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Introduction

The Arénaire project aims at elaborating and consolidating knowledge
in the field of Computer Arithmetic, which studies how a machine deals with numbers.
Reliability, accuracy, and performance are the major goals that drive
our research. We study basic arithmetic operators such as adders,
dividers, etc. We work on new operators for the evaluation of
elementary and special functions (log, cos, erf, etc.), and
also consider the composition of previous operators. In addition to
these studies on the arithmetic operators themselves, our research
focuses on specific application domains (cryptography, signal
processing, linear algebra, algorithms for Euclidean lattice, etc.)
for a better understanding of the impact of the arithmetic choices on
solving methods in scientific computing.

We contribute to the improvement of the available arithmetic on
computers, processors, dedicated or embedded chips, etc., both at
the hardware level and at the software level. Improving computing does
not necessarily mean getting more accurate results or getting them
faster: we also take into account other constraints such as power
consumption, code size, or the reliability of numerical software. All
branches of the project focus on algorithmic research and on the
development and the diffusion of corresponding libraries, either in
hardware or in software. Some distinctive features of our libraries are
numerical quality, reliability, and performance.

The study of number systems and, more generally, of data
representations is a first topic of uttermost importance in the
project. Typical examples are: the redundant number systems used
inside multipliers and dividers; alternatives to floating-point
representation for special purpose systems; finite field
representations with a strong impact on cryptographic hardware
circuits; the performance of an interval arithmetic that heavily
depends on the underlying real arithmetic.

Another general objective of the project is to improve the validation
of computed data, we mean to provide more guarantees on the quality of
the results. For a few years we have been handling those validation
aspects in the following three complementary ways: through better
qualitative properties and specifications (correct rounding, error
bound representation, and portability in floating-point arithmetic);
by proposing a development methodology
focused on the proven quality of the code; by
studying and allowing the cooperation of various kinds of arithmetics
such as constant precision, intervals, arbitrary precision and exact
numbers.

These goals may be organized in four directions:
hardware arithmetic,
software arithmetic for algebraic and elementary functions,
validation and automation, and
arithmetics and algorithms for scientific computing.
These directions are not independent and have strong interactions.
For example, elementary functions are also studied for hardware
targets, and scientific computing aspects concern most of the
components of Arénaire.


	Hardware Arithmetic. From the mobile phone to the
supercomputer, every computing system relies on a small set of
computing primitives implemented in hardware. Our goal is to study
the design of such arithmetic primitives, from basic operations such
as the addition and the multiplication to more complex ones such as
the division, the square root, cryptographic primitives, and even
elementary functions. Arithmetic operators are relatively small hardware
blocks at the scale of an integrated circuit, and are best described
in a structural manner: a large operator is assembled from smaller
ones, down to the granularity of the bit. This study requires
knowledge of the hardware targets (ASICs, FPGAs), their metrics
(area, delay, power), their constraints, and their specific language
and tools. The input and output number systems are typically given
(integer, fixed-point, or floating-point), but internally,
non-standard number systems may be successfully used.



	Algebraic and Elementary Functions.
Computer designers still have to implement the basic arithmetic
functions for a medium-size precision. Addition and multiplication
have been much studied but their performance may remain critical
(silicon area or speed). Division and square root are less critical,
however there is still room for improvement (e.g. for division, when
one of the inputs is constant). Research on new algorithms and
architectures for elementary functions is also very active. Arénaire
has a strong reputation in these domains and will keep contributing to
their expansion. Thanks to past and recent efforts, the semantics of
floating-point arithmetic has much improved. The adoption of the
IEEE-754 standard for floating-point arithmetic has represented a key
point for improving numerical reliability. Standardization is also
related to properties of floating-point arithmetic (invariants that
operators or sequences of operators may satisfy). Our goal is to
establish and handle new properties in our developments (correct
rounding, error bounds, etc.) and then to have those results
integrated into the future computer arithmetic standards.



	Validation and Automation.
Validation corresponds to some guarantee on the quality of the evaluation.
Several directions are considered, for instance the full
error (approximation plus rounding errors) between the exact mathematical
value and the computed floating-point result, or some
guarantee on the range of a function. Validation also
comprises a proof of this guarantee that can be checked
by a proof checker.
Automation is crucial since most development steps require
specific expertise in floating-point computing that can neither
be required from code developers nor be mobilized
manually for every problem.



	Arithmetics and Algorithms.
When conventional floating-point arithmetic does not suffice, we use
other kinds of arithmetics. Especially in the matter of error bounds,
we work on interval arithmetic libraries, including arbitrary
precision intervals. Here a main domain of application is global
optimization. Original algorithms dedicated to this type of arithmetic
must be designed in order to get accurate solutions, or sometimes
simply to avoid divergence (e.g., infinite intervals). We also
investigate exact arithmetics for computing in algebraic domains such
as finite fields, unlimited precision integers, and polynomials. A
main objective is a better understanding of the influence of the
output specification (approximate within a fixed interval, correctly
rounded, exact, etc.) on the complexity estimates for the problems considered.
Those problems mainly come from two application domains: exact linear algebra and lattice
basis reduction.




Our work in Arénaire since its creation in 1998, and especially
since 2002, provides us a strong expertise in computer arithmetic.
This knowledge, together with the technology progress both in software
and hardware, draws the evolution of our objectives towards the
synthesis of validated algorithms.
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Introduction

As stated above, four major directions in Arénaire are
hardware arithmetic, algebraic and elementary functions,
validation and automation, and arithmetics and algorithms.
For each of those interrelated topics, we describe below the tools and
methodologies on which it relies.


[bookmark: uid11] Section: 
      Scientific Foundations
Hardware Arithmetic

A given computing application may be implemented using different
technologies, with a large range of trade-offs between the various
aspects of performance, unit cost, and non-recurring costs (including
development effort):


	[bookmark: uid12] A software implementation, targeting off-the-shelf
microprocessors, is easy to develop and reproduce, but will not
always provide the best performance.



	[bookmark: uid13] For cost or performance reasons, some applications will be
implemented as application specific integrated circuits (ASICs). An
ASIC provides the best possible performance and may have a very
low unit cost, at the expense of a very high development cost.



	[bookmark: uid14] An intermediate approach is the use of reconfigurable circuits,
or field-programmable gate arrays (FPGAs).




In each case, the computation is broken down into elementary
operations, executed by elementary hardware elements, or
arithmetic operators. In the software approach, the operators
used are those provided by the microprocessor. In the ASIC or FPGA
approaches, these operators have to be built by the designer, or taken
from libraries. Our goals include studying operators for inclusion in
microprocessors and developing hardware libraries for ASICs or FPGAs.

 

Operators under study.
Research is active on algorithms for the following operations:


	[bookmark: uid15] Basic operations (addition, subtraction, multiplication), and
their variations (multiplication and accumulation, multiplication or
division by constants, etc.);



	[bookmark: uid16] Algebraic functions (division, inverse, and square root, and in
general, powering to an integer, and polynomials);



	[bookmark: uid17] Elementary functions (sine, cosine, exponential, etc.);



	[bookmark: uid18] Combinations of the previous operations (norm, for instance).




A hardware implementation may lead to better performance than a
software implementation for two main reasons: parallelism and
specialization. The second factor, from the arithmetic point of view,
means that specific data types and specific operators, which would
require costly emulation on a processor, may be used. For example,
some cryptography applications are based on modular arithmetic and bit
permutations, for which efficient specific operators can be designed.
Other examples include standard representations with non-standard
sizes, and specific operations such as multiplication by constants.

 

Hardware-oriented algorithms.
Many algorithms are available for the implementation of elementary
operators (see for instance  [67] ). For example,
there are two classes of division algorithms: digit-recurrence and
function iteration. The choice of an algorithm for the implementation
of an operation depends on, and sometimes imposes, the choice of a
number representation. Besides, there are usually technological
constraints such as the area and power budget, and the available
low-level libraries.

The choice of the number systems used for the intermediate results is
crucial. For example, a redundant system, in which a number may have
several encodings, will allow for more design freedom and more
parallelism, hence faster designs. However, the hardware cost can be
higher. As another example, the power consumption of a circuit
depends, among other parameters, on its activity, which in turn
depends on the distribution of the values of the inputs, hence again
on the number system.

Alternatives exist at many levels in this algorithm exploration. For
instance, an intermediate result may be either computed, or recovered
from a precomputed table.

 

Parameter exploration.
Once an algorithm is chosen, optimizing its implementation for area,
delay, accuracy, or energy consumption is the next challenge. The
best solution depends on the requirements of the application and on the
target technology. Parameters which may vary include the radix of the
number representations, the granularity of the iterations (between
many simple iterations, or fewer coarser ones), the internal
accuracies used, the size of the tables (see  [68] 
for an illustration), etc.

The parameter space quickly becomes huge, and the expertise of the
designer has to be automated. Indeed, we do not design operators, but
operator generators, programs that take a specification and
some constraints as input, and output a synthesizable description of an
operator.


[bookmark: uid19] Section: 
      Scientific Foundations
Algebraic and Elementary Functions

Elementary Functions and Correct Rounding.
Many libraries for elementary functions are currently available. We
refer to  [67]  for a general insight into the domain.
The functions in question are typically those defined by the C99 and
LIA-2 standards, and are offered by vendors of processors, compilers
or operating systems.

Though the 1985 version of the IEEE-754 standard does not deal with these functions, there
is some attempt to reproduce some of their mathematical properties, in
particular symmetries. For instance, monotonicity can be obtained for
some functions in some intervals as a direct consequence of accurate
internal computations or numerical properties of the chosen algorithm
to evaluate the function; otherwise it may be very difficult to
guarantee, and the general solution is to provide it through correct
rounding. Preserving the range (e.g., [image: Im1 ${atan(x)\#8712 [-\#960 /2,\#960 /2]}$])
may also be a goal though it may conflict with correct rounding (when
supported).

Concerning the correct rounding of the result, it was not required by
the IEEE-754-1985 standard: during the elaboration of this standard, it
was considered that correctly rounded elementary functions were
impossible to obtain at a reasonable cost, because of the so-called
Table Maker's Dilemma: an elementary function is evaluated to
some internal accuracy (usually higher than the target precision), and
then rounded to the target precision. What is the minimum accuracy necessary
to ensure that rounding this evaluation is equivalent to rounding the
exact result, for all possible inputs? This question could not be answered
in a simple manner, meaning that correctly rounding elementary functions
may require arbitrary precision, which is very slow and resource-consuming.

Indeed, correctly rounded libraries already exist, such as GNU MPFR
(http://www.mpfr.org/ ),
the Accurate Portable Library released by
IBM in 2002, or the libmcr  library, released by Sun Microsystems
in late 2004. However they have worst-case execution time and memory
consumption up to 10,000 worse than usual libraries, which is the main
obstacle to their generalized use.

We have focused in the previous years on computing bounds on the
intermediate precision required for correctly rounding some elementary
functions in IEEE-754 double precision. This allows us to design
algorithms using a tight precision. That makes it possible to offer
the correct rounding with an acceptable overhead: we have experimental
code where the cost of correct rounding is negligible in average, and
less than a factor 10 in the worst case. These performances led the IEEE-754 revision committee
to recommend (yet not request) correct rounding for some mathematical functions.
It also enables to prove the correct-rounding property, and to show
bounds on the worst-case performance of our functions. Such worst-case
bounds may be needed in safety critical applications as well as a
strict proof of the correct rounding property. Concurrent libraries by
IBM and Sun can neither offer a complete proof for correct rounding
nor bound the timing because of the lack of worst-case accuracy
information. Our work actually shows a posteriori that their
overestimates for the needed accuracy before rounding are however
sufficient. IBM and Sun for themselves could not provide this
information. See also §
	3.4 
concerning the proofs for our library.

 

Approximation and Evaluation.
The design of a library with correct rounding also requires the study
of algorithms in large (but not arbitrary) precision, as well as the
study of more general methods for the three stages of the evaluation
of elementary functions: argument reduction, approximation, and
reconstruction of the result.

When evaluating an elementary function for instance, the first step
consists in reducing this evaluation to the one of a possibly
different function on a small real interval. Then, this last function
is replaced by an approximant, which can be a polynomial or a rational
fraction. Being able to perform those processes in a very cheap way
while keeping the best possible accuracy is a key
issue [2] . The kind of
approximants we can work with is very specific: the coefficients must
fulfill some constraints imposed by the targeted application, such as
some limits on their size in bits. The usual methods (such as Remez
algorithm) do not apply in that situation and we have to design new
processes to obtain good approximants with the required form.
Regarding the approximation step, there are currently two main
challenges for us. The first one is the computation of excellent
approximations that will be stored in hardware or in software and that
should be called thousands or millions of times. The second one is the
target of automation of computation of good approximants when the
function is only known at compile time. A third question concerns the
evaluation of such good approximants. To find a best compromise
between speed and accuracy, we combine various approaches ranging from
numerical analysis (tools like backward and forward error analysis,
conditioning, stabilization of algorithms) to computer arithmetic
(properties like error-free subtraction, exactly-computable error
bounds, etc.). The structure of the approximants must further be taken
into account, as well as the degree of parallelism offered by the
processor targeted for the implementation.

 

Adequacy Algorithm/Architecture.
Some special-purpose processors, like DSP cores, may not
have floating-point units, mainly for cost reasons. For such integer or
fixed-point processors, it is thus desirable to have software support
for floating-point functions, starting with the basic operations.
To facilitate the development or porting of numerical applications on
such processors, the emulation in software of floating-point arithmetic
should be compliant with the IEEE-754 standard; it
should also be very fast. To achieve this twofold goal, a solution is
to exploit as much as possible the characteristics of the target
processor (instruction set, parallelism, etc.) when designing
algorithms for floating-point operations.

So far, we have successfully applied this “algorithm/architecture adequacy”
approach to some VLIW processor cores from STMicroelectronics,
in particular the ST231;
the ST231 cores have integer units only, but for their
applications (namely, multimedia applications), being able to perform
basic floating-point arithmetic very efficiently was necessary. When
various architectures are targeted, this approach should further be
(at least partly) automated. The problem now is not only to write some
fast and accurate code for one given architecture, but to have this
optimized code generated automatically according to various
constraints (hardware resources, speed and accuracy requirements).


[bookmark: uid20] Section: 
      Scientific Foundations
Validation and Automation

Validating a code, or generating a validated code, means being able to prove
that the specifications are met. To increase the level of reliability,
the proof should be checkable by a formal proof checker.

 

Specifications of qualitative aspects of floating-point codes.
A first issue is to get a better formalism and specifications for floating-point computations,
especially concerning the following qualitative aspects:


	[bookmark: uid21] specification: typically, this will mean a proven error bound between the
value computed by the program and a mathematical value specified by
the user in some high-level format;



	[bookmark: uid22] tight error bound computation;



	[bookmark: uid23] floating-point issues: regarding the use of floating-point arithmetic,
a frequent concern is the portability of code, and thus the reproducibility
of computations; problems can be due to successive roundings (with different intermediate precisions)
or the occurrence of underflows or overflows;



	[bookmark: uid24] precision: the choice of the method (compensated algorithm
versus double-double versus quadruple precision for instance) that will yield
the required accuracy at given or limited cost must be studied;



	[bookmark: uid25] input domains and output ranges: the determination of input domain or output range also constitutes
a specification/guarantee of a computation;



	[bookmark: uid26] other arithmetics, dedicated techniques and algorithms for increased precision:
for studying the quality of the results, most of conception phases
will require multiple-precision or exact solutions to
various algebraic problems.




 

Certification of numerical codes using formal proof.
Certifying a numerical code is error-prone. The use of a proof
assistant will ensure the code correctly follows its specification.
This certification work, however, is usually a long and tedious work,
even for experts. Moreover, it is not adapted to an incremental
development, as a small change to the algorithm may invalidate the
whole formal proof. A promising approach is the use of automatic tools
to generate the formal proofs of numerical codes with little help from
the user.

