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  [bookmark: uid3] Section: 
      Overall Objectives
An overview of geometric numerical integration

A fundamental and enduring challenge in science and technology is the quantitative prediction of time-dependent nonlinear phenomena. While dynamical simulation (for ballistic trajectories) was one of the first applications of the digital computer, the problems treated, the methods used, and their implementation have all changed a great deal over the years. Astronomers use simulation to study long term evolution of the solar system. Molecular simulations are essential for the design of new materials and for drug discovery. Simulation can replace or guide experiment, which often is difficult or even impossible to carry out as our ability to fabricate the necessary devices is limited.

During the last decades, we have seen dramatic increases in computing power, bringing to the fore an ever widening spectrum of applications for dynamical simulation. At the boundaries of different modeling regimes, it is found that computations based on the fundamental laws of physics are under-resolved in the textbook sense of numerical methods. Because of the vast range of scales involved in modeling even relatively simple biological or material functions, this limitation will not be overcome by simply requiring more computing power within any realistic time. One therefore has to develop numerical methods which capture crucial structures even if the method is far from “converging" in the mathematical sense. In this context, we are forced increasingly to think of the numerical algorithm as a part of the modeling process itself. A major step forward in this area has been the development of structure-preserving or “geometric" integrators which maintain conservation laws, dissipation rates, or other key features of the continuous dynamical model. Conservation of energy and momentum are fundamental for many physical models; more complicated invariants are maintained in applications such as molecular dynamics and play a key role in determining the long term stability of methods. In mechanical models (biodynamics, vehicle simulation, astrodynamics) the available structure may include constraint dynamics, actuator or thruster geometry, dissipation rates and properties determined by nonlinear forms of damping.

In recent years the growth of geometric integration has been very
noticeable. Features such as symplecticity
or time-reversibility are now widely recognized as essential properties to preserve,
owing to their physical significance. This has motivated a lot
of research [57] , [52] , [51]  and led to many
significant theoretical achievements (symplectic and symmetric methods,
volume-preserving integrators, Lie-group methods, ...).
In practice, a few simple schemes such as the Verlet method or the Störmer method
have been used for years with great success in molecular dynamics or astronomy. However, they now need to be further improved in order to fit the tremendous increase of complexity and size of the models.


[bookmark: uid4] Section: 
      Overall Objectives
Overall objectives

To become more specific, the project IPSO aims at finding and implementing new
structure-preserving schemes and at understanding the behavior of existing ones for the following type of problems:


	[bookmark: uid5] systems of differential equations posed on a manifold.



	[bookmark: uid6] systems of differential-algebraic equations of index 2 or 3,
where the constraints are part of the equations.



	[bookmark: uid7] Hamiltonian systems and constrained Hamiltonian systems (which are special cases of the first two items though with some additional structure).



	[bookmark: uid8] highly-oscillatory systems (with a special focus of those resulting from the Schrödinger equation).




Although the field of application of the ideas contained in geometric integration is extremely wide (e.g. robotics, astronomy, simulation of vehicle dynamics, biomechanical modeling, biomolecular dynamics, geodynamics, chemistry...), IPSO will mainly concentrate on applications for molecular dynamics simulation and laser simulation:


	[bookmark: uid9] There is a large demand in biomolecular modeling for models that integrate microscopic
molecular dynamics simulation into statistical macroscopic quantities. These simulations involve huge systems of ordinary differential equations over very long time intervals. This is a typical situation where the determination of accurate trajectories is out of reach and where one has to rely on the good qualitative behavior of structure-preserving integrators. Due to the complexity of the problem, more efficient numerical schemes need to be developed.



	[bookmark: uid10] The demand for new models and/or new structure-preserving schemes is also quite large in laser simulations. The propagation of lasers induces, in most practical cases, several well-separated scales: the intrinsically highly-oscillatory waves travel over long distances. In this situation, filtering the oscillations in order to capture the long-term trend is what is required by physicists and engineers.





[bookmark: uid11] Section: 
      Overall Objectives
Highlights


	[bookmark: uid12] ERC Grant awarded to Erwan Faou for his project GEOPARDI



	[bookmark: uid13] Nicolas Crouseilles has defended his 'Habilitation à diriger les recherches'
in january (14th january 2011).
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  [bookmark: uid15] Section: 
      Scientific Foundations
Structure-preserving numerical schemes for solving ordinary differential equations
Participants :
      François Castella, Philippe Chartier, Erwan Faou.




