	C. Consel, L. Réveillère.
A DSL Paradigm for Domains of Services: A Study of Communication Services, Lecture Notes in Computer Science, State-of-the-Art Survey, Springer-Verlag, 2004, no 3016, p. 165–179.
http://phoenix.labri.fr/publications/papers/dagstuhl04_consel_reveillere.pdf

 	[6][bookmark: phoenix-2010-bid43]
	A.-F. Le Meur, J. Lawall, C. Consel.
Specialization Scenarios: A Pragmatic Approach to Declaring Program Specialization, in: Higher-Order and Symbolic Computation, 2004, vol. 17, no 1, p. 47–92.
http://phoenix.labri.fr/publications/papers/spec-scenarios-hosc2003.ps.gz

 	[7][bookmark: phoenix-2010-bid38]
	D. McNamee, J. Walpole, C. Pu, C. Cowan, C. Krasic, A. Goel, P. Wagle, C. Consel, G. Muller, R. Marlet.
Specialization tools and techniques for systematic optimization of system software, in: ACM Transactions on Computer Systems, May 2001, vol. 19, no 2, p. 217–251.
http://phoenix.labri.fr/publications/papers/tocs01-namee.pdf

 	[8][bookmark: phoenix-2010-bid35]
	J. Mercadal, Q. Enard, C. Consel, N. Loriant.
A Domain-Specific Approach to Architecturing Error Handling in Pervasive Computing, in: OOPSLA'10: Proceedings of the 25th Annual ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and Applications, États-Unis Reno, October 2010.
http://hal.inria.fr/inria-00486930/en

 	[9][bookmark: phoenix-2010-bid37]
	F. Mérillon, L. Réveillère, C. Consel, R. Marlet, G. Muller.
Devil: An IDL for Hardware Programming, in: Proceedings of the Fourth Symposium on Operating Systems Design and Implementation, San Diego, California, October 2000, p. 17–30.
http://phoenix.labri.fr/publications/papers/osdi00-merillon.pdf

 	[10][bookmark: phoenix-2010-bid36]
	S. Thibault, C. Consel, G. Muller.
Safe and Efficient Active Network Programming, in: 17th IEEE Symposium on Reliable Distributed Systems, West Lafayette, IN, October 1998, p. 135–143.
http://phoenix.labri.fr/publications/papers/srds98-thibault.ps.gz

[bookmark: year]Publications of the year
Doctoral Dissertations and Habilitation Theses
	[11][bookmark: phoenix-2010-bid30]
	Z. Drey.
Vers une méthodologie d'ediée à l'orchestration d'entités communicantes, Université Sciences et Technologies - Bordeaux, September 2010.

International Peer-Reviewed Conference/Proceedings
	[12][bookmark: phoenix-2010-bid31]
	E. Balland, C. Consel.
Open Platforms: New Challenges for Software Engineering, in: PSIEtA'10: Proceedings of the International Workshop on Programming Support Innovations for Emerging Distributed Applications, ACM Digital Library, November 2010, to appear.
http://hal.inria.fr/inria-00533721/en

 	[13][bookmark: phoenix-2010-bid29]
	B. Bertran, C. Consel, W. Jouve, H. Guan, P. Kadionik.
SIP as a Universal Communication Bus: A Methodology and an Experimental Study, in: ICC'10: Proceedings of the IEEE International Conference on Communications, Afrique Du Sud Cape Town, May 2010. [
DOI : 10.1109/ICC.2010.5502591]
http://hal.inria.fr/inria-00453548/en

 	[14][bookmark: phoenix-2010-bid0]
	D. Cassou, J. Bruneau, C. Consel.
A Tool Suite to Prototype Pervasive Computing Applications (Demo), in: PERCOM'10: Proceedings of the 8th IEEE Conference on Pervasive Computing and Communications, Allemagne Mannheim, IEEE Computer Society Press, 2010, p. 1–3.
http://hal.inria.fr/inria-00484067/en

 	[15][bookmark: phoenix-2010-bid1]
	D. Cassou, J. Bruneau, J. Mercadal, Q. Enard, E. Balland, N. Loriant, C. Consel.
Towards a Tool-based Development Methodology for Sense/Compute/Control Applications (Poster), in: SPLASH'10: Proceedings of the 1st International Conference on Systems, Programming, Languages, and Applications: Software for Humanity, États-Unis Reno/Tahoe, ACM, 2010, p. 1–2, poster.
http://hal.inria.fr/inria-00510378/en

 	[16][bookmark: phoenix-2010-bid3]
	D. Cassou, E. Balland, C. Consel, J. Lawall.
Leveraging Software Architectures to Guide and Verify the Development of Sense/Compute/Control Applications, in: ICSE'11: Proceedings of the 33rd International Conference on Software Engineering, Honolulu United States, ACM, 2011, to appear.
http://hal.inria.fr/inria-00537789

 	[17][bookmark: phoenix-2010-bid32]
	Z. Drey, C. Consel.
A Visual, Open-Ended Approach to Prototyping Ubiquitous Computing Applications, in: PERCOM'10: Proceedings of the 8th IEEE Conference on Pervasive Computing and Communications, Allemagne Mannheim, March 2010.
http://hal.inria.fr/inria-00484083/en