Instead of writing code in some programming language and trying to
prove it, we can design our own language, well-suited to proofs (e.g.,
close to a mathematical point of view, and allowing metadata related
to the underlying arithmetics such as error bounds, ranges, and so
on), and write tools to generate code. Targets can be a programming
language without extensions, a programming language with some given
library (e.g., MPFR if one needs a well-specified multiple-precision
arithmetic), or a language internal to some compiler: the proof may
be useful to give the compiler some knowledge, thus helping it to do
particular optimizations. Of course, the same proof can hold for
several targets.

We worked in particular also on the way of giving a formal proof for
our correctly rounded elementary function library. We have always been
concerned by a precise proof of our implementations that covers also
details of the numerical techniques used. Such proof concern is mostly
absent in IBM's and Sun's libraries. In fact, many misroundings were
found in their implementations. They seem to be mainly due to coding
mistakes that could have been avoided with a formal proof in mind. In
CRlibm we have replaced more and more hand-written paper proofs by Gappa
(http://gappa.gforge.inria.fr/ )
verified proof scripts that are partially generated
automatically by other scripts. Human error is better prevented.

 

Integrated and interoperable automatic tools.
Various automatic components have been independently introduced above,
see §
	3.2 
and §
	3.3 .
One of our main objectives is to provide
an entire automatic approach taking in input an expression to evaluate (with possible
annotations), and returning an executable validated code.
The complete automation with optimal or at least good resulting performance
seems to be far beyond the current knowledge.
However, we see our objective as a major step for prototyping future
compilers.
We thus aim at developing a piece of software that automates the
steps described in the previous pages. The result should be an
easy-to-use integrated environment.


[bookmark: uid27] Section: 
      Scientific Foundations
Arithmetics and Algorithms

 

When computing a solution to a numerical problem,
an obvious question is that of the quality
of the produced numbers. One may also require a
certain level of quality, such as: approximate
with a given error bound, correctly rounded, or
–if possible– exact. The question thus becomes
twofold: how to produce such a well-specified output
and at what cost? To answer it, we focus on
polynomial and integer matrix operations,
Euclidean lattices and global optimization,
and study the following directions:


	[bookmark: uid28] We investigate new ways of producing well-specified results by
resorting to various arithmetics (intervals, Taylor models,
multi-precision floating-point, exact). A first approach is to
combine some of them: for example, guaranteed enclosures can
be obtained by mixing Taylor model arithmetic with floating-point
arithmetic [9] . Another approach is to adapt the
precision or even change the arithmetic during the course of a
computation. Typical examples are iterative refinement techniques or
exact results obtained via floating-point basic operations. This
often requires arithmetics with very-well specified properties
(like the IEEE-754 standard for floating-point arithmetic).



	[bookmark: uid29] We also study the impact of certification on algorithmic
complexity. A first approach there is to augment existing algorithms
with validated error bounds (and not only error estimates). This
leads us to study the (im)possibility of computing such bounds
on the fly at a negligible cost. A second approach is to study the
algorithmic changes needed to achieve a higher level of
quality without, if possible, sacrificing for speed. In exact linear
algebra, for example, the fast algorithms recently obtained in the
bit complexity model are far from those obtained decades ago in the
algebraic complexity model.




 

Numerical Algorithms using Arbitrary Precision
Interval Arithmetic.
When validated results are needed, interval arithmetic can be used.
New problems can be solved with this arithmetic, which provides
sets instead of numbers. In particular, we target the global
optimization of continuous functions. A solution to obviate the
frequent overestimation of results is to increase the precision of
computations.

Our work is twofold. On the one hand, efficient software for arbitrary
precision interval arithmetic is developed, along with a library of
algorithms based on this arithmetic. On the other hand, new algorithms
that really benefit from this arithmetic are designed, tested, and
compared.

To reduce the overestimation of results, variants of interval
arithmetic have been developed, such as Taylor models arithmetic or
affine arithmetic. These arithmetics can also benefit from arbitrary
precision computations.

 

Algorithms for Exact Linear Algebra and Lattice Basis Reduction.
The techniques for exactly solving linear algebra problems have been
evolving rapidly in the last few years, substantially reducing the
complexity of several algorithms (see for instance [6] 
for an essentially optimal result, or  [66] ). Our main
focus is on matrices whose entries are integers or univariate
polynomials over a field. For such matrices, our main interest is how
to relate the size of the data (integer bit lengths or polynomial
degrees) to the cost of solving the problem exactly. A first goal is
to design asymptotically faster algorithms, to reduce problems to
matrix multiplication in a systematic way, and to relate bit
complexity to algebraic complexity. Another direction is to make these
algorithms fast in practice as well, especially since applications
yield very large matrices that are either sparse or structured. Within
the LinBox international project, we work on a software library that
corresponds to our algorithmic research on matrices. LinBox is a
generic library that allows to plug external components in a
plug-and-play fashion. The library is devoted to sparse or structured
exact linear algebra and its applications.

We recently started a direction around lattice basis reduction.
Euclidean lattices provide powerful tools in various algorithmic
domains. In particular, we investigate applications in computer
arithmetic, cryptology, algorithmic number theory and communications
theory. We work on improving the complexity estimates of lattice basis
reduction algorithms and providing better implementations of them, and
on obtaining more reduced bases. The above recent progress in linear
algebra may provide new insights.

 

Certified Computing.
Most of the algorithmic complexity questions that we investigate
concern algebraic or bit-complexity models for exact computations.
Much less seems to be known in approximate computing, especially for
the complexity of computing (certified) error bounds, and for
establishing bridges between exact, interval, and constant precision
complexity estimates. We are developing this direction both for a
theoretical impact, and for the design and implementation of algorithm
synthesis tools for arithmetic operators, and mathematical expression
evaluation.
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Application Domains

Our expertise covers application domains for which the quality, such
as the efficiency or safety, of the arithmetic operators is an issue.
On the one hand, it can be applied to hardware oriented developments,
for example to the design of arithmetic primitives which are
specifically optimized for the target application and support. On the
other hand, it can also be applied to software programs, when
numerical reliability issues arise: these issues can consist in
improving the numerical stability of an algorithm, computing
guaranteed results (either exact results or certified enclosures) or
certifying numerical programs.


	[bookmark: uid32] The application domains of hardware arithmetic operators are
digital signal processing, image processing,
embedded applications, reconfigurable computing,
and cryptography.



	[bookmark: uid33] The development of correctly rounded elementary functions
is critical to the reproducibility of floating-point
computations. Exponentials and logarithms, for instance, are
routinely used in accounting systems for interest calculation, where
roundoff errors have a financial meaning. Our current focus is on
bounding the worst-case time for such computations, which is
required to allow their use in safety critical
applications, and in proving the correct rounding property for a
complete implementation.



	[bookmark: uid34] Certifying a numerical application usually requires bounds on
rounding errors and ranges of variables. Some of the tools we
develop compute or verify such bounds. For increased confidence in
the numerical applications, they may also generate formal proofs of the
arithmetic properties. These proofs can then be
machine-checked by proof assistants like Coq.



	[bookmark: uid35] Arbitrary precision interval arithmetic can be used in two ways
to validate a numerical result.
To quickly check the accuracy of a result, one can replace
the floating-point arithmetic of the numerical software that
computed this result by high-precision interval arithmetic and
measure the width of the interval result: a tight result corresponds
to good accuracy. When getting a guaranteed enclosure of
the solution is an issue, then more sophisticated procedures, such
as those we develop, must be employed: this is the case of global
optimization problems.



	[bookmark: uid36] The design of faster algorithms for matrix polynomials provides
faster solutions to various problems in control theory,
especially those involving multivariable linear systems.



	[bookmark: uid37] Lattice reduction algorithms have direct applications in public-key
cryptography. They also naturally arise in computer algebra. A new
and promising field of applications is communications theory.
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  [bookmark: uid39] Section: 
      Software
Introduction

Arénaire proposes various software and hardware realizations that are
accessible from the web page
http://www.ens-lyon.fr/LIP/Arenaire/Ware/ .
We describe below only those which progressed in 2011.

[bookmark: uid40]Figure
	1. Relationships between some Arénaire developments.	[image: IMG/softs.png]






[bookmark: uid41] Section: 
      Software
FloPoCo 
Participants :
      Florent Dinechin [correspondant] , Bogdan Pasca, Laurent-Stéphane Didier.

The purpose of the FloPoCo project is to explore the many ways in
which the flexibility of the FPGA target can be exploited in the
arithmetic realm. FloPoCo is a generator of operators written in C++
and outputting synthesizable VHDL automatically pipelined to an arbitrary frequency.

In 2011, FloPoCo was turned into a library which can be used as a
back-end to high-level synthesis tools. An expression parser that generates a complete pipeline was also added for this context. The integer multiplier and floating-point adder were
rewritten, and several new operators were added, including a floating-point power operator, and novel
operators for integer and floating-point division by a constant.


Versions 2.2.0, 2.2.1, and 2.3.0 were released in 2011.

Among the known users of FloPoCo are
U. Cape Town, U.T. Cluj-Napoca,
Imperial College, U. Essex, U. Madrid, U. P. Milano, T.U. Muenchen, T. U. Kaiserslautern, U. Paderborn, CalTech, U. Pernambuco, U. Perpignan,
U. Tokyo, Virginia Tech U. and several companies.

URL:
http://flopoco.gforge.inria.fr/ 


	[bookmark: uid42] Version: 2.3.0 (december 2011)



	[bookmark: uid43] APP: IDDN.FR.001.400014.000.S.C.2010.000.20600 (version 2.0.0)



	[bookmark: uid44] License: specific, GPL-like.



	[bookmark: uid45] Type of human computer interaction: command-line interface, synthesisable VHDL output.



	[bookmark: uid46] OS/Middelware: Linux, Windows/Cygwin.



	[bookmark: uid47] Required library or software: MPFR, flex, Sollya.



	[bookmark: uid48] Programming language: C++.



	[bookmark: uid49] Documentation: online and command-line help, API in doxygen format, articles.





[bookmark: uid50] Section: 
      Software
GNU MPFR
Participants :
      Vincent Lefèvre [correspondant] , Paul Zimmermann.


GNU MPFR is an efficient multiple-precision floating-point library with
well-defined semantics (copying the good ideas from the IEEE-754 standard),
in particular correct rounding in 5 rounding modes. GNU MPFR provides about
80 mathematical functions, in addition to utility functions (assignments,
conversions...). Special data (Not a Number, infinities, signed
zeros) are handled like in the IEEE-754 standard.

MPFR was one of the main pieces of software developed by the old SPACES
team at Loria. Since late 2006, with the departure of Vincent Lefèvre
to Lyon, it has become a joint project between the Caramel (formerly
SPACES then CACAO) and the Arénaire project-teams. MPFR has been a GNU
package since 26 January 2009.
GNU MPFR 3.0.1 was released on 4 April 2011 and
GNU MPFR 3.1.0 was released on 3 October 2011.

The main improvements are the generic tests in a reduced exponent range,
the possibility to include the mpfr.h  header file several times
while still supporting optional functions,
and, for the developers, the choice of the native type for the exponent
(and various corrections related to these features).

URL:
http://www.mpfr.org/ 


	[bookmark: uid51] ACM: D.2.2 (Software libraries),
G.1.0 (Multiple precision arithmetic),
G.4 (Mathematical software).



	[bookmark: uid52] AMS: 26-04 Real Numbers, Explicit machine computation and programs.



	[bookmark: uid53] APP: no longer applicable (copyright transferred to the
Free Software Foundation).



	[bookmark: uid54] License: LGPL version 3 or later.



	[bookmark: uid55] Type of human computer interaction: C library, callable from C or
other languages via third-party interfaces.



	[bookmark: uid56] OS/Middleware: any OS, as long as a C compiler is available.



	[bookmark: uid57] Required library or software:
GMP .



	[bookmark: uid58] Programming language: C.



	[bookmark: uid59] Documentation: API in texinfo format (and other formats via
conversion); algorithms are also described in a separate document.





[bookmark: uid60] Section: 
      Software
Exhaustive Tests for the Correct Rounding
of Mathematical Functions
Participant :
      Vincent Lefèvre.


The search for the worst cases for the correct rounding
(hardest-to-round cases) of mathematical functions (exp, log,
sin, cos, etc.) in a fixed precision (mainly double precision)
using Lefèvre's algorithm is implemented by a set of utilities written
in Perl, with calls to Maple/intpakX for computations on intervals
and with C code generation for fast computations. It also includes a
client-server system for the distribution of intervals to be tested
and for tracking the status of intervals (fully tested, being tested,
aborted).

These programs are run on the LIP network via Grid Engine (SGE).
In June 2011, the SGE configuration was changed by the system
administrator so that SIGSTOP/SIGCONT signals are sent to the jobs,
allowing several users to use SGE at the same time. These signals
make Maple crash (segmentation fault), and the Perl scripts needed
to be improved to handle these crashes gracefully (by restarting the
computations when need be, etc.). This SGE change made other problems
appear, such as when the client is first stopped by SGE and is then
killed by SGE (without being woke up by SGE), it cannot do its usual
clean-up; workarounds were tried, but without success.

The above problems also made an inconsistency in the client-server
protocol appear. The validity of the results was not affected, but
the protocol had to be redesigned.


[bookmark: uid61] Section: 
      Software
CGPE: Code Generation for Polynomial Evaluation
Participants :
      Christophe Mouilleron, Claude-Pierre Jeannerod.


The CGPE project, developed with Guillaume Revy (DALI research team,
Université de Perpignan and LIRMM laboratory), aims at generating C codes for
fast and certified polynomial evaluation, given various accuracy and architectural constraints.
Several improvements for this tool, based on the addition of constraints in the first
step of the generation process, were proposed in the PhD thesis of Ch. Mouilleron [12] .
These improvements have been implemented, thus allowing us to reduce the
whole generation time by about 50% on average.


	[bookmark: uid62] ACM: D.2.2 (Software libraries), G.4 (Mathematical software).



	[bookmark: uid63] Recommended library or software: MPFI or Gappa.



	[bookmark: uid64] License: CeCiLL



	[bookmark: uid65] Type of human computer interaction: command-line interface



	[bookmark: uid66] OS/Middelware: Unix



	[bookmark: uid67] Required library or software: Xerces-C++ XML Parser library and MPFR



	[bookmark: uid68] Programming Language: C++



	[bookmark: uid69] Status: beta



	[bookmark: uid70] Documentation: available in html format on
URL:
http://cgpe.gforge.inria.fr/ 





[bookmark: uid71] Section: 
      Software
FLIP: Floating-point Library for Integer Processors
Participants :
      Claude-Pierre Jeannerod, Jingyan Jourdan-Lu.


FLIP is a C library for the efficient software support of binary32
IEEE 754-2008 floating-point
arithmetic on processors without floating-point hardware units, such as VLIW or DSP
processors for embedded applications. The current target architecture is the VLIW
ST200 family from STMicroelectronics (especially the ST231 cores).
This year, we have mostly worked on improving the design and implementation of the following operators
with correct rounding “to nearest even”:
DP2 (fused dot product in dimension two) and sum of two squares.
The impact of the DP2 operator has been evaluated on the UTDSP benchmark,
and on some kernels speed-ups of 1.46 have been observed.
On the other hand, specializing DP2 to a sum of squares brings a speed-up of 2.

URL:
http://flip.gforge.inria.fr/ 


	[bookmark: uid72] ACM: D.2.2 (Software libraries), G.4 (Mathematical software)



	[bookmark: uid73] AMS: 26-04 Real Numbers, Explicit machine computation and programs.