In many physical situations, the time-evolution of
certain quantities may be written as a Cauchy problem for a
differential equation of the form

[bookmark: uid16] 	[image: Im1 $\mtable{...}$]	(1)




For a given y0, the solution y(t) at time t is denoted [image: Im2 ${\#981 _t{(y_0)}}$].
For fixed t, [image: Im3 $\#981 _t$] becomes a function of y0 called the flow of (1 ). From this point of view, a numerical scheme with step size h for solving (1 ) may be regarded as an approximation Φh of [image: Im4 $\#981 _h$]. One of the main
questions of geometric integration is whether intrinsic properties of
[image: Im3 $\#981 _t$] may be passed on to Φh.

This question can be more specifically addressed in the following situations:

[bookmark: uid17] Reversible ODEs

The system (1 ) is said to be ρ-reversible if there exists an involutive linear map ρ such that

[bookmark: uid18] 	[image: Im5 $\mtable{...}$]	(2)




It is then natural to require that Φh satisfies the same relation. If this is
so, Φh is said to be symmetric. Symmetric methods
for reversible systems of ODEs are just as much important as symplectic
methods for Hamiltonian systems and offer an interesting alternative
to symplectic methods.


[bookmark: uid19] ODEs with an invariant manifold

The system (1 ) is said to have an invariant manifold g whenever

[bookmark: uid20] 	[image: Im6 $\mtable{...}$]	(3)




is kept globally invariant by [image: Im3 $\#981 _t$]. In terms of derivatives and for sufficiently
differentiable functions f and g, this means that

[image: Im7 $\mtable{...}$]


As an example, we mention Lie-group equations, for which the manifold has an additional group
structure. This could possibly be exploited for the space-discretisation.
Numerical methods amenable to this sort of problems have been
reviewed in a recent paper [50]  and divided into two
classes, according to whether they use g explicitly or through a
projection step. In both cases, the numerical solution is forced
to live on the manifold at the expense of some Newton's
iterations.


[bookmark: uid21] Hamiltonian systems

Hamiltonian problems are ordinary differential equations of the form:

[bookmark: uid22] 	[image: Im8 $\mtable{...}$]	(4)




with some prescribed initial values (p(0), q(0)) = (p0, q0) and
for some scalar function H, called the Hamiltonian. In this
situation, H is an invariant of the problem. The evolution
equation (4 ) can thus be regarded as a differential
equation on the manifold

[image: Im9 $\mtable{...}$]


Besides the Hamiltonian function, there might exist other invariants for
such systems: when there exist d invariants in involution, the system (4 ) is said to be integrable. Consider now the parallelogram P originating from the point [image: Im10 ${{(p,q)}\#8712 \#8477 ^{2d}}$] and spanned by the two vectors [image: Im11 ${\#958 \#8712 \#8477 ^{2d}}$]
and [image: Im12 ${\#951 \#8712 \#8477 ^{2d}}$], and let ω(ξ, η) be the sum of the oriented areas of the projections over the planes (pi, qi) of P,

[image: Im13 $\mtable{...}$]


where J is the canonical symplectic matrix

[image: Im14 $\mtable{...}$]


A continuously differentiable map g from [image: Im15 $\#8477 ^{2d}$] to itself is called symplectic if
it preserves ω, i.e. if

[image: Im16 $\mtable{...}$]


A fundamental property of Hamiltonian systems is that their exact flow is symplectic.
Integrable Hamiltonian systems behave in a very remarkable way: as a matter of fact, their invariants persist under small perturbations, as shown in the celebrated theory of Kolmogorov, Arnold and Moser. This behavior motivates the introduction of symplectic numerical flows that share most of the properties of the exact flow. For practical simulations
of Hamiltonian systems, symplectic methods possess an important advantage: the error-growth as a function of time is indeed linear, whereas it would typically be quadratic for non-symplectic methods.


[bookmark: uid23] Differential-algebraic equations

Whenever the number of differential equations is insufficient to determine
the solution of the system, it may become necessary to solve the
differential part and the constraint part altogether. Systems of
this sort are called differential-algebraic systems. They can be
classified according to their index, yet for the purpose of this
expository section, it is enough to present the so-called
index-2 systems

[bookmark: uid24] 	[image: Im17 $\mtable{...}$]	(5)




where initial values (y(0), z(0)) = (y0, z0) are given and assumed
to be consistent with the constraint manifold. By constraint
manifold, we imply the intersection of the manifold

[image: Im18 $\mtable{...}$]


and of the so-called hidden manifold

[image: Im19 $\mtable{...}$]


This manifold [image: Im20 ${\#8499 =\#8499 _1\#8898 \#8499 _2}$] is the manifold on which the exact
solution (y(t), z(t)) of (5 ) lives.

