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  [bookmark: uid3] Section: 
      Overall Objectives
Introduction

The main objective of the SALSA project is to solve systems of polynomial equations and inequations. We emphasize on algebraic methods which are more robust and frequently more efficient than purely numerical tools.

Polynomial systems have many applications in various scientific - academic as well as industrial - domains. However much work is yet needed in order to define specifications for the output of the algorithms which are well adapted to the problems.

The variety of these applications implies that our software needs to be robust. In fact, almost all problems we are dealing with are highly numerically unstable, and therefore, the correctness of the result needs to be guaranteed.

Thus, a key target is to provide software which are competitive in terms of efficiency but preserve certified outputs. Therefore, we restrict ourselves to algorithms which verify the assumptions made on the input, check the correctness of possible random choices done during a computation without sacrificing the efficiency. Theoretical complexity for our algorithms is only a preliminary step of our work which culminates with efficient implementations which are designed to solve significant applications.

A consequence of our way of working is that many of our contributions are related to applicative topics such as cryptography, error correcting codes, robotics and signal theory. We have to emphasize that these applied contributions rely on a long-term and global management of the project with clear and constant objectives leading to theoretical and deep advances.


[bookmark: uid4] Section: 
      Overall Objectives
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  [bookmark: uid10] Section: 
      Scientific Foundations
Introduction

For polynomial system solving, the mathematical specification of the result of a computation, in particular when the number of solutions is infinite, is itself a difficult problem [1] , [83] , [82] . Sorting the most frequently asked questions appearing in the applications, one distinguishes several classes of problems which are different either by their mathematical structure or by the significance that one can give to the word "solving".

Some of the following questions have a different meaning in the real case or in the complex case, others are posed only in the real case  :


	[bookmark: uid11] zero-dimensional systems (with a finite number of complex solutions - which include the particular case of univariate polynomials); The questions in general are well defined (numerical approximation, number of solutions, etc) and the handled mathematical objects are relatively simple and well-known;



	[bookmark: uid12] parametric systems; They are generally zero-dimensional for
almost all the parameters' values. The goal is to characterize the solutions of the system (number of real solutions, existence of a parameterization, etc.) with respect to parameters' values.



	[bookmark: uid13] positive dimensional systems; For a direct application, the first question is the existence of zeros of a particular type (for example real, real positive, in a finite field). The resolution of such systems can be considered as a black box for the study of more general problems (semi-algebraic sets for example) and information to be extracted is generally the computation of a point per connected component in the real case.



	[bookmark: uid14] constructible and semi-algebraic sets; As opposed to what occurs numerically, the addition of constraints or inequalities complicates the problem.
Even if semi-algebraic sets represent the basic object of the real geometry, their automatic "and effective study" remains a major challenge. To date, the state of the art is poor since only two classes of methods are existing :


	[bookmark: uid15] the Cylindrical Algebraic Decomposition which basically computes a partition of the ambient space in cells where the signs of a given set of polynomials are constant;



	[bookmark: uid16] deformations based methods that turn the problem into solving algebraic varieties.




The first solution is limited in terms of performances (maximum 3 or 4 variables) because of a recursive treatment variable by variable, the second also because of the use of a sophisticated arithmetic (formal infinitesimals).



	[bookmark: uid17] quantified formulas; deciding efficiently if a first order formula is valid or not is certainly one of the greatest challenges in "effective" real algebraic geometry. However this problem is relatively well encircled since it can always be rewritten as the conjunction of (supposed to be) simpler problems like the computation of a point per connected component of a semi-algebraic set.




As explained in some parts of this document, the iniquity of the studied mathematical objects does not imply the uncut of the related algorithms. The priorities we put on our algorithmic work are generally dictated
by the applications. Thus, above items naturally structure the algorithmic part of our research topics.

For each of these goals, our work is to design the most efficient
possible algorithms: there is thus a strong correlation between
implementations and applications, but a significant part of the work is dedicated to the identification of black-box allowing a modular approach of the problems. For example, the resolution of the zero-dimensional systems is a prerequisite for the algorithms treating of parametric or positive dimensional systems.

An essential class of black-box developed in the project does not appear directly in the absolute objectives counted above : the "algebraic or complex" resolutions. They are mostly reformulations, more algorithmically usable, of the studied systems. One distinguishes two categories of complementary objects :


	[bookmark: uid18] ideals representations; From a computational point of view these are the structures which are used in the first steps;



	[bookmark: uid19] varieties representations; The algebraic variety, or more generally the constructible or semi-algebraic set is the studied object.




To give a simple example, in [image: Im1 $\#8450 ^2$] the variety {(0, 0)} can be seen like the zeros set of more or less complicated ideals (for example, ideal(X, Y), ideal(X2, Y), ideal(X2, X, Y, Y3), etc).
The entry which is given to us is a system of equations, i.e.  an ideal. It is essential, in many cases, to understand the structure of this object to be able to correctly treat the degenerated cases. A striking example is certainly the study of the singularities. To take again the preceding example, the variety is not singular, but this cannot be detected by the blind application of the Jacobian criterion (one could wrongfully think that all the points are singular, contradicting, for example, Sard's lemma).

The basic tools that we develop and use to understand in an automatic
way the algebraic and geometrical structures are on the one hand
Gröbner bases (the most known object used to represent an ideal without loss of information) and on the other hand triangular sets (effective way to represent the varieties).


[bookmark: uid20] Section: 
      Scientific Foundations
Gröbner basis and triangular sets
Participants :
      J.C. Faugère, G. Renault, F. Rouillier, M. Safey El Din, P.J. Spaenlehauer, D. Wang, R. Xiao.


Let us denote by K[X1, ..., Xn] the ring of polynomials with coefficients in a field K and indeterminates X1, ..., Xn and S = {P1, ..., Ps} any subset of K[X1, ..., Xn]. A point [image: Im2 ${x\#8712 \#8450 ^n}$] is a zero of S if [image: Im3 ${P_i{(x)}=0~~~i\#8712 {[1...s]}}$].

The ideal [image: Im4 ${\#8464 =\#9001 P_1,...,P_s\#9002 }$]
generated by P1, ..., Ps is the set of polynomials in
K[X1, ..., Xn] constituted by all the combinations
[image: Im5 $\mstyle {\munderover \#8721 {k=1}RP_kU_k}$] with [image: Im6 ${U_k\#8712 \#8474 {[X_1,...,X_n]}}$].
Since every element of [image: Im7 $\#8464 $] vanishes at each zero of S, we denote
by [image: Im8 ${V_C{(S)}=V_C{(I)}={{x\#8712 C^n~|~p{(x)}=0~\#8704 p\#8712 \#8464 }}}$] (resp. [image: Im9 ${V_R{(S)}=V_R{(I)}=V_\#8450 {(I)}\#8898 \#8477 ^n}$]), the set of complex
(resp. real) zeros of S, where R is a real closed field containing K and C its algebraic closure.

One Gröbner basis' main property is to provide an algorithmic method for deciding if a polynomial belongs or not to an ideal through a reduction function denoted "[image: Im10 $\mtext Reduce$]" from now.

If G is a Gröbner basis of an ideal [image: Im11 ${\#8464 \#8834 \#8474 [X_1,...,X_n]}$] for any monomial ordering <.


	[bookmark: uid21] a polynomial [image: Im12 ${p\#8712 \#8474 [X_1,...,X_n]}$] belongs to [image: Im7 $\#8464 $] if and only if
[image: Im13 ${\mtext Reduce(p,G,\lt )=0}$],



	[bookmark: uid22] Reduce(p,G,<) does not depend on the order of
the polynomials in the list G, thus, this is a canonical reduced
expression modulus [image: Im7 $\#8464 $], and the Reduce function can be used as a
simplification function.




Gröbner bases are computable objects. The most popular method for computing them is Buchberger's algorithm ( [71] , [70] ). It has several variants and it is implemented in most of general computer algebra systems like Maple or Mathematica. The computation of Gröbner bases using Buchberger's original strategies has to face to two kind of problems :


	[bookmark: uid23] (A) arbitrary choices : the order in which are done the computations has a dramatic influence on the computation time;



	[bookmark: uid24] (B) useless computations : the original algorithm spends most of its time in computing 0.