	[bookmark: uid74] APP: IDDN.FR.001.230018.S.A.2010.000.10000



	[bookmark: uid75] License: CeCILL v2



	[bookmark: uid76] Type of human computer interaction: C library callable, from any C program.



	[bookmark: uid77] OS/Middleware: any, as long as a C compiler is available.



	[bookmark: uid78] Required library or software: none.



	[bookmark: uid79] Programming language: C





[bookmark: uid80] Section: 
      Software
SIPE: Small Integer Plus Exponent
Participant :
      Vincent Lefèvre.


SIPE (Small Integer Plus Exponent) is a C header file providing a fast
floating-point arithmetic with correct rounding to the nearest in very
small precision. Implemented operations are the addition, subtraction,
multiplication, FMA, and minimum/maximum/comparison functions (of the
signed numbers or in magnitude). SIPE has been written for exhaustive
tests of simple algorithms in small precision in order to prove results
or find conjectures (which could then be proved). In 2011, a research
report was written about SIPE [61] ,
including documentation and proof of the implementation; some bugs
were fixed at the same time.


	[bookmark: uid81] ACM: D.2.2 (Software libraries),
G.4 (Mathematical software).



	[bookmark: uid82] AMS: 26-04 Real Numbers, Explicit machine computation and programs.



	[bookmark: uid83] License: LGPL version 2.1 or later.



	[bookmark: uid84] Type of human computer interaction: C header file.



	[bookmark: uid85] OS/Middleware: any OS.



	[bookmark: uid86] Required library or software: GCC compiler.



	[bookmark: uid87] Programming language: C.



	[bookmark: uid88] Documentation: Research report RR-7832. [61] 



	[bookmark: uid89] URL: http://www.vinc17.net/software/sipe.h 
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  [bookmark: uid91] Section: 
      New Results
Hardware Arithmetic and Architecture
Participants :
      Florent de Dinechin, Hong Diep Nguyen, Bogdan Pasca, Honoré Takeugming, Álvaro Vázquez Álvarez, Nicolas Brunie, Sylvain Collange.


[bookmark: uid92] FPGA-specific arithmetic

Reconfigurable computing has the opportunity of using exotic operators that would not make sense in a general-purpose microprocessor [43] , for instance the constant dividers studied in 
	6.1.2 . Such operators must be also be matched to the precision and performance needed by applications. F. de Dinechin and B. Pasca described the FloPoCo framework that assists the construction of correct pipelines and the automatic testing of such operators [28] . For this context, B. Pasca, with H. D. Nguyen, now at U.C. Berkeley, and T. Preusser, from T. U. Darmstadt, described improved architectures for short-latency adders on modern FPGAs [39] . With Ch. Alias and A. Plesco (Compsys project-team), he studied the integration in of deeply pipelined arithmetic datapath in high-level synthesis tools [50] .


[bookmark: uid93] Multiplication by Rational Constants versus Division by a Constant

Motivated by the division by 3 or by 9 appearing in some stencil
kernels, F. de Dinechin investigated how the periodicity of the binary
representation of a rational constant could be exploited to design an
architecture multiplying by this constant [26] . With L. S. Didier, this approach was then
compared to a specialisation of divider architectures to the division
by small integer constants, which is shown to match well the fine
structure of FPGAs [44] .


[bookmark: uid94] Elementary Functions

A. Vázquez worked with J. Bruguera, from U. Santiago de Compostella,
on hardware architectures for evaluating q-th roots [65] .
Their solution composes digit-recurrence operators for reciprocal, logarithm, multiplication and exponential.


[bookmark: uid95] Extensions of the fused-multiply-and-add operator

With B. de Dinechin, from Kalray, N. Brunie and F. de Dinechin proposed to extend the classical fused-multiply-and-add operator with a larger addend and result.
This enables higher-precision computation of sums of products at a cost that remains close to that of the classical FMA [55] .


[bookmark: uid96] Emerging throughput-oriented architecture

On massively multi-threaded processors like GPUs, neighbor threads are
likely to operate on similar data. S. Collange showed with
A. Kouyoumdjian how it is possible to take advantage of this
inter-thread value correlation at the hardware level with a hardware
cache-compression technique on GPUs
[58] . With D. Sampaio, R. Martins, and
F. Magno Quintão Pereira (U. Minas Gerais), he then addressed this question also at
the compiler level using a compiler stage to identify statically data
patterns in GPGPU programs [64] .

Current GPU architectures require specific instruction sets with control-flow
reconvergence annotations, and only support a limited number of control-flow
constructs. S. Collange and N. Brunie, with G. Diamos (NVIDIA) generalized dynamic vectorization to arbitrary control flow on
standard instruction sets with no compiler involvment [45] , [56] , [53] .
In addition, this technique allows divergent branches to be executed in parallel,
as a way to increase the throughput of parallel architectures [54] .


[bookmark: uid97] Section: 
      New Results
Efficient Floating-Point Arithmetic and Applications
Participants :
      Nicolas Brisebarre, Claude-Pierre Jeannerod, Mioara Joldeş, Jingyan Jourdan-Lu, Vincent Lefèvre, Nicolas Louvet, Érik Martin-Dorel, Christophe Mouilleron, Jean-Michel Muller, Adrien Panhaleux.


[bookmark: uid98] Correctly Rounded Sums

P. Kornerup (Odense Univ., Denmark), V. Lefèvre, N. Louvet and J.-M. Muller have given a study of some basic blocks needed in the design
of floating-point summation algorithms. In particular, in radix-2
floating-point arithmetic, they have shown that
among the set of the algorithms with no comparisons performing only
floating-point additions/subtractions, the 2Sum algorithm introduced
by Knuth is minimal, both in terms of number of operations and depth
of the dependency graph. They have investigated the possible use of another
algorithm, Dekker's Fast2Sum algorithm, in radix-10 arithmetic. Under reasonable conditions, they have also proven
that no algorithms performing only round-to-nearest
additions/subtractions exist to compute the round-to-nearest sum of at
least three floating-point numbers. Starting from an algorithm due to
Boldo and Melquiond, they have also presented new results about the computation
of the correctly-rounded sum of three floating-point numbers [21] .


[bookmark: uid99] Error of an FMA

The fused multiply-add (FMA) instruction, specified by the IEEE 754-2008 Standard for Floating-Point Arithmetic,
eases some calculations, and is already available on some current processors such as the Power PC or the Itanium.
S. Boldo (EPI Proval) and J.-M. Muller first extended an earlier work on the computation of the exact error of an FMA
(by giving more general conditions and providing a formal proof). Then, they presented a new algorithm that computes
an approximation to the error of an FMA, and provide error bounds and a formal proof for that algorithm [16] .


[bookmark: uid100] Accurate computation of ad-bc with an FMA

C.-P. Jeannerod, N. Louvet, and J.-M. Muller have provided in [59] 
a detailed rounding error analysis of Kahan's FMA-based algorithm for the computation of expressions of the form ad-bc.
They showed that Kahan's algorithm is always highly accurate, and under mild assumptions on the radix and the precision
gave an optimal bound on the absolute error and an asymptotically optimal bound on the relative error.
They also studied how the relative error varies as a function of the relative order of magnitude of the two products ad and bc.
Finally, they investigated whether the error bounds can be improved in special cases like sums of squares and discriminants.


[bookmark: uid101] Performing Arithmetic Operations on Round-to-Nearest Operations

During any composite computation, there is a constant need for rounding intermediate results before they can participate in further processing. Recently, a class of number representations denoted RN-Codings were introduced, allowing an unbiased rounding-to-nearest to take place by a simple truncation, with the property that problems with double-roundings are avoided. P. Kornerup (Odense Univ., Denmark), J.-M. Muller and A. Panhaleux first investigate a particular encoding of the binary representation. This encoding is generalized to any radix and digit set; however, radix complement representations for even values of the radix turn out to be particularly feasible. The encoding is essentially an ordinary radix complement representation with an appended round-bit, but still allowing rounding-to-nearest by truncation, and thus avoiding problems with double-roundings. Conversions from radix complement to these round-to-nearest representations can be performed in constant time, whereas conversion the other way, in general, takes at least logarithmic time. Not only is rounding-to-nearest a constant time operation, but so is also sign inversion, both of which are at best log-time operations on ordinary two's complement representations. Addition and multiplication on such fixed-point representations are first analyzed and defined in such a way that rounding information can be carried along in a meaningful way, at minimal cost. The analysis is carried through for a compact (canonical) encoding using two's complement representation, supplied with a round-bit. Based on the fixed-point encoding, it is shown possible to define floating-point representations, and a sketch of the implementation of an FPU is presented [22] .


[bookmark: uid102] Augmented Precision Square Roots, 2-D Norms, and Discussion on Correctly Rounding [image: Im2 $\sqrt {x^2+y^2}$]

Define an “augmented precision” algorithm as an algorithm that returns, in precision-p floating-point arithmetic, its result as the unevaluated sum of two floating-point numbers, with a relative error of the order of 2-2p. Assuming an FMA instruction is available, N. Brisebarre, M. Joldeş, P. Kornerup (Odense University, Denmark), E. Martin-Dorel and J.-M. Muller perform a tight error analysis of an augmented precision algorithm for the square root, and introduce two slightly different augmented precision algorithms for the 2D-norm [image: Im2 $\sqrt {x^2+y^2}$]. Then they give tight lower bounds on the minimum distance (in ulps) between [image: Im2 $\sqrt {x^2+y^2}$] and a midpoint when [image: Im2 $\sqrt {x^2+y^2}$] is not itself a midpoint. This allows them to determine cases when their algorithms make it possible to return correctly-rounded 2D-norms [30] .


[bookmark: uid103] Midpoints and exact points of some algebraic functions in floating-point arithmetic

When implementing a function f in floating-point arithmetic, if we wish correct rounding and good performance,
it is important to know if there are input floating-point values x such that f(x) is either the middle of two consecutive
floating-point numbers (assuming rounded-to-nearest arithmetic), or a floating-point number
(assuming rounded toward ±∞ or toward 0 arithmetic). In the first case f(x) is a midpoint,
and in the second case it is an exact point.
In [20] 
C.-P. Jeannerod, N. Louvet, J.-M. Muller, and A. Panhaleux have studied
whether such midpoints and exact points exist for some usual algebraic functions and various floating-point formats.
When midpoints or exact points exist,
they have been characterized or, when possible, listed exhaustively.
The results and the techniques presented in this paper can be used in particular to deal with both the binary
and the decimal formats defined in the IEEE 754-2008 standard for floating-point arithmetic.


[bookmark: uid104] Section: 
      New Results
Correct Rounding of Elementary Functions
Participants :
      Florent de Dinechin, Vincent Lefèvre, Jean-Michel Muller, Bogdan Pasca, Serge Torres.


[bookmark: uid105] FPGA Acceleration of the Search For Hardest-to-Round Cases

The IEEE 754-2008 standard for floating-point arithmetic recommends (yet does not dictate) that some elementary functions should be correctly rounded. That is, given a rounding function [image: Im3 ${\#8728 {}}$], (e.g., round to nearest even, or round to ±∞), when evaluating function f at the floating-point number x, the system should always return [image: Im4 ${\#8728 (f(x))}$].

Building a fast correctly rounded library for some target floating-point (FP) format requires preliminarily solving a problem called the table maker's dilemma. This requires very large computations which may use environments and formats totally different from the target environment and format. F. de Dinechin, V. Lefèvre, J.-M. Muller, B. Pasca and A. Plesco suggest performing these computations on an FPGA. Their paper [Oops!]  won the best paper award at the ASAP2011 conference.


[bookmark: uid106] Hierarchical Polynomial Approximation of a Function by Polynomials

Algorithms used to search for the hardest-to-round cases of a function
requires the approximation of the function by small-degree polynomials
on small intervals. This can be done efficiently by a hierarchical
polynomial approximation. Work is being done to improve this method
by replacing interval arithmetic (as partly used in the current tools) by
static error bounds. This will allow us to better control the precision
needed to compute the coefficient of the polynomials. The implementation
will also be simpler.


[bookmark: uid107] Section: 
      New Results
Validation and Automation
Participants :
      Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jeannerod, Jingyan Jourdan-Lu, Mioara Joldeş, Vincent Lefèvre, Nicolas Louvet, Christophe Mouilleron, Hong Diep Nguyen, David Pfannholzer, Nathalie Revol, Philippe Théveny, Gilles Villard.


[bookmark: uid108] Efficient Implementation of Algorithms for Interval Linear Algebra

H.-D. Nguyen and N. Revol proposed an algorithm to solve linear systems with interval coefficients.
The same approach can be used to verify the solution of a linear system with
floating-point coefficients, i.e. to compute an interval enclosing the error between
the exact solution and an approximate solution. The goal is twofold: on the one hand
the accuracy of the solution is desired up to the last bit of the floating-point solution,
on the other hand the efficiency of the implementation is obtained through the use of
optimized BLAS3 routines [47] .
The PhD thesis of H.-D. Nguyen [13] 
contains in particular the algorithm [24] 
and its properties. Its complexity has been established [46] 
and its potential use for symbolic-numeric computations has been discussed [49] .


[bookmark: uid109] Standardization of Interval Arithmetic

We contributed to the creation, and now chair, the IEEE 1788 working group on the
standardization of interval arithmetic http://grouper.ieee.org/groups/1788/ .
The main discussion topics of this working group [48] , for the year 2011, were
exception handling (via decorations). An emerging topic is the repeatibility and reproducibility of interval computations. on the same platform or across different platforms.


[bookmark: uid110] Formal Proofs of the Arithmetic on Polynomial Models

Using as starting point [9] ,
the calculus with polynomial models, such as Taylor models,
based on floating-point coefficients and floating-point operations,
has been formalized and checked in Coq [18] .
This calculus is at the core of Ariadne, an environment
for the study of hybrid systems: the idea is to prove the
environment itself, instead of using model-checking on the
systems.


[bookmark: uid111] Formal Proof Generation for Elementary functions

The proof of the correct rounding property for an elementary function
requires tight bounds on the error involved in the function code.
F. de Dinechin, with Ch. Lauter (LIP6) and G. Melquiond (INRIA Proval)
have described the use of the Gappa proof assistant to compute
such tight bounds rigorously [27] .


[bookmark: uid112] Code Generation for Polynomial Evaluation

A given arithmetic expression may be evaluated on a computer in several
ways, depending on the parenthesization and the ordering of terms in use.
Among all the possible evaluations, one may want to choose one that is
as fast and accurate as possible. In [12] 
Ch. Mouilleron introduced a set of algorithms in order to generate all
these possible evaluations, to count them, and to find an optimal or nearly
optimal one according to a given criteria.
Thanks to this work, several sequences related to numbers of evaluations have
been discovered and added to Sloane's on-line encyclopedia of integer sequences (OEIS).
Moreover, this allowed to show experimentally that an algorithm by Paterson and
Stockmeyer for the evaluation of a polynomial p at a matrix point is
optimal for small degrees of p. Finally, this work has led to the
revamping of the software tool CGPE presented in [38] 
(see also §
	5.5 ).


[bookmark: uid113] Section: 
      New Results
Arithmetic and Algorithms
Participants :
      Guillaume Hanrot, Claude-Pierre Jeannerod, Adeline Langlois, Ivan Morel, Christophe Mouilleron, Andrew Novocin, Xavier Pujol, Damien Stehlé, Gilles Villard.


[bookmark: uid114] Faster Lattice Reduction

Andrew Novocin, Damien Stehlé and Gilles
Villard [40]  designed an algorithm,
[image: Im5 $\mover L\#732 ^1$], with the following specifications: It takes as
input an arbitrary basis B in Zd×d of a lattice L; It
computes a basis of L which is reduced for a mild modification of
the Lenstra-Lenstra-Lovász reduction; It terminates in time
[image: Im6 ${\mover O\#732 {(d^5\#946 +d^{\#969 +1}\#946 )}}$] where [image: Im7 ${\#946 =log\#8741 B\#8741 }$] (and ω is a valid exponent for matrix
multiplication). This is the first LLL-reducing algorithm with a time
complexity that is quasi-linear in the bit-length beta of the entries
and polynomial in the dimension d. A critical ingredient for
achieving this result was the study of the effect of small
perturbations on the LLL-reducedness of a lattice
basis [17] .