There exists a whole set of schemes which provide a numerical approximation lying on [image: Im21 $\#8499 _1$]. Furthermore, this solution can be
projected on the manifold [image: Im22 $\#8499 $] by standard projection
techniques. However, it it worth mentioning that a projection destroys the
symmetry of the underlying scheme, so that the construction of a symmetric numerical scheme preserving [image: Im22 $\#8499 $] requires a more sophisticated approach.


[bookmark: uid25] Section: 
      Scientific Foundations
Highly-oscillatory systems
Participants :
      François Castella, Philippe Chartier, Erwan Faou.




In applications to molecular dynamics or quantum dynamics for instance, the right-hand side of (1 ) involves fast forces (short-range interactions) and slow forces (long-range interactions). Since fast forces are much cheaper to evaluate than slow forces, it seems highly desirable to design numerical methods for which the number of evaluations of slow forces is not (at least not too much) affected by the presence of fast forces.

A typical model of highly-oscillatory systems is the second-order differential equations

[bookmark: uid26] 	[image: Im23 $\mtable{...}$]	(6)




where the potential V(q) is a sum of potentials V = W + U acting on different time-scales,
with [image: Im24 ${\#8711 ^2W}$] positive definite and [image: Im25 ${{\#8741 }\#8711 ^2{W\#8741 \gt \gt \#8741 }\#8711 ^2{U\#8741 }}$]. In order to get a bounded error propagation in the linearized equations for an explicit numerical method, the step size must be restricted according to

[image: Im26 $\mtable{...}$]


where C is a constant depending on the numerical method and where ω is the highest frequency of the problem, i.e. in this situation the square root of the largest eigenvalue of [image: Im24 ${\#8711 ^2W}$]. In applications to molecular dynamics for instance, fast forces deriving from W (short-range interactions) are much cheaper to evaluate than slow forces deriving from U (long-range interactions). In this case, it thus seems highly desirable to design numerical methods for which the number of evaluations of slow forces is not (at least not too much) affected by the presence of fast forces.

Another prominent example of highly-oscillatory systems is encountered in quantum dynamics where the Schrödinger equation is the model to be used. Assuming that the Laplacian has been discretized in space, one indeed gets the time-dependent Schrödinger equation:

[bookmark: uid27] 	[image: Im27 $\mtable{...}$]	(7)




where H(t) is finite-dimensional matrix and where ε typically is the square-root of a mass-ratio (say electron/ion for instance) and is small ([image: Im28 ${\#949 \#8776 10^{-2}}$] or smaller). Through the coupling with classical mechanics (H(t) is obtained by solving some equations from classical mechanics), we are faced once again with two different time-scales, 1 and ε. In this situation also, it is thus desirable to devise a numerical method able to advance the solution by a time-step
h>ε.


[bookmark: uid28] Section: 
      Scientific Foundations
Geometric schemes for the Schrödinger equation
Participants :
      François Castella, Philippe Chartier, Erwan Faou.




Given the Hamiltonian structure of the Schrödinger equation, we are led to consider the question of energy preservation for time-discretization schemes.

At a higher level, the Schrödinger equation is a partial differential equation which may exhibit Hamiltonian structures. This is the case of the time-dependent Schrödinger equation, which we may write as

[bookmark: uid29] 	[image: Im29 ${i\#949 \mfrac {\#8706 \#968 }{\#8706 t}=H\#968 ,}$]	(8)




where ψ = ψ(x, t) is the wave function depending on the spatial variables
[image: Im30 ${x=(x_1,\#8943 ,x_N)}$] with [image: Im31 ${x_k\#8712 \#8477 ^d}$] (e.g., with d = 1 or 3 in the
partition) and the time [image: Im32 ${t\#8712 \#8477 }$].
Here, ε is a (small)
positive number representing the scaled Planck constant and i is the complex imaginary unit. The Hamiltonian operator H is written

H = T + V


with the kinetic and potential energy operators

[image: Im33 ${T=-\munderover \#8721 {k=1}N\mfrac \#949 ^2{2m_k}\#916 _x_k~\mtext and~V=V{(x)},}$]


where mk>0 is a particle mass and Δxk the
Laplacian in the variable [image: Im31 ${x_k\#8712 \#8477 ^d}$], and
where the real-valued potential V acts as a multiplication operator on ψ.

