
c t i v i t y

te p o r

2010

Theme : Programs, Verification and Proofs

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team π r 2

Design, study and implementation of
languages for proofs and programs

Paris - Rocquencourt

http://www.inria.fr
http://www.inria.fr/recherche/equipes/pi.r2.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-rocq.fr.html

Table of contents

1. Team . 1
2. Overall Objectives . 1
3. Scientific Foundations .2

3.1. Proof theory and the Curry-Howard correspondence 2
3.1.1. Proofs as programs 2
3.1.2. Towards the calculus of constructions 2
3.1.3. The Calculus of Inductive Constructions 2

3.2. The development of Coq 3
3.2.1. The underlying logic and the verification kernel 3
3.2.2. Programming and specification languages 3
3.2.3. Libraries 3
3.2.4. Tactics 4
3.2.5. Extraction 4

3.3. Dependently typed programming languages 4
3.3.1. The emergence of dependently typed programming 4
3.3.2. Issues regarding dependently typed programming 4

3.3.2.1. Type-checking and proof automation 4
3.3.2.2. Libraries 5

3.4. Around and beyond the Curry-Howard correspondence 5
3.4.1. Control operators and classical logic 5
3.4.2. Sequent calculus 5
3.4.3. Abstract machines 5
3.4.4. Delimited control 5

4. Application Domains .5
5. Software . 6

5.1. Coq 6
5.1.1. Version 8.3 6

5.1.1.1. Graphical interface 6
5.1.1.2. Internal architecture of the Coq software 6

5.1.2. The Technological Development Action Coq 7
5.1.3. Modules in Coq 7
5.1.4. The Coq extraction 7
5.1.5. Formalisation in Coq 7

5.2. Pangolin 8
5.3. Other software developments 8

6. New Results . 8
6.1. Proof-theoretical investigations 8

6.1.1. Sequent calculus and Computational duality 8
6.1.1.1. Axiomatisation of call-by-need 8
6.1.1.2. Focalisation 9
6.1.1.3. (Co)Inductive Types in Sequent Calculus 9

6.1.2. On the logical contents of delimited control 9
6.1.2.1. Delimited control and Λµ-calculus 9
6.1.2.2. Control delimiters, Markov’s principle, and Double-negation shift 9
6.1.2.3. Delimited continuations, polarity and computational effects 10

6.1.3. The computational contents of completeness proofs 10
6.1.4. Substitutions and isomorphisms 11

6.2. Metatheory of Coq and beyond 11
6.2.1. Normalisation 11

2 Activity Report INRIA 2010

6.2.2. Calculus of inductive constructions and typed equality 11
6.2.3. Implicit calculus of constructions, proof irrelevance 11
6.2.4. Proofs of higher-order programs 12

6.3. Coq as a functional programming language 12
6.3.1. Certified libraries 12
6.3.2. Certified extraction 12
6.3.3. Incrementality in proof languages 13
6.3.4. Proofs of programs in Coq 13

7. Other Grants and Activities . 13
7.1. National Actions 13
7.2. Equipe Associée 14
7.3. EC projects 14

8. Dissemination . 14
8.1. Interaction with the scientific community 14

8.1.1. Collective responsibilities 14
8.1.2. Editorial activities 14
8.1.3. Program committees and organising committees 14
8.1.4. Jurys 15
8.1.5. Ph.D. and habilitation juries 15

8.2. Visits 15
8.2.1. Outbound 15
8.2.2. Inbound 15

8.3. Teaching 16
8.3.1. Supervision of Ph.D. and internships 16
8.3.2. Courses 16

8.4. Participation in conferences and seminars 16
8.4.1. Invited talks 16
8.4.2. Presentation of papers 16
8.4.3. Other presentations 17
8.4.4. Attendance to conferences, workshops, schools,... 17
8.4.5. Talks in seminars 17
8.4.6. Groupe de travail Théorie des types et réalisabilité 18

8.5. Other dissemination activities 18
9. Bibliography .18

πr2 is a common project with University Paris 7, within the laboratory “Preuves, Programmes et Systèmes”,
which is itself joint between Paris 7 and CNRS.. The team has been created on January the 1st, 2009 and
became an INRIA “équipe-projet” on July the 1st, 2009.

1. Team
Research Scientists

Pierre-Louis Curien [Team leader, DR CNRS, HdR]
Hugo Herbelin [DR INRIA, HdR]
Alexis Saurin [CR CNRS]
Matthieu Sozeau [CR INRIA]

Faculty Members
Pierre Letouzey [MC Paris 7]
Yann Régis-Gianas [MC Paris 7]
Bruno Bernardo [ATER Paris 7]

Technical Staff
Vincent Gross [Ingénieur ADT Coq]

PhD Students
Pierre Boutillier [Contrat doctoral université Paris 7]
Stéphane Glondu [Allocation couplée, inscrit à Paris 7]
Danko Ilik [Allocation Gaspard Monge, Ecole Polytechnique]
Guillaume Munch-Maccagnoni [Contrat doctoral université Paris 7]
Matthias Puech [Cotutelle avec l’Université de Bologne, financement Ministère de la Recherche italien
(MIUR)]
Ronan Saillard [Grant from the european project “CerCo”]
Vincent Siles [Allocation couplée, inscrit à l’Ecole Polytechnique]
Élie Soubiran [Financement Ile de France, inscrit à l’Ecole Polytechnique]

Post-Doctoral Fellows
Nicolas Ayache [Postdoc of the european project “CerCo”]
Jeffrey Sarnat [INRIA funding]
Noam Zeilberger [Postdoc of the Foundation “Sciences Mathématiques de Paris”]

Visiting Scientists
Andreas Abel [Assistant Professor at LMU, Munich, visiting from October 1st, 2009 till March 31, 2010,
funded by INRIA]
Martin Hofmann [Professor at LMU, Munich, visiting from November 14 to December 14, funded by INRIA]

Administrative Assistant
Cécile Espiègle

2. Overall Objectives

2.1. Overall Objectives
πr2 is a two-years old joint INRIA team, which is devoted both to the study of foundational aspects of
formal proofs and programs and to the development of the Coq proof assistant software, with a focus on the
dependently typed programming language aspects of Coq. The team is part of the laboratory Proofs, Programs
and Systems lab (PPS - UMR 7126, CNRS and Paris 7). Its explicit association with both University Paris 7
and CNRS is under way. The team acts as one of the strongest teams involved in the development of Coq as it
hosts in particular the current coordinator of the Coq development team.

2 Activity Report INRIA 2010

3. Scientific Foundations

3.1. Proof theory and the Curry-Howard correspondence
3.1.1. Proofs as programs

Proof theory is the branch of logic devoted to the study of the structure of proofs. An essential contributor to
this field is Gentzen [45] who developed in 1935 two logical formalisms that are now central to the study
of proofs. These are the so-called “natural deduction”, a syntax that is particularly well-suited to simulate the
intuitive notion of reasoning, and the so-called “sequent calculus”, a syntax with deep geometric properties
that is particularly well-suited for proof automation.

Proof theory gained a remarkable importance in computer science when it became clear, after genuine
observations first by Curry in 1958 [42], then by Howard and de Bruijn at the end of the 60’s [50], [65],
that proofs had the very same structure as programs: for instance, natural deduction proofs can be identified as
typed programs of the ideal programming language known as λ-calculus.

This proofs-as-programs correspondence has been the starting point to a large spectrum of researches and
results contributing to deeply connect logic and computer science. In particular, it is from this line of work that
Coquand’s Calculus of Constructions [39] stemmed out – a formalism that is both a logic and a programming
language and that is at the source of the Coq system [38].

3.1.2. Towards the calculus of constructions
The λ-calculus, defined by Church [37], is a remarkably succinct model of computation that is defined via
only three constructions (abstraction of a program with respect to one of its parameters, reference to such
a parameter, application of a program to an argument) and one reduction rule (substitution of the formal
parameter of a program by its effective argument). The λ-calculus, which is Turing-complete, i.e. which has
the same expressiveness as a Turing machine (there is for instance an encoding of numbers as functions in
λ-calculus), comes with two possible semantics referred to as call-by-name and call-by-value evaluations. Of
these two semantics, the first one, which is the simplest to characterise, has been deeply studied in the last
decades [33].

For explaining the Curry-Howard correspondence, it is important to distinguish between intuitionistic and
classical logic: following Brouwer at the beginning of the 20th century, classical logic is a logic that accepts
the use of reasoning by contradiction while intuitionistic logic proscribes it. Then, Howard’s observation is
that the proofs of the intuitionistic natural deduction formalism exactly coincide with programs in the (simply
typed) λ-calculus.

A major achievement has been accomplished by Martin-Löf who designed in 1971 a formalism, referred to as
modern type theory, that was both a logical system and a (typed) programming language [56].

In 1985, Coquand and Huet [39], [40] in the Formel team of INRIA-Rocquencourt explored an alternative ap-
proach based on Girard-Reynolds’ system F [46], [62]. This formalism, called the Calculus of Constructions,
served as logical foundation of the first implementation of Coq in 1984. Coq was called CoC at this time.

3.1.3. The Calculus of Inductive Constructions
The first public release of CoC dates back to 1989. The same project-team developed the programming
language Caml (nowadays coordinated by the Gallium team) that provided the expressive and powerful
concept of algebraic data types (a paragon of it being the type of list). In CoC, it was possible to simulate
algebraic data types, but only through a not-so-natural not-so-convenient encoding.

In 1989, Coquand and Paulin [41] designed an extension of the Calculus of Constructions with a generalisation
of algebraic types called inductive types, leading to the Calculus of Inductive Constructions (CIC) that started
to serve as a new foundation for the Coq system. This new system, which got its current definitive name Coq,
was released in 1991.

Project-Teamπr 2 3

In practice, the Calculus of Inductive Constructions derives its strength from being both a logic powerful
enough to formalise all common mathematics (as set theory is) and an expressive richly-typed functional
programming language (like ML but with a richer type system, no effects and no non-terminating functions).