 	[18][bookmark: phoenix-2010-bid2]
	J. Mercadal, Q. Enard, C. Consel, N. Loriant.
A Domain-Specific Approach to Architecturing Error Handling in Pervasive Computing, in: OOPSLA'10: Proceedings of the 25th Annual ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and Applications, États-Unis Reno, October 2010.
http://hal.inria.fr/inria-00486930/en

 	[19][bookmark: phoenix-2010-bid33]
	H. Wan, Z. Drey, Z. You, L. Liu.
Formal Modeling and Verification of Services Managements for Pervasive Computing Environment, in: ICSSSM'10: Proceedings of the 7th International Conference on Service Systems and Service Management, Japon Tokyo, June 2010.
http://hal.inria.fr/inria-00516020/en

[bookmark: References]References in notes
	[20][bookmark: phoenix-2010-bid26]
	CGI: The Common Gateway Interface, 1993.
http://www.w3.org/CGI/

 	[21][bookmark: phoenix-2010-bid25]
	Session Initiation Protocol (SIP), March 2001, Request for Comments 3261.

 	[22][bookmark: phoenix-2010-bid6]
	P. Boinot, R. Marlet, J. Noyé, G. Muller, C. Consel.
A Declarative Approach for Designing and Developing Adaptive Components, in: Proceedings of the 15th IEEE International Conference on Automated Software Engineering (ASE 2000), Grenoble, France, IEEE Computer Society Press, September 2000, p. 111–119.

 	[23][bookmark: phoenix-2010-bid22]
	S. Chirokoff, C. Consel, R. Marlet.
Combining Program and Data Specialization, in: Higher-Order and Symbolic Computation, December 1999, vol. 12, no 4, p. 309–335.

 	[24][bookmark: phoenix-2010-bid19]
	C. Consel, J. Lawall, A.-F. Le Meur.
A Tour of Tempo: A Program Specializer for the C Language, in: Science of Computer Programming, 2004.

 	[25][bookmark: phoenix-2010-bid5]
	C. Consel, R. Marlet.
Architecturing software using a methodology for language development, in: Proceedings of the 10th International Symposium on Programming Language Implementation and Logic Programming, Pisa, Italy, C. Palamidessi, H. Glaser, K. Meinke (editors), Lecture Notes in Computer Science, September 1998, vol. 1490, p. 170–194.

 	[26][bookmark: phoenix-2010-bid28]
	A. K. Dey, G. D. Abowd, D. Salber.
A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications, in: Human-Computer Interaction, 2001, vol. 16, no 2, p. 97–166.

 	[27][bookmark: phoenix-2010-bid9]
	A.-F. Le Meur, C. Consel, B. Escrig.
An Environment for Building Customizable Software Components, in: IFIP/ACM Conference on Component Deployment, Berlin, Germany, June 2002, p. 1–14.

 	[28][bookmark: phoenix-2010-bid7]
	A.-F. Le Meur, C. Consel.
Generic Software Component Configuration Via Partial Evaluation, in: SPLC'2000 Workshop – Product Line Architecture, Denver, Colorado, August 2000.

 	[29][bookmark: phoenix-2010-bid8]
	A.-F. Le Meur, J. Lawall, C. Consel.
Towards Bridging the Gap Between Programming Languages and Partial Evaluation, in: ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation, Portland, OR, USA, ACM Press, January 2002, p. 9–18.

 	[30][bookmark: phoenix-2010-bid10]
	A.-F. Le Meur, J. Lawall, C. Consel.
Specialization Scenarios: A Pragmatic Approach to Declaring Program Specialization, in: Higher-Order and Symbolic Computation, 2004, vol. 17, no 1, p. 47–92.

 	[31][bookmark: phoenix-2010-bid21]
	R. Marlet, C. Consel, P. Boinot.
Efficient Incremental Run-Time Specialization for Free, in: Proceedings of the ACM SIGPLAN'99 Conference on Programming Language Design and Implementation (PLDI'99), Atlanta, GA, USA, May 1999, p. 281–292.

 	[32][bookmark: phoenix-2010-bid13]
	R. Marlet, S. Thibault, C. Consel.
Mapping Software Architectures to Efficient Implementations via Partial Evaluation, in: Conference on Automated Software Engineering, Lake Tahoe, NV, USA, IEEE Computer Society, November 1997, p. 183–192.

 	[33][bookmark: phoenix-2010-bid4]
	R. Marlet, S. Thibault, C. Consel.
Efficient Implementations of Software Architectures via Partial Evaluation, in: Journal of Automated Software Engineering, October 1999, vol. 6, no 4, p. 411–440.

 	[34][bookmark: phoenix-2010-bid20]
	D. McNamee, J. Walpole, C. Pu, C. Cowan, C. Krasic, A. Goel, P. Wagle, C. Consel, G. Muller, R. Marlet.
Specialization tools and techniques for systematic optimization of system software, in: ACM Transactions on Computer Systems, May 2001, vol. 19, no 2, p. 217–251.