The multiplication by i in (8 ) plays the role of the multiplication by J in classical mechanics, and the
energy [image: Im34 ${\#9001 \#968 |H|\#968 \#9002 }$] is conserved along the solution of (8 ), using the physicists' notations
[image: Im35 ${\#9001 u|A|u\#9002 =\#9001 u,Au\#9002 }$] where [image: Im36 ${\#9001 ~~,~\#9002 }$]
denotes the Hermitian L2-product over the phase space.
In quantum mechanics, the number N
of particles is very large making the direct approximation of (8 ) very difficult.

The numerical approximation of (8 ) can be obtained using projections onto submanifolds of the phase space, leading to various PDEs or ODEs: see [55] , [54]  for reviews. However the long-time behavior of these approximated solutions is well understood only in this latter case, where the dynamics turns out to be finite dimensional.
In the general case, it is very difficult to prove the preservation of qualitative
properties of (8 ) such as energy conservation or growth in time of Sobolev norms.
The reason for this is that backward error analysis is not directly applicable for PDEs. Overwhelming these difficulties is thus a very interesting challenge.

A particularly interesting case of study is given by symmetric splitting methods, such as the Strang splitting:

[bookmark: uid30] 	ψ1 = exp(-i(δt)V/2)exp(i(δt)Δ)exp(-i(δt)V/2)ψ0	(9)




where δt is the time increment (we have set all the parameters to 1 in the equation). As the Laplace operator is unbounded, we cannot apply the standard methods used in ODEs to derive long-time properties of these schemes. However, its projection onto finite dimensional submanifolds (such as Gaussian wave packets space or FEM finite dimensional space of functions in x) may exhibit Hamiltonian or Poisson structure, whose long-time properties turn out to be more tractable.


[bookmark: uid31] Section: 
      Scientific Foundations
High-frequency limit of the Helmholtz equation
Participant :
      François Castella.




The Helmholtz equation models the propagation of waves in
a medium with variable refraction index. It
is a simplified version of the Maxwell system for
electro-magnetic waves.

The high-frequency regime is characterized by the fact that
the typical wavelength of the signals under consideration is much smaller
than the typical distance of observation of those signals.
Hence, in the high-frequency regime, the Helmholtz equation
at once involves highly oscillatory phenomena that are to be described in
some asymptotic way. Quantitatively,
the Helmholtz equation reads

[bookmark: uid32] 	[image: Im37 $\mtable{...}$]	(10)




Here, ε is the small adimensional parameter that measures the typical
wavelength of the signal, n(x) is the space-dependent refraction index, and
fε(x) is a given (possibly dependent on ε) source term. The unknown is
uε(x). One may think
of an antenna emitting waves in the whole space (this is the
fε(x)), thus creating at any point x the signal uε(x) along the
propagation. The small αε>0 term takes into account damping of the waves
as they propagate.

One important scientific objective typically is to
describe the high-frequency regime in terms of rays propagating
in the medium, that are
possibly refracted at interfaces, or bounce on boundaries,
etc. Ultimately, one would like to replace the true numerical resolution
of the Helmholtz equation by that of a simpler, asymptotic model,
formulated in terms of rays.

In some sense, and in comparison with, say, the wave equation,
the specificity of the Helmholtz equation is the following.
While the wave equation typically describes the evolution of waves
between some initial time and some given observation time,
the Helmholtz equation takes into account at once
the propagation of waves over infinitely long
time intervals. Qualitatively, in order to have a good understanding
of the signal observed in some bounded region of space, one readily
needs to be able to describe the propagative phenomena
in the whole space, up to infinity. In other words, the “rays” we refer to
above need to be understood from the initial time up to infinity.
This is a central difficulty in the analysis of the high-frequency behaviour
of the Helmholtz equation.


[bookmark: uid33] Section: 
      Scientific Foundations
From the Schrödinger equation to Boltzmann-like equations
Participant :
      François Castella.




The Schrödinger equation is the appropriate way to describe
transport phenomena at the scale of electrons. However,
for real devices, it is important to derive
models valid at a larger scale.