For problem (A), J.C. Faugère proposed ([4]  - algorithm F4) a new generation of powerful algorithms ([4] ) based on the intensive use of linear algebra technics. In short, the arbitrary choices are left to computational strategies related to classical linear algebra problems (matrix inversions, linear systems, etc.).

For problem (B), J.C. Faugère proposed ([3] ) a new criterion for detecting useless computations. Under some regularity conditions on the system, it is now proved that the algorithm do never perform useless computations.

A new algorithm named F5 was built using these two key results. Even if it still computes a Gröbner basis, the gap with existing other strategies is consequent. In particular, due to the range of examples that become computable, Gröbner basis can be considered as a reasonable computable object in large applications.

We pay a particular attention to Gröbner bases computed for elimination orderings since they provide a way of "simplifying" the system (equivalent system with a structured shape). A well known property is that the zeros of the first non null polynomial define the Zariski closure (classical closure in the case of complex coefficients) of the projection on the coordinate's space associated with the smallest variables.

Such kinds of systems are algorithmically easy to use, for computing numerical approximations of the solutions in the zero-dimensional case or for the study of the singularities of the associated variety (triangular minors in the Jacobian matrices).

Triangular sets have a simplier structure, but, except if they are linear, algebraic systems cannot, in general, be rewritten as a single triangular set, one speaks then of decomposition of the systems in several triangular sets.

 

Table 
	1. 	Lexicographic Gröbner bases	Triangular sets	[image: Im14 $\mfenced o={  \mtable{...}$]	[image: Im15 $\mfenced o={  \mtable{...}$] 

Triangular sets appear under various names in the field of algebraic
systems. J.F. Ritt ( [89] ) introduced them as
characteristic sets for prime ideals in differential algebra. His
constructive algebraic tools were adapted by W.T. Wu in the late
seventies for geometric applications. The concept of regular chain
(see [81]  and [100] ) is adapted for recursive
computations in a univariate way.

It provides a membership test and a zero-divisor test for the strongly
unmixed dimensional ideal it defines. Kalkbrenner defined regular
triangular sets and showed how to decompose algebraic varieties as a
union of Zariski closures of zeros of regular triangular sets. Gallo
showed that the principal component of a triangular decomposition can
be computed in O(dO(n2)) (n= number of variables, d=degree
in the variables). During the 90s, implementations of various
strategies of decompositions multiply, but they drain relatively
heterogeneous specifications.

D. Lazard contributed to the homogenization of the work completed in this field by proposing a series of specifications and definitions gathering the whole of former work [1] . Two essential concepts for the use of these sets (regularity, separability) at the same time allow from now on to establish a simple link with the studied varieties and to specify the computed objects precisely.

A remarkable and fundamental property in the use we have of the triangular sets is that the ideals induced by regular and separable triangular sets, are radical and equidimensional. These properties are essential for some of our algorithms. For example, having radical and equidimensional ideals allows us to compute straightforwardly the singular locus of a variety by canceling minors of good dimension in the Jacobian matrix of the system. This is naturally a basic tool for some algorithms in real algebraic geometry [2] , [9] , [93] .

In 1993, Wang [96]  proposed a method for decomposing any
polynomial system into fine triangular systems which have additional
properties such as the projection property that may be used for
solving parametric systems (see Section 
	3.4.2 ).

Triangular sets based techniques are efficient for specific problems,
but the implementations of direct decompositions into triangular sets
do not currently reach the level of efficiency of Gröbner bases in
terms of computable classes of examples. Anyway, our team benefits
from the progress carried out in this last field since we currently
perform decompositions into regular and separable triangular sets
through lexicographical Gröbner bases computations.


[bookmark: uid25] Section: 
      Scientific Foundations
Zero-dimensional systems
Participants :
      L. Bettale, J.C. Faugère, D. Lazard, F. Rouillier, P.J. Spaenlehauer.


A system is zero-dimensional if the set of the solutions in an
algebraically closed field is finite. In this case, the set of
solutions does not depend on the chosen algebraically closed field.

Such a situation can easily be detected on a Gröbner basis for any
admissible monomial ordering.

These systems are mathematically particular since one can
systematically bring them back to linear algebra problems.
More precisely, the algebra K[X1, ..., Xn]/I is
in fact a K-vector space of dimension equal to the number of complex roots of the system (counted with multiplicities). We
chose to exploit this structure. Accordingly, computing
a base of K[X1, ..., Xn]/I is essential.
A Gröbner basis gives a canonical projection
from K[X1, ..., Xn] to K[X1, ..., Xn]/I, and thus provides a base of the quotient algebra and many other informations more or less straightforwardly (number of complex roots for example).

The use of this vector-space structure is well known and at the origin of the one of
the most known algorithms of the field ( [74] ) : it allows to deduce, starting from a Gröbner basis
for any ordering, a Gröbner base for any other ordering (in practice, a lexicographic basis, which are very difficult to compute directly). It is also common to certain semi-numerical methods since it allows
to obtain quite simply (by a computation of eigenvalues for example) the numerical approximation of the solutions (this type of algorithms is developed, for example, in the INRIA Galaad project).

Contrary to what is written in a certain literature, the computation
of Gröbner bases is not "doubly exponential" for all the classes of
problems. In the case of the zero-dimensional systems, it is even
shown that it is simply exponential in the number of variables, for a
degree ordering and for the systems without zeros at infinity. Thus,
an effective strategy consists in computing a Gröbner basis for a
favorable ordering and then to deduce, by linear algebra technics, a
Gröbner base for a lexicographic ordering [74] .

The case of the zero-dimensional systems is also specific for
triangular sets. Indeed, in this particular case, we have designed
algorithms that allow to compute them efficiently [84] 
starting from a lexicographic Gröbner basis. Note that, in the case of
zero-dimensional systems, regular triangular sets are Gröbner bases for
a lexicographical order.

Many teams work on Gröbner bases and some use triangular sets in the
case of the zero-dimensional systems, but up to our knowledge, very
few continue the work until a numerical resolution and even less
tackle the specific problem of computing the real roots. It is
illusory, in practice, to hope to obtain numerically and in a reliable
way a numerical approximation of the solutions straightforwardly from
a lexicographical basis and even from a triangular set. This is mainly
due to the size of the coefficients in the result (rational number).

Our specificity is to carry out the computations until their term
thanks to two types of results :


	[bookmark: uid26] the computation of the Rational Univariate Representation
[7]  : we proved that any zero-dimensional system,
depending on variables X1, ...Xn, can systematically be
rewritten, without loss of information (multiplicities, real roots),
in the form f(T) = 0, Xi = gi(T)/g(T), i = 1...n where the
polynomials f, g, g1, ...gn have coefficients in the same
ground field as those of the system and where T is a new variable
(independent from X1, ...Xn).



	[bookmark: uid27] efficient algorithms for isolating and counting the real roots
of univariate polynomials [8] .




Thus, the use of innovative algorithms for Gröbner bases computations
[4] , [3] , Rational Univariate representations
( [74]  for the "shape position" case and [7]  for the
general case), allows to use zero-dimensional solving as sub-task in
other algorithms.


[bookmark: uid28] Section: 
      Scientific Foundations
Positive-dimensional and parametric systems
Participants :
      J.C. Faugère, D. Lazard, G. Moroz, W. Niu, F. Rouillier, M. Safey El Din, D. Wang, R. Xiao, T. Zhao.


When a system is positive dimensional (with an infinite number of
complex roots), it is no more possible to enumerate the solutions. Therefore, the
solving process reduces to decomposing the set of the solutions into subsets
which have a well-defined geometry. One may perform such a decomposition
from an algebraic point of view or from a geometrical one, the latter meaning
not taking the multiplicities into account (structure of primary components of the ideal is lost).

Although there exist algorithms for both approaches, the algebraic point
of view is presently out of the possibilities of practical computations, and we
restrict ourselves to geometrical decompositions.

When one studies the solutions in an algebraically closed field, the
decompositions which are useful are the equidimensional decomposition
(which consists in considering separately the isolated solutions, the
curves, the surfaces, ...) and the prime decomposition (decomposes the variety into irreducible components). In practice, our team works on algorithms for
decomposing the system into regular separable triangular sets, which
corresponds to a decomposition into equidimensional but not necessarily
irreducible components. These irreducible components may be obtained eventually
by using polynomial factorization.