[bookmark: uid115] Computing Short Lattice Vectors

Among all known lattice reduction algorithms, BKZ provides the best
trade-off between run-time and smallness of the computed lattice
basis. Guillaume Hanrot, Xavier Pujol and Damien
Stehlé [32]  showed that BKZ can be
terminated long before its completion, while still providing bases of
excellent quality. More precisely, if it is terminated within a
polynomial number of calls to a lower-dimensial Shortest Vector
Problem solver, then the bounds on the output quality are as close as
desired to the bounds that can be obtained by letting BKZ run until
completion.

Guillaume Hanrot, Xavier Pujol and Damien Stehlé also surveyed the
known algorithms for solving the Shortest Vector
Problem [31] .


[bookmark: uid116] Lattice-Based Cryptography

NTRUEncrypt is the fastest known lattice-based encryption scheme. Its
moderate key-sizes, excellent asymptotic performance and conjectured
resistance to quantum computers could make it a desirable alternative
to factorisation and discrete-log based encryption schemes.
Damien Stehlé and Ron Steinfeld [41]  showed how to modify NTRUEncrypt to
make it provably resistance to Chosen Plaintext Attacks, under the assumed
quantum hardness of standard worst-case lattice problems restricted
to a family of lattices related to some cyclotomic fields.


[bookmark: uid117] Lattices and Communication Theory

Cong Ling, Shuiyin Liu, Laura Luzzi and Damien Stehlé studied and
optimized lattice algorithms that are relevant for MIMO
communications [23] , [37] .
These algorithms tackle the Bounded Distance Decoding Problem: Given a
point within a small prescribed distance to a given lattice, find the
lattice vector closest to it.


[bookmark: uid118] Other Applications of Lattice Reduction Algorithms

In [35] 
Jürgen Klüners, Mark van Hoeij, and Andrew Novocin showed how to
use the LLL lattice reduction algorithm for computing a compact
representation of the set of all subfields of any given number field.
William Hart (Warwick Mathematics Institute, UK), Mark van Hoeij (Florida State University, USA) and Andrew Novocin exploited the very
latest progress in lattice reduction to propose a fine-tuned
cutting-edge implementation of a polynomial factorization algorithm.


[bookmark: uid119] Polynomial Arithmetic

With William Hart and Mark van Hoeij,
A. Novocin proposed in [33]  a state of the art algorithm for factoring polynomials in Z[x] .
The algorithm is fast in practice, saving in a large class of common examples,
without sacrificing performance on worst-case polynomials.
The presented algorithm is structured along the lines of algorithms with the best theoretical complexity.
In [34]  William Hart and A. Novocin proposed an efficient algorithm for
computing the composition of two univariate polynomials. Their work
builds upon the Brent-Kung algorithm.


[bookmark: uid120] Exact Linear Algebra

Transforming a matrix over a field to echelon form, or decomposing the matrix as a product of structured matrices
that reveal the rank profile, is a fundamental building block of computational exact linear algebra.
For such tasks the best algorithms available so far were either rank sensitive (i.e., of complexity expressed in
terms of the exponent of matrix multiplication and the rank of the input matrix) or in place
(i.e., using essentially no more memory that what is needed for matrix multiplication).
In [60] 
C.-P. Jeannerod, Clément Pernet (U. Joseph Fourier, Grenoble), and Arne Storjohann (U. Waterloo, Canada)
have proposed algorithms that are both rank sensitive and in place.
These algorithms are based on a new matrix factorization,
namely A = CU P with C a column echelon form revealing the row rank profile of A,
U a unit upper triangular matrix, and P a permutation matrix.
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  [bookmark: uid122] Section: 
      Contracts and Grants with Industry
Contracts with Industry

One contract with STMicroelectronics and one contract with Kalray,
in the context of two PhD CIFRE grants; see §
	7.2 .


[bookmark: uid123] Section: 
      Contracts and Grants with Industry
Grants with Industry

[bookmark: uid124] STMicroelectronics CIFRE PhD Grant
Participants :
      Claude-Pierre Jeannerod, Jingyan Jourdan-Lu, Jean-Michel Muller.


Jingyan Jourdan-Lu is supported by a CIFRE PhD grant
(from March 2009 to September 2012) from STMicroelectronics (Compilation Expertise Center, Grenoble)
on the theme of floating-point arithmetic code generation and specialization for embedded processors.
Advisors: Claude-Pierre Jeannerod and Jean-Michel Muller (Arénaire), Christophe Monat (STMicroelectronics).
A contract between STMicroelectronics and INRIA
(duration: 36 months; amount: 36,000 euros; signature: fall 2010)
aims at supporting the developments done in the context of this PhD.


[bookmark: uid125] Mediacom Project with STMicroelectronics
Participants :
      Florent de Dinechin, Claude-Pierre Jeannerod, Jingyan Jourdan-Lu, Jean-Michel Muller, David Pfannholzer, Nathalie Revol.


We have been involved in Mediacom since September 1, 2009.
Mediacom is a 40-month joint project with the Compiler Expertise Center
(STMicroelectronics Grenoble) and INRIA project-teams Alchemy, Alf, and
Compsys, and a Nano 2012 partner project.
For Arénaire, it funds in particular the 3-year MEFI PhD grant of
David Pfannholzer.
The development this year is the generation of some elementary functions,
focusing on the pre-processing (argument reduction, exception handling)
and post-processing (argument reconstruction).
Our long-term goal with this project is the design and implementation of
a dynamic code generation tool, for numerical kernels typical of
intensive mediaprocessing, and that could be integrated into
production compilers.


[bookmark: uid126] STMicroelectronics CIFRE PhD Grant

Nicolas Brunie is supported by a CIFRE PhD grant (from 15/04/2011 to 14/04/2014) from Kalray.
Its purpose is the study of a tightly-coupled reconfigurable accelerator to be embedded in the Kalray multicore processor.
Advisors: Florent de Dinechin (Arénaire) and B. de Dinechin (Kalray).
The support contract between Kalray and Inria amounts to 76,000 euros on three years.


[bookmark: uid127] Altera hardware donation

Altera donated to the team an FPGA-based acceleration card (Altera DK-DEV-4SGX530N)
worth 8000 euros for the Table-Maker's Dilemma acceleration project.
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[bookmark: uid130] Cible Grant from Région Rhône-Alpes
Participants :
      Nicolas Brisebarre, Claude-Pierre Jeannerod, Mioara Joldeş, Jingyan Jourdan-Lu, Jean-Michel Muller, Nathalie Revol, Gilles Villard.


Since October 2008, we have obtained a 3-year grant from Région
Rhône-Alpes. That grant has funded a PhD student, Mioara Joldeş,
who defended her PhD thesis on September 26, 2011.
The project consists in automating as much as possible the generation of
code for approximating functions. Instead of calling functions from
libraries, we wish to elaborate approximations at compile-time, in
order to be able to directly approximate compound functions, or to
take into account some information (typically, input range
information) that might be available at that time. In this project, we
collaborate with the STMicroelectronics' Compilation Expertise Center
in Grenoble (C. Bertin, H. Knochel, and C. Monat).
STMicroelectronics is funding another PhD grant on these themes.


[bookmark: uid131] Section: 
      Partnerships and Cooperations
National Initiatives

[bookmark: uid132] ANR HPAC Project
Participants :
      Claude-Pierre Jeannerod, Nicolas Louvet, Nathalie Revol, Damien Stehlé, Philippe Théveny, Gilles Villard.


“High-performance Algebraic Computing” (HPAC) is a four year ANR
project that will start in January 2012.
HPAC is headed by Jean-Guillaume Dumas (CASYS team, LJK laboratory, Grenoble);
it involves Arénaire as well as
the INRIA project-team MOAIS (LIG, Grenoble), the INRIA project-team SALSA (LIP6 lab., Paris),
the ARITH group (LIRMM laboratory, Montpellier), and the HPC Project company.

The overall ambition of HPAC is to provide international
reference high-performance libraries for exact linear algebra and
algebraic systems on multi-processor architecture and to influence
parallel programming approaches for algebraic computing.
The central goal is to extend the efficiency of the LinBox and FGb
libraries to new trend parallel architectures such as clusters of
multi-processor systems and
graphics processing units in order to tackle a broader
class of problems in lattice cryptography and algebraic cryptanalysis.
HPAC will conduct researches along three axes:

- A domain specific parallel language (DSL) adapted to high-performance algebraic computations;

- Parallel linear algebra kernels and higher-level mathematical
algorithms and library modules;

- Library composition and innovative high performance solutions for cryptology challenges.


[bookmark: uid133] ANR TaMaDi Project
Participants :
      Nicolas Brisebarre, Florent de Dinechin, Guillaume Hanrot, Vincent Lefèvre, Érik Martin-Dorel, Micaela Mayero, Jean-Michel Muller, Andrew Novocin, Ioana Pasca, Damien Stehlé, Serge Torres.


The TaMaDi project (Table Maker's Dilemma, 2010-2013) is funded by
the ANR and headed by Jean-Michel Muller. It was submitted in January
2010, accepted in June, and started in October 2010. The other French
teams involved in the project are the MARELLE team-project of INRIA
Sophia Antipolis-Méditerranée, and the PEQUAN team of LIP6 lab.,
Paris.

The aim of the project is to find “hardest to round” (HR) cases for
the most common functions and floating-point formats. In
floating-point (FP) arithmetic having fully-specified “atomic”
operations is a key-requirement for portable, predictable and
provable numerical software. Since 1985, the four arithmetic
operations and the square root are IEEE specified (it is required
that they should be correctly rounded: the system must always return
the floating-point number nearest the exact result of the operation).
This is not fully the case for the basic mathematical functions
(sine, cosine, exponential, etc.). Indeed, the same function, on the
same argument value, with the same format, may return significantly
different results depending on the environment. As a consequence,
numerical programs using these functions suffer from various
problems. The lack of specification is due to a problem called the
Table Maker's Dilemma (TMD). To compute f(x) in a given format,
where x is a FP number, we must first compute an approximation to
f(x) with a given precision, which we round to the nearest FP
number in the considered format. The problem is the following:
finding what the accuracy of the approximation must be to ensure that
the obtained result is always equal to the “exact” f(x) rounded
to the nearest FP number. In the last years, our team-project and the
CACAO team-project of INRIA Nancy-Grand Est designed algorithms for
finding hardest-to-round cases. These algorithms do not allow to
tackle with large formats. The TaMaDi project mainly focuses on three
aspects:


	[bookmark: uid134] big precisions: we must get new algorithms for dealing with precisions larger than double precision. Such precisions will become more and more important (even if double precision may be thought as more than enough for a final result, it may not be sufficient for the intermediate results of long or critical calculations);



	[bookmark: uid135] formal proof: we must provide formal proofs of the critical parts of our methods. Another possibility is to have our programs generating certificates that show the validity of their results. We should then focus on proving the certificates;



	[bookmark: uid136] aggressive computing: the methods we have designed for generating HR points in double precision require weeks of computation on hundreds of PCs. Even if we design faster algorithms, we must massively parallelize our methods, and study various ways of doing that.




There was a meeting in Sophia-Antipolis in February 2011,
and two other ones in Lyon in June and December 2011.
The various documents can be found at http://tamadiwiki.ens-lyon.fr/tamadiwiki/index.php/Main_Page .


[bookmark: uid137] ANR TCHATER Project
Participants :
      Florent de Dinechin, Honoré Takeugming, Gilles Villard.


The TCHATER project (Terminal Cohérent Hétérodyne Adaptatif TEmps
Réel, 2008-2010) is a collaboration between Alcatel-Lucent France, E2V
Semiconductors, GET-ENST and the INRIA Arénaire and ASPI
project/teams. Its purpose is to demonstrate a coherent terminal
operating at 40Gb/s using real-time digital signal processing and
efficient polarization division multiplexing. In Lyon, we studied
the FPGA implementation of specific algorithms for polarization
demultiplexing and forward error correction with soft decoding.

TCHATER was extended by the ANR until 9/06/2011, which allowed us to finalize the demonstrator.


[bookmark: uid138] ANR LaRedA Project
Participants :
      Fabien Laguillaumie, Adeline Langlois, Ivan Morel, Xavier Pujol, Damien Stehlé.


The LaRedA project (Lattice Reduction Algorithms, 2008-2011) is funded
by the ANR and headed by Brigitte Vallée (CNRS/GREYC) and Valérie
Berthé (CNRS/LIRMM). The aim of the project is to finely analyze
lattice reduction algorithms such as LLL, by using experiments,
probabilistic tools and dynamic analysis. Among the major goals are
the average-case analysis of LLL and its output distribution. In Lyon,
we concentrate on the experimental side of the project (by using fpLLL
and MAGMA) and the applications of lattice reduction algorithms to
cryptography.


[bookmark: uid139] Section: 
      Partnerships and Cooperations
European Initiatives

[bookmark: uid140] Other European Initiatives


	[bookmark: uid141] Guillaume Hanrot and Damien Stehlé collaborate with Cong Ling (Imperial College London, UK)
on lattices and communication theory. The collaboration is jointly funded by the CNRS and the Royal Society, from January 2011 to December 2012.





[bookmark: uid142] Section: 
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[bookmark: uid143] INRIA International Partners


	[bookmark: uid144] Nathalie Revol chairs the IEEE 1788 working group on the
standardization of interval arithmetic, cf. http://grouper.ieee.org/groups/1788/ .





[bookmark: uid145] Visits of International Scientists


	[bookmark: uid146] San Ling (Nanyang Technological University, Singapore) visited
for two months (March and April), for collaborating on lattice-based
cryptography. Visit partly funded by NTU and Inria Rhône-Alpes
(invited researcher).



	[bookmark: uid147] Xiao-Wen Chang (McGill University, Canada) visited for one month
(July), for collaborating on the numerical aspects of lattice
reduction algorithms. Visit funded by ENS de Lyon (invited
professor).



	[bookmark: uid148] Ron Steinfeld (Macquarie University, Australia) visited for one
month (August), for collaborating on lattice-based
cryptography. Visit funded by the French Embassy in Australia.





[bookmark: uid149] Participation In International Programs


	[bookmark: uid150] Guillaume Hanrot and Damien Stehlé participate in the LaBaCry
project (Lattice-Based Cryptography), with San Ling and Huaxiong
Wang (Cryptography and Coding group of Nanyang Technological
University, Singapore). Project jointly funded by NTU and the
MERLION program from the French Embassy in Singapore.



	[bookmark: uid151] Damien Stehlé is a Partner Investigator in the Australian
Research Council Discovery Grant Lattices as a Constructive and
Destructive Tool in Cryptography, with Christophe Doche, Igor
Shparlinski and Ron Steinfeld (Macquarie University).



	[bookmark: uid152] Florent de Dinechin was invited 4 months by Nizhniy Novgorod State University (Russia).
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	[bookmark: uid155] Florent de Dinechin was in the program committee of HEART 2011
(Highly Efficient Accelerators for Reconfigurable Computing), FPL
2011 (Field-Programmable Logic), FPT 2011 (Field-Programmable
Technologies) and ARC 2011 (Applied Reconfigurable Computing). He
was a reviewer for the thesis of Pedro Echeverria (U. Madrid) and
the habilitation thesis of Steven Derrien (U. Rennes 1). He gave
talks in the Radiophysics department of Nizhniy Novgorod State
University and in the Intel Russian Summer School.