 	[35][bookmark: phoenix-2010-bid27]
	N. Medvidovic, R. N. Taylor.
A Classification and Comparison Framework for Software Architecture Description Languages, in: IEEE Transactions on Software Engineering, 2000, vol. 26, no 1, p. 70–93.
http://dx.doi.org/10.1109/32.825767

 	[36][bookmark: phoenix-2010-bid14]
	G. Muller, C. Consel, R. Marlet, L. Barreto, F. Mérillon, L. Réveillère.
Towards Robust OSes for Appliances: A New Approach Based on Domain-Specific Languages, in: Proceedings of the ACM SIGOPS European Workshop 2000 (EW2000), Kolding, Denmark, ACM Press, September 2000, p. 19-24.

 	[37][bookmark: phoenix-2010-bid16]
	F. Mérillon, L. Réveillère, C. Consel, R. Marlet, G. Muller.
Devil: An IDL for Hardware Programming, in: 4th Symposium on Operating Systems Design and Implementation (OSDI 2000), San Diego, California, October 2000, p. 17–30.

 	[38][bookmark: phoenix-2010-bid15]
	L. Réveillère, F. Mérillon, C. Consel, R. Marlet, G. Muller.
A DSL Approach to Improve Productivity and Safety in Device Drivers Development, in: Proceedings of the 15th IEEE International Conference on Automated Software Engineering (ASE 2000), Grenoble, France, IEEE Computer Society Press, September 2000, p. 101–109.

 	[39][bookmark: phoenix-2010-bid17]
	L. Réveillère, G. Muller.
Improving Driver Robustness: an Evaluation of the Devil Approach, in: The International Conference on Dependable Systems and Networks, Göteborg, Sweden, IEEE Computer Society, July 2001, p. 131–140.

 	[40][bookmark: phoenix-2010-bid12]
	U. Schultz, J. Lawall, C. Consel, G. Muller.
Towards Automatic Specialization of Java Programs, in: Proceedings of the European Conference on Object-oriented Programming (ECOOP'99), Lisbon, Portugal, Lecture Notes in Computer Science, June 1999, vol. 1628, p. 367–390.

 	[41][bookmark: phoenix-2010-bid11]
	U. Schultz, J. Lawall, C. Consel.
Specialization Patterns, in: Proceedings of the 15th IEEE International Conference on Automated Software Engineering (ASE 2000), Grenoble, France, IEEE Computer Society Press, September 2000, p. 197–208.

 	[42][bookmark: phoenix-2010-bid24]
	U. Schultz, J. Lawall, C. Consel.
Automatic Program Specialization for Java, in: ACM Transactions on Programming Languages and Systems, 2003, vol. 25, no 4, p. 452–499.

 	[43][bookmark: phoenix-2010-bid23]
	S. Thibault, C. Consel, J. Lawall, R. Marlet, G. Muller.
Static and Dynamic Program Compilation by Interpreter Specialization, in: Higher-Order and Symbolic Computation, September 2000, vol. 13, no 3, p. 161–178.

 	[44][bookmark: phoenix-2010-bid18]
	S. Thibault, R. Marlet, C. Consel.
Domain-Specific Languages: from Design to Implementation – Application to Video Device Drivers Generation, in: IEEE Transactions on Software Engineering, May 1999, vol. 25, no 3, p. 363–377.

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/IMG/Pantagruel.jpg
@ henrickshower.gruel X

| SENSORs _ [ACTUATORS || e

showerdoor ‘

state is CLOSED }/

state is OPEN 2
mixingvalve ‘
R4
showermotion ‘

detected is true

detected is false

showerdoor 3 Select
=
A
1 [Entity
mixingvalve _~ Connection

regulate(VWWARM) > S~} Condition

run() > {5> Action

stop() | = oer-

Actuator

showermotion

@ Controller
@ Controller

(oRr) Sequence

OEBPS/IMG/DevCycle.jpg
) DEQ;& %

S

Detriuaed

L, e

b

syzem
o

OEBPS/IMG/Diasim.jpg
Shuulaeing S) 55142 -

Simulation Options Help

b Feb 2, 2009
AR AR 3 /\
ARIRAARIRY ‘
ARRRRRRRRR 8:40 AM 9

a Agents ¥ Places Q overlays

|11127.0.0.l:l200/5imulatedNewsNotiﬁ:a(lon s«

% Julien B. =
Position: N 49 0.207 E 80.412
Destination: none

Language: french

Location: News Notification Area
Name: Jullen B.

Study Course: telecommunication
Type: People

GlassBreak: false
Heat: false
Luminosity: LOW
ManualPull: talse
Motion: false

?
Smoke: false
O Moves freely
- | 7 //127.0.0.1:1214/SimulatedLight =

11127 0 n 1 1214/SimulatedLight

N Position: N 49 0.208 E 80.412
7 Destination: none
[- Language: None
i Location: 1006
Name: SimulatedLight o

v

Even(sent n | .