However, in many situations one is looking only for real solutions
satisfying some inequalities (Pi>0 or [image: Im16 ${P_i\#8805 0}$])(In the
zero-dimensional case, inequations and inequalities are usually taken
into account only at the end of the computation, to eliminate
irrelevant solutions.). In this case, there are various kinds of
decompositions besides the above ones: connected components, cellular
or simplicial decompositions, ...

There are general algorithms for such tasks, which rely on Tarski's
quantifier elimination. Unfortunately, these problems have a very high
complexity, usually doubly exponential in the number of variables or
the number of blocks of quantifiers, and these general
algorithms are intractable.
It follows that the output of a solver should be restricted to a partial
description of the topology or of the geometry of the set of
solutions, and our research consists in looking for more specific
problems, which are interesting for the applications, and which may be
solved with a reasonable complexity.

We focus on 2 main problems:

1. computing one point on each connected components of a semi-algebraic set;

2. solving systems of equalities and inequalities depending on parameters.

[bookmark: uid30] Critical point methods

The most widespread algorithm computing sampling points in a semi-algebraic
set is the Cylindrical Algebraic Decomposition Algorithm due to
Collins  [72] . With slight modifications, this algorithm also solves
the problem of Quantifier Elimination. It is based on the recursive
elimination of variables one after an other ensuring nice properties between
the components of the studied semi-algebraic set and the components of
semi-algebraic sets defined by polynomial families obtained by the elimination
of variables. It is doubly exponential in the number of variables and its best
implementations are limited to problems in 3 or 4 variables.

Since the end of the eighties, alternative
strategies (see  [80] , [69]  and references therein) with a
single exponential complexity in the number of variables have been
developed. They are based on the progressive construction of the
following subroutines:

(a) solving zero-dimensional systems: this can be performed by
computing a Rational Univariate Representation (see [7] );

(b) computing sampling points in a real hypersurface: after some
infinitesimal deformations, this is reduced to problem (a) by computing the
critical locus of a polynomial mapping reaching its extrema on each
connected component of the real hypersurface;

(c) computing sampling points in a real algebraic variety defined by
a polynomial system: this is reduced to problem (b) by considering the sum
of squares of the polynomials;

(d) computing sampling points in a semi-algebraic set: this is
reduced to problem (c) by applying an infinitesimal deformation.

On the one hand, the relevance of this approach is based on the fact that its
complexity is asymptotically optimal. On the other hand, some important
algorithmic developments have been necessary to obtain efficient
implementations of subroutines (b) and (c).

During the last years, we focused on providing efficient algorithms
solving the problems (b) and (c). The used method rely on finding a
polynomial mapping reaching its extrema on each connected component of
the studied variety such that its critical locus is
zero-dimensional. For example, in the case of a smooth hypersurface
whose real counterpart is compact choosing a projection on a line is
sufficient. This method is called in the sequel the critical point
method. We started by studying problem (b) [91] . Even if
we showed that our solution may solve new classes of problems
( [92] ), we have chosen to skip the reduction to problem
(b), which is now considered as a particular case of problem (c), in
order to avoid an artificial growth of degree and the introduction of
singularities and infinitesimals.

Putting the critical point method into practice in
the general case requires to drop some hypotheses. First, the
compactness assumption, which is in fact intimately related to an
implicit properness assumption, has to be dropped. Second, algebraic
characterizations of critical loci are based on assumptions of
non-degeneracy on the rank of the Jacobian matrix associated to the
studied polynomial system. These hypotheses are not satisfied as soon
as this system defines a non-radical ideal and/or a non
equidimensional variety, and/or a non-smooth variety. Our
contributions consist in overcoming efficiently these obstacles and
several strategies have been developed [2] ,
[9] .

The properness assumption can be dropped by considering the
square of a distance function to a generic point instead of a projection
function: indeed each connected component contains at least a point minimizing
locally this function. Performing a radical and equidimensional decomposition
of the ideal generated by the studied polynomial system allows to avoid some
degeneracies of its associated Jacobian matrix. At last, the recursive study
of overlapped singular loci allows to deal with the case of non-smooth
varieties. These algorithmic issues allow to obtain a first
algorithm [2]  with reasonable practical performances.

Since projection functions are linear while the distance
function is quadratic, computing their critical points is easier. Thus, we
have also investigated their use. A first approach [9]  consists in
studying recursively the critical locus of projection functions on overlapped
affine subspaces containing coordinate axes combined with the study of their
set of non-properness. A more efficient one  [93] , avoiding the study
of sets of non-properness is obtained by considering iteratively projections
on generic affine subspaces restricted to the studied variety and fibers
on arbitrary points of these subspaces intersected with the critical locus of
the corresponding projection. The underlying algorithm is the most efficient
we obtained.

In terms of complexity, we have proved in  [94]  that when
the studied polynomial system generates a radical ideal and defines a smooth
algebraic variety, the output of our algorithms is smaller than what could be
expected by applying the classical Bèzout bound and than the output of the
previous algorithms. This has also given new upper bounds on the
number of connected components of a smooth real algebraic variety which
improve the classical Thom-Milnor bound. The technique we used, also allows to
prove that the degree of the critical locus of a projection function is
inferior or equal to the degree of the critical locus of a distance
function. Finally, it shows how to drop the assumption of equidimensionality
required in the aforementioned algorithms.


[bookmark: uid31] Parametric systems

Most of the applications we recently solved (celestial mechanics, cuspidal robots, statistics, etc.) require the study of semi-algebraic systems depending on parameters. Although we covered these subjects in an independent way, some general algorithms for the resolution of this type of systems can be proposed from these experiments.

The general philosophy consists in studying the generic solutions independently from algebraic subvarieties (which we call from now on discriminant varieties) of dimension lower than the semi-algebraic set considered. The study of the varieties thus excluded can be done separately to obtain a complete answer to the problem, or is simply neglected if one is interested only in the generic solutions, which is the case in some applications.

We recently proposed a new framework for studying basic constructible (resp. semi-algebraic) sets defined as systems of equations and inequations (resp. inequalities) depending on parameters. Let's consider the basic semi-algebraic set

[image: Im17 ${\#119982 ={x\#8712 \#8477 ^n~,~p_1{(x)}=0,...,p_s{(x)}=0,f_1{(x)}\gt 0,...f_s{(x)}\gt 0}}$]


and the basic constructible set

[image: Im18 ${\#119966 ={x\#8712 \#8450 ^n~,~p_1{(x)}=0,...,p_s{(x)}=0,f_1{(x)}\#8800 0,...f_s{(x)}\#8800 0}}$]


where pi, fj are polynomials with rational coefficients.


	[bookmark: uid32] [U, X] = [U1, ...Ud, Xd + 1, ...Xn] is the set of indeterminates or variables, U = [U1, ...Ud] is the set of parameters and X = [Xd + 1, ...Xn] the set of unknowns;



	[bookmark: uid33] [image: Im19 ${\#8496 ={p_1,...p_s}}$] is the set of polynomials defining the equations;



	[bookmark: uid34] [image: Im20 ${\#8497 ={f_1,...f_l}}$] is the set of polynomials defining the inequations in the complex case (resp. the inequalities in the real case);



	[bookmark: uid35] For any [image: Im21 ${u\#8712 C^d}$] let φu be the specialization [image: Im22 ${U\#10230 u}$];



	[bookmark: uid36] [image: Im23 ${\#928 _U:\#8450 ^n\#10230 \#8450 ^d}$] denotes the canonical projection on the parameter's space

[image: Im24 ${{(u_1,\#8943 ,u_d,x_{d+1},...,x_n)}\#10230 {(u_1,\#8943 ,u_d)}}$];



	[bookmark: uid37] Given any ideal I we denote by [image: Im25 ${\#119829 {(I)}\#8834 \#8450 ^n}$] the associated (algebraic) variety. If a variety is defined as the zero set of polynomials with coefficients in [image: Im26 $\#8474 $] we call it a [image: Im26 $\#8474 $]-algebraic variety; we extend naturally this notation in order to talk about [image: Im26 $\#8474 $]-irreducible components, [image: Im26 $\#8474 $]-Zariski closure, etc.



	[bookmark: uid38] for any set [image: Im27 ${\#119985 \#8834 \#8450 ^n}$], [image: Im28 $\mover \#119985 ¯$] will denote its [image: Im29 $\#8450 $]-Zariski closure in [image: Im30 $\#8450 ^n$].