In semi-conductors, the Schrödinger equation is the ultimate model that allows
to obtain quantitative information
about electronic transport in crystals. It reads, in convenient adimensional
units,

[bookmark: uid34] 	[image: Im38 $\mtable{...}$]	(11)




where V(x) is the potential and ψ(t, x) is the time- and space-dependent
wave function. However,
the size of real devices makes it important to derive simplified
models that
are valid at a larger scale.
Typically, one wishes to have kinetic transport equations.
As is well-known, this requirement needs one
to be able to describe “collisions”
between electrons in these devices, a concept that makes sense at the
macroscopic level, while it does not at the microscopic (electronic) level.
Quantitatively, the question is the following:
can one obtain the Boltzmann equation (an equation that describes
collisional phenomena) as an asymptotic model for the Schrödinger equation,
along the physically relevant micro-macro asymptotics?
From the point of view of modelling, one wishes here to understand
what are the “good objects”, or, in more technical words, what are the
relevant
“cross-sections”, that describe the elementary collisional phenomena.
Quantitatively, the Boltzmann equation reads, in a simplified, linearized,
form :

[bookmark: uid35] 	[image: Im39 $\mtable{...}$]	(12)




Here, the unknown is f(x, v, t), the probability that a particle sits at
position x, with a velocity v, at time t. Also, σ(v, v') is called
the cross-section, and it describes the probability that a particle
“jumps” from velocity v to velocity v' (or the converse) after a
collision process.


[bookmark: uid36] Section: 
      Scientific Foundations
Spatial approximation for solving ODEs
Participants :
      Philippe Chartier, Erwan Faou.




The technique consists in solving an approximate initial value problem
on an approximate invariant manifold for which an atlas consisting of easily computable charts exists. The numerical solution obtained is this way never drifts off the exact manifold considerably even for long-time integration.

Instead of solving the initial Cauchy problem, the technique consists in solving an approximate initial value problem of the form:

[bookmark: uid37] 	[image: Im40 $\mtable{...}$]	(13)




on an invariant manifold [image: Im41 ${\mover \#8499 \#732 ={{y\#8712 \#8477 ^n;\mover g\#732 {(y)}=0}}}$], where [image: Im42 $\mover f\#732 $] and [image: Im43 $\mover g\#732 $] approximate f and g
in a sense that remains to be defined.
The idea behind this approximation is to replace the differential
manifold [image: Im22 $\#8499 $] by a suitable approximation [image: Im44 $\mover \#8499 \#732 $] for which an atlas consisting of easily computable
charts exists. If this is the case, one can reformulate the vector
field [image: Im42 $\mover f\#732 $] on each domain of the atlas in an easy
way. The main obstacle of parametrization methods
[56]  or of Lie-methods [53]  is then
overcome.

The numerical solution obtained is this way obviously does not lie
on the exact manifold: it lives on the approximate manifold
[image: Im44 $\mover \#8499 \#732 $]. Nevertheless, it never drifts off the exact
manifold considerably, if [image: Im22 $\#8499 $] and [image: Im44 $\mover \#8499 \#732 $] are
chosen appropriately close to each other.

An obvious prerequisite for this idea to make sense is the
existence of a neighborhood [image: Im45 $\#119985 $] of [image: Im22 $\#8499 $] containing the
approximate manifold [image: Im44 $\mover \#8499 \#732 $] and on which the vector
field f is well-defined. In contrast, if this assumption is
fulfilled, then it is possible to construct a new admissible
vector field [image: Im42 $\mover f\#732 $] given [image: Im43 $\mover g\#732 $]. By admissible, we mean
tangent to the manifold [image: Im44 $\mover \#8499 \#732 $], i.e. such that

[image: Im46 $\mtable{...}$]


where, for convenience, we have denoted
[image: Im47 ${\mover G\#732 {(y)}=\mover g\#732 ^'{(y)}}$]. For any [image: Im48 ${y\#8712 \mover \#8499 \#732 }$],
we can indeed define

[bookmark: uid38] 	[image: Im49 $\mtable{...}$]	(14)




where [image: Im50 ${P{(y)}=\mover G\#732 ^T{(y)}{(\mover G\#732 {(y)}\mover G\#732 ^T{(y)})}^{-1}\mover G\#732 {(y)}}$] is the projection along [image: Im44 $\mover \#8499 \#732 $].
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  [bookmark: uid40] Section: 
      Application Domains
Laser physics

Laser physics considers the propagation over long space (or time) scales
of high frequency waves. Typically, one has to deal with the propagation
of a wave having a wavelength of the order of 10-6m, over distances of
the order 10-2m to 104m. In these situations, the propagation
produces both a short-scale oscillation and exhibits a long term trend
(drift, dispersion, nonlinear interaction with the medium, or so), which
contains the physically important feature. For this reason, one needs to
develop ways of filtering the irrelevant high-oscillations, and to build up
models and/or numerical schemes that do give information on the long-term
behavior. In other terms, one needs to develop high-frequency models and/or
high-frequency schemes.