3.2. The development of Coq
Since 1984, about 40 persons have contributed to the development of Coq, out of which 7 persons have
contributed to bring the system to the place it is now. First Thierry Coquand through his foundational
theoretical ideas, then Gérard Huet who developed the first prototypes with Thierry Coquand and who headed
the Coq group until 1998, then Christine Paulin who was the main actor of the system based on the CIC and
who headed the development group from 1998 to 2006. On the programming side, important steps were made
by Chet Murthy who raised Coq from the prototypical state to a reasonably scalable system, Jean-Christophe
Filliâtre who turned to concrete the concept of a small trustful certification kernel on which an arbitrary large
system can be set up, Bruno Barras and Hugo Herbelin who, among other extensions, reorganised Coq on a
new smoother and more uniform basis able to support a new round of extensions for the next decade.

The development started from the Formel team at Rocquencourt but, after Christine Paulin got a position
in Lyon, it spread to École Normale Supérieure de Lyon. Then, the task force there globally moved to the
University of Orsay when Christine Paulin got a new position there. On the Rocquencourt side, the part of
Formel involved in ML moved to the Cristal team (now Gallium) and Formel got renamed into Coq. Gérard
Huet left the team and Christine Paulin started to head a Coq team bilocalised at Rocquencourt and Orsay.
Gilles Dowek became the head of the team which was renamed into LogiCal. Following Gilles Dowek who
got a position at École Polytechnique, LogiCal globally moved to Futurs with a bilocalisation on Orsay and
Palaiseau. It then split again giving birth to ProVal. At the same time, the Marelle team (formerly Lemme,
formerly Croap) which has been a long partner of the Formel team, invested more and more energy in both the
formalisation of mathematics in Coq and in user interfaces for Coq.

After various other spreadings resulting from where the wind pushed former PhD students, the development
of Coq got definitely multi-site with the development now realised by employees of INRIA, the CNAM and
Paris 7.

We next briefly describe the main components of Coq.

3.2.1. The underlying logic and the verification kernel
The architecture adopts the so-called de Bruijn principle: the relatively small kernel of Coq ensures the
correctness of the proofs validated by the system. The kernel is rather stable with modifications tied to the
evolution of the underlying Calculus of Inductive Constructions formalism. The kernel includes an interpreter
of the programs expressible in the CIC and this interpreter exists in two flavours: a customisable lazy evaluation
machine written in Objective Caml and a call-by-value bytecode interpreter written in C dedicated to efficient
computations. The kernel also provides a module system.

3.2.2. Programming and specification languages
The concrete user language of Coq, called Gallina, is a high-level language built on top of the CIC. It includes
a type inference algorithm, definitions by complex pattern-matching, implicit arguments, mathematical nota-
tions and various other high-level language features. This high-level language serves both for the development
of programs and for the formalisation of mathematical theories. Coq also provides a large set of commands.
Gallina and the commands together forms the Vernacular language of Coq.

3.2.3. Libraries
Libraries are written in the vernacular language of Coq. There are libraries for various arithmetical structures
and various implementations of numbers (Peano numbers, implementation of N, Z, Q with binary digits,
implementation of N, Z, Q using machine words, axiomatisation of R). There are libraries for lists, list of a
specified length, sorts, and for various implementations of finite maps and finite sets. There are libraries on
relations, sets, orders.

4 Activity Report INRIA 2010

3.2.4. Tactics
The tactics are the methods available to conduct proofs. This includes the basic inference rules of the CIC,
various advanced higher level inference rules and all the automation tactics. Regarding automation, there are
tactics for solving systems of equations, for simplifying ring or field expressions, for arbitrary proof search,
for semi-decidability of first-order logic and so on. There is also a powerful and popular untyped scripting
language for combining tactics into more complex tactics.

Note that all tactics of Coq produce proof certificates that are checked by the kernel of Coq. As a consequence,
possible bugs in proof methods do not hinder the confidence in the correctness of the Coq checker. Note also
that the CIC being a programming language, tactics can be written (and certified) in the own language of Coq
if needed.

3.2.5. Extraction
Extraction is a component of Coq that maps programs (or even computational proofs) of the CIC to functional
programs (in Objective Caml, Scheme or Haskell). Especially, a program certified by Coq can further be
extracted to a program of a full-fledged programming language then benefiting of the efficient compilation,
linking tools, profiling tools, ... of the target software.

3.3. Dependently typed programming languages
3.3.1. The emergence of dependently typed programming

Dependently typed programming (shortly DTP) is an emerging concept referring to the diffuse and broadening
tendency to develop programming languages with type systems able to express program properties finer than
the usual information of simply belonging to specific data-types. The type systems of dependently-typed
programming languages allow to express properties dependent of the input and the output of the program
(for instance that a sorting program returns a list of same size as its argument). Typical examples of such
languages were the Cayenne language, developed in the late 90’s at Chalmers University in Sweden and
the DML language developed at Boston. Since then, various new tools have been proposed, either as typed
programming languages whose types embed equalities (Ωmega at Portland, ATS at Boston, ...) or as hybrid
logic/programming frameworks (Agda at Chalmers University, Twelf at Carnegie, Delphin at Yale, OpTT at
U. Iowa, Epigram at Nottingham, ...).

DTP contributes to a general movement leading to the fusion between logic and programming. Coq, whose
language is both a logic and a programming language which moreover can be extracted to pure ML code plays
a role in this movement and some frameworks for DTP have been proposed on top of Coq (Concoqtion at Rice
and Colorado, Ynot at Harvard, Why in the ProVal team at INRIA). It also connects to Hoare logic, providing
frameworks where pre- and post-conditions of programs are tied with the programs.

3.3.2. Issues regarding dependently typed programming
DTP approached from the programming language side generally benefits of a full-fledged language (e.g.
supporting effects) with efficient compilation. DTP approached from the logic side generally benefits of an
expressive specification logic and of proof methods so as to certify the specifications. The weakness of the
approach from logic however is generally the weak support for effects or partial functions.

3.3.2.1. Type-checking and proof automation

In between the decidable type systems of conventional data-types based programming languages and the full
expressiveness of logically undecidable formulae an active field of research explores a spectrum of decidable or
semi-decidable type systems for possible use in dependently programming languages. At the beginning of the
spectrum, this includes for instance the system F’s extension MLF of the ML type system or the generalisation
of abstract data types with type constraints (G.A.D.T.) such as found in the Haskell programming language.
At the other side of the spectrum, one finds arbitrary complex type specification languages (e.g. that a sorting
function returns a list of type “sorted list”) for which more or less powerful proof automation tools (generally
first-order ones) exist.

Project-Teamπr 2 5

3.3.2.2. Libraries

Developing libraries for programming languages takes time and generally benefits of a critical mass effect. An
advantage is given to languages that start from well-established existing frameworks for which a large panel
of libraries exist. Coq is such a framework.

3.4. Around and beyond the Curry-Howard correspondence
For two decades, the Curry-Howard correspondence was limited to the intuitionistic case but in 1990, an
important stimulus spurred on the community following the discovery by Griffin that the correspondence
was extensible to classical logic. The community then started to investigate unexplored potential fields of
connection between computer science and logic. One of these fields was the computational understanding of
Gentzen’s sequent calculus while another one was the computational content of the axiom of choice.

3.4.1. Control operators and classical logic
Indeed, a significant extension of the Curry-Howard correspondence has been obtained at the beginning of the
90’s thanks to the seminal observation by Griffin [47] that some operators known as control operators were
typable by the principle of double negation elimination (¬¬A ⇒ A), a principle which provides classical
logic.

Control operators are operators used to jump from one place of a program to another place. They were first
considered in the 60’s by Landin [54] and Reynolds [61] and started to be studied in an abstract way in the 80’s
by Felleisen et al [43], culminating in Parigot’s λµ-calculus [59], a reference calculus that is in fine Curry-
Howard correspondence with classical natural deduction. In this respect, control operators are fundamental
pieces of the full connection between proofs and programs.

3.4.2. Sequent calculus
The Curry-Howard interpretation of sequent calculus started to be investigated at the beginning of the 90’s.
The main technicality of sequent calculus is the presence of left introduction inference rules and two kinds of
interpretations of these rules are applicable. The first approach interprets left introduction rules as construction
rules for a language of patterns but it does not really address the problem of the interpretation of the implication
connective. The second approach, started in 1994, interprets left introduction rules as evaluation context
formation rule. This line of work culminated in 2000 with the design by Hugo Herbelin and Pierre-Louis
Curien of a symmetric calculus exhibiting deep dualities between the notion of programs and evaluation
contexts and between the standard notions of call-by-name and call-by-value evaluation semantics.

3.4.3. Abstract machines
Abstract machines came as an intermediate evaluation device, between high-level programming languages
and the computer microprocessor. The typical reference for call-by-value evaluation of λ-calculus is Landin’s
SECD machine [53] and Krivine’s abstract machine for call-by-name evaluation [52], [51]. A typical abstract
machine manipulates a state that consists of a program in some environment of bindings and some evaluation
context traditionally encoded into a “stack”.

3.4.4. Delimited control
Delimited control extends the expressiveness of control operators with effects: the fundamental result here is a
completeness result by Filinski [44]: any side-effect expressible in monadic style (and this covers references,
exceptions, states, dynamic bindings, ...) can be simulated in λ-calculus equipped with delimited control.

4. Application Domains
4.1. The impact of Coq

Coq is one of the 8 most used proof assistants in the world. In Europe, its main challengers are Isabelle
(developed in Munich, Germany), HOL (developed in Cambridge, UK) and Mizar (developed in Białystok,
Poland).

6 Activity Report INRIA 2010

Coq is used in various research contexts and in a few industrial contexts. It is used in the context of formal
mathematics at the University of Nijmegen (constructive algebra and analysis), INRIA Sophia-Antipolis
(number theory and algebra), INRIA-MSR joint lab (group theory), the University of Nice (algebra). It is used
in France in the context of computer science at INRIA-Rocquencourt (certified compilation), INRIA-Saclay
(certification of imperative programs), LORIA, Strasbourg (certification of geometry algorithms). Outside
France, it is used in the context of computer science e.g. at U. Penn (formalisation of programming languages
semantics), Yale, Ottawa and Berkeley Universities (building of a certified platform for proof-carrying code),
University of Princeton (certified compilation), AIST at Tokyo (certification of cryptographic protocols),
Microsoft Research Cambridge (proof of imperative programs), ... In the industry, it is used by Gemalto and
Trusted Logic (JavaCard formal model and commercial applets certification).