In most applications, [image: Im31 ${\#119829 (\lt \#966 _u{(\#8496 )}\gt ))}$] as well as [image: Im32 ${\#966 _u{(\#119966 )}=\#928 _U^{-1}{(u)}\#8898 \#119966 }$] are finite and not empty for almost all parameter's u. Most algorithms that study [image: Im33 $\#119966 $] or [image: Im34 $\#119982 $] (number of real roots w.r.t. the parameters, parameterizations of the solutions, etc.) compute in any case a [image: Im26 $\#8474 $]-Zariski closed set [image: Im35 ${W\#8834 C^d}$] such that for any [image: Im36 ${u\#8712 \#8450 ^d\#8726 W}$], there exists a neighborhood [image: Im37 $\#119984 $] of u with the following properties :


	[bookmark: uid39] [image: Im38 ${(\#928 _U^{-1}{(\#119984 )}\#8898 \#119966 ,\#928 _U)}$] is an analytic covering of [image: Im37 $\#119984 $]; this implies that the elements of [image: Im39 $\#8497 $] do not vanish (and so have constant sign in the real case) on the connected components of [image: Im40 ${\#928 _U^{-1}{(\#119984 )}\#8898 \#119966 }$];




We recently [6]  show that the parameters' set such that there doesn't exist any neighborhood [image: Im37 $\#119984 $] with the above analytic covering property is a [image: Im26 $\#8474 $]-Zariski closed set which can exactly be computed. We name it the minimal discriminant variety of [image: Im33 $\#119966 $] with respect to ΠU and propose also a definition in the case of non generically zero-dimensional systems.

Being able to compute the minimal discriminant variety allows to simplify the problem depending on n variables to a similar problem depending on d variables (the parameters) : it is sufficient to describe its complementary in the parameters' space (or in the closure of the projection of the variety in the general case) to get the full information about the generic solutions (here generic means for parameters' values outside the discriminant variety).

Then being able to describe the connected components of the complementary of the discriminant variety in [image: Im41 $\#8477 ^d$] becomes a main challenge which is strongly linked to the work done on positive dimensional systems. Moreover, rewriting the systems involved and solving zero-dimensional systems are major components of the algorithms we plan to build up.

We currently propose several computational strategies. An a priori decomposition into equidimensional components as zeros of radical ideals simplifies the computation and the use of the discriminant varieties. This preliminary computation is however sometimes expensive, so we are developing adaptive solutions where such decompositions are called by need. The main progress is that the resulting methods are fast on easy problems (generic) and slower on the problems with strong geometrical contents.

The existing implementations of algorithms able to "solve" (to get some information about the roots) parametric systems do all compute (directly or indirectly) discriminant varieties but none computes optimal objects (strict discriminant variety). This is the case, for example of the Cylindrical Algebraic Decomposition adapted to [image: Im42 ${\#8496 \#8899 \#8497 }$] [72] , of algorithms based on "Comprehensive Gröbner bases" [98] , [99] , [97]  or of methods that compute parameterizations of the solutions (see [95]  for example). The consequence is that the output (case distinctions w.r.t. parameters' values) are huge compared with the results we can provide.


[bookmark: uid40] Section: 
      Scientific Foundations
Cryptography
Participants :
      J.-C. Faugère, L. Perret, G. Renault, L. Bettale.


A fundamental problem in cryptography is to evaluate the security of cryptosystems against the most powerful techniques.
To this end, several general methods have been proposed: linear cryptanalysis, differential cryptanalysis, etc ... Algebraic cryptanalysis is another general method which permits to study the security of the main public-key and secret-key cryptosystems.

Algebraic cryptanalysis can be described as a general framework that
permits to asses the security of a wide range of cryptographic schemes. In fact the recent proposal and development of algebraic cryptanalysis is now widely considered
as an important breakthrough in the analysis of cryptographic primitives. It
is a powerful technique that applies potentially to a large range of
cryptosystems. The basic principle of such
cryptanalysis is to model a cryptographic primitive by a set of algebraic
equations. The system of equations is constructed in such a way as to have a
correspondence between the solutions of this system, and a secret information
of the cryptographic primitive (for instance, the secret key of an encryption scheme).

Although the principle of algebraic attacks can probably be traced back to the
work of Shannon, algebraic cryptanalysis has only recently been investigated
as a cryptanalytic tool. To summarize algebraic attack is divided into
two steps :


	[bookmark: uid41] Modeling, i.e. representing the cryptosystem as a polynomial system of equations



	[bookmark: uid42] Solving, i.e. finding the solutions of the polynomial system constructed in Step 1.




Typically, the first step leads usually to rather “big” algebraic systems (at least several
hundreds of variables for modern block ciphers).
Thus, solving such systems is always a challenge.
To make the
computation efficient, we usually have to study the structural properties of
the systems (using symmetries for instance). In addition, one also has to
verify the consistency of the solutions of the algebraic system with respect
to the desired solutions of the natural problem. Of course, all these steps
must be constantly checked against the natural problem, which in many cases
can guide the researcher to an efficient method for solving the algebraic system.

Multivariate cryptography comprises any cryptographic scheme that uses multivariate polynomial systems.
The use of such polynomial systems in cryptography dates back to the mid
eighties [87] , and was motivated
by the need for alternatives to number theoretic-based schemes.
Indeed, multivariate systems enjoy low computational requirements and can
yield short signatures; moreover, schemes based on the hard problem of solving multivariate equations over a
finite field are not concerned with the quantum computer threat, whereas as
it is well known that number theoretic-based schemes like RSA, DH, or ECDH are.
Multivariate cryptosystems represent a target of choice for algebraic cryptanalysis due to their intrinsic multivariate repesentation.

The most famous multivariate public key scheme is probably the Hidden Field Equation (HFE) cryptosystem proposed by Patarin [88] .
The basic idea of HFE is simple: build the secret key as a univariate
polynomial S(x) over some
(big) finite field (often [image: Im43 ${\mtext GF(2^n)}$]). Clearly, such a polynomial can be
easily evaluated; moreover, under reasonable hypotheses, it can also
be “inverted” quite efficiently. By inverting, we mean finding any
solution to the equation S(x) = y, when such a solution exists. The
secret transformations (decryption and/or signature) are based on this
efficient inversion. Of course, in order to build a cryptosystem, the
polynomial S must be presented as a public transformation which
hides the original structure and prevents inversion. This is done by
viewing the finite field [image: Im43 ${\mtext GF(2^n)}$] as a vector space over [image: Im44 ${\mtext GF(2)}$]
and by choosing two linear transformations of this vector space L1
and L2. Then the public transformation is the composition of L1,
S and L2. Moreover, if all the terms in the polynomial S(x)
have Hamming weight 2, then it is obvious that all the (multivariate)
polynomials of the public key are of degree two.

By using fast algorithms for computing Gröbner bases, it was possible to break the first HFE challenge
[5]  (real cryptographic size 80 bits and a symbolic prize of 500 US$) in only two days of CPU time. More precisely we have used the F5/2 version of the fast F5 algorithm for computing Gröbner bases (implemented in
C). The algorithms available up to now (Buchberger) were extremely slow and could not have been used to break the code
(they should have needed at least a few centuries of computation). The new algorithm is thousands of times faster than
previous algorithms. Several matrices have to be reduced (Echelon Form) during the computation: the biggest one has no
less than 1.6 million columns, and requires 8 gigabytes of memory. Implementing the algorithm thus required significant
programming work and especially efficient memory management.

The weakness of the systems of equations coming from HFE instances can be explained by the algebraic properties of
the secret key (work presented at Crypto 2003 in collaboration with A. Joux). From this study, it is possible to predict
the maximal degree occurring in the Gröbner basis computation. This permits to establish precisely the complexity of
the Gröbner attack and compare it with the theoretical bounds. The same kind of technique has since been used for successfully attacking other types of multivariate cryptosystems : IP [76] , 2R [78] , [image: Im45 $\#8467 $]-IC [79] ,
and MinRank [75] .

On the one hand algebraic techniques have been successfully applied against a number of multivariate schemes and in
stream cipher cryptanalysis. On the other hand, the feasibility of algebraic cryptanalysis remains the source of
speculation for block ciphers, and an almost unexplored approach for hash functions. The scientific lock is that the
size of the corresponding algebraic systems are so huge (thousands of variables and equations) that nobody is able to
predict correctly the complexity of solving such polynomial systems. Hence one goal of the team is ultimately to design
and implement a new generation of efficient algebraic cryptanalysis toolkits to be used against block ciphers and hash
functions. To achieve this goal, we will investigate non-conventional approaches for modeling
these problems.
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      Application Domains
Panorama

Applications are fundamental for our research for several reasons.