	[bookmark: uid156] Claude-Pierre Jeannerod was in the program committee of SNC
2011 (Fourth International Workshop on Symbolic-Numeric
Computation).



	[bookmark: uid157] Jean-Michel Muller was in the program committee of ARITH'20 (20th IEEE Symposium on Computer Arithmetic)
and ASAP'2011 (Application-Specific Systems, Architectures and Processors).
He was a reviewer of the Habilitation thesis of D. Ménard (U. Rennes 1) and chaired the board of examiners
for the PhD defense of M. Mezzarobba (École Polytechnique). He was a member (until December 2011)
of the Scientific Council of Grenoble INP, and is a member of the Scientific Councils of Ecole Normale Supérieure de Lyon and CERFACS.



	[bookmark: uid158] Nathalie Revol was in the program committee of NSV 11 (Fourth
International Workshop on Numerical Software Verification) and of MACIS
2011 (Fourth International Conference on Mathematical Aspects of
Computer and Information Sciences).



	[bookmark: uid159] Damien Stehlé was in the program committees of ACISP 2011
(16th Australasian Conference on Information Security and Privacy),
PQCRYPTO 2011 (4th International Conference on Post-Quantum
Cryptography), CANS 2011 (10th International Conference on
Cryptography and Network Security) and INDOCRYPT 2011 (12th
International Conference on Cryptology in India). He was in the program committee
of C2 (National Workshop on Coding and Cryptography, Oléron). He gave invited
talks at the RAIM workshop (Rencontres Arithmétiques de
l'Informatique Mathématique, Perpignan), at the NUS/NTU Workshop
on Coding, Cryptology and Combinatorial Design (Singapore), at the
International Workshop on Coding and Cryptology (IWCC 2011, Qingdao,
China) and at the Magic@LIX workshop (Palaiseau).



	[bookmark: uid160] Vincent Lefèvre gave a talk at the Dagstuhl Seminar 11371 on Uncertainty modeling and analysis with intervals: Foundations, tools, applications. [29] 



	[bookmark: uid161] Gilles Villard is chair of the LIP laboratory since January 2009.
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	[bookmark: uid163] Licence : Computer Architecture, 71h, L2, U. Claude Bernard, taught by Nicolas Louvet.



	[bookmark: uid164] Licence : Operating Systems, 35h, L3, U. Claude Bernard, taught by Nicolas Louvet.



	[bookmark: uid165] Licence : Algorithms and Data Structures, 32h, L3, U. Claude Bernard, taught by Nicolas Louvet.



	[bookmark: uid166] Master: Arithmetic Algorithms, 24h, M1, École normale supérieure de Lyon,
taught by Eleonora Guerrini, Guillaume Hanrot, and Claude-Pierre Jeannerod (autumn 2011).



	[bookmark: uid167] Master: Reconfigurable Computing, 24h, M2, École normale supérieure de Lyon,
taught by Florent de Dinechin (autumn 2011).



	[bookmark: uid168] Master: Cryptology: new primitives and applications, 24h, M2, École normale supérieure de Lyon,
taught by Guillaume Hanrot and Damien Stehlé (autumn 2011).



	[bookmark: uid169] Master: Algorithms for Verified Linear Algebra, 24h, M2, École normale supérieure de Lyon,
taught by Claude-Pierre Jeannerod, Nicolas Louvet, and Nathalie Revol (autumn 2011).



	[bookmark: uid170] Master: Numerical Algorithms, 36h, M2, U. Claude Bernard, taught by Claude-Pierre Jeannerod and Nicolas Louvet.



	[bookmark: uid171] Master: Computer Arithmetic, 28h, M2, U. Claude Bernard, taught by Vincent Lefèvre.



	[bookmark: uid172] Doctorate: Floating-Point Arithmetic, 12h, Nizhniy Novgorod State University,
taught by Florent de Dinechin (spring 2011).



PhD & HdR:


	[bookmark: uid173] HdR: Damien Stehlé, Euclidean lattices: algorithms and cryptography [15] ,
ENS de Lyon - Université de Lyon, defended on October 14, 2011.



	[bookmark: uid174] HdR: Fabien Laguillaumie, Public-Key Cryptography: Design and Algorithmic,
Université de Caen, defended on December 12, 2011.



	[bookmark: uid175] PhD: Mioara Joldes, Rigorous Polynomial Approximations and Applications [11] ,
ENS de Lyon - Université de Lyon, defended on September 26, 2011.
Supervisors: Nicolas Brisebarre and Jean-Michel Muller.



	[bookmark: uid176] PhD: Christophe Mouilleron, Efficient computation with structured matrices and
arithmetic expressions [12] ,
ENS de Lyon - Université de Lyon, defended on November 4, 2011.
Supervisors: Claude-Pierre Jeannerod and Gilles Villard.



	[bookmark: uid177] PhD: Hong Diep Nguyen, Efficient algorithms for verified scientific computing: Numerical linear algebra using interval arithmetic
[24] , ENS de Lyon - Université de Lyon, defended on January 18, 2011.
Supervisors: Nathalie Revol and Gilles Villard.



	[bookmark: uid178] PhD: Bogdan Pasca, High-performance floating-point computing on reconfigurable circuits [14] ,
ENS de Lyon - Université de Lyon, defended on September 21, 2011.
Supervisor: Florent de Dinechin.



	[bookmark: uid179] PhD in progress: Nicolas Brunie, Embedding a tightly-coupled reconfigurable accelerator in multicore processor,
started in december 2010. Supervisor: Florent de Dinechin.



	[bookmark: uid180] PhD in progress: Jingyan Jourdan-Lu, Floating-point arithmetic and compilation for embedded processors, started in March 2009.
Supervisors: Claude-Pierre Jeannerod, Christophe Monat (STMicroelectronics Compilation Expertise Center), and Jean-Michel Muller.
Jingyan has been on maternity leave from November 2010 to May 2011.



	[bookmark: uid181] PhD in progress: Adeline Langlois, Cryptography based on ideal lattices, started in September 2011.
Supervisors: Guillaume Hanrot and Damien Stehlé.



	[bookmark: uid182] PhD in progress: Érik Martin-Dorel, Contributions to the elaboration of arithmetic algorithms with their formal proof,
started in October 2009. Supervisors: Micaela Mayero and Jean-Michel Muller.



	[bookmark: uid183] PhD in progress: Adrien Panhaleux, Floating-point arithmetic algorithms, started in September 2008.
Supervisors: Nicolas Louvet and Jean-Michel Muller.



	[bookmark: uid184] PhD in progress: David Pfannholzer, Generation of specialized numerical codes, started in November 2009, until October 2011. Supervisors: Florent de Dinechin and Nathalie Revol.



	[bookmark: uid185] PhD in progress: Xavier Pujol, Efficient lattice reduction algorithms, started in September 2009. Supervisors: Guillaume Hanrot and Damien Stehlé.



	[bookmark: uid186] PhD in progress: Philippe Théveny, Numerical quality and high performance in scientific computing on emerging architectures, started in October 2011. Supervisor: Nathalie Revol.



	[bookmark: uid187] PhD in progress: Serge Torres, Some tools for the design of efficient and reliable function evaluation libraries, started in September 2010. Supervisors: Nicolas Brisebarre and Jean-Michel Muller.



Other teaching:


	[bookmark: uid188] Nathalie Revol gave conferences at “Lycée Lalande” (Bourg-en-Bresse), “Collège Jean Zay” (Brignais), “Collège Eugénie de Pomey” (Amplepuis) and “Collège Pablo Picasso” (Bron).



	[bookmark: uid189] Jean-Michel Muller gave an introductory talk on Floating-Point Arithmetic at the “Journées nationals de l'association des professeurs de Mathématiques de l'enseignement Public”, Grenoble, Oct. 2011.



	[bookmark: uid190] Damien Stehlé gave introductory talks on lattice-based cryptography
at ENS de Casablanca and ENSA de SAFI (Morocco) .



	[bookmark: uid191] Vincent Lefèvre gave a presentation of GNU MPFR at the GNU Hackers Meeting in Paris, Aug. 2011.
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An LLL-reduction algorithm with quasi-linear time complexity, in: STOC'11 - 43rd annual ACM symposium on Theory of computing, San Jose, United States, ACM New York, NY, USA,  2011, p. 403-412. [  
DOI : 10.1145/1993636.1993691 ]
http://hal.inria.fr/ensl-00534899/en

    	[41][bookmark: arenaire-2011-bid42]
	D. Stehlé, R. Steinfeld.
Making NTRU as secure as worst-case problems over ideal lattices, in: Proceedings of EUROCRYPT 2011, Estonia,  2011, p. 27-47.
http://hal.inria.fr/hal-00640635/en

    	[42][bookmark: arenaire-2011-bid56]
	G. Villard.
Recent progress in linear algebra and lattice basis reduction (invited), in: ISSAC'11 - International symposium on Symbolic and algebraic computation, San Jose, United States, ACM proceedings,  2011, p. 3-4. [  
DOI : 10.1145/1993886.1993889 ]
http://hal.inria.fr/hal-00644796/en

    	[43][bookmark: arenaire-2011-bid9]
	F. de Dinechin.
The arithmetic operators you will never see in a microprocessor, in: 20th IEEE Symposium of Computer Arithmetic, Germany, IEEE, July 2011, p. 189-190.
http://hal.inria.fr/ensl-00642164/en

    	[44][bookmark: arenaire-2011-bid14]
	F. de Dinechin, L.-S. Didier.
Table-based division by small integer constants, in: Applied Reconfigurable Computing, Hong Kong, Hong Kong, March 2012.
http://hal.inria.fr/ensl-00642145/en

    
National Peer-Reviewed Conference/Proceedings
	[45][bookmark: arenaire-2011-bid19]
	S. Collange.
Une architecture unifiée pour traiter la divergence de contrôle et la divergence mémoire en SIMT, in: SYMPosium en Architectures, Saint-Malo, France, May 2011.
http://hal.inria.fr/hal-00576049/en

    
Workshops without Proceedings
	[46][bookmark: arenaire-2011-bid32]
	H. D. Nguyen, N. Revol.
Refining and verifying the solution of a linear system, in: SNC 2011 - Symbolic Numeric Computation, San Jose, United States, ACM Digital Library, June 2011.
http://hal.inria.fr/hal-00641659/en

    	[47][bookmark: arenaire-2011-bid29]
	N. Revol, H. D. Nguyen.
Refining and verifying efficiently the solution of a linear system, in: Dagstuhl Seminar 11371: Uncertainty modeling and analysis with intervals: Foundations, tools, applications, Dagstuhl, Germany, September 2011.
http://hal.inria.fr/hal-00641669/en

    	[48][bookmark: arenaire-2011-bid34]
	N. Revol.
IEEE 1788 Working Group for the Standardization of Interval Arithmetic: a brief overview, in: Dagstuhl Seminar 11371: Uncertainty modeling and analysis with intervals: Foundations, tools, applications, Dagstuhl, Germany, September 2011.
http://hal.inria.fr/hal-00641674/en

    	[49][bookmark: arenaire-2011-bid33]
	N. Revol.
Verified Numerical Linear Algebra: Linear System Solving, in: 2011 SIAM Conference on Applied Algebraic Geometry, Raleigh, United States, October 2011.
http://hal.inria.fr/hal-00641663/en

    
Internal Reports
	[50][bookmark: arenaire-2011-bid12]
	C. Alias, B. Pasca, A. Plesco.
FPGA-Specific Synthesis of Loop-Nests with Pipelined Computational Cores, INRIA, July 2011, no RR-7674.
http://hal.inria.fr/inria-00606977/en

    	[51][bookmark: arenaire-2011-bid60]
	S. Boldo, F. Clement, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis.
Wave Equation Numerical Resolution: Mathematics and Program, INRIA, December 2011, no RR-7826.
http://hal.inria.fr/hal-00649240/en

    	[52][bookmark: arenaire-2011-bid61]
	N. Brisebarre, M. Joldes, É. Martin-Dorel, M. Mayero, J.-M. Muller, I. Pasca, L. Rideau, L. Théry.
Rigorous Polynomial Approximation using Taylor Models in Coq, December 2011.
http://hal.inria.fr/ensl-00653460/en

    	[53][bookmark: arenaire-2011-bid21]
	N. Brunie, S. Collange.
Assouplir les contraintes des architectures SIMT à faible coût, December 2011.
http://hal.inria.fr/ensl-00649186/en

    	[54][bookmark: arenaire-2011-bid22]
	N. Brunie, S. Collange, G. Diamos.
Simultaneous Branch and Warp Interweaving for Sustained GPU Performance, December 2011.
http://hal.inria.fr/ensl-00649650/en

    	[55][bookmark: arenaire-2011-bid16]
	N. Brunie, F. de Dinechin, B. de Dinechin.
Mixed-precision Fused Multiply and Add, November 2011.
http://hal.inria.fr/ensl-00642157/en

    	[56][bookmark: arenaire-2011-bid20]
	S. Collange.
Identifying scalar behavior in CUDA kernels, January 2011.
http://hal.inria.fr/hal-00555134/en

    	[57][bookmark: arenaire-2011-bid59]
	S. Collange.
Stack-less SIMT reconvergence at low cost, September 2011.
http://hal.inria.fr/hal-00622654/en

    	[58][bookmark: arenaire-2011-bid17]
	S. Collange, A. Kouyoumdjian.
Affine Vector Cache for memory bandwidth savings, December 2011.
http://hal.inria.fr/ensl-00649200/en

    	[59][bookmark: arenaire-2011-bid25]
	C.-P. Jeannerod, N. Louvet, J.-M. Muller.
Further analysis of Kahan's algorithm for the accurate computation of 2 x 2 determinants, December 2011.
http://hal.inria.fr/ensl-00649347/en

    	[60][bookmark: arenaire-2011-bid48]
	C.-P. Jeannerod, C. Pernet, A. Storjohann.
Rank-profile revealing Gaussian elimination and the CUP matrix decomposition, December 2011.
http://hal.inria.fr/hal-00655543/en

    	[61][bookmark: arenaire-2011-bid8]
	V. Lefèvre.
SIPE: Small Integer Plus Exponent, INRIA, December 2011, no RR-7832.
http://hal.inria.fr/hal-00650659/en

    	[62][bookmark: arenaire-2011-bid57]
	É. Martin-Dorel.
Univariate and bivariate integral roots certificates based on Hensel's lifting, March 2011, no RRLIP2011-1.
http://hal.inria.fr/ensl-00575673/en

    	[63][bookmark: arenaire-2011-bid58]
	É. Martin-Dorel, G. Melquiond, J.-M. Muller.
Some issues related to double roundings, November 2011.
http://hal.inria.fr/ensl-00644408/en

    	[64][bookmark: arenaire-2011-bid18]
	D. Sampaio, R. Martins, S. Collange, F. Magno Quintão Pereira.
Divergence Analysis with Affine Constraints, November 2011.
http://hal.inria.fr/hal-00650235/en

    	[65][bookmark: arenaire-2011-bid15]
	A. Vazquez, J. Bruguera.
Composite Iterative Algorithm and Architecture for q-th Root Calculation, INRIA, March 2011, no RR-7564.
http://hal.inria.fr/inria-00575573/en

    
[bookmark: References]References in notes
	[66][bookmark: arenaire-2011-bid6]
	E. Kaltofen, G. Villard.
On the complexity of computing determinants, in: Computational Complexity,  2004, vol. 13, p. 91–130.

    	[67][bookmark: arenaire-2011-bid1]
	J.-M. Muller.
Elementary Functions, Algorithms and Implementation, Birkhäuser Boston, 2nd Edition,  2006.

    	[68][bookmark: arenaire-2011-bid2]
	F. de Dinechin, A. Tisserand.
Multipartite table methods, in: IEEE Transactions on Computers,  2005, vol. 54, no 3, p. 319-330.