All in all, it is difficult to evaluate how much Coq is used. Two indicators are the readership of the textbook on
Coq by Yves Bertot and Pierre Castéran [35] and the number of subscribers to the Coq-club mailing list. More
than 1200 copies of the book have been sold. There has been a second printing , and a Chinese translation
of the book has been published. There are around 600 subscribers to the mailing list. Coq is taught or used
for teaching in many universities: Paris, Bordeaux, Lyon, Nice, Strasbourg, CNAM, Nottingham, Ottawa, U.
Penn, Warsaw, Krakow, Princeton, Yale, Berkeley, Rosario in Argentina, ...

5. Software
5.1. Coq

Participants: Bruno Barras [TypiCal team, Saclay], Yves Bertot [Marelle team, Sophia], Frédéric Besson
[Lande team, Rennes], Frédéric Blanqui [Formes team, Beijing], Pierre Boutillier, Pierre Corbineau [Uni-
versity Joseph Fourier, Grenoble], Pierre Courtieu [CNAM], Jean-Christophe Filliâtre [ProVal team, Saclay],
Julien Forest [CNAM], Stéphane Glondu, Benjamin Grégoire [Marelle team, Sophia], Vincent Gross, Hugo
Herbelin [correspondant], Stéphane Lescuyer [ProVal team, Saclay], Pierre Letouzey, Assia Mahboubi [Typ-
iCal team, Saclay], Claude Marché [ProVal team, Saclay], Julien Narboux [University of Strasbourg], Jean-
Marc Notin [TypiCal team, Saclay], Russell O’Connor [University of Nijmegen], Christine Paulin [Proval
team, Saclay], Loïc Pottier [Marelle team, Sophia], Matthias Puech, Yann Régis-Gianas, Vincent Siles, Élie
Soubiran, Matthieu Sozeau [ProVal team and Harvard University], Arnaud Spiwack [TypiCal team, Saclay],
Pierre-Yves Strub [Formes team, Beijing], Laurent Théry [Marelle team, Sophia], Benjamin Werner [TypiCal
team, Saclay].

5.1.1. Version 8.3
Version 8.3 was released in September 2010. It introduces a new decision procedure contributed by Loïc Pottier
from the Marelle team and many improvements of existing features, including: an extended and generally more
efficient module system (Élie Soubiran), more tactics (Hugo Herbelin, Pierre Letouzey, Matthieu Sozeau),
more robust and efficient type classes (Matthieu Sozeau), more efficient and comprehensive libraries (revision
of the library of finite sets and of the library of abstract arithmetic by Pierre Letouzey, revision of the sorting
library by Hugo Herbelin).

5.1.1.1. Graphical interface

The integrated graphical interface of Coq (CoqIDE) is under revision: Vincent Gross implemented a fully
operational new communication model based on process interaction rather than on threading (the reasons are:
ability to support multiple Coq sessions, ability to interrupt Coq asynchronously, better robustness on non
Unix-compliant operating systems, definition of a communication protocol reusable by other Coq interfaces).

5.1.1.2. Internal architecture of the Coq software

Pierre Letouzey has pursued his effort for a better build infrastructure for Coq. The Makefile has been quite
improved, the new version being at the same time more robust and less cryptic. The alternative build system
based on ocamlbuild, started last year, is now operational. In particular, it has allowed Pierre Letouzey to
propose a fully-automated script for building the Windows versions of Coq, by the means of cross-compilation
from a Linux environment. This way, Windows packages of Coq can be now obtained reliably in a matter of
minutes.

Project-Teamπr 2 7

Pierre Letouzey has also worked on providing more abstraction between Coq and the third-party parsing
engine it uses: as a consequence, Coq is now able to use either camlp5 or Gallium’s official camlp4, which
makes Coq less dependent of the future evolutions of these parsing engines.

Pierre Letouzey has also continued his collaboration with Maxence Guesdon (MIRIAD) concerning his code
analyser Oug, allowing to detect and remove thousands of lines of useless or obsolete code in Coq.

Many performance bottlenecks have also been investigated by Pierre Letouzey, for instance in the implemen-
tation of Coq universes, or in the new proof engine of Coq due to Arnaud Spiwack.

Yann Regis-Gianas optimised the hash-consing algorithm used in the kernel.

Thanks to the gtk-osx effort, Pierre Boutillier has provided a better integration of Coq in a MacOS X setting.

5.1.2. The Technological Development Action Coq
This “Action de Développement Technologique”, which is coordinated by Hugo Herbelin, gathers the teams
and individuals listed above.

Two national-level meetings have been organised as part of the ADT Coq. The first meeting has been organised
in February 2010 at La Ciotat and gathered around 15 persons on the topic of equality and termination in Coq.
The second meeting has been organised by πr2 in October 2010 and gathered around 15 persons on the
question of interfaces for proof assistants (Coq and Isabelle). The minutes of the meetings can be found at
URL http://coq.inria.fr/adt.

The ADT Coq supported the second Coq Asian summer school that Jean-Pierre Jouannaud (Formes team)
organised in August 2010 in Beijing. The ADT Coq also supported the second Coq workshop held in July in
Edinburgh. Chaired by Yves Bertot, the workshop accepted 2 reviewed full papers and 9 informal contributed
talks. More than 30 persons attended. The web page of the workshop is http://coq.inria.fr/coq-workshop/2009.

5.1.3. Modules in Coq
Élie Soubiran went on working on two improvements of the module system of Coq. In the first one, he splits
the primitive notion of theory into two atomic constructions of name-space and structure. This leads to a
more general system where one can define not only modules but also extensible name-spaces. In the second
improvement, he deals with a new merging-of-structure combinator that subsumes inclusion and refinement.
Such a combinator helps, among others, to handle “diamond like” modular constructions. As part of his PhD
dissertation, a step-by-step reconstruction of the module system of Coq was also provided.

5.1.4. The Coq extraction
While Stéphane Glondu investigates the next generation of the extraction tool of Coq, which aims at being
certified in Coq (see section “Certified Extraction” below), Pierre Letouzey is maintaining and improving
the current implementation of the Coq extraction. In particular, since version 8.3, this extraction allows for a
more complete translation of the Coq language towards Haskell : modules and functors are now handled in a
way which isn’t ideal, but works. Many practical aspects of the extraction have been reworked to provide a
better user experience, in particular the code transformations done to optimise the extracted programs. Pierre
Letouzey has also worked on better ways to allow replacing Coq code or axioms by external code during
extraction, or ways to fine-tune the parts of Coq code that are kept or not during extraction.

5.1.5. Formalisation in Coq
Vincent Siles has extended his Coq formalisation of untyped PTS’s to PTS’s with judgemental equality,
and proved that both presentations are equivalent. The whole formalisation can be found at http://www.lix.
polytechnique.fr/~vsiles/coq/PTSATR.html.

Stéphane Glondu is working with Mehdi Dogguy on the formalisation in Coq of a type system for a timed
asynchronous π-calculus that guarantees confluence.

http://coq.inria.fr/adt
http://coq.inria.fr/coq-workshop/2009
http://www.lix.polytechnique.fr/~vsiles/coq/PTSATR.html
http://www.lix.polytechnique.fr/~vsiles/coq/PTSATR.html

8 Activity Report INRIA 2010

Ronan Saillard is working on a mechanised formalisation of his master thesis work in Coq: he is extending
standard simulation techniques to prove the correctness of compilers in order to handle cost annotating
compilers.

Pierre Boutillier has worked on a library about lists that store their length in their type, as a good playground
to study dependent pattern matching in Coq. The pattern-matching typing-rule in Coq provides a machinery
to generalise upon the type dependencies of the matched term. The same machinery can sometimes be used
to make the expected type fit the actual type in branches without explicitly rewriting. Using such mechanism
to propagate type-constraints through case-analysis allows to write more natural programs whose reduction
is never disturbed by reasoning about equality. Programs written in this setting are much easier to tackle in
proofs afterwards.

Matthieu Sozeau has worked on a high-level interface for writing programs using dependent-pattern matching
and helping reasoning about them, during his post-doc at Harvard. He is continuing work on this problem and
seeking ways to integrate the above technique (i.e., Boutillier’s work) inside his extension.

5.2. Pangolin
Participant: Yann Régis-Gianas.

In collaboration with Johannes Kanig (PhD student, LRI/INRIA Proval/UPS), Yann Régis-Gianas released a
first alpha version of Pangolin, a back-end for Pangolin whose role is to encode higher-order theories in first-
order logic. This tool is intended to serve as an interface between, on one side, Pangolin and Coq, and on the
other side, external automatic provers.

5.3. Other software developments
Stéphane Glondu is involved in the maintenance of OCaml-related packages in Debian, which include OCaml
itself, Coq, Ssreflect (an extension of Coq developed at INRIA-MSR joint center) and Ocsigen (a web
framework developed at PPS). The Ubuntu distribution naturally benefits from this work. In collaboration with
Stefano Zacchiroli, Mehdi Dogguy and Sylvain Le Gall, he developed a solution to enforce library linkability
using inter-package relationships. This work has been presented at JFLA 2010, and the associated article has
been selected for a special issue of Studia Informatica Universalis.

In collaboration with François Pottier (INRIA Gallium), Yann Régis-Gianas maintained Menhir, an LR parser
generator for Objective Caml.

6. New Results

6.1. Proof-theoretical investigations
Participants: Pierre-Louis Curien, Hugo Herbelin, Danko Ilik, Guillaume Munch-Maccagnoni, Alexis Saurin,
Vincent Siles, Noam Zeilberger.