This task has been partially performed in the context of a contract with Alcatel,
in that we developed a new numerical scheme to discretize directly
the high-frequency model derived from physical laws.

Generally speaking, the demand in developing such models or schemes in the
context of laser
physics, or laser/matter interaction, is large. It involves both modeling
and numerics (description of oscillations, structure preserving algorithms to
capture the long-time behaviour, etc).

In a very similar spirit, but at a different level of modelling,
one would like to understand the very coupling between a laser propagating
in, say, a fiber, and
the atoms that build up the fiber itself.

The standard, quantum, model in this direction is called the Bloch model: it is
a Schrödinger like equation that describes the evolution of the atoms,
when coupled to the laser field. Here the laser field induces a
potential that acts directly on the atom, and the link bewteeen this potential
and the laser itself is given by the so-called dipolar matrix, a matrix
made up of physical coefficients that describe the polarization
of the atom under the applied field.

The scientific objective here is twofold. First, one wishes to obtain
tractable asymptotic models that average out the high oscillations of the atomic
system and of the laser field. A typical phenomenon here is the resonance
between the field and the energy levels of the atomic system. Second, one
wishes to obtain good numerical schemes in order to solve
the Bloch equation, beyond the oscillatory phenomena entailed by this model.


[bookmark: uid41] Section: 
      Application Domains
Molecular Dynamics

In classical molecular dynamics, the equations describe the
evolution of atoms or molecules under the action of forces
deriving from several interaction potentials. These potentials may
be short-range or long-range and are treated differently in most
molecular simulation codes. In fact, long-range potentials are
computed at only a fraction of the number of steps. By doing so,
one replaces the vector field by an approximate one and alternates
steps with the exact field and steps with the approximate one.
Although such methods have been known and used with success for
years, very little is known on how the “space" approximation (of
the vector field) and the time discretization should be combined
in order to optimize the convergence. Also, the fraction
of steps where the exact field is used for the computation is
mainly determined by heuristic reasons and a more precise analysis
seems necessary. Finally, let us mention that similar questions
arise when dealing with constrained differential equations, which
are a by-product of many simplified models in molecular dynamics
(this is the case for instance if one replaces the
highly-oscillatory components by constraints).
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      New Results
Asymptotic preserving schemes
Participant :
      Nicolas Crouseilles.


In [18] , we extend the micro-macro decomposition
based numerical schemes developed previously to the collisional
Vlasov-Poisson model in the diffusion and high-field asymptotics.
In doing so, we first write the Vlasov-Poisson model as a system that
couples the macroscopic (equilibrium) part with the remainder part.
A suitable discretization of this micro-macro model enables to derive
an asymptotic preserving scheme in the diffusion and high-field asymptotics.
In addition, two main improvements are presented: On the one hand a
self-consistent electric field is introduced, which induces a specific
discretization in the velocity direction, and represents a wide range of
applications in plasma physics. On the other hand, as suggested
in a previous reference, we introduce a suitable reformulation of the
micro-macro scheme which leads to an asymptotic preserving
property with the following property: It degenerates into an
implicit scheme for the diffusion limit model when [image: Im51 ${\#949 \#8594 0}$],
which makes it free from the usual diffusion constraint
[image: Im52 ${\#916 t=\#119978 (\#916 x^2)}$] in all regimes.
Numerical examples are used to demonstrate the efficiency and the
applicability of the schemes for both regimes.

In [45] , a Two-Scale Macro-Micro decomposition of the Vlasov equation with a strong magnetic field is derived. This consists in writing the solution of this equation as a sum of two oscillating functions with circonscribed oscillations. The first of these functions has a shape which is close to the shape of the Two-Scale limit of the solution and the second one is a correction built to offset this imposed shape.


[bookmark: uid44] Section: 
      New Results
Resolution of the quasi-neutrality equation
Participant :
      Nicolas Crouseilles.


In reference [39] , different parallel algorithms are proposed
for the numerical resolution of the quasi-neutrality equation in the GYSELA code.
A set of benchmarks on a parallel machine has permitted to evaluate the performance of the different versions of
the quasi-neutrality solver. In particular,
in [40] , these improvements are combined with memory
optimization which enable a scalability of the GYSELA code up to 64k cores.