    


OEBPS/uid141.xhtml
[bookmark: uid141] Section: 
      Partnerships and Cooperations

International Initiatives


[bookmark: uid142] INRIA International Partners



		[bookmark: uid143] Nathalie Revol chairs the IEEE 1788 working group on the
standardization of interval arithmetic, cf. http://grouper.ieee.org/groups/1788/ .








[bookmark: uid144] Visits of International Scientists



		[bookmark: uid145] San Ling (Nanyang Technological University, Singapore) visited
for two months (March and April), for collaborating on lattice-based
cryptography. Visit partly funded by NTU and Inria Rhône-Alpes
(invited researcher).





		[bookmark: uid146] Xiao-Wen Chang (McGill University, Canada) visited for one month
(July), for collaborating on the numerical aspects of lattice
reduction algorithms. Visit funded by ENS de Lyon (invited
professor).





		[bookmark: uid147] Ron Steinfeld (Macquarie University, Australia) visited for one
month (August), for collaborating on lattice-based
cryptography. Visit funded by the French Embassy in Australia.








[bookmark: uid148] Participation In International Programs



		[bookmark: uid149] Guillaume Hanrot and Damien Stehlé participate in the LaBaCry
project (Lattice-Based Cryptography), with San Ling and Huaxiong
Wang (Cryptography and Coding group of Nanyang Technological
University, Singapore). Project jointly funded by NTU and the
MERLION program from the French Embassy in Singapore.





		[bookmark: uid150] Damien Stehlé is a Partner Investigator in the Australian
Research Council Discovery Grant Lattices as a Constructive and
Destructive Tool in Cryptography, with Christophe Doche, Igor
Shparlinski and Ron Steinfeld (Macquarie University).





		[bookmark: uid151] Florent de Dinechin was invited 4 months by Nizhniy Novgorod State University (Russia).










OEBPS/uid70.xhtml
[bookmark: uid70] Section: 
      Software

FLIP: Floating-point Library for Integer Processors

Participants :
      Claude-Pierre Jeannerod, Jingyan Jourdan-Lu.


FLIP is a C library for the efficient software support of binary32
IEEE 754-2008 floating-point
arithmetic on processors without floating-point hardware units, such as VLIW or DSP
processors for embedded applications. The current target architecture is the VLIW
ST200 family from STMicroelectronics (especially the ST231 cores).
This year, we have mostly worked on improving the design and implementation of the following operators
with correct rounding “to nearest even”:
DP2 (fused dot product in dimension two) and sum of two squares.
The impact of the DP2 operator has been evaluated on the UTDSP benchmark,
and on some kernels speed-ups of 1.46 have been observed.
On the other hand, specializing DP2 to a sum of squares brings a speed-up of 2.


URL:
http://flip.gforge.inria.fr/ 



		[bookmark: uid71] ACM: D.2.2 (Software libraries), G.4 (Mathematical software)





		[bookmark: uid72] AMS: 26-04 Real Numbers, Explicit machine computation and programs.





		[bookmark: uid73] APP: IDDN.FR.001.230018.S.A.2010.000.10000





		[bookmark: uid74] License: CeCILL v2





		[bookmark: uid75] Type of human computer interaction: C library callable, from any C program.





		[bookmark: uid76] OS/Middleware: any, as long as a C compiler is available.





		[bookmark: uid77] Required library or software: none.





		[bookmark: uid78] Programming language: C
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Application Domains


Our expertise covers application domains for which the quality, such
as the efficiency or safety, of the arithmetic operators is an issue.
On the one hand, it can be applied to hardware oriented developments,
for example to the design of arithmetic primitives which are
specifically optimized for the target application and support. On the
other hand, it can also be applied to software programs, when
numerical reliability issues arise: these issues can consist in
improving the numerical stability of an algorithm, computing
guaranteed results (either exact results or certified enclosures) or
certifying numerical programs.



		[bookmark: uid31] The application domains of hardware arithmetic operators are
digital signal processing, image processing,
embedded applications, reconfigurable computing,
and cryptography.





		[bookmark: uid32] The development of correctly rounded elementary functions
is critical to the reproducibility of floating-point
computations. Exponentials and logarithms, for instance, are
routinely used in accounting systems for interest calculation, where
roundoff errors have a financial meaning. Our current focus is on
bounding the worst-case time for such computations, which is
required to allow their use in safety critical
applications, and in proving the correct rounding property for a
complete implementation.





		[bookmark: uid33] Certifying a numerical application usually requires bounds on
rounding errors and ranges of variables. Some of the tools we
develop compute or verify such bounds. For increased confidence in
the numerical applications, they may also generate formal proofs of the
arithmetic properties. These proofs can then be
machine-checked by proof assistants like Coq.





		[bookmark: uid34] Arbitrary precision interval arithmetic can be used in two ways
to validate a numerical result.
To quickly check the accuracy of a result, one can replace
the floating-point arithmetic of the numerical software that
computed this result by high-precision interval arithmetic and
measure the width of the interval result: a tight result corresponds
to good accuracy. When getting a guaranteed enclosure of
the solution is an issue, then more sophisticated procedures, such
as those we develop, must be employed: this is the case of global
optimization problems.





		[bookmark: uid35] The design of faster algorithms for matrix polynomials provides
faster solutions to various problems in control theory,
especially those involving multivariable linear systems.





		[bookmark: uid36] Lattice reduction algorithms have direct applications in public-key
cryptography. They also naturally arise in computer algebra. A new
and promising field of applications is communications theory.
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SIPE: Small Integer Plus Exponent

Participant :
      Vincent Lefèvre.


SIPE (Small Integer Plus Exponent) is a C header file providing a fast
floating-point arithmetic with correct rounding to the nearest in very
small precision. Implemented operations are the addition, subtraction,
multiplication, FMA, and minimum/maximum/comparison functions (of the
signed numbers or in magnitude). SIPE has been written for exhaustive
tests of simple algorithms in small precision in order to prove results
or find conjectures (which could then be proved). In 2011, a research
report was written about SIPE [62] ,
including documentation and proof of the implementation; some bugs
were fixed at the same time.



		[bookmark: uid80] ACM: D.2.2 (Software libraries),
G.4 (Mathematical software).





		[bookmark: uid81] AMS: 26-04 Real Numbers, Explicit machine computation and programs.





		[bookmark: uid82] License: LGPL version 2.1 or later.





		[bookmark: uid83] Type of human computer interaction: C header file.





		[bookmark: uid84] OS/Middleware: any OS.





		[bookmark: uid85] Required library or software: GCC compiler.





		[bookmark: uid86] Programming language: C.





		[bookmark: uid87] Documentation: Research report RR-7832. [62] 





		[bookmark: uid88] URL: http://www.vinc17.net/software/sipe.h 
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Introduction


Arénaire proposes various software and hardware realizations that are
accessible from the web page
http://www.ens-lyon.fr/LIP/Arenaire/Ware/ .
We describe below only those which progressed in 2011.


[bookmark: uid39]Figure
	1. Relationships between some Arénaire developments.



		[image: IMG/softs.png]
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European Initiatives


[bookmark: uid139] Other European Initiatives



		[bookmark: uid140] Guillaume Hanrot and Damien Stehlé collaborate with Cong Ling (Imperial College London, UK)
on lattices and communication theory. The collaboration is jointly funded by the CNRS and the Royal Society, from January 2011 to December 2012.
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Animation of the scientific community



		[bookmark: uid154] Florent de Dinechin was in the program committee of HEART 2011
(Highly Efficient Accelerators for Reconfigurable Computing), FPL
2011 (Field-Programmable Logic), FPT 2011 (Field-Programmable
Technologies) and ARC 2011 (Applied Reconfigurable Computing). He
was a reviewer for the thesis of Pedro Echeverria (U. Madrid) and
the habilitation thesis of Steven Derrien (U. Rennes 1). He gave
talks in the Radiophysics department of Nizhniy Novgorod State
University and in the Intel Russian Summer School.





		[bookmark: uid155] Claude-Pierre Jeannerod was in the program committee of SNC
2011 (Fourth International Workshop on Symbolic-Numeric
Computation).





		[bookmark: uid156] Jean-Michel Muller was in the program committee of ARITH'20 (20th IEEE Symposium on Computer Arithmetic)
and ASAP'2011 (Application-Specific Systems, Architectures and Processors).
He was a reviewer of the Habilitation thesis of D. Ménard (U. Rennes 1) and chaired the board of examiners
for the PhD defense of M. Mezzarobba (École Polytechnique). He was a member (until December 2011)
of the Scientific Council of Grenoble INP, and is a member of the Scientific Councils of Ecole Normale Supérieure de Lyon and CERFACS.





		[bookmark: uid157] Nathalie Revol was in the program committee of NSV 11 (Fourth
International Workshop on Numerical Software Verification) and of MACIS
2011 (Fourth International Conference on Mathematical Aspects of
Computer and Information Sciences).





		[bookmark: uid158] Damien Stehlé was in the program committees of ACISP 2011
(16th Australasian Conference on Information Security and Privacy),
PQCRYPTO 2011 (4th International Conference on Post-Quantum
Cryptography), CANS 2011 (10th International Conference on
Cryptography and Network Security) and INDOCRYPT 2011 (12th
International Conference on Cryptology in India). He was in the program committee
of C2 (National Workshop on Coding and Cryptography, Oléron). He gave invited
talks at the RAIM workshop (Rencontres Arithmétiques de
l'Informatique Mathématique, Perpignan), at the NUS/NTU Workshop
on Coding, Cryptology and Combinatorial Design (Singapore), at the
International Workshop on Coding and Cryptology (IWCC 2011, Qingdao,
China) and at the Magic@LIX workshop (Palaiseau).





		[bookmark: uid159] Vincent Lefèvre gave a talk at the Dagstuhl Seminar 11371 on Uncertainty modeling and analysis with intervals: Foundations, tools, applications. [29] 





		[bookmark: uid160] Gilles Villard is chair of the LIP laboratory since January 2009.
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Arithmetics and Algorithms


 


When computing a solution to a numerical problem,
an obvious question is that of the quality
of the produced numbers. One may also require a
certain level of quality, such as: approximate
with a given error bound, correctly rounded, or
–if possible– exact. The question thus becomes
twofold: how to produce such a well-specified output
and at what cost? To answer it, we focus on
polynomial and integer matrix operations,
Euclidean lattices and global optimization,
and study the following directions:



		[bookmark: uid27] We investigate new ways of producing well-specified results by
resorting to various arithmetics (intervals, Taylor models,
multi-precision floating-point, exact). A first approach is to
combine some of them: for example, guaranteed enclosures can
be obtained by mixing Taylor model arithmetic with floating-point
arithmetic [9] . Another approach is to adapt the
precision or even change the arithmetic during the course of a
computation. Typical examples are iterative refinement techniques or
exact results obtained via floating-point basic operations. This
often requires arithmetics with very-well specified properties
(like the IEEE-754 standard for floating-point arithmetic).





		[bookmark: uid28] We also study the impact of certification on algorithmic
complexity. A first approach there is to augment existing algorithms
with validated error bounds (and not only error estimates). This
leads us to study the (im)possibility of computing such bounds
on the fly at a negligible cost. A second approach is to study the
algorithmic changes needed to achieve a higher level of
quality without, if possible, sacrificing for speed. In exact linear
algebra, for example, the fast algorithms recently obtained in the
bit complexity model are far from those obtained decades ago in the
algebraic complexity model.







 


Numerical Algorithms using Arbitrary Precision
Interval Arithmetic.
When validated results are needed, interval arithmetic can be used.
New problems can be solved with this arithmetic, which provides
sets instead of numbers. In particular, we target the global
optimization of continuous functions. A solution to obviate the
frequent overestimation of results is to increase the precision of
computations.


Our work is twofold. On the one hand, efficient software for arbitrary
precision interval arithmetic is developed, along with a library of
algorithms based on this arithmetic. On the other hand, new algorithms
that really benefit from this arithmetic are designed, tested, and
compared.


To reduce the overestimation of results, variants of interval
arithmetic have been developed, such as Taylor models arithmetic or
affine arithmetic. These arithmetics can also benefit from arbitrary
precision computations.


 


Algorithms for Exact Linear Algebra and Lattice Basis Reduction.
The techniques for exactly solving linear algebra problems have been
evolving rapidly in the last few years, substantially reducing the
complexity of several algorithms (see for instance [6] 
for an essentially optimal result, or  [67] ). Our main
focus is on matrices whose entries are integers or univariate
polynomials over a field. For such matrices, our main interest is how
to relate the size of the data (integer bit lengths or polynomial
degrees) to the cost of solving the problem exactly. A first goal is
to design asymptotically faster algorithms, to reduce problems to
matrix multiplication in a systematic way, and to relate bit
complexity to algebraic complexity. Another direction is to make these
algorithms fast in practice as well, especially since applications
yield very large matrices that are either sparse or structured. Within
the LinBox international project, we work on a software library that
corresponds to our algorithmic research on matrices. LinBox is a
generic library that allows to plug external components in a
plug-and-play fashion. The library is devoted to sparse or structured
exact linear algebra and its applications.


We recently started a direction around lattice basis reduction.
Euclidean lattices provide powerful tools in various algorithmic
domains. In particular, we investigate applications in computer
arithmetic, cryptology, algorithmic number theory and communications
theory. We work on improving the complexity estimates of lattice basis
reduction algorithms and providing better implementations of them, and
on obtaining more reduced bases. The above recent progress in linear
algebra may provide new insights.


 


Certified Computing.
Most of the algorithmic complexity questions that we investigate
concern algebraic or bit-complexity models for exact computations.
Much less seems to be known in approximate computing, especially for
the complexity of computing (certified) error bounds, and for
establishing bridges between exact, interval, and constant precision
complexity estimates. We are developing this direction both for a
theoretical impact, and for the design and implementation of algorithm
synthesis tools for arithmetic operators, and mathematical expression
evaluation.
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[bookmark: uid104] FPGA Acceleration of the Search For Hardest-to-Round Cases


The IEEE 754-2008 standard for floating-point arithmetic recommends (yet does not dictate) that some elementary functions should be correctly rounded. That is, given a rounding function [image: Im3 ${\#8728 {}}$], (e.g., round to nearest even, or round to ±∞), when evaluating function f at the floating-point number x, the system should always return [image: Im4 ${\#8728 (f(x))}$].


Building a fast correctly rounded library for some target floating-point (FP) format requires preliminarily solving a problem called the table maker's dilemma. This requires very large computations which may use environments and formats totally different from the target environment and format. F. de Dinechin, V. Lefèvre, J.-M. Muller, B. Pasca and A. Plesco suggest performing these computations on an FPGA. Their paper [45]  won the best paper award at the ASAP2011 conference.



[bookmark: uid105] Hierarchical Polynomial Approximation of a Function by Polynomials


Algorithms used to search for the hardest-to-round cases of a function
requires the approximation of the function by small-degree polynomials
on small intervals. This can be done efficiently by a hierarchical
polynomial approximation. Work is being done to improve this method
by replacing interval arithmetic (as partly used in the current tools) by
static error bounds. This will allow us to better control the precision
needed to compute the coefficient of the polynomials. The implementation
will also be simpler.
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[bookmark: uid107] Efficient Implementation of Algorithms for Interval Linear Algebra


H.-D. Nguyen and N. Revol proposed an algorithm to solve linear systems with interval coefficients.
The same approach can be used to verify the solution of a linear system with
floating-point coefficients, i.e. to compute an interval enclosing the error between
the exact solution and an approximate solution. The goal is twofold: on the one hand
the accuracy of the solution is desired up to the last bit of the floating-point solution,
on the other hand the efficiency of the implementation is obtained through the use of
optimized BLAS3 routines [48] .
The PhD thesis of H.-D. Nguyen [13] 
contains in particular the algorithm [24] 
and its properties. Its complexity has been established [47] 
and its potential use for symbolic-numeric computations has been discussed [50] .