6.1.1. Sequent calculus and Computational duality
6.1.1.1. Axiomatisation of call-by-need

In collaboration with Zena Ariola, Hugo Herbelin started a study of call-by-need λ-calculus with the objective
to raise its study at the level of what is done for call-by-name and call-by-value. The common approach up to
now was basically to only study call-by-need λ-calculus under the point of view of standard head reduction
as a model of what happens in programming languages such as Haskell. Ultimately, the goal is to show that
one can go much further and 1) to develop full reduction semantics and equational theories for call-by-need,
2) to develop a canonical extension of call-by-need with control 3) to show along the lines of the duality of
computation that there exists a new λ-calculus dual to call-by-need worth to be studied too.

Project-Teamπr 2 9

6.1.1.2. Focalisation

Alexis Saurin has investigated how the Focalisation theorem of linear logic can be proved by interactive
means in Girard’s Ludics (in Terui’s Computational Ludics setting [63]). This resulted in a presentation in a
Workshop in late September 2009, later published in the workshop post-proceedings [34] and in an extended
version published in a MFPS conference 2010 [23]. Connections with algorithmic complexity are discussed
since Focalisation in the framework of computational ludics can be connected with proof methods of the
linear-speedup theorem [58].

Pierre-Louis Curien and Guillaume Munch have published their joint work [24] on a presentation of focalising
system L that is well-suited to

• a smooth explanation of the move from a restricted syntax of cut-free classical proofs (the focalised
ones) to a confluent calculus of focalised and polarised classical proofs with cuts;

• further investigations on quotienting proofs over irrelevant details of order of introduction of
(negative) connectives, leading to clean links with Zeilberger’s work [14] on the unity of duality
and with ludics.

6.1.1.3. (Co)Inductive Types in Sequent Calculus

Herbelin, Sarnat and Siles worked towards a sequent calculus presentation of CIC – based on Herbelin’s
LJT and Cervesato and Pfenning’s spine calculus – by starting with a simple type theory with inductive and
coinductive types, pattern matching, and guarded least and greatest fixed-points (although it already seems
clear that adding dependencies will require a dependent version of the cut rule). The formulation makes use
of some ideas from contextual-modal type theory, which simplifies the presentation. The guard conditions,
and accompanying normalisation proof, remain works-in-progress, although the ideas so far have resulted in
presentations at DTP ’10 and TYPES ’10.

6.1.2. On the logical contents of delimited control
6.1.2.1. Delimited control and Λµ-calculus

In the continuation of his work with Silvia Ghilezan [6] on showing that Saurin’s variant Λµ [10] of Parigot’s
λµ-calculus [60] for classical logic was a canonical call-by-name version of Danvy-Filinski’s call-by-value
calculus of delimited control, Hugo Herbelin studied with Alexis Saurin and Silvia Ghilezan another variant
of call-by-name calculus of delimited control. This is leading to a general paper on call-by-name and call-by-
value delimited control.

Alexis Saurin published two articles in international conferences on this topics in 2010: the first one [26]
introduced a hierarchy of calculi for delimited control in call-by-name (that is a CBN correspondent to Danvy-
Filinski’s CPS hierarchy) while the second one [27] established a standardisation theorem and characterises
solvability for Λµ-calculus [10] [60] and introduces Böhm trees for Λµ-calculus. Those two works develop
previous works by the author alone [10], [13] [20] or with Hugo Herbelin [6] [48].

Last October, he submitted a journal paper entitled Böhm theorem and Böhm trees for Λµ-calculus, invited for
the special issue of FLOPS 2010, which subsumes [10][27].

Building on these, a joint work with Gaboardi gave rise to a short presentation to ITCS conference which is
planned to be submitted to a conference early 2011.

6.1.2.2. Control delimiters, Markov’s principle, and Double-negation shift

Hugo Herbelin discovered a relation between control delimiters and Markov’s principle: in an intuitionistic
logic extended with classical logic for Σ0

1-formulae (i.e. for formulae that correspond to data-types) and
a control delimiter, Markov’s principle (i.e. the property that ¬¬∃xA(x) → ∃xA(x) for A(x) decidable)
becomes provable while still retaining the main property of intuitionism, namely that any proof of ∃xA(x)
contains a witness t such that A(t) holds [25].

Hugo Herbelin and Danko Ilik discovered a connection between control delimiters and the Double-negation
shift schema ((∀x,¬¬A(x)) → (¬¬(∀x,A(x))), which is the main ingredient in providing an interpretation
of the double-negation translation of the Axiom of Choice, and hence of consistency of Analysis.

10 Activity Report INRIA 2010

Danko Ilik extended the logical system of [25], so that the Double-negation shift is indeed formally derivable,
and he proved that this system also enjoys the disjunction and existence properties, i.e., is essentially
intuitionistic. This work appears as a chapter of Ilik’s recent thesis.

6.1.2.3. Delimited continuations, polarity and computational effects

Noam Zeilberger published and presented an article at the LICS 2010 conference in Edinburgh, titled
“Polarity and the Logic of Delimited Continuations” [29]. The paper studied a generalisation of the classical
interpretation of polarities, with the aim on the one hand of building a stronger connection between classical
polarity (as in linear logic) and the “polarity-like” phenomena of intuitionistic systems (e.g., in Levy’s Call-By-
Push-Value [55], Watkins’ Concurrent Logical Framework [64], etc.), and on the other hand of gaining a better
understanding of delimited continuations and Filinski’s representation theorem [44]. Since writing this article
and concurrently, he has continued to work with Paul-André Melliès and Jonas Frey (PPS) on developing a
more principled generalisation of non-commutative linear logic, with the ultimate goal of synthesising a logical
account of abstract machines and computational effects. He presented some preliminary results from this work
in December (at MSR Cambridge and at Oxford University) in a talk titled “Towards a non-commutative logic
of effects”.

Guillaume Munch-Maccagnoni investigated delimited control operators and delimited CPS translations from
the point of view of linear logic. He provided a delimited control calculus which is polarised, in the sense
of Girard’s classical logic LC. This corresponds, in the operational semantics, to the coexistence of two dual
modes of evaluation for expressions (strict and lazy). He shows how the CPS semantics of both call-by-value
and call-by-name delimited control calculi factor through the polarised calculus. Many of the variants of
delimited control calculi spawned as answers to the question of evaluation order in delimited control calculi,
and thus the polarised calculus is one answer which is unifying to some degree.

He also shows that this polarised calculus decomposes down to linear logic (through polarised linear logic) like
LC (using focusing and reversal). The only difference lies in the exponentials used in the construction: they
are now indexed by formulae (which correspond to "annotations" in type-and-effect systems). The specific
definition of these exponentials in linear logic forces a call-by-value semantics on the target of the CPS
translation, which appears as a theoretical evidence in favour of Danvy and Filinski’s original semantics for
delimited control. As a by-product, he obtains factoring in three steps of CPS translations, which are also
relevant to non-delimited CPS translations. These steps isolate distinct phenomena of CPS translations: the
choice of a mode of evaluation, the coding of effects and bureaucratic artefacts that appear in CPS translations,
like administrative redexes. These works are submitted to a conference.

Danko Ilik formalised in Coq the completeness proof for full intuitionistic logic (including disjunction and
existential quantification) with respect to a newly introduced notion of model, similar to Kripke models,
based on a dependently-typed continuations monad. In this way, he avoids the need of the Fan theorem
from Veldman’s proof of completeness with respect to standard Kripke semantics, and the need of delimited
control operators that are essential for Danvy’s normalisation-by-evaluation of lambda calculus with sums –
the computational content of the formalised proof. This work is described in a chapter of Ilik’s recent thesis
[15].

6.1.3. The computational contents of completeness proofs
It is known from works on Normalisation by Evaluation (also known as semantic normalisation) that
completeness proofs for intuitionistic logic along models such as Beth models are basically tools to map
proofs of the meta-language into proofs of an object language. This scales to classical logic if one considers
models such as boolean algebras. However, the computational content of completeness for classical logic with
respect to the truth-values model is of a different nature. Krivine started to investigate this topic in 1996. Hugo
Herbelin and Danko Ilik carried on this work and were able to extract a quite simple program which, when
applied to a proof of validity of a first-order formula, produces a derivation of this formula, thus providing a
computational content to one of the most central theorems of logic.

Previously, Hugo Herbelin, Danko Ilik, and Gyesik Lee gave a new kind of direct semantics for classical logic,
similar to Kripke models, and proved constructively that it is sound and complete for first-order logic [19].

Project-Teamπr 2 11

6.1.4. Substitutions and isomorphisms
During his one month visit, Martin Hofmann continued a work started with Pierre-Louis Curien earlier this
year, when both were visiting Cambridge, on comparing their old respective categorical interpretations of
Martin-Löf type theory back from the early nineties where they had cured a flaw of Seely’s original inter-
pretation in locally cartesian closed categories in somewhat symmetrical ways. Syntax has exact substitutions,
while their categorical interpretation, in terms of pullbacks or fibrations, “implements” substitutions only up to
isomorphism. One can then either change the model (strictification) [49], or modify the syntax (by introducing
explicit substitutions and more importantly explicit coercions between types that are now only isomorphic)
[4]. These approaches turn out to be nicely related through adjunctions in a suitable 2-categorical framework
that has a conceptual interest of its own, which we largely owe to the third author of this collaboration, Richard
Garner (University of Macquarie, Sydney). The results of this investigation are currently being written up.

6.2. Metatheory of Coq and beyond
Participants: Andreas Abel, Bruno Bernardo, Hugo Herbelin, Yann Régis-Gianas, Vincent Siles.

6.2.1. Normalisation
Pierre Boutillier has worked on extensions of the structural guard condition for fixpoints whose role is to
ensure the termination of Coq programs. He strengthened the guard condition algorithm to ensure termination
along all possible reduction strategies, instead of only one as it was before. He also extended it to support
"commutative cuts", i.e. to support cuts interleaved with case analysis statements. While type preservation
imposes to freeze commutative cuts, there is no reason to block them when it comes to termination checking.
Finally, he investigated how to reformulate the guard condition efficiently and elegantly using ideas coming
from abstract machines. Thanks to the commutative cuts trick, more dependently typed programs are now
accepted by Coq.