In [20] , a new discretization scheme of the
gyrokinetic quasi-neutrality equation is proposed. It is based on
Isogeometric Analysis; the IGA which relies on NURBS functions,
seems to accommodate arbitrary coordinates and the use of complicated computation domains. Moreover, arbitrary
high order degree of basis
functions can be used. Here, this approach is successfully tested on
elliptic problems like the quasi-neutrality equation.


[bookmark: uid45] Section: 
      New Results
High order schemes for Vlasov-Poisson system
Participant :
      Nicolas Crouseilles.


In [44] , we derive the order conditions for fourth order time splitting schemes in the case of the
1D Vlasov-Poisson system. Computations to obtain such conditions are motivated by the specific Poisson
structure of the Vlasov-Poisson system : this structure is similar to Runge-Kutta-Nyström systems. The obtained
conditions are proved to be the same as RKN conditions derived for ODE up to the fourth order. Numerical results
are performed and show the benefit of using high order splitting schemes in that context.

In [19] , we present a discontinuous Galerkin scheme for the numerical approximation of the one-
dimensional periodic Vlasov-Poisson equation. The scheme is based on a Galerkin-characteristics method in
which the distribution function is projected onto a space of discontinuous functions. We present comparisons with a
semi-Lagrangian method to emphasize the good behavior of this scheme when applied to Vlasov-Poisson test
cases.

The CEMRACS is an annual summer research session promoted by the SMAI.
The 15th edition of 2010 has been organized by N. Crouseilles, H. Guillard, B. Nkonga
and E. Sonnendrücker around "Numerical modeling of fusion plasmas". The volume
[38]  gathers artless resulting from research projects initiated during the
CEMRACS 2010.


[bookmark: uid46] Section: 
      New Results
Second order averaging for the nonlinear Schrödinger equation with strong
anisotropic potential
Participants :
      Florian Méhats, François Castella.


In [10] , we consider the three dimensional Gross-Pitaevskii equation (GPE) describing a Bose-
Einstein Condensate (BEC) which is highly confined in vertical z direction. The confining potential induces high
oscillations in time. If the confinement in the z direction is a harmonic trap – an approximation which is widely
used in physical experiments – the very special structure of the spectrum of the confinement operator implies that
the oscillations are periodic in time. Based on this observation, it can be proved that the GPE can be averaged out
with an error of order of ϵ, which is the typical period of the oscillations. In this article, we construct a more
accurate averaged model, which approximates the GPE up to errors of order [image: Im53 ${\#119978 (\#1013 ^2)}$]. Then,
expansions of this model over the eigenfunctions (modes) of the confining operator Hz in the z-direction are
given in view of numerical applications. Efficient numerical methods are constructed to solve the GPE with
cylindrical symmetry in 3D and the approximation model with radial symmetry in 2D, and numerical results are
presented for various kinds of initial data.


[bookmark: uid47] Section: 
      New Results
A problem of moment realizability in quantum statistical physics
Participant :
      Florian Méhats.


This work [34]  is a generalization of the results previously obtained by F. Méhats and O. Pinaud, in J. Stat. Phys. (2010), in a one-dimensional setting: we revisit the problem of the minimization of the quantum free energy (entropy + energy) under local constraints (moments) and prove the existence of minimizers in various configurations. While the above quoted article addressed the 1D case on bounded domains, we treat in the present paper the multi-dimensional case as well as unbounded domains and non-linear interactions as Hartree/Hartree-Fock. Moreover, whereas this article dealt with the first moment only, namely the charge density, we extend the results to the second moment, the current density.


[bookmark: uid48] Section: 
      New Results
Orbital stability of spherical galactic models
Participant :
      Florian Méhats.


In [33]  we consider the three dimensional gravitational Vlasov Poisson system which is a canonical
model in astrophysics to describe the dynamics of galactic clusters. A well known conjecture is the stability of
spherical models which are nonincreasing radially symmetric steady states solutions. This conjecture was proved
at the linear level by several authors in the continuation of the breakthrough work by Antonov in 1961. In a previous
work, we derived the stability of anisotropic models under spherically symmetric perturbations using
fundamental monotonicity properties of the Hamiltonian under suitable generalized symmetric rearrangements first
observed in the physics literature. In this work, we show how this approach combined with a new generalized
Antonov type coercivity property implies the orbital stability of spherical models under general perturbations.


[bookmark: uid49] Section: 
      New Results
The Schrödinger Poisson system on the sphere
Participant :
      Florian Méhats.