[bookmark: uid108] Standardization of Interval Arithmetic


We contributed to the creation, and now chair, the IEEE 1788 working group on the
standardization of interval arithmetic http://grouper.ieee.org/groups/1788/ .
The main discussion topics of this working group [49] , for the year 2011, were
exception handling (via decorations). An emerging topic is the repeatibility and reproducibility of interval computations. on the same platform or across different platforms.



[bookmark: uid109] Formal Proofs of the Arithmetic on Polynomial Models


Using as starting point [9] ,
the calculus with polynomial models, such as Taylor models,
based on floating-point coefficients and floating-point operations,
has been formalized and checked in Coq [18] .
This calculus is at the core of Ariadne, an environment
for the study of hybrid systems: the idea is to prove the
environment itself, instead of using model-checking on the
systems.



[bookmark: uid110] Formal Proof Generation for Elementary functions


The proof of the correct rounding property for an elementary function
requires tight bounds on the error involved in the function code.
F. de Dinechin, with Ch. Lauter (LIP6) and G. Melquiond (INRIA Proval)
have described the use of the Gappa proof assistant to compute
such tight bounds rigorously [27] .



[bookmark: uid111] Code Generation for Polynomial Evaluation


A given arithmetic expression may be evaluated on a computer in several
ways, depending on the parenthesization and the ordering of terms in use.
Among all the possible evaluations, one may want to choose one that is
as fast and accurate as possible. In [12] 
Ch. Mouilleron introduced a set of algorithms in order to generate all
these possible evaluations, to count them, and to find an optimal or nearly
optimal one according to a given criteria.
Thanks to this work, several sequences related to numbers of evaluations have
been discovered and added to Sloane's on-line encyclopedia of integer sequences (OEIS).
Moreover, this allowed to show experimentally that an algorithm by Paterson and
Stockmeyer for the evaluation of a polynomial p at a matrix point is
optimal for small degrees of p. Finally, this work has led to the
revamping of the software tool CGPE presented in [38] 
(see also §
	5.5 ).
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[bookmark: uid91] FPGA-specific arithmetic


Reconfigurable computing has the opportunity of using exotic operators that would not make sense in a general-purpose microprocessor [43] , for instance the constant dividers studied in 
	6.1.2 . Such operators must be also be matched to the precision and performance needed by applications. F. de Dinechin and B. Pasca described the FloPoCo framework that assists the construction of correct pipelines and the automatic testing of such operators [28] . For this context, B. Pasca, with H. D. Nguyen, now at U.C. Berkeley, and T. Preusser, from T. U. Darmstadt, described improved architectures for short-latency adders on modern FPGAs [39] . With Ch. Alias and A. Plesco (Compsys project-team), he studied the integration in of deeply pipelined arithmetic datapath in high-level synthesis tools [51] .



[bookmark: uid92] Multiplication by Rational Constants versus Division by a Constant


Motivated by the division by 3 or by 9 appearing in some stencil
kernels, F. de Dinechin investigated how the periodicity of the binary
representation of a rational constant could be exploited to design an
architecture multiplying by this constant [26] . With L. S. Didier, this approach was then
compared to a specialisation of divider architectures to the division
by small integer constants, which is shown to match well the fine
structure of FPGAs [44] .



[bookmark: uid93] Elementary Functions


A. Vázquez worked with J. Bruguera, from U. Santiago de Compostella,
on hardware architectures for evaluating q-th roots [66] .
Their solution composes digit-recurrence operators for reciprocal, logarithm, multiplication and exponential.



[bookmark: uid94] Extensions of the fused-multiply-and-add operator


With B. de Dinechin, from Kalray, N. Brunie and F. de Dinechin proposed to extend the classical fused-multiply-and-add operator with a larger addend and result.
This enables higher-precision computation of sums of products at a cost that remains close to that of the classical FMA [56] .



[bookmark: uid95] Emerging throughput-oriented architecture


On massively multi-threaded processors like GPUs, neighbor threads are
likely to operate on similar data. S. Collange showed with
A. Kouyoumdjian how it is possible to take advantage of this
inter-thread value correlation at the hardware level with a hardware
cache-compression technique on GPUs
[59] . With D. Sampaio, R. Martins, and
F. Magno Quintão Pereira (U. Minas Gerais), he then addressed this question also at
the compiler level using a compiler stage to identify statically data
patterns in GPGPU programs [65] .


Current GPU architectures require specific instruction sets with control-flow
reconvergence annotations, and only support a limited number of control-flow
constructs. S. Collange and N. Brunie, with G. Diamos (NVIDIA) generalized dynamic vectorization to arbitrary control flow on
standard instruction sets with no compiler involvment [46] , [57] , [54] .
In addition, this technique allows divergent branches to be executed in parallel,
as a way to increase the throughput of parallel architectures [55] .
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[bookmark: uid97] Correctly Rounded Sums


P. Kornerup (Odense Univ., Denmark), V. Lefèvre, N. Louvet and J.-M. Muller have given a study of some basic blocks needed in the design
of floating-point summation algorithms. In particular, in radix-2
floating-point arithmetic, they have shown that
among the set of the algorithms with no comparisons performing only
floating-point additions/subtractions, the 2Sum algorithm introduced
by Knuth is minimal, both in terms of number of operations and depth
of the dependency graph. They have investigated the possible use of another
algorithm, Dekker's Fast2Sum algorithm, in radix-10 arithmetic. Under reasonable conditions, they have also proven
that no algorithms performing only round-to-nearest
additions/subtractions exist to compute the round-to-nearest sum of at
least three floating-point numbers. Starting from an algorithm due to
Boldo and Melquiond, they have also presented new results about the computation
of the correctly-rounded sum of three floating-point numbers [21] .



[bookmark: uid98] Error of an FMA


The fused multiply-add (FMA) instruction, specified by the IEEE 754-2008 Standard for Floating-Point Arithmetic,
eases some calculations, and is already available on some current processors such as the Power PC or the Itanium.
S. Boldo (EPI Proval) and J.-M. Muller first extended an earlier work on the computation of the exact error of an FMA
(by giving more general conditions and providing a formal proof). Then, they presented a new algorithm that computes
an approximation to the error of an FMA, and provide error bounds and a formal proof for that algorithm [16] .



[bookmark: uid99] Accurate computation of ad-bc with an FMA


C.-P. Jeannerod, N. Louvet, and J.-M. Muller have provided in [60] 
a detailed rounding error analysis of Kahan's FMA-based algorithm for the computation of expressions of the form ad-bc.
They showed that Kahan's algorithm is always highly accurate, and under mild assumptions on the radix and the precision
gave an optimal bound on the absolute error and an asymptotically optimal bound on the relative error.
They also studied how the relative error varies as a function of the relative order of magnitude of the two products ad and bc.
Finally, they investigated whether the error bounds can be improved in special cases like sums of squares and discriminants.



[bookmark: uid100] Performing Arithmetic Operations on Round-to-Nearest Operations


During any composite computation, there is a constant need for rounding intermediate results before they can participate in further processing. Recently, a class of number representations denoted RN-Codings were introduced, allowing an unbiased rounding-to-nearest to take place by a simple truncation, with the property that problems with double-roundings are avoided. P. Kornerup (Odense Univ., Denmark), J.-M. Muller and A. Panhaleux first investigate a particular encoding of the binary representation. This encoding is generalized to any radix and digit set; however, radix complement representations for even values of the radix turn out to be particularly feasible. The encoding is essentially an ordinary radix complement representation with an appended round-bit, but still allowing rounding-to-nearest by truncation, and thus avoiding problems with double-roundings. Conversions from radix complement to these round-to-nearest representations can be performed in constant time, whereas conversion the other way, in general, takes at least logarithmic time. Not only is rounding-to-nearest a constant time operation, but so is also sign inversion, both of which are at best log-time operations on ordinary two's complement representations. Addition and multiplication on such fixed-point representations are first analyzed and defined in such a way that rounding information can be carried along in a meaningful way, at minimal cost. The analysis is carried through for a compact (canonical) encoding using two's complement representation, supplied with a round-bit. Based on the fixed-point encoding, it is shown possible to define floating-point representations, and a sketch of the implementation of an FPU is presented [22] .



[bookmark: uid101] Augmented Precision Square Roots, 2-D Norms, and Discussion on Correctly Rounding [image: Im2 $\sqrt {x^2+y^2}$]


Define an “augmented precision” algorithm as an algorithm that returns, in precision-p floating-point arithmetic, its result as the unevaluated sum of two floating-point numbers, with a relative error of the order of 2-2p. Assuming an FMA instruction is available, N. Brisebarre, M. Joldeş, P. Kornerup (Odense University, Denmark), E. Martin-Dorel and J.-M. Muller perform a tight error analysis of an augmented precision algorithm for the square root, and introduce two slightly different augmented precision algorithms for the 2D-norm [image: Im2 $\sqrt {x^2+y^2}$]. Then they give tight lower bounds on the minimum distance (in ulps) between [image: Im2 $\sqrt {x^2+y^2}$] and a midpoint when [image: Im2 $\sqrt {x^2+y^2}$] is not itself a midpoint. This allows them to determine cases when their algorithms make it possible to return correctly-rounded 2D-norms [30] .



[bookmark: uid102] Midpoints and exact points of some algebraic functions in floating-point arithmetic


When implementing a function f in floating-point arithmetic, if we wish correct rounding and good performance,
it is important to know if there are input floating-point values x such that f(x) is either the middle of two consecutive
floating-point numbers (assuming rounded-to-nearest arithmetic), or a floating-point number
(assuming rounded toward ±∞ or toward 0 arithmetic). In the first case f(x) is a midpoint,
and in the second case it is an exact point.
In [20] 
C.-P. Jeannerod, N. Louvet, J.-M. Muller, and A. Panhaleux have studied
whether such midpoints and exact points exist for some usual algebraic functions and various floating-point formats.
When midpoints or exact points exist,
they have been characterized or, when possible, listed exhaustively.
The results and the techniques presented in this paper can be used in particular to deal with both the binary
and the decimal formats defined in the IEEE 754-2008 standard for floating-point arithmetic.
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The search for the worst cases for the correct rounding
(hardest-to-round cases) of mathematical functions (exp, log,
sin, cos, etc.) in a fixed precision (mainly double precision)
using Lefèvre's algorithm is implemented by a set of utilities written
in Perl, with calls to Maple/intpakX for computations on intervals
and with C code generation for fast computations. It also includes a
client-server system for the distribution of intervals to be tested
and for tracking the status of intervals (fully tested, being tested,
aborted).


These programs are run on the LIP network via Grid Engine (SGE).
In June 2011, the SGE configuration was changed by the system
administrator so that SIGSTOP/SIGCONT signals are sent to the jobs,
allowing several users to use SGE at the same time. These signals
make Maple crash (segmentation fault), and the Perl scripts needed
to be improved to handle these crashes gracefully (by restarting the
computations when need be, etc.). This SGE change made other problems
appear, such as when the client is first stopped by SGE and is then
killed by SGE (without being woke up by SGE), it cannot do its usual
clean-up; workarounds were tried, but without success.


The above problems also made an inconsistency in the client-server
protocol appear. The validity of the results was not affected, but
the protocol had to be redesigned.
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Elementary Functions and Correct Rounding.
Many libraries for elementary functions are currently available. We
refer to  [68]  for a general insight into the domain.
The functions in question are typically those defined by the C99 and
LIA-2 standards, and are offered by vendors of processors, compilers
or operating systems.


Though the 1985 version of the IEEE-754 standard does not deal with these functions, there
is some attempt to reproduce some of their mathematical properties, in
particular symmetries. For instance, monotonicity can be obtained for
some functions in some intervals as a direct consequence of accurate
internal computations or numerical properties of the chosen algorithm
to evaluate the function; otherwise it may be very difficult to
guarantee, and the general solution is to provide it through correct
rounding. Preserving the range (e.g., [image: Im1 ${atan(x)\#8712 [-\#960 /2,\#960 /2]}$])
may also be a goal though it may conflict with correct rounding (when
supported).


Concerning the correct rounding of the result, it was not required by
the IEEE-754-1985 standard: during the elaboration of this standard, it
was considered that correctly rounded elementary functions were
impossible to obtain at a reasonable cost, because of the so-called
Table Maker's Dilemma: an elementary function is evaluated to
some internal accuracy (usually higher than the target precision), and
then rounded to the target precision. What is the minimum accuracy necessary
to ensure that rounding this evaluation is equivalent to rounding the
exact result, for all possible inputs? This question could not be answered
in a simple manner, meaning that correctly rounding elementary functions
may require arbitrary precision, which is very slow and resource-consuming.


Indeed, correctly rounded libraries already exist, such as GNU MPFR
(http://www.mpfr.org/ ),
the Accurate Portable Library released by
IBM in 2002, or the libmcr  library, released by Sun Microsystems
in late 2004. However they have worst-case execution time and memory
consumption up to 10,000 worse than usual libraries, which is the main
obstacle to their generalized use.


We have focused in the previous years on computing bounds on the
intermediate precision required for correctly rounding some elementary
functions in IEEE-754 double precision. This allows us to design
algorithms using a tight precision. That makes it possible to offer
the correct rounding with an acceptable overhead: we have experimental
code where the cost of correct rounding is negligible in average, and
less than a factor 10 in the worst case. These performances led the IEEE-754 revision committee
to recommend (yet not request) correct rounding for some mathematical functions.
It also enables to prove the correct-rounding property, and to show
bounds on the worst-case performance of our functions. Such worst-case
bounds may be needed in safety critical applications as well as a
strict proof of the correct rounding property. Concurrent libraries by
IBM and Sun can neither offer a complete proof for correct rounding
nor bound the timing because of the lack of worst-case accuracy
information. Our work actually shows a posteriori that their
overestimates for the needed accuracy before rounding are however
sufficient. IBM and Sun for themselves could not provide this
information. See also §
	3.4 
concerning the proofs for our library.


 


Approximation and Evaluation.
The design of a library with correct rounding also requires the study
of algorithms in large (but not arbitrary) precision, as well as the
study of more general methods for the three stages of the evaluation
of elementary functions: argument reduction, approximation, and
reconstruction of the result.


When evaluating an elementary function for instance, the first step
consists in reducing this evaluation to the one of a possibly
different function on a small real interval. Then, this last function
is replaced by an approximant, which can be a polynomial or a rational
fraction. Being able to perform those processes in a very cheap way
while keeping the best possible accuracy is a key
issue [2] . The kind of
approximants we can work with is very specific: the coefficients must
fulfill some constraints imposed by the targeted application, such as
some limits on their size in bits. The usual methods (such as Remez
algorithm) do not apply in that situation and we have to design new
processes to obtain good approximants with the required form.
Regarding the approximation step, there are currently two main
challenges for us. The first one is the computation of excellent
approximations that will be stored in hardware or in software and that
should be called thousands or millions of times. The second one is the
target of automation of computation of good approximants when the
function is only known at compile time. A third question concerns the
evaluation of such good approximants. To find a best compromise
between speed and accuracy, we combine various approaches ranging from
numerical analysis (tools like backward and forward error analysis,
conditioning, stabilization of algorithms) to computer arithmetic
(properties like error-free subtraction, exactly-computable error
bounds, etc.). The structure of the approximants must further be taken
into account, as well as the degree of parallelism offered by the
processor targeted for the implementation.


 


Adequacy Algorithm/Architecture.
Some special-purpose processors, like DSP cores, may not
have floating-point units, mainly for cost reasons. For such integer or
fixed-point processors, it is thus desirable to have software support
for floating-point functions, starting with the basic operations.
To facilitate the development or porting of numerical applications on
such processors, the emulation in software of floating-point arithmetic
should be compliant with the IEEE-754 standard; it
should also be very fast. To achieve this twofold goal, a solution is
to exploit as much as possible the characteristics of the target
processor (instruction set, parallelism, etc.) when designing
algorithms for floating-point operations.