The first one is that they are the only source of fair tests for the
algorithms. In fact, the complexity of the solving process depends
very irregularly of the problem itself. Therefore, random tests
do not give a right idea of the practical behavior of a program, and the
complexity analysis, when possible, does not necessarily provide realistic information.

A second reason is that, as quoted above, we need real world problems
to determine which specifications of algorithms are really
useful. Conversely, it is frequently by solving specific problems
through ad hoc methods that we found new algorithms with general impact.

Finally, obtaining successes with problems which are intractable by the
other known approaches is the best proof for the quality of our work.

On the other hand, there is a specific difficulty. The problems which
may be solved with our methods may be formulated in many different
ways, and their usual formulation is rarely well suited for polynomial
system solving or for exact computations. Frequently, it is not even
clear that the problem is purely algebraic, because researchers and
engineers are used to formulate them in a differential way or to
linearize them.

Therefore, our software may not be used as black boxes, and we have to
understand the origin of the problem in order to translate it in a
form which is well suited for our solvers.

It follows that many of our results, published or in preparation,
are classified in scientific domains which are different from ours, like
cryptography, error correcting codes, robotics, signal
processing, statistics or biophysics.
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Robotic

The (parallel) manipulators we study are general parallel robots: the
hexapods are complex mechanisms made up of six (often identical)
kinematic chains, of a base (fixed rigid body including six joints or
articulations) and of a platform (mobile rigid body containing six
other joints).
The design and the study of parallel robots require
the resolution of direct geometrical models (computation of the
absolute coordinates of the joints of the platform knowing the
position and the geometry of the base, the geometry of the platform as
well as the distances between the joints of the kinematic chains at
the base and the platform) and inverse geometrical models
(distances between the joints
of the kinematic chains at the base and the platform knowing the
absolute positions of the base and the platform).

Since the inverse geometrical models can be easily solved, we focus
on the resolution of the direct geometrical models.
The study of the direct geometrical model is a recurrent activity
for several members of the project. One can say that the progress
carried out in this field illustrates perfectly the evolution of the
methods for the resolution of algebraic systems. The interest carried
on this subject is old. The first work in which the members of the project took
part in primarily concerned the study of the number of (complex)
solutions of the problem [86] , [85] . The results were often
illustrated by Gröbner bases done with Gb
software.

One of the remarkable points of this study is certainly the
classification suggested in [77] . The next efforts were
related to the real roots and the effective computation of the
solutions [90] . The studies then continued following the
various algorithmic progresses, until the developed tools made
possible to solve non-academic problems. In 1999, the various efforts
were concretized by an industrial contract with the SME CMW
(Constructions Mécaniques des Vosges-Marioni) for studying a
robot dedicated to machine tools. Since 2002, we are interested in
the study of singularities of manipulators (serial or parallel). The
first results we obtained (characterization of all the cuspidal serial
robots with 3 D.O.F.) have been computed using a very primary variant
of the Discriminant Variety [73] . Since 2007, we are working
on the singularities of parallel planar robots (ANR grand SIROPA).
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      Software
FGb
Participant :
      J.C. Faugère [contact] .


FGb/Gb is a powerful software for computing Gröbner bases; it is
written in C/C++ (approximately 250000 lines counting the old Gb software).
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RS
Participant :
      F. Rouillier [contact] .


RS is a software entirely developed in C (150000 lines
approximately) dedicated to the study of real roots of
algebraic systems.
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RAGlib
Participant :
      M. Safey El Din [contact] .


RAGLib is a Maple library for computing sampling points in
semi-algebraic sets.
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      Software
DV
Participants :
      G. Moroz [contact] , F. Rouillier [contact] .


DV stands for Discriminant Varieties and is a software developped in Maple language, contains algorithms for computing Discriminant varieties, but also some variants of cylindrical algebraic decompositions (CAD).
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Epsilon
Participant :
      D. Wang [contact] .


Epsilon is a library of functions implemented in Maple and Java for
polynomial elimination and decomposition with (geometric)
applications.
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Real Solving Polynomial Systems

Discriminant varities are basic objects to compute for solving
parametric systems of polynomial equations and inequalities. In
[27] , we show how to reduce this computation to the
computation of the set of non-properness of a projection and we
provide degree bounds on the minimal discriminant variety of a
0-dimensional parametric system under some assumptions.

Let [image: Im46 ${f\#8712 \#8474 [X_1,...,X_n]}$]. In [57] , we prove that if
[image: Im47 ${f\#8805 0}$] over the reals, up to a generic linear change of
variables, it can be written as a sum of squares modulo the ideal
generated by n-1 partial derivatives. This new kind of algebraic
certificates of positivity is used to certify lower bounds on infima
for unconstrained global optimization problems.

In [30] , we provide an algorithm which, given a polynomial
system of s n-variate polynomials of degree bounded by D and
coefficients of bit-length dominated by τ defining a convex semi-algebraic set S, computes rational points in
S. The bit complexity is τO(1)snDO(n3) and, in case
of non-emptiness, the outputted points have bit length bounded by
τDO(n3). This result is used to prove upper bounds on the
bit length of coefficients in sums of squares decompositions since
such decompositions are obtained by computing rational points in
convex semi-algebraic sets.

Let [image: Im48 ${V\#8834 \#8477 ^n}$] be a smooth bounded real hypersurface whose set
of singular points has dimension at most 0, defined by a
polynomial of degree D. In [29] , we provide an algorithm
computing a roadmap of V, i.e. an algebraic curve having a
non-empty and connected intersection with each connected component
of V. The complexity of this algorithm is
(nD)O(n1.5). Even under the considered assumptions, this
result improves the best previous bound DO(n2) obtained 20
years ago by J. Canny.

The above result is achieved by exploiting properties on polar
varieties which are defined by the vanishing of some minors of
truncated jacobian matrices. Sufficient conditions to ensure the
smoothness (and other properties such as equidimensionality, etc.)
of polar varieties are proved in [12] .
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Solving structured systems

Solving multihomogeneous systems, as a wide range of structured
algebraic systems occurring frequently in practical problems, is of
first importance. In [16] , we focus on bilinear systems
(i.e. bihomogeneous systems where all equations have bidegree
(1, 1)). We propose new techniques
to speed up the Gröbner basis computations by using the
multihomogeneous structure of those systems. The contributions are
theoretical and practical. First, we adapt the classical F5
criterion to avoid reductions to zero which occur when the input is a
set of bilinear polynomials. We also prove an explicit form of the
Hilbert series of bihomogeneous ideals generated by generic bilinear
polynomials and give a new upper bound on the degree of regularity of
generic affine bilinear systems. Lastly, we investigate the complexity of computing a Gröbner
basis for the grevlex ordering of a generic 0-dimensional affine
bilinear system over k[x1, ..., xnx, y1, ..., yny]. In
particular, we show that this complexity is upper bounded by
[image: Im49 ${O\mfenced o=( c=) \mfenced o=( c=) \mtable{...}^\#969 }$],
which is polynomial in nx + ny (i.e. the number of unknowns) when
min(nx, ny) is constant.

Computing loci of rank defects of linear matrices (also called the
MinRank problem) is a fundamental NP-hard problem of linear algebra
which has applications in Cryptology, in Error Correcting Codes and in
Geometry. Given a square linear matrix (i.e. a matrix whose entries
are k-variate linear forms) of size n and an integer r, the
problem is to find points such that the evaluation of the matrix has
rank less than r + 1. In [54]  we obtain the most
efficient algorithm to solve this problem. To this end, we give the
theoretical and practical complexity of computing Gröbner bases of
two algebraic formulations of the MinRank problem. Both modelings lead
to structured algebraic systems.