6.2.2. Calculus of inductive constructions and typed equality
Hugo Herbelin and Vincent Siles extended their work on “full” Pure Type Systems [28] and showed that any
Pure Type System, without any restrictions of functionality, fullness or normalisation, is equivalent to its typed
counterpart. This not only closes a twenty years old open question on type theory, but it also allows to study
extensions of Pure Type Systems, with subtyping or a stronger conversion for example, which would bring
closer Coq’s implementation to its theoretical description. This work can be found in Siles’ PhD dissertation
[16].

6.2.3. Implicit calculus of constructions, proof irrelevance
Bruno Bernardo is working on an Implicit Calculus of Constructions with dependent sums and with decidable
type inference. In this calculus, all the explicit static information (types and proof objects) is transparent and
does not affect the computational behaviour. Bruno Bernardo has already defined a formalism and studied an
Implicit Calculus of Constructions [3]. The next step is to add Σ-types to the system. The syntax has already
been extended. Subject reduction has been proven. The extension of Alexandre Miquel’s models based on
coherence spaces [57] is ongoing work that would lead to prove the consistency and the strong normalisation
property of the system. This is joint work with Bruno Barras, researcher of the Typical team and PhD advisor
of Bruno Bernardo.

In discussions with Bruno Bernardo and Bruno Barras, Andreas Abel investigated the relationship of proof
irrelevance and implicit quantification in the CoC. This inspired a paper, written in October 2010, which is
accepted for the FoSSaCS 2011 conference [22].

12 Activity Report INRIA 2010

6.2.4. Proofs of higher-order programs
Jeffrey Sarnat and Noam Zeilberger have been investigating the two classical program transformations
continuation-passing-style translation and defunctionalisation [61], from the point-of-view of their effect
on the termination proofs of higher-order programs. Through the Curry-Howard correspondence, these
termination proofs also correspond to consistency proofs of logics, and Sarnat and Zeilberger have explored a
connection between defunctionalisation and Buchholz’s idea of studying infinitary sequent calculi (e.g., with
the ω-rule for arithmetic) by building notation systems for infinitary derivations [36]. The practical aim of
these investigations is to develop a more systematic understanding of termination proofs, which eventually
could result in a compiler from proof assistants with higher-order reasoning (such as Coq) to ones with only
first-order reasoning (such as Twelf).

6.3. Coq as a functional programming language
Participants: Stéphane Glondu, Pierre Letouzey, Matthias Puech.

6.3.1. Certified libraries
In 2010, thanks to his current INRIA “délégation” period, Pierre Letouzey has continued a deep reform of
some parts of the Standard Library of Coq, mainly the Numbers library of generic / efficient arithmetic. The
idea is to take advantage of recent improvements of the Coq system in terms of modularity (Type Classes by
Sozeau and better Modules by Soubiran) for providing more uniformity in the functions and properties about
integers provided in the Standard Library. Currently Coq proposes three representations of natural numbers
(unary, binary, and int31-based), and two representations of integers (binary and int31-based). With Pierre
Letouzey’s work this year, we are now sure that all these representations come along with at least the same
set of basic functions (addition, multiplication, ... up to more advanced ones like gcd, square root, base-two
logarithm or bitwise functions), and the same set of lemmas about these basic functions.

As a side effect of this work, the libraries BigN and BigZ of arbitrary large numbers based on blocks of int31
words have been improved, reducing the size of a macro-generated file, using instead an innovating approach
based on Coq reduction at definition-time. The dependent-type aspects of these libraries have been put forward
and exploited for a better organisation.

Pierre Letouzey is now working on providing an easy transition way to users from the earlier heterogeneous
integer libraries to the new framework. He was also planning to work on tactics to guarantee that the same
basic tactics (e.g. Presburger solver) are available whichever representation of numbers is used, but this part
has not yet been done. This modular approach is also meant to be extended to other data-structures such as
rational or real numbers.

For the moment, the abstract parts of the Numbers library rely heavily on advanced aspects of Coq module
system, and is the result of a really fruitful interaction between Elie Soubiran and Pierre Letouzey, the latter
benefiting from and/or suggesting improvements to the former. Pierre Letouzey had also several interactions
with the group of Bas Spitters in Nijmegen about this question of modularity, trying to investigate which
approach is best suited, modules, type-classes or maybe some combination of the two.

Matthieu Sozeau is developing the type-classes system taking into account input from the Nijmegen group and
exploring its relation with logic programming.

6.3.2. Certified extraction
Stéphane Glondu continued his work on the internal extraction, which made him delve more into the
implementation of Coq’s kernel. This research track was quite time-consuming and didn’t bring much results,
so he focused back to the Coq-in-Coq formalisation, proving more results about extraction.

He presented his work at the workshop TYPES’10.

Project-Teamπr 2 13

6.3.3. Incrementality in proof languages
Matthias Puech and Yann Régis-Gianas are currently working on the theoretical grounds of an incremental
proof development and checking system. The traditional interaction with a proof-checker is a batch process.
Coq (among others) refines this model by providing two forms of incrementality:

• a linear interaction mechanism (read-eval-print loop) for providing abbreviations and inductive
definitions ;

• a set of gradual refinement tools (tactics) able to construct a term in a top-down fashion.

A more general approach to incrementality is being developed by means of a finer-grained analysis of
dependencies. The approach developed is not restricted to the interaction with Coq, even if it is the targeted
language, but is adaptable to virtually any typed formal language: the language and its dependencies are
specified in a meta-language close to the Logical Framework λLF , in which subsequent versions of a
development can be type-checked incrementally.

Partial results in this direction have been presented in [30]. Applications of this framework are: proof language
for proof assistants, integrated development environments for proof or programming languages, typed version
management systems.

6.3.4. Proofs of programs in Coq
As part of the CerCo european project, in collaboration with Roberto Amadio (PPS, Paris Diderot University),
Nicolas Ayache, Ronan Saillard and Yann Régis-Gianas developed a prototype compiler for a large subset of
the C language whose specificity is to annotate input source programs with information about the worst-case
execution cost of their machine code. They conceived a proof technique to prove the correctness of such an
annotating compiler. This work has been submitted to a conference [31].

7. Other Grants and Activities

7.1. National Actions
Alexis Saurin is member of the ANR LOGOI project (Logique et Géométrie de l’Interaction) and is co-
ordinator of one of the tasks of the project, on computational models (interactive and quantum models of
computations). The project kick-off meeting took place on the 30th of November.

In this prospect, Saurin aims at studying interactive models of computations, mainly along two directions:
develop interpretations of logic and computation based on operator and von Neumann algebras (in Girard’s
GoI framework) and develop models of computation based on interaction for both functional programming
and logic programming.

Pierre Letouzey is member of the ANR “Decert” project. The objective of the “Decert” project is to design
an architecture for cooperating decision procedures, with a particular emphasis on fragments of arithmetic,
including bounded and unbounded arithmetic over the integers and the reals, and on their combination with
other theories for data structures such as lists, arrays or sets. To ensure trust in the architecture, the decision
procedures will either be proved correct inside a proof assistant or produce proof witnesses allowing external
checkers to verify the validity of their answers. In this prospect, Pierre Letouzey aims at integrating all results
of this “Decert” project in the realm of the Coq proof assistant. Unfortunately, the implication of Pierre
Letouzey in other tasks such that the reform of the arithmetical libraries of Coq has left little time for works
related with Decert.

Several members of the team are active particpants of the ANR project CHOCO (Curry-Howard for Concur-
rency), which ends in April 2011. The national coordinator is Thoas Ehrhard (PPS), and the project garthers
groups from IML (Marseille), LAMA (Chambéry), LIP (ENS Lyon), LIPN (Paris 13), and PPS. We also par-
ticipate in the ANR project Deep Inference, coordinated by Lutz Strassburger (Parsifal team, INRIA Saclay)

14 Activity Report INRIA 2010

7.2. Equipe Associée
Early October, the project-team submitted an "Équipe-associée" proposal (EA). Entitled SEMACODE (stand-
ing for Stratégies d’évaluation, Machines Abstraites et COntrôle Délimité) the EA has been selected early
January. The EA gathers from the Inria side both people from the project-team (Boutillier, Curien, Glondu,
Herbelin, Letouzey, Munch-Macagnoni, Saurin – coordinator – and Zeilberger) and Gaboardi from Focus
INRIA team in Bologna. The foreign partners are located in the USA (Oregon) and in Serbia, namely with
Ariola, Ghilezan and graduate students. The project aims in particular at developing collaborations on the
formal investigation of evaluation strategies thanks to sequent calculus, formalizations of abstract machines
and logical investigation of delimited control. All these themes are clearly situated in the scientific objectives
of the project-team and will benefit from strengthened collaborations with the foreign partners. Concerning
this last item, a workshop is planned in Novi Sad, Serbia, late May 2011. Moreover, it is planned to receive
American graduates for internships.

7.3. EC projects
Yann Régis-Gianas is a participant of the EU-FP7 Certified Complexity project (CerCo). This European project
started in February 2010 as a collaboration between Bologna university (Asperti, Coen), Edinburgh university
(Pollack) and Paris Diderot university (Amadio, Régis-Gianas). The CerCo project aims at the construction
of a formally verified complexity preserving compiler from a large subset of the C programming language to
some typical micro-controller assembly language, of the kind traditionally used in embedded systems. Ronan
Saillard’s thesis and and Nicolas Ayache’s postdoc are funded by this project.

8. Dissemination

8.1. Interaction with the scientific community
8.1.1. Collective responsibilities

Pierre-Louis Curien is deputy director of the Foundation “Sciences Mathématiques de Paris”.

Hugo Herbelin coordinated the ADT Coq and the development of Coq.

8.1.2. Editorial activities
Pierre-Louis Curien is co-editor in chief of Mathematical Structures in Computer Science, and is an editor of
Theoretical Computer Science and of Higher-Order and Symbolic Computation.