So far, we have successfully applied this “algorithm/architecture adequacy”
approach to some VLIW processor cores from STMicroelectronics,
in particular the ST231;
the ST231 cores have integer units only, but for their
applications (namely, multimedia applications), being able to perform
basic floating-point arithmetic very efficiently was necessary. When
various architectures are targeted, this approach should further be
(at least partly) automated. The problem now is not only to write some
fast and accurate code for one given architecture, but to have this
optimized code generated automatically according to various
constraints (hardware resources, speed and accuracy requirements).
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[bookmark: uid113] Faster Lattice Reduction


Andrew Novocin, Damien Stehlé and Gilles
Villard [40]  designed an algorithm,
[image: Im5 $\mover L\#732 ^1$], with the following specifications: It takes as
input an arbitrary basis B in Zd×d of a lattice L; It
computes a basis of L which is reduced for a mild modification of
the Lenstra-Lenstra-Lovász reduction; It terminates in time
[image: Im6 ${\mover O\#732 {(d^5\#946 +d^{\#969 +1}\#946 )}}$] where [image: Im7 ${\#946 =log\#8741 B\#8741 }$] (and ω is a valid exponent for matrix
multiplication). This is the first LLL-reducing algorithm with a time
complexity that is quasi-linear in the bit-length beta of the entries
and polynomial in the dimension d. A critical ingredient for
achieving this result was the study of the effect of small
perturbations on the LLL-reducedness of a lattice
basis [17] .



[bookmark: uid114] Computing Short Lattice Vectors


Among all known lattice reduction algorithms, BKZ provides the best
trade-off between run-time and smallness of the computed lattice
basis. Guillaume Hanrot, Xavier Pujol and Damien
Stehlé [32]  showed that BKZ can be
terminated long before its completion, while still providing bases of
excellent quality. More precisely, if it is terminated within a
polynomial number of calls to a lower-dimensial Shortest Vector
Problem solver, then the bounds on the output quality are as close as
desired to the bounds that can be obtained by letting BKZ run until
completion.


Guillaume Hanrot, Xavier Pujol and Damien Stehlé also surveyed the
known algorithms for solving the Shortest Vector
Problem [31] .



[bookmark: uid115] Lattice-Based Cryptography


NTRUEncrypt is the fastest known lattice-based encryption scheme. Its
moderate key-sizes, excellent asymptotic performance and conjectured
resistance to quantum computers could make it a desirable alternative
to factorisation and discrete-log based encryption schemes.
Damien Stehlé and Ron Steinfeld [41]  showed how to modify NTRUEncrypt to
make it provably resistance to Chosen Plaintext Attacks, under the assumed
quantum hardness of standard worst-case lattice problems restricted
to a family of lattices related to some cyclotomic fields.



[bookmark: uid116] Lattices and Communication Theory


Cong Ling, Shuiyin Liu, Laura Luzzi and Damien Stehlé studied and
optimized lattice algorithms that are relevant for MIMO
communications [23] , [37] .
These algorithms tackle the Bounded Distance Decoding Problem: Given a
point within a small prescribed distance to a given lattice, find the
lattice vector closest to it.



[bookmark: uid117] Other Applications of Lattice Reduction Algorithms


In [35] 
Jürgen Klüners, Mark van Hoeij, and Andrew Novocin showed how to
use the LLL lattice reduction algorithm for computing a compact
representation of the set of all subfields of any given number field.
William Hart (Warwick Mathematics Institute, UK), Mark van Hoeij (Florida State University, USA) and Andrew Novocin exploited the very
latest progress in lattice reduction to propose a fine-tuned
cutting-edge implementation of a polynomial factorization algorithm.



[bookmark: uid118] Polynomial Arithmetic


With William Hart and Mark van Hoeij,
A. Novocin proposed in [33]  a state of the art algorithm for factoring polynomials in Z[x] .
The algorithm is fast in practice, saving in a large class of common examples,
without sacrificing performance on worst-case polynomials.
The presented algorithm is structured along the lines of algorithms with the best theoretical complexity.
In [34]  William Hart and A. Novocin proposed an efficient algorithm for
computing the composition of two univariate polynomials. Their work
builds upon the Brent-Kung algorithm.



[bookmark: uid119] Exact Linear Algebra


Transforming a matrix over a field to echelon form, or decomposing the matrix as a product of structured matrices
that reveal the rank profile, is a fundamental building block of computational exact linear algebra.
For such tasks the best algorithms available so far were either rank sensitive (i.e., of complexity expressed in
terms of the exponent of matrix multiplication and the rank of the input matrix) or in place
(i.e., using essentially no more memory that what is needed for matrix multiplication).
In [61] 
C.-P. Jeannerod, Clément Pernet (U. Joseph Fourier, Grenoble), and Arne Storjohann (U. Waterloo, Canada)
have proposed algorithms that are both rank sensitive and in place.
These algorithms are based on a new matrix factorization,
namely A = CU P with C a column echelon form revealing the row rank profile of A,
U a unit upper triangular matrix, and P a permutation matrix.
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As stated above, four major directions in Arénaire are
hardware arithmetic, algebraic and elementary functions,
validation and automation, and arithmetics and algorithms.
For each of those interrelated topics, we describe below the tools and
methodologies on which it relies.
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[bookmark: uid131] ANR HPAC Project

Participants :
      Claude-Pierre Jeannerod, Nicolas Louvet, Nathalie Revol, Damien Stehlé, Philippe Théveny, Gilles Villard.


“High-performance Algebraic Computing” (HPAC) is a four year ANR
project that will start in January 2012.
HPAC is headed by Jean-Guillaume Dumas (CASYS team, LJK laboratory, Grenoble);
it involves Arénaire as well as
the INRIA project-team MOAIS (LIG, Grenoble), the INRIA project-team SALSA (LIP6 lab., Paris),
the ARITH group (LIRMM laboratory, Montpellier), and the HPC Project company.


The overall ambition of HPAC is to provide international
reference high-performance libraries for exact linear algebra and
algebraic systems on multi-processor architecture and to influence
parallel programming approaches for algebraic computing.
The central goal is to extend the efficiency of the LinBox and FGb
libraries to new trend parallel architectures such as clusters of
multi-processor systems and
graphics processing units in order to tackle a broader
class of problems in lattice cryptography and algebraic cryptanalysis.
HPAC will conduct researches along three axes:


- A domain specific parallel language (DSL) adapted to high-performance algebraic computations;


- Parallel linear algebra kernels and higher-level mathematical
algorithms and library modules;


- Library composition and innovative high performance solutions for cryptology challenges.



[bookmark: uid132] ANR TaMaDi Project

Participants :
      Nicolas Brisebarre, Florent de Dinechin, Guillaume Hanrot, Vincent Lefèvre, Érik Martin-Dorel, Micaela Mayero, Jean-Michel Muller, Andrew Novocin, Ioana Pasca, Damien Stehlé, Serge Torres.


The TaMaDi project (Table Maker's Dilemma, 2010-2013) is funded by
the ANR and headed by Jean-Michel Muller. It was submitted in January
2010, accepted in June, and started in October 2010. The other French
teams involved in the project are the MARELLE team-project of INRIA
Sophia Antipolis-Méditerranée, and the PEQUAN team of LIP6 lab.,
Paris.


The aim of the project is to find “hardest to round” (HR) cases for
the most common functions and floating-point formats. In
floating-point (FP) arithmetic having fully-specified “atomic”
operations is a key-requirement for portable, predictable and
provable numerical software. Since 1985, the four arithmetic
operations and the square root are IEEE specified (it is required
that they should be correctly rounded: the system must always return
the floating-point number nearest the exact result of the operation).
This is not fully the case for the basic mathematical functions
(sine, cosine, exponential, etc.). Indeed, the same function, on the
same argument value, with the same format, may return significantly
different results depending on the environment. As a consequence,
numerical programs using these functions suffer from various
problems. The lack of specification is due to a problem called the
Table Maker's Dilemma (TMD). To compute f(x) in a given format,
where x is a FP number, we must first compute an approximation to
f(x) with a given precision, which we round to the nearest FP
number in the considered format. The problem is the following:
finding what the accuracy of the approximation must be to ensure that
the obtained result is always equal to the “exact” f(x) rounded
to the nearest FP number. In the last years, our team-project and the
CACAO team-project of INRIA Nancy-Grand Est designed algorithms for
finding hardest-to-round cases. These algorithms do not allow to
tackle with large formats. The TaMaDi project mainly focuses on three
aspects:



		[bookmark: uid133] big precisions: we must get new algorithms for dealing with precisions larger than double precision. Such precisions will become more and more important (even if double precision may be thought as more than enough for a final result, it may not be sufficient for the intermediate results of long or critical calculations);





		[bookmark: uid134] formal proof: we must provide formal proofs of the critical parts of our methods. Another possibility is to have our programs generating certificates that show the validity of their results. We should then focus on proving the certificates;





		[bookmark: uid135] aggressive computing: the methods we have designed for generating HR points in double precision require weeks of computation on hundreds of PCs. Even if we design faster algorithms, we must massively parallelize our methods, and study various ways of doing that.







There was a meeting in Sophia-Antipolis in February 2011,
and two other ones in Lyon in June and December 2011.
The various documents can be found at http://tamadiwiki.ens-lyon.fr/tamadiwiki/index.php/Main_Page .



[bookmark: uid136] ANR TCHATER Project

Participants :
      Florent de Dinechin, Honoré Takeugming, Gilles Villard.


The TCHATER project (Terminal Cohérent Hétérodyne Adaptatif TEmps
Réel, 2008-2010) is a collaboration between Alcatel-Lucent France, E2V
Semiconductors, GET-ENST and the INRIA Arénaire and ASPI
project/teams. Its purpose is to demonstrate a coherent terminal
operating at 40Gb/s using real-time digital signal processing and
efficient polarization division multiplexing. In Lyon, we studied
the FPGA implementation of specific algorithms for polarization
demultiplexing and forward error correction with soft decoding.


TCHATER was extended by the ANR until 9/06/2011, which allowed us to finalize the demonstrator.



[bookmark: uid137] ANR LaRedA Project

Participants :
      Fabien Laguillaumie, Adeline Langlois, Ivan Morel, Xavier Pujol, Damien Stehlé.


The LaRedA project (Lattice Reduction Algorithms, 2008-2011) is funded
by the ANR and headed by Brigitte Vallée (CNRS/GREYC) and Valérie
Berthé (CNRS/LIRMM). The aim of the project is to finely analyze
lattice reduction algorithms such as LLL, by using experiments,
probabilistic tools and dynamic analysis. Among the major goals are
the average-case analysis of LLL and its output distribution. In Lyon,
we concentrate on the experimental side of the project (by using fpLLL
and MAGMA) and the applications of lattice reduction algorithms to
cryptography.
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FloPoCo 

Participants :
      Florent Dinechin [correspondant] , Bogdan Pasca, Laurent-Stéphane Didier.

The purpose of the FloPoCo project is to explore the many ways in
which the flexibility of the FPGA target can be exploited in the
arithmetic realm. FloPoCo is a generator of operators written in C++
and outputting synthesizable VHDL automatically pipelined to an arbitrary frequency.


In 2011, FloPoCo was turned into a library which can be used as a
back-end to high-level synthesis tools. An expression parser that generates a complete pipeline was also added for this context. The integer multiplier and floating-point adder were
rewritten, and several new operators were added, including a floating-point power operator, and novel
operators for integer and floating-point division by a constant.



Versions 2.2.0, 2.2.1, and 2.3.0 were released in 2011.


Among the known users of FloPoCo are
U. Cape Town, U.T. Cluj-Napoca,
Imperial College, U. Essex, U. Madrid, U. P. Milano, T.U. Muenchen, T. U. Kaiserslautern, U. Paderborn, CalTech, U. Pernambuco, U. Perpignan,
U. Tokyo, Virginia Tech U. and several companies.


URL:
http://flopoco.gforge.inria.fr/ 



		[bookmark: uid41] Version: 2.3.0 (december 2011)





		[bookmark: uid42] APP: IDDN.FR.001.400014.000.S.C.2010.000.20600 (version 2.0.0)





		[bookmark: uid43] License: specific, GPL-like.





		[bookmark: uid44] Type of human computer interaction: command-line interface, synthesisable VHDL output.





		[bookmark: uid45] OS/Middelware: Linux, Windows/Cygwin.





		[bookmark: uid46] Required library or software: MPFR, flex, Sollya.





		[bookmark: uid47] Programming language: C++.





		[bookmark: uid48] Documentation: online and command-line help, API in doxygen format, articles.
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GNU MPFR

Participants :
      Vincent Lefèvre [correspondant] , Paul Zimmermann.


GNU MPFR is an efficient multiple-precision floating-point library with
well-defined semantics (copying the good ideas from the IEEE-754 standard),
in particular correct rounding in 5 rounding modes. GNU MPFR provides about
80 mathematical functions, in addition to utility functions (assignments,
conversions...). Special data (Not a Number, infinities, signed
zeros) are handled like in the IEEE-754 standard.


MPFR was one of the main pieces of software developed by the old SPACES
team at Loria. Since late 2006, with the departure of Vincent Lefèvre
to Lyon, it has become a joint project between the Caramel (formerly
SPACES then CACAO) and the Arénaire project-teams. MPFR has been a GNU
package since 26 January 2009.
GNU MPFR 3.0.1 was released on 4 April 2011 and
GNU MPFR 3.1.0 was released on 3 October 2011.


The main improvements are the generic tests in a reduced exponent range,
the possibility to include the mpfr.h  header file several times
while still supporting optional functions,
and, for the developers, the choice of the native type for the exponent
(and various corrections related to these features).


URL:
http://www.mpfr.org/ 



		[bookmark: uid50] ACM: D.2.2 (Software libraries),
G.1.0 (Multiple precision arithmetic),
G.4 (Mathematical software).





		[bookmark: uid51] AMS: 26-04 Real Numbers, Explicit machine computation and programs.





		[bookmark: uid52] APP: no longer applicable (copyright transferred to the
Free Software Foundation).





		[bookmark: uid53] License: LGPL version 3 or later.





		[bookmark: uid54] Type of human computer interaction: C library, callable from C or
other languages via third-party interfaces.





		[bookmark: uid55] OS/Middleware: any OS, as long as a C compiler is available.





		[bookmark: uid56] Required library or software:
GMP .





		[bookmark: uid57] Programming language: C.





		[bookmark: uid58] Documentation: API in texinfo format (and other formats via
conversion); algorithms are also described in a separate document.
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[bookmark: uid129] Cible Grant from Région Rhône-Alpes

Participants :
      Nicolas Brisebarre, Claude-Pierre Jeannerod, Mioara Joldeş, Jingyan Jourdan-Lu, Jean-Michel Muller, Nathalie Revol, Gilles Villard.


Since October 2008, we have obtained a 3-year grant from Région
Rhône-Alpes. That grant has funded a PhD student, Mioara Joldeş,
who defended her PhD thesis on September 26, 2011.
The project consists in automating as much as possible the generation of
code for approximating functions. Instead of calling functions from
libraries, we wish to elaborate approximations at compile-time, in
order to be able to directly approximate compound functions, or to
take into account some information (typically, input range
information) that might be available at that time. In this project, we
collaborate with the STMicroelectronics' Compilation Expertise Center
in Grenoble (C. Bertin, H. Knochel, and C. Monat).
STMicroelectronics is funding another PhD grant on these themes.
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Contracts with Industry


One contract with STMicroelectronics and one contract with Kalray,
in the context of two PhD CIFRE grants; see §
	7.2 .