In [17] , we settle conjectures, which are experimentally
supported, on the monodromy generated by specific loops in the
complex plane. Assuming them enables us to develop tools for getting
fast probabilistic algorithms for absolute multivariate polynomial
factorization, under the hypothesis that the factors behave like
random polynomials whose coefficients follow uniform distributions.
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Structured systems and applications to
Cryptanalysis

In [49] , [50] , [51] , we propose a new approach to investigate the
security of the McEliece cryptosystem (based on error-correcting codes). Since its
invention thirty years ago, no efficient attack had been devised that
managed to recover the private key. We prove that the private key of
the cryptosystem satisfies a system of bi-homogeneous polynomial
equations. We have used these highly
structured algebraic equations to mount an efficient key-recovery
attack against two recent variants of the McEliece cryptosystems that
aim at reducing public key sizes.
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Algebraic Cryptanalysis

MQQ is a multivariate public key cryptosystem (MPKC) based on multivariate quadratic quasigroups
and a special transform called “Dobbertin transformation”
The security of MQQ, as well as any MPKC, reduces to the difficulty of solving a non-linear system of equations easily derived
from the public key. It has been already observed that that the algebraic systems obtained are much easier to
solve that random non-linear systems of the same size. In [47] , [46] , we go one step further in the analysis of MQQ. We explain why systems arising in MQQ are so easy to solve in practice.

In [42] , we present an efficient cryptanalysis of the so-called HM cryptosystem which was published at Asiacrypt'1999,
and one perturbed version of HM. Until now, this scheme was exempt from cryptanalysis.
We first present a distinguisher which uses a differential property of the public key.
This distinguisher permits to break one perturbed version of HM.
After that, we describe a practical message-recovery attack against HM
using Gröbner bases. The attack can be mounted in few hundreds seconds for recommended parameters. It turns out that
algebraic systems arising in HM are easier to solve than random systems of the same size.

Even if Algebraic cryptanalysis have been successfully applied against a number of multivariate schemes and stream ciphers.
Yet, their feasibility against block ciphers remains the source of much speculation.
At FSE 2009 Albrecht and Cid proposed to combine differential cryptanalysis with algebraic attacks against block ciphers.
The proposed attacks required Gröbner basis computations during the online phase of the attack.
In [36] , [37]  we take a different approach and only perform Gröbner basis computations in a pre-computation (or offline) phase. In other words, we study how we can improve “classical” differential cryptanalysis using algebraic tools.
We apply our techniques against the block ciphers PRESENT and KTANTAN.

In [38] , we present an extended version of the hybrid approach [13] ,
suitable for polynomials of higher degree. To easily access our tools,
we provide a MAGMA package available at
http://www-salsa.lip6.fr/~bettale/hybrid.html  that provide all the
necessary material to use our hybrid approach and to compute the
complexities.

In [53] , we fully break the Algebraic Surface Cryptosystem (ASC
for short) proposed at PKC'2009. This result is rather surprising
since the algebraic attack is often more efficient than the legal
decryption algorithm.
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Decomposition of Generic Multivariate Polynomials

In [55] , we consider the composition [image: Im50 ${f=g\#8728 h}$] of two systems g = (g0, ..., gt) and h = (h0, ..., hs)
of homogeneous multivariate polynomials over a field [image: Im51 $\#120130 $],
where each [image: Im52 ${g_j\#8712 \#120130 {[y_0,...,y_s]}}$] has degree [image: Im45 $\#8467 $],
each [image: Im53 ${h_k\#8712 \#120130 {[x_0,...,x_r]}}$] has degree m, and
[image: Im54 ${f_i=g_i{(h_0,...,h_s)}\#8712 \#120130 {[x_0,...,x_r]}}$]
has degree [image: Im55 ${n=\#8467 ·m}$], for 0≤i≤t.
The motivation of this paper is to investigate the behavior of the decomposition algorithm MultiComPoly proposed at ISSAC'09. We prove that the algorithm works correctly for generic decomposable instances – in the special cases where [image: Im45 $\#8467 $] is 2 or 3, and m is 2 – and investigate the issue of uniqueness of a generic decomposable instance.
The uniqueness is defined w.r.t. the “normal form” of a multivariate decomposition, a new notion introduced in this paper,
which is of independent interest.
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Triangular Sets - Decomposition

D. Wang [31]  has applied algebraic methods to derive exact
conditions for certain nonlinear flight dynamical systems to exhibit
stability and bifurcation. The roll-coupling flight model has been
taken as an example to show the feasibility of algebraic analysis.
Some of the previous stability and bifurcation results obtained
using numerical analysis for this model have been confirmed.

In [25] , D. Wang and others have proposed algorithms for
decomposing any zero-dimensional polynomial set into simple sets
over an arbitrary finite field, with an associated ideal or zero
decomposition. They have generalized the squarefree decomposition
approach for univariate polynomials over a finite field to that over
the field product determined by a simple set, based on a new
technique to extract the pth root of any element in the field
product. Experiments with a preliminary implementation show the
effectiveness of their algorithms.

D. Wang and his co-authors [41]  have designed a geometric
knowledge base that stores standardized, formalized, and structured
geometric knowledge data. They have adopted a key strategy that
works by encapsulating certain interrelated knowledge data into
knowledge objects and then organizing the knowledge objects
according to the hierarchic structure of their relations. A
geometric knowledge base system has been implemented, providing
functionalities for creating, rendering, and managing knowledge data
with basic query services.


[bookmark: uid59] Section: 
      New Results
Computer Algebra and Algorithmic Number Theory

In [44]  we propose a new attack using an implicit hint on
the famous number theory based cryptosystem RSA. In this work, we
develop a new interaction between techniques coming from lattice
reduction (e.g. LLL algorithm) and the elimination theory
(e.g. Gröbner basis computation) in order to solve problems coming
from cryptography.

The work [59]  propose a constructive use of computer algebra
in Algorithmic Number Theory wit application in Cryptography. More
explicitly, techniques coming from univariate polynomial solving by
radical (Algorithmic Galois Theory) is used for the construction of
encoding in the set of points of elliptic and hyperelliptic curves
defined over a finite field. Fixing a prime p verifing some
antural assumptions, the general method proposed in [59]  is
the first one which provides deterministic polynomial time encoding
into the rational points of all the elliptic curves and half of the
genus 2 hyperelliptic curves defined over p. These two types of
curves are the main objects for cryptography based on algebraic
curves.
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Efficient Implementations - High
Performance Linear Algebra

FGb: a library for computing Gröbner bases has been presented at
ICMS[32]  in Japan.
A key component of the efficiency of FGb is a dedicated linear algebra
package: in [43] , we present a new linear algebra package
written in C which contains specific algorithms to compute Gaussian
elimination as well as specific internal representation of matrices.

The Goppa Code Distinguishing (GD) problem consists in distinguishing the matrix of Goppa code from a random matrix.
Up to now, it was widely believed that this problem is computationally hard. The hardness of this problem was a mandatory assumption to prove the security of code-based cryptographic primitives like McEliece's cryptosystem. In [48] , we present
a polynomial time distinguisher for alternant and Goppa codes of high rate over any field. The key ingredient is
an algebraic technique already used to asses the security McEliece's cryptosystem.
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Applications in computational
geometry and robotics

In [60] , [26] , we investigate the existence conditions
of cusp points in the design parameter space of the RPR-2PRR
parallel manipulators. Cusp points make possible non-singular
assemblymode changing motion, which can possibly increase the size
of the aspect, i.e. the maximum singularity free workspace.

In [28] , we revisit the problem of computing the topology and
geometry of a real algebraic plane curve. The topology is of prime
interest but geometric information, such as the position of singular
and critical points, is also relevant. A challenge is to compute
efficiently this information for the given coordinate system even if
the curve is not in generic position. Previous methods based on the
cylindrical algebraic decomposition (CAD) use sub-resultant
sequences and computations with polynomials with algebraic
coefficients. A novelty of our approach is to replace these tools by
Gröbner basis computations and isolation with rational
univariate representations. This has the advantage of avoiding
computations with polynomials with algebraic coefficients, even in
non-generic positions. Our algorithm isolates critical points in
boxes and computes a decomposition of the plane by rectangular
boxes. This decomposition also induces a new approach for computing
an arrangement of polylines isotopic to the input curve. We also
present an analysis of the complexity of our algorithm. An
implementation of our algorithm demonstrates its efficiency, in
particular on high-degree non-generic curves.

In [61] , this work is kept on by providing an algorithm for
isolating the real roots of bivariate polynomial systems which mixed
different points of view depending on the geometric properties that
are detected during the computations.
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Polynomial Knots

Since Vassiliev (1990), we know that any knot admits a polynomial parametrization. A natural question is to give explicit and minimal
parametrizations.