Pierre-Louis Curien is guest editor for a special issue of Logical Methods in Computer Science in connection
with the conference TLCA 2009 (about 2/3 of the issue is already published online).

Pierre-Louis Curien wrote the preface of Girard’s Festschrift, to appear in TCS (2011). This preface recalls
some of the landmarks that allowed the cross fertilisation of program semantics and proof theory, starting
around the mid eighties of the last century.

8.1.3. Program committees and organising committees
Alexis Saurin served on the program committee for the workshop Games and Logic for Programming
Languages (GaLoP V, http://perso.ens-lyon.fr/olivier.laurent/galop10), a satellite event of ETAPS 2010 and
will serve, in 2011, on the program committee of the International Conference on Functional Programming
(ICFP 2011, http://www.icfpconference.org/icfp2011) and, for the second time, of the Workshop Games and
Logic for Programming Languages (GaLoP VI, http://sites.google.com/site/galopws.

Pierre-Louis Curien was PC member of “Categorical logic”, a satellite workshop of the joint conference MFCS
/ CSL 2010 in Brno, august 2010, and of Logic Colloquium, Paris, July 2010.

http://perso.ens-lyon.fr/olivier.laurent/galop10
http://www.icfpconference.org/icfp2011
http://sites.google.com/site/galopws

Project-Teamπr 2 15

Pierre-Louis Curien is organising with Paul-André Melliès (PPS) the anniversary workshop GGJJ 2011,
organised in honour of Gérard Berry and Jean-Jacques Lévy, Gérardmer, February 2011 (http://www.lri.fr/
~conchon/gerardmer/index.html).

Hugo Herbelin was PC member of the workshop “Classical Logic and Computation” (satellite workshop of
the joint conference MFCS / CSL 2010 in Brno), and of the Coq workshop (satellite workshop of FLOC 2010
in Edinburgh). He has also been invited in the PC of the conference TLCA 2011.

8.1.4. Jurys
In May 2010, Pierre-Louis Curien has been member of the “Comité de Sélection” for a professor position at
the university of Chambéry.

8.1.5. Ph.D. and habilitation juries
Pierre-Louis Curien was a member of the jury of the thesis of Christine Tasson (Paris 7) and Pierre
Clairambault (Paris 7). He was a reviewer for the habilitations of Olivier Laurent (Paris 7) and Lutz
Strassburger (Paris 7).

Hugo Herbelin was a member of the jury of the thesis of Benoît Montagu (École Polytechnique) and was a
reviewer for the Habilitation of Tristan Crolard.

8.2. Visits
8.2.1. Outbound

Andreas Abel visited Christophe Raffalli and Pierre Hyvernat (LAMA, Universite de Savoie, Chambery),
from 8 to 12 February, working on a termination checker for PML and giving a talk on Normalization by
Evaluation for System F. A similar talk was given at the meeting of the INRIA CORIAS project, headed by
Gilles Dowek and Claude Kirchner, in Val d’Ajol, Vosges, France, which Andreas Abel joined from 8 to 12
March. From 24 to 30 March he attended and contributed the Agda Implementor’s Meeting on Awaji Island in
Japan. He presented his paper Towards Normalization by Evaluation for the Calculus of Constructions, which
he prepared during his research visit to PI.R2, at the FLOPS 2010 Conference in Sendai, Japan, on 19 April
2010 [21].

Alexis Saurin visited CIS department of University of Oregon, USA, in February and March 2010. He visited
RIMS, Kyoto, Japan, in April 2010 and the math department of University of Minas Gerais, Belo Horizonte,
Brasil, in October 2010.

Noam Zeilberger visited the Programming, Logic, and Semantics Group at ITU Copenhagen for one week
in May 2010. In December, he visited the Programming, Principles, and Tools group at Microsoft Research
Cambridge, and the Oxford University Computing Laboratory.

Guillaume Munch-Maccagnoni visited Cambridge Computer Lab for one week in April 2010.

Pierre-Louis Curien visited Cambridge Computer Lab for three months (April through June 2010), for the
second and last period of his Leverhume grant.

8.2.2. Inbound
Andreas Abel was a guest researcher in the PI.R2 team from 1 October 2009 to 31 March 2010, on leave from
his assistant professorship at Ludwig-Maximilians-University, Munich, Germany.

Zena Ariola (University of Oregon) visited πr2 for one week days in September 2010.

Carsten Schürmann (University of Copenhagen) visited πr2 for one week in September 2010. At this occasion,
he gave a one-day tutorial on the Twelf proof assistant.

Andrej Bauer (University of Ljubljana) visited πr2 for three days in October 2010 and gave a talk on the Eff
programming language prototype.

http://www.lri.fr/~conchon/gerardmer/index.html
http://www.lri.fr/~conchon/gerardmer/index.html

16 Activity Report INRIA 2010

Ulrich Berger (University of Swansea) visited πr2 and PPS for three days and gave a talk on computing with
real numbers in Coq.

Olivier Danvy (University of Aarhus) visited πr2 and PPS for one month and gave a talk on programming
with continuations.

Randy Pollack (University of Edinburgh) visited πr2 for two days and gave a talk on the formal representation
of bindings on machine.

Martin Hofmann (University Ludwig Maximilian, Munich) visited πr2 for one month (INRIA professor
invitation programme).

8.3. Teaching
8.3.1. Supervision of Ph.D. and internships

Pierre Letouzey is currently the PhD advisor of Stéphane Glondu.

Hugo Herbelin has started supervising the PhD of Pierre Boutillier. Three of his students: Élie Soubiran, Danko
Ilik and Vincent Siles have defended their thesis in 2010 [15], [16], [17].

Pierre-Louis Curien is the PhD advisor of Guillaume Munch (jointly with Thomas Ehrhard), and is also
the supervisor of two students at PPS outside the πr2 project (Stéphane Zimmermann, jointly with Thomas
Ehrhard, and Alexis Goyet).

Yann Régis-Gianas supervises the PhD of Ronan Saillard.

8.3.2. Courses
Pierre-Louis Curien has taught for the second time a 48 hours proof theory course in the Master program
“Logique Mathématique et Fondements de l’Informatique” at Paris 7. He gave a 6 hour proof theory course at
Cambridge University (June 2010).

Pierre Boutillier, Stéphane Glondu, Matthias Puech, Ronan Saillard and Guillaume Munch are teaching
assistants at University Paris Diderot-Paris 7. They teach this year Java programming (beginner / advanced),
unix-system (beginner / advanced), algorithms (advanced) and proof assistant.

In February-March 2010, Alexis Saurin taught a 10H graduate course at University of Oregon CIS department
on Proof Theory, Linear Logic and Proof Search while doing a research visit to UO, working with Zena Ariola.
Moreover, during a visit to University of Minas Gerais in Belo Horizonte, Saurin gave one introductory lecture
on λ-calculus and its connections with logic in a logic course to graduate students in philosophy.

Yann Régis-Gianas took part in the MPRI course entitled “Type systems”. He gave a 12 hours course about
generalised algebraic data types, higher-order Hoare logic and dependently typed programming.

Vincent Siles is a teaching assistant at Ecole Polytechnique. During 2010, he taught Java programming
(beginner), intermediate OCaml programming and introduction to networking.

Bruno Bernardo was teaching as an ATER in Paris 7 until August 2010. He taught “Travaux dirigés” about
Web Site Design (Internet et Outils). He also conceived and supervised a student project common to the Script
Languages and C Language courses.

8.4. Participation in conferences and seminars
8.4.1. Invited talks

Pierre-Louis Curien was invited speaker at the Operads and Universal Algebra Conference, Tianjin, China,
July 2010 (http://andromeda.rutgers.edu/~liguo/OUA10/operadua.html), and at the TYPES 2010 workshop.

8.4.2. Presentation of papers
Glondu: at JFLA 2010.

http://andromeda.rutgers.edu/~liguo/OUA10/operadua.html

Project-Teamπr 2 17

Herbelin: [25] at FLOC’10 (LICS) in Edinburgh and to the workshop FATPA’10 in Novi Sad.

Puech: [30] at the MIPS 2010 workshop.

Saurin: [27], [26] at FOSSACS 2010 and FLOPS 2010.

Siles: [28] at LICS 2010.

Zeilberger: [29] at LICS 2010.

Curien: [24] at IFIP TCS 2010.

8.4.3. Other presentations
Herbelin and Sarnat presented their joint work on the sequent calculus presentation of the Calculus of Inductive
Constructions at DTP’10 workshop (part of FLOC’10) and TYPES’10, respectively.

Herbelin presented his work with Danko Ilik on the computational content of Gödel’s completeness theorem
at TYPES’10 in Warsaw and at the joint COST 0910 and Alpine Verification Meeting at Lugano.

Letouzey gave an invited presentation about extraction at Journées Francophones des Langages Applicatifs
(JFLA, February, La Ciotat).

Andreas Abel also presented his research On Irrelevance and Extraction in Type Theory at the JFLA.

Letouzey gave two of the lessons in the one-week INRIA-EDF Summer School about Coq (June, Paris).

Ilik gave an invited talk entitled "Constructive Completeness Theorems and Delimited Control" at the
Workshop on Constructive Aspects of Logic and Mathematics, organised by Japan Advanced Institute of
Science and Technology (March, Kanazawa, Japan).

Sozeau gave a talk at TYPES’10 in Warsaw (October).

8.4.4. Attendance to conferences, workshops, schools,...
Oregon Programming Languages Summer School (Boutillier, Glondu, Puech, Saurin).

Journées Francophones des Langages Applicatifs, February, La Ciotat (Glondu, Letouzey).

Journées GEOCAL–LAC, March, Nice (Zeilberger, Munch-Maccagnoni).

Dagstuhl Seminar on Game Semantics and Verification, June (Zeilberger).

Types 2010 in Warsaw (Glondu, Herbelin, Sozeau, Curien).

Monthly meetings of the ANR project CHOCO (Curry-Howard for concurrency) at Lyon (Munch-
Maccagnoni).

FLoC 2010 in Edinburgh (Glondu, Herbelin, Siles, Zeilberger).

Meetings of the Cerco european project in Bologna, Paris and Edinburgh (Ayache, Régis-Gianas, Saillard).

CICM 2010, July, Paris (Puech).

École Jeune Chercheurs en Informatique Mathématique 2010 in Chambéry, France (Munch-Maccagnoni,
Siles).

Réalisabilité à Chambéry workshop (Munch-Maccagnoni).

École d’Hiver en Informatique Fondamentale, ENS Lyon (Munch-Maccagnoni).

8.4.5. Talks in seminars
Abel: Talk at the ProVal Seminar, Saclay, on 19 March, on Type-Based Termination for Dependent Types.

Munch-Maccagnoni: "Semantics Lunch", Cambridge Computer Lab (April), École des Jeunes Chercheurs
en Informatique Mathématique (Chambéry), Séminaire LDP (IML, Marseille), CHoCo Seminar (Lyon),
Séminaire Parsifal / Typical (LIX, Palaiseau).

Siles: Seminar at ENS Lyon, Plume Team.

18 Activity Report INRIA 2010

Saurin: Seminars at University of Novi Sad, Novi Sad, Serbia, University of Oregon seminar, Eugene, USA,
RIMS, Kyoto, Japan, University of Minas Gerais, Belo Horizonte, Brasil, CHOCO meeting, Lyon, France

Zeilberger: Workshop on Proofs and Meaning at the Maison des Sciences de l’Homme (March 2010), Dagstuhl
Seminar on Game Semantics and Verification (June), Microsoft Research Cambridge (December), OASIS
Seminar of the Oxford University Computing Laboratory (December).

Sozeau: Gallium Seminar at Rocquencourt (October).

Curien: séminaire de mathématiques et d’informatique de l’université de Mulhouse (décembre 2010, exposé
sur les substitutions et les isomorphismes)

8.4.6. Groupe de travail Théorie des types et réalisabilité
This is one of the working groups of PPS, jointly organised by Hugo Herbelin and Paul-André Melliès, since
September 2009. It is held weekly at the Antenne INRIA.

8.5. Other dissemination activities
Yann Régis-Gianas organised the "Fête de la Science" event for the computer science department of the
Paris Diderot university, with some financial support of INRIA Paris-Rocquencourt communication services.
Nicolas Ayache, Matthias Puech, Pierre Letouzey also took part in the animation.

Yann Régis-Gianas co-organised the “Journée Francilienne de Programmation”, a programming contest
between undergraduate students of three universities of Paris (UPD, UPMC, UPS).

Yann Régis-Gianas and Pierre Letouzey participated to the “Salon de la culture et des jeux mathématiques” as
scientific orators for INRIA.

Yann Régis-Gianas gave several conferences about computer science in the high-schools Lycée Montaigne
and Camille See.

Yann Régis-Gianas supervised the internships of four fourteen years old schoolboys in INRIA Paris-
Rocquencourt.

9. Bibliography
Major publications by the team in recent years

[1] Z. M. ARIOLA, H. HERBELIN, A. SABRY. A Type-Theoretic Foundation of Continuations and Prompts, in
"Proceedings of the Ninth ACM SIGPLAN International Conference on Functional Programming (ICFP ’04)",
Snowbird,Utah, ACM, September 19-21 2004, p. 40–53.

[2] Z. M. ARIOLA, H. HERBELIN, A. SABRY. A Type-Theoretic Foundation of Delimited Continuations, in
"Higher Order and Symbolic Computation", 2007, http://dx.doi.org/10.1007/s10990-007-9006-0.

[3] B. BARRAS, B. BERNARDO. The Implicit Calculus of Constructions as a Programming Language with
Dependent Types, in "FoSSaCS", 2008, p. 365-379.

[4] P.-L. CURIEN. Substitution up to isomorphism, in "Fundamenta Informaticae", 1993, vol. 19, p. 51-85.

[5] P.-L. CURIEN, H. HERBELIN. The duality of computation, in "Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00)", Montreal, Canada, SIGPLAN Notices
35(9), ACM, September 18-21 2000, p. 233–243 [DOI : 10.1145/351240.351262], http://hal.archives-
ouvertes.fr/inria-00156377/en/.

http://dx.doi.org/10.1007/s10990-007-9006-0
http://hal.archives-ouvertes.fr/inria-00156377/en/
http://hal.archives-ouvertes.fr/inria-00156377/en/

Project-Teamπr 2 19

[6] H. HERBELIN, S. GHILEZAN. An Approach to Call-by-Name Delimited Continuations, in "Proceedings of
the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008", San
Francisco, California, USA, G. C. NECULA, P. WADLER (editors), ACM, January 7-12 2008, p. 383-394.

[7] H. HERBELIN. A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure, in
"Computer Science Logic, 8th International Workshop, CSL ’94", Kazimierz, Poland, L. PACHOLSKI, J.
TIURYN (editors), Lecture Notes in Computer Science, Springer, September 25-30 1995, vol. 933, p. 61–75.

[8] G. MUNCH-MACCAGNONI. Focalisation and Classical Realisability, in "Computer Science Logic ’09", E.
GRÄDEL, R. KAHLE (editors), Lecture Notes in Computer Science, Springer-Verlag, 2009, vol. 5771, p.
409–423.

[9] Y. RÉGIS-GIANAS, F. POTTIER. A Hoare Logic for Call-by-Value Functional Programs, in "Proceedings of
the Ninth International Conference on Mathematics of Program Construction (MPC’08)", Lecture Notes in
Computer Science, Springer, July 2008, vol. 5133, p. 305–335, http://gallium.inria.fr/~fpottier/publis/regis-
gianas-pottier-hoarefp.ps.gz.

[10] A. SAURIN. Separation with Streams in the Λµ-calculus, in "Symposium on Logic in Computer Science (LICS
2005)", Chicago, IL, USA, Proceedings, IEEE Computer Society, 26-29 June 2005, p. 356-365.

[11] A. SAURIN. On the Relations between the Syntactic Theories of λµ-calculi, in "Computer Science Logic
2008", LNCS, Springer, 2008.

[12] A. SAURIN. Typing Streams in the Λµ-calculus, in "ACM Transactions on Computational Logic", 2009, to
appear.

[13] A. SAURIN. On the Relations between the Syntactic Theories of λµ-Calculi, in "17th Annual Conference of the
EACSL 17th EACSL Annual Conference on Computer Science Logic - CSL 2008", Bertinoro Italie, Lecture
notes in computer science, Springer, 2008, vol. 5213, p. 154-168 [DOI : 10.1007/978-3-540-87531-4_13],
http://hal.archives-ouvertes.fr/hal-00527930/en/.

[14] N. ZEILBERGER. On the unity of duality, in "Annals of Pure and Applied Logic", 2008, vol. 153(1), p. 66-96.

Publications of the year
Doctoral Dissertations and Habilitation Theses

[15] D. ILIK. Preuves constructives de complétude et contrôle délimité, Ecole Polytechnique X, October 2010,
http://hal.inria.fr/tel-00529021/en.

[16] V. SILES. Investigation on the typing of equality in type systems, Ecole Polytechnique X, November 2010.

[17] É. SOUBIRAN. Theory and namespace management for the Coq proof assistant, Ecole Polytechnique X,
September 2010.

Articles in International Peer-Reviewed Journal

http://gallium.inria.fr/~fpottier/publis/regis-gianas-pottier-hoarefp.ps.gz
http://gallium.inria.fr/~fpottier/publis/regis-gianas-pottier-hoarefp.ps.gz
http://hal.archives-ouvertes.fr/hal-00527930/en/
http://hal.inria.fr/tel-00529021/en

20 Activity Report INRIA 2010

[18] O. DELANDE, D. MILLER, A. SAURIN. Proof and Refutation in MALL as a game, in "Annals of Pure and
Applied Logic", 2010, vol. 161, no 5, p. 654-672 [DOI : 10.1016/J.APAL.2009.07.017], http://hal.inria.fr/
hal-00527922/en.

[19] D. ILIK, G. LEE, H. HERBELIN. Kripke Models for Classical Logic, in "Annals of Pure and Applied Logic",
August 2010, vol. 161, no 11, p. 1367-1378 [DOI : 10.1016/J.APAL.2010.04.007], http://hal.inria.fr/inria-
00371959/en.

[20] A. SAURIN. Typing streams in the Λµ-calculus, in "ACM Transactions on Computational Logic", 2010, vol.
11, no 4 [DOI : 10.1145/1805950.1805958], http://hal.archives-ouvertes.fr/hal-00527835/en/.

International Peer-Reviewed Conference/Proceedings

[21] A. ABEL. Towards Normalization by Evaluation for the βη-Calculus of Constructions, in "Functional
and Logic Programming, 10th International Symposium, FLOPS 2010", Sendai, Japan, M. BLUME, N.
KOBAYASHI, G. VIDAL (editors), Lecture Notes in Computer Science, Springer-Verlag, April 19-21 2010,
vol. 6009, p. 224–239.

[22] A. ABEL. Irrelevance in Type Theory with a Heterogeneous Equality Judgement, in "Foundations of Software
Science and Computational Structures, 14th International Conference, FOSSACS 2011, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2011", Saarbrücken, Germany,
March 26 - April 3 2011, To appear..

[23] M. BASALDELLA, A. SAURIN, K. TERUI. From Focalization of Logic to the Logic of Focalization, in
"Twenty-Sixth Conference on the Mathematical Foundations of Programming Semantics - MFPS XXVI",
Canada Ottawa, 2010, p. 161-176 [DOI : 10.1016/J.ENTCS.2010.08.010], http://hal.inria.fr/hal-00527916/
en.

[24] P.-L. CURIEN, G. MUNCH-MACCAGNONI. The duality of computation under focus, in "IFIP International
Conference on Theoretical Computer Science", Australia Brisbane, Lecture Notes in Computer Science,
Springer Verlag, 2010, http://hal.inria.fr/inria-00491236/en.