In [20]  we show that every knot is a Chebyshev knot, that is to say, admits a polynomial parametrization
C(a, b, c, φ):x = Ta(t),  y = Tb(t),  z = Tc(t + φ).
Here
Tn
is the Chebyshev polynomial of degree n
and φ
is a real
constant. We give explicit parametrizations of the torus knots K2, 2n + 1: x = T3(t),  y = T3n + 2(t),  z = T3n + 1(t).
This is the first known infinite family of polynomial knots.

In citeKPR10, we give (with D. Pecker and F. Rouillier) an exhaustive list of minimal parametrizations for two-bridge knots with 10 crossings or fewer.
This result has been obtained by considering a zero-dimensional variety for which we need to isolate the elements. Its degree is [image: Im56 ${\mfrac 12{(a-1)}{(b-1)}{(c-1)}}$] that may be quite high. This results have been presented at the Mega 09 Conference and published in [22] .
We give a new algorithm based on a new geometric description
of implicit Chebyshev curves and the computation of
the real roots of polynomials in
[image: Im57 ${Q{(cos\mfrac \#960 a,cos\mfrac \#960 bcos\mfrac \#960 c)}{[t]}{)}}$].

We proposed an algorithm to obtain the minimal polynomial of [image: Im58 ${cos\mfrac \#960 n}$]. This question is related to the diophantine trigonometric equation.

[image: Im59 ${\munderover \#8721 {i=1}kn_icosr_i\#960 =0,}$]


where ni and ri are rational numbers.

Chebyshev knots are polynomial analogues of Lissajous knots. They have been studied by many authors (Jones, Przytycki, Lamm, Hoste).
In [19] , we give explicit minimal parametrizations
for infinite families f rational knots. In [21] ,
we show that Fibonacci knots are
not generally not Lissajous.

In [19] , [20]  we give a complete classification of harmonic knots H(a, b, c), a≤4.



    Contracts and Grants with Industry

    
      	Contracts and Grants with Industry	[bookmark: uid64]WMI (Maple)
	[bookmark: uid65]Contract with Thalès



    

  [bookmark: uid64] Section: 
      Contracts and Grants with Industry
WMI (Maple)
Participants :
      F. Rouillier [contact] , J.-C. Faugère [contact] , M. Safey El Din.


A contract as been signed with the Canadian company Waterloo
Maple Inc in 2005. The objective is to integrate SALSA software
into one of the most well known general computer algebra system (Maple). The basic term of the contract is of four years (renewable).
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Contract with Thalès
Participants :
      J.-C. Faugère [contact] , G. Renault, C. Goyet.


The goal
of this contract (including a CIFRE PhD grant) is to mix side chanel attacks (DPA) and algebraic cryptanalysis.
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      Other Grants and Activities
National Initiatives

[bookmark: uid68] ANR Grant “SIROPA”
Participants :
      F. Rouillier [contact] , J.-C. Faugère, M. Safey El Din, G. Moroz.


In collaboration with COPRIN project-team (Sophia - Antipolis), IRCcYN
and LINA (University / CNRS - Nantes), IRMAR (CNRS/University of
Rennes I). The goal of this project is to study the singularities of
parallel robots from theoretical aspects (classifications) to the
practical ones (behavior).


[bookmark: uid69] ANR Grant “MAC”
Participants :
      J.C. Faugère [contact] , L. Perret, L. Bettale.


In collaboration with France Telecom and ENSTA. This project is to be
replaced in the more general context of information protection. Its
research areas are cryptography and symbolic computation. We are here
essentially – but not exclusively – concerned with public key
cryptography. One of the main issues in public key cryptography is to
identify hard problems, and propose new schemes that are not based on
number theory. Following this line of research, multivariate
schemes have been introduced in the mid eighties [Diffie and Fell
85, Matsumoto and Imai 85].

In order to evaluate the security of new proposed schemes, strong and
efficient cryptanalytic methods have to be developped. The main theme
we shall address in this project is the evaluation of the security of
cryptographic primitives by means of algebraic methods. The idea is to
model a cryptographic primitive as a system of algebraic
equations. The system is constructed in such a way as to have a
correspondence between the solutions of this system, and a secret
information of the considered primitive. Once this modeling is done,
the problem is then to solve an algebraic system. Up to now, Gröbner
bases appear to yield the best algorithms to do so.


[bookmark: uid70] ANR Jeunes Chercheurs “CAC”
Participants :
      L. Perret [contact] , J.-C. Faugère, G. Renault, L. Bettale.


The new contract CAC “ Computer Algebra and Cryptography” begins in October 2009 for a period of 4 years. This project will investigate the areas of cryptography
and computer algebra, and their influence on the security and integrity of
digital data. This proposal is a follow-up of the ANR MAC
described below. In CAC, we plan to follow the methodology proposed in MAC, namely using basic tools of computer algebra
to evaluate the security of cryptographic schemes.
However, whilst ANR MAC was mainly interested develop new algebraic tools for studying the security of multivariate public key cryptosystems, CAC will focus on three new challenging applications of algebraic techniques in cryptography; namely block ciphers, hash functions, and factorization with known bits. To this hand, we will use Gröbner bases techniques but also lattice tools. In this proposal, we will explore non-conventional approaches in the algebraic cryptanalysis of these problems.
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[bookmark: uid72] ECRYPT II - European Network of Excellence for Cryptology
Participants :
      J.C. Faugère [contact] , L. Perret, G. Renault, L. Bettale.


ECRYPT II - European Network of Excellence for Cryptology II is a 4-year network of excellence funded within the Information & Communication Technologies (ICT) Programme of the European Commission's Seventh Framework Programme (FP7) under contract number ICT-2007-216676. It falls under the action line Secure, dependable and trusted infrastructures. ECRYPT II started on 1 August 2008. Its objective is to continue intensifying the collaboration of European researchers in information security. The ECRYPT II research roadmap is motivated by the changing environment and threat models in which cryptology is deployed, by the gradual erosion of the computational difficulty of the mathematical problems on which cryptology is based, and by the requirements of new applications and cryptographic implementations. Its main objective is to ensure a durable integration of European research in both academia and industry and to maintain and strengthen the European excellence in these areas. In order to reach this goal, 11 leading players have integrated their research capabilities within three virtual labs focusing on symmetric key algorithms (SymLab), public key algorithms and protocols (MAYA), and hardware and software implementations associate (VAMPIRE). They are joined by more than 20 adjoint members to the network who will closely collaborate with the core partners. The team joins the European Network of Excellence for Cryptology ECRYPT II this academic year as associate member.
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[bookmark: uid74] Royal Society Project
Participants :
      J.C. Faugère [contact] , L. Perret, L. Bettale.


Royal Society Project with the Crypto team Royal Holloway, University of London, UK.


[bookmark: uid75] INRIA Associate Team “Chinese SALSA”

Chinese Salsa is an associate team created in January 2006. It
brings together most of the members of SALSA and researchers from
Beihang university, Beijing (university and academy of science). The
general objectives of Chinese-Salsa are mainly the same as those
of SALSA.


[bookmark: uid76] Joint LIAMA Project ECCA

ECCA (Exact/Certified Computation with Algebraic systems) is a LIAMA
project (Reliable Software Theme). The partners are
INRIA, CNRS, and CAS.


[bookmark: uid77] ANR International Grant “EXACTA”
Participants :
      D. Wang [contact] , J.-C. Faugère, D. Lazard, L. Perret, G. Renault, M. Safey El Din.


The main objective of this project is to study and compute the
solutions of nonlinear algebraic systems and their structures and
properties with selected target applications using exact or certified
computation. The project consists of one main task of basic research
on the design and implementation of fundamental algorithms and four
tasks of applied research on computational geometry, algebraic
cryptanalysis, global optimization, and algebraic biology. It will
last for three years (2010–2012) with 300 person-months of
workforce. Its consortium is composed of strong research teams from
France and China (KLMM, SKLOIS, and LMIB) in the area of solving
algebraic systems with applications.
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[bookmark: uid80] Journals – Associate Editors and Program Committees

J.-C. Faugère is member of the editorial board of Journal
“Mathematics in Computer Science” (Birkhäuser) and Journal
“Cryptography and Communications – Discrete Structures, Boolean
Functions and Sequences” (Springer); guest editor for
special issues in Journal of Symbolic Computation (Elsevier) and
Journal “Mathematics in Computer Science” (Birkhäuser).