[25] H. HERBELIN. An intuitionistic logic that proves Markov’s principle, in "Logic In Computer Science", United
Kingdom Edinburgh, IEEE Computer Society, 2010, http://hal.inria.fr/inria-00481815/en.

[26] A. SAURIN. A Hierarchy for Delimited Continuations in Call-by-Name, in "13th International Conference on
Software Science and Computational Structures - FOSSACS 2010", Cyprus Paphos, Lecture notes in computer
science, Springer, 2010, vol. 6014, p. 374-388 [DOI : 10.1007/978-3-642-12032-9_26], http://hal.inria.fr/
hal-00527925/en.

[27] A. SAURIN. Standardization and Böhm Trees for Λµ-Calculus, in "Tenth International Symposium on
Functional and Logic Programming - FLOPS 2010", Japan Sendai, Lecture notes in computer science,
Springer, 2010, vol. 6009, p. 134-149 [DOI : 10.1007/978-3-642-12251-4_11], http://hal.inria.fr/hal-
00527926/en.

[28] V. SILES, H. HERBELIN. Equality is typable in Semi-Full Pure Type Systems, in "Logic In Computer Science
- LICS 2010", United Kingdom Edinburgh, July 2010, 10 p., http://hal.inria.fr/inria-00496988/en.

http://hal.inria.fr/hal-00527922/en
http://hal.inria.fr/hal-00527922/en
http://hal.inria.fr/inria-00371959/en
http://hal.inria.fr/inria-00371959/en
http://hal.archives-ouvertes.fr/hal-00527835/en/
http://hal.inria.fr/hal-00527916/en
http://hal.inria.fr/hal-00527916/en
http://hal.inria.fr/inria-00491236/en
http://hal.inria.fr/inria-00481815/en
http://hal.inria.fr/hal-00527925/en
http://hal.inria.fr/hal-00527925/en
http://hal.inria.fr/hal-00527926/en
http://hal.inria.fr/hal-00527926/en
http://hal.inria.fr/inria-00496988/en

Project-Teamπr 2 21

[29] N. ZEILBERGER. Polarity and the Logic of Delimited Continuations, in "25th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS 2010)", United Kingdom Edinburgh, 2010, p. 219 - 227
[DOI : 10.1109/LICS.2010.23], http://hal.inria.fr/hal-00548167/en.

Workshops without Proceedings

[30] M. PUECH, Y. RÉGIS-GIANAS. Towards typed repositories of proofs, in "Mathematically Intelligent Proof
Search - MIPS 2010", France Paris, July 2010, http://hal.inria.fr/inria-00525874/en.

Other Publications

[31] R. M. AMADIO, N. AYACHE, Y. RÉGIS-GIANAS, R. SAILLARD. Certifying cost annotations in compilers,
2010, technical report, http://hal.inria.fr/hal-00524715/en.

[32] V. SILES, H. HERBELIN. Pure Type System conversion is always typable, 2010, en cours de soumission à
JFP, http://hal.inria.fr/inria-00497177/en.

References in notes

[33] H. P. BARENDREGT. The Lambda Calculus: Its Syntax and Semantics, North Holland, Amsterdam, 1984.

[34] M. BASALDELLA, A. SAURIN, K. TERUI. On the Meaning of Focalization, in "(informal) Proceedings of
Prelude Workshop", September 2009, http://www.pps.jussieu.fr/~saurin/Publi/BST-focalization-ludics.pdf.

[35] Y. BERTOT, P. CASTÉRAN. Interactive Theorem Proving and Program Development Coq’Art: The Calculus
of Inductive Constructions, Springer, 2004.

[36] W. BUCHHOLZ. Notation systems for infinitary derivations, in "Archive for Mathematical Logic", 1991, vol.
30, p. 277–296.

[37] A. CHURCH. A set of Postulates for the foundation of Logic, in "Annals of Mathematics", 1932, vol. 2, p. 33,
346-366.

[38] T. COQ DEVELOPMENT TEAM. The Coq Reference Manual, version 8.2, September 2008, http://coq.inria.fr/
doc.

[39] T. COQUAND. Une théorie des Constructions, University Paris 7, January 1985.

[40] T. COQUAND, G. HUET. Constructions : A Higher Order Proof System for Mechanizing Mathematics, in
"EUROCAL’85", Linz, Lecture Notes in Computer Science, Springer Verlag, 1985, vol. 203.

[41] T. COQUAND, C. PAULIN-MOHRING. Inductively defined types, in "Proceedings of Colog’88", P. MARTIN-
LÖF, G. MINTS (editors), Lecture Notes in Computer Science, Springer Verlag, 1990, vol. 417.

[42] H. B. CURRY, R. FEYS, W. CRAIG. Combinatory Logic, North-Holland, 1958, vol. 1, §9E.

[43] M. FELLEISEN, D. P. FRIEDMAN, E. KOHLBECKER, B. F. DUBA. Reasoning with continuations, in "First
Symposium on Logic and Computer Science", 1986, p. 131-141.

http://hal.inria.fr/hal-00548167/en
http://hal.inria.fr/inria-00525874/en
http://hal.inria.fr/hal-00524715/en
http://hal.inria.fr/inria-00497177/en
http://www.pps.jussieu.fr/~saurin/Publi/BST-focalization-ludics.pdf
http://coq.inria.fr/doc
http://coq.inria.fr/doc

22 Activity Report INRIA 2010

[44] A. FILINSKI. Representing Monads, in "Conf. Record 21st ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, POPL’94", Portland, OR, USA, ACM Press, 17-21 Jan 1994, p. 446-457.

[45] G. GENTZEN. Untersuchungen über das logische Schließen, in "Mathematische Zeitschrift", 1935, vol. 39,
p. 176–210,405–431.

[46] J.-Y. GIRARD. Une extension de l’interpretation de Gödel à l’analyse, et son application à l’élimination des
coupures dans l’analyse et la théorie des types, in "Second Scandinavian Logic Symposium", J. FENSTAD
(editor), Studies in Logic and the Foundations of Mathematics, North Holland, 1971, no 63, p. 63-92.

[47] T. G. GRIFFIN. The Formulae-as-Types Notion of Control, in "Conf. Record 17th Annual ACM Symp. on
Principles of Programming Languages, POPL ’90", San Francisco, CA, USA, 17-19 Jan 1990, ACM Press,
1990, p. 47–57.

[48] H. HERBELIN, A. SAURIN. ??-calculus and ??-calculus: a Capital Difference, F.: Theory of Computation/F.4:
MATHEMATICAL LOGIC AND FORMAL LANGUAGES/F.4.1: Mathematical Logic/F.4.1.2: Lambda
calculus and related systems, F.: Theory of Computation/F.4: MATHEMATICAL LOGIC AND FORMAL
LANGUAGES/F.4.1: Mathematical Logic/F.4.1.7: Proof theory, F.: Theory of Computation/F.3: LOGICS
AND MEANINGS OF PROGRAMS/F.3.3: Studies of Program Constructs/F.3.3.0: Control primitives, http://
hal.inria.fr/inria-00524942/en/.

[49] M. HOFMANN. On the Interpretation of Type Theory in Locally Cartesian Closed Categories, in "Computer
Science Logic (CSL’94)", Springer Lecture Notes in Computer Science 933, 1994, p. 427-441.

[50] W. A. HOWARD. The formulae-as-types notion of constructions, in "to H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism", Academic Press, 1980, Unpublished manuscript of 1969.

[51] J.-L. KRIVINE. A call-by-name lambda-calculus machine, in "Higher Order and Symbolic Computation",
2005.

[52] J.-L. KRIVINE. Un interpréteur du lambda-calcul, 1986, Unpublished.

[53] P. LANDIN. The mechanical evaluation of expressions, in "The Computer Journal", January 1964, vol. 6, no

4, p. 308–320.

[54] P. LANDIN. A generalisation of jumps and labels, UNIVAC Systems Programming Research, August 1965,
no ECS-LFCS-88-66, Reprinted in Higher Order and Symbolic Computation, 11(2), 1998.

[55] P. B. LEVY. Call-by-Push-Value: A Subsuming Paradigm, in "TLCA", 1999, p. 228-242.

[56] P. MARTIN-LÖF. A theory of types, University of Stockholm, 1971, no 71-3.

[57] A. MIQUEL. Le Calcul des Constructions implicite: syntaxe et sémantique, Université Paris 7, December
2001.

[58] C. PAPADIMITRIOU. Computational Complexity, Addison Wesley, 1994.

http://hal.inria.fr/inria-00524942/en/
http://hal.inria.fr/inria-00524942/en/

Project-Teamπr 2 23

[59] M. PARIGOT. Free Deduction: An Analysis of "Computations" in Classical Logic., in "Logic Programming,
Second Russian Conference on Logic Programming", St. Petersburg, Russia, A. VORONKOV (editor), Lecture
Notes in Computer Science, Springer, September 11-16 1991, vol. 592, p. 361-380, http://dblp.uni-trier.de.

[60] M. PARIGOT. Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction, in "Logic
Programming and Automated Reasoning: International Conference LPAR ’92 Proceedings", St. Petersburg,
Russia, Springer-Verlag, 1992, p. 190-201.

[61] J. C. REYNOLDS. Definitional interpreters for higher-order programming languages, in "ACM ’72: Proceed-
ings of the ACM annual conference", New York, NY, USA, ACM Press, 1972, p. 717–740.

[62] J. C. REYNOLDS. Towards a theory of type structure, in "Symposium on Programming", B. ROBINET (editor),
Lecture Notes in Computer Science, Springer, 1974, vol. 19, p. 408-423.

[63] K. TERUI. Computational Ludics, in "Theoretical Computer Science", 2009, to appear.

[64] K. WATKINS, I. CERVESATO, F. PFENNING, D. WALKER. A Concurrent Logical Framework I: Judgments
and Properties, Department of Computer Science, Carnegie Mellon University, 2002, no CMU-CS-02-101,
Revised May 2003.

[65] N. DE BRUIJN. AUTOMATH, a language for mathematics, Technological University Eindhoven, November
1968, no 66-WSK-05.

http://dblp.uni-trier.de