F. Rouillier is member of the editorial board of Journal of Symbolic
Computation (Elsevier) and was guest editor for special issues in
Journal “Mathematics in Computer Science” (Birkhäuser).

D. Wang is member of the editorial board of:


	[bookmark: uid81] Editor-in-Chief and Managing Editor for the journal “Mathematics
in Computer Science” (published by Birkhäuser/Springer, Basel).



	[bookmark: uid82] Executive Associate Editor-in-Chief for the journal “SCIENCE CHINA
Information Sciences” (published by Science China Press, Beijing
and Springer, Berlin).



	[bookmark: uid83] Member of the Editorial Boards for the


	[bookmark: uid84] Journal of Symbolic Computation (published by Academic
Press/Elsevier, London),



	[bookmark: uid85] Frontiers of Computer Science in
China (published by Higher Education Press, Beijing and Springer,
Berlin),



	[bookmark: uid86] Texts and Monographs in Symbolic Computation
(published by Springer, Wien New York),



	[bookmark: uid87] Book Series on
Mathematics Mechanization (published by Science Press, Beijing),



	[bookmark: uid88] Book Series on Fundamentals of Information Science and Technology
(published by Science Press, Beijing).






	[bookmark: uid89] Editor for the Book Series in Computational Science (published by Tsinghua
University Press, Beijing).




J.-C. Faugère is member of the program committee for the 35th
International Symposium on Symbolic and Algebraic Computation Issac'10 (Munich,
Germany, July 25–28 2010), program committee of 6th China International Conference on Information
Security and Cryptology (Beijing, China, October 2010)
program co-chair of the 2nd International Conference
on Symbolic Computation and Cryptography (Royal Holloway, University of London, June 2010),
scientific and program committee of Yet Another Conference on
Cryptography (October 4 – October 8, 2010, Porquerolles Island,
France), member of the program committee of the PASCO (Parallel and
Symbolic Computation) 2010 in Grenoble.

L. Perret was member of the program committee of the
Workshop on Tools for Cryptanalysis 2010 (Royal Holloway, University of London, June 22-23 2010),
program committee of the 2nd International Conference
on Symbolic Computation and Cryptography (Royal Holloway, University of London, June 23-25 2010),
program committee of 6th China International Conference on Information
Security and Cryptology (Beijing, China, October 2010),
program committee of Yet Another Conference on Cryptography (October 4 – October 8, 2010, Porquerolles Island, France).

G. Renault was member of the program committee of the Joint
Conference of ASCM 2009 and MACIS 2009 (Fukuoka, Japan, December
14–17, 2009).

F. Rouillier was member of the program committees of the Joint
Conference of ASCM 2009 and MACIS 2009 (Fukuoka, Japan, December
14–17, 2009).

M. Safey El Din was member of the program committee of the 12th
International Workshop on Computer Algebra in Scientific Computing
(Tsakhkadzor, Armenia, September 6–12, 2010) and is member of the
program committees of the 36-th International Symposium on Symbolic
and Algebraic Computation (San Jose, USA, June 8–11 2011) and the 13-th
International Workshop on Computer Algebra in Scientific Computing
(Kassel, Germany, September 5 - 9, 2011).

D.Wang was member of the program committee of:


	[bookmark: uid90] Technical Session at ICCSA 2011 on Symbolic Computing for
Dynamic Geometry (Santander, Spain, June 20–23, 2011),



	[bookmark: uid91] International Conference on Algebraic and
Numeric Biology (Hagenberg, Austria, July 31 – August 2, 2010),



	[bookmark: uid92] 8th International Workshop on Automated
Deduction in Geometry (Munich, Germany, July 22–24, 2010),



	[bookmark: uid93] 9th International Conference on Mathematical Knowledge
Management (Paris, France, July 8–10, 2010),



	[bookmark: uid94] 10th International Conference on Artificial
Intelligence and Symbolic Computation (Paris, France, July 5–6,
2010),



	[bookmark: uid95] Conference on Symbolic Computation and Its Applications (Maribor,
Slovenia, June 30 – July 2, 2010),



	[bookmark: uid96] 7th Asian Workshop on Foundations of Software (Beijing,
China, May 14–16, 2010).



	[bookmark: uid97] Member of the Advisory Program Committee for the
3rd International Congress of Mathematical Software (Kobe, Japan,
September 13–17, 2010).



	[bookmark: uid98] Co-chair of the Track on Symbolic Computation at the
12th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (Timisoara, Romania, September 23–26, 2010).





[bookmark: uid99] Scientific visits and international seminar

G. Renault was invited 2 weeks in December 2010 by K. Yokoyama at the
Mathematical Laboratory (Rykkyo University, Tokyo, Japan).

M. Safey El Din was invited 2 weeks in April 2010 by L. Zhi at the Key
Laboratory of Mechnanization and Mathematics (Chinese Academy of
Sciences, Beijing China) and 2 weeks in February 2020 by E. Schost at
the Department of Computer Science at The University of Western
Ontario (London, Canada).

J.-C. Faugère was invited 1 week in January 2010 to visit the DSO
National Labs in Singapore.


[bookmark: uid100] Conferences (organization) and invited talks

J.-C. Faugère, L. Perret, G. Renault organized the second SCC
conference in London.

J.-C. Faugère, is member of the MEGA Advisory Board.

F. Rouillier is member of the MACIS Steering Committee.

M. Safey El Din is co-organizer (with L. Zhi) of the First
International Workshop on Certified and Reliable Computing, to be held
in July 2011 at Nanning, China.

J.-C. Faugère [32]  was invited speaker at
Mathematical Software - ICMS 2010 in Japan [32] , ESC 2010 (Early Symmetric
Crypto) Remich (Luxembourg) and to give a series of talk [33]  in Singapore
(DSO National Labs).

M. Safey El Din was invited speaker at


	[bookmark: uid101] Minisymposium on Algebraic Geometry and Optimization, SIAM
Conference on Optimization, Darmstadt, Germany, 2011.



	[bookmark: uid102] SIAM/MSRI Workshop on Hybrid Methodologies for
Symbolic-Numeric Computation, Berkeley, USA, 2010 [64] .



	[bookmark: uid103] SIAM Workshop on Parallel Processing, Special session on
Symbolic Computation, Seattle, USA, 2010 [35] .



	[bookmark: uid104] SMAI MODE 2010, Minisymposium on Computer Algebra and
Optimization, March 2010, Limoges.



	[bookmark: uid105] Journées Nationales du GDR Info-Math, France, 2010.




D Wang has organized the following conferences:


	[bookmark: uid106] General Co-chair of the 4th International Conference on Mathematical
Aspects of Computer and Information Sciences (Beijing, China,
October 19–21, 2011).



	[bookmark: uid107] Chair of the Program Committee for the
International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (Timisoara, Romania, September 26–29, 2011).




D Wang was invited speaker at


	[bookmark: uid108] 4th International Symposium on Multiagent Systems, Robotics and
Cybernetics: Theory and Practice (Baden-Baden, Germany, August 4–5,
2010).



	[bookmark: uid109] Research Institute for Symbolic Computation, Johannes Kepler
University, Linz, Austria (July 13, 2010).





[bookmark: uid110] Committees

J.-C. Faugère was a member of the EQUIPEX jury (ANR).

J.-C. Faugère was a member of the evaluation committee (AERES) of the Jean Kuntzmann lab
(Grenoble) and of the institut de mathématiques de Toulon et du
Var. J.-C. Faugère was a member of the visiting committee of
University of Limoges (JJ Aubert chairman).

F. Rouillier and J.-C. Faugère are member
of the hiring committee
in computer science at the <<Université Pierre et Marie Curie>>.

JC Faugère and M. Safey El Din are members of the hiring
committee in Mathematics at the “Université de Limoges”

L. Perret was in the Ph.D committee of Gilles Macariot-Rat (Ph.D defended at ENS-ULM)


[bookmark: uid111] Section: 
      Dissemination
Teaching

J.C. Faugère, L. Perret give a
course on Polynomial System Solving, Computer Algebra and Applications
at the “Master Parisien de Recherche en Informatique” (MPRI).

G. Renault gives a course on Computational Number Theory and
Cryptology at the <<Master d'Informatique de l'Université Paris 6>>.
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