In [31]  we study the Schrödinger-Poisson system on the unit sphere S2 of [image: Im54 $\#8477 ^3$], modeling the
quantum transport of charged particles confined on a sphere by an external potential. Our first results concern the
Cauchy problem for this system. We prove that this problem is regularly well-posed on every Hs(S2) with
s>0, and not uniformly well-posed on L2(S2). The proof of well-posedness relies on multilinear Strichartz
estimates, the proof of ill-posedness relies on the construction of a counterexample which concentrates
exponentially on a closed geodesic. In a second part of the paper, we prove that this model can be obtained as the
limit of the three dimensional Schrödinger-Poisson system, singularly perturbed by an external potential that
confines the particles in the vicinity of the sphere.


[bookmark: uid50] Section: 
      New Results
A boundary matching micro-macro decomposition for kinetic equations
Participant :
      Florian Méhats.


In [32] , we introduce a new micro-macro decomposition of collisional kinetic equations which naturally
incorporates the exact space boundary conditions. The idea is to write the distribution fonction f in all its domain
as the sum of a Maxwellian adapted to the boundary (which is not the usual Maxwellian associated with f) and a
reminder kinetic part. This Maxwellian is defined such that its 'incoming' velocity moments coincide with the
'incoming' velocity moments of the distribution function. Important consequences of this strategy are the following. i)
No artificial boundary condition is needed in the micro/macro models and the exact boundary condition on f is
naturally transposed to the macro part of the model. ii) It provides a new class of the so-called 'Asymptotic
preserving' (AP) numerical schemes: such schemes are consistent with the original kinetic equation for all fixed
positive value of the Knudsen number ϵ, and if [image: Im55 ${\#1013 \#8592 0}$] with fixed numerical parameters
then these schemes degenerate into consistent numerical schemes for the various corresponding asymptotic fluid
or diffusive models. Here, the strategy provides AP schemes not only inside the physical domain but also in the
space boundary layers. We provide a numerical test in the case of a diffusion limit of the one-group transport
equation, and show that our AP scheme recovers the boundary layer and a good approximation of the theoretical
boundary value, which is usually computed from the so-called Chandrasekhar function.


[bookmark: uid51] Section: 
      New Results
1D quintic nonlinear equation with white noise dispersion
Participant :
      Arnaud Debussche.


Under certain scaling the nonlinear Schrödinger equation with random dispersion
converges to the nonlinear Schrödinger equation with white noise dispersion. The aim of
these works is to prove that this latter equation is globally well posed in L2 or H1. In [28] , we improve the Strichartz estimates obtained previously for
the Schrödinger equation with white noise dispersion
in one dimension. This allows us to prove global well posedness
when a quintic critical nonlinearity is added to the equation. We finally show that the white noise
dispersion is the limit of smooth random dispersion


[bookmark: uid52] Section: 
      New Results
Weak approximation of stochastic partial differential equations: the nonlinear case
Participant :
      Arnaud Debussche.


In [22]  we study the error of the Euler scheme applied to a stochastic partial differential
equation. We prove that as it is often the case, the weak order of convergence is twice
the strong order. A key ingredient in our proof is Malliavin calculus which enables
us to get rid of the irregular terms of the error. We apply our method to the
case a semilinear stochastic heat equation driven by a space-time white noise.
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      New Results
Ergodic BSDEs under weak dissipative assumptions
Participant :
      Arnaud Debussche.


In [27]  we study ergodic backward stochastic differential equations (EBSDEs) dropping
the strong dissipativity assumption needed previously. In other words we do not need to
require the uniform exponential decay of the difference of two solutions of the underlying
forward equation, which, on the contrary, is assumed to be non degenerate.
We show existence of solutions by use of coupling estimates for a non-degenerate forward
stochastic differential equations with bounded measurable non-linearity. Moreover we prove
uniqueness of “Markovian” solutions exploiting the recurrence of the same class of forward
equations.
Applications are then given to the optimal ergodic control of stochastic partial differential
equations and to the associated ergodic Hamilton-Jacobi-Bellman equations.
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      New Results
Asymptotic first exit times of the Chafee-Infante equation with small heavy tailed noise
Participant :
      Arnaud Debussche.


Motivated by paleoclimatological issues, we determine in [26]  asymptotic

first exit times for the Chafee-Infante equation forced by heavy-tailed Levy diffusions from reduced domains of attraction in the limit of small intensity. We show that in contrast to the case of Gaussian diffusion the
expected first exit times are polynomial in terms of the intensity.
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      New Results
Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections
Participant :
      Arnaud Debussche.


In [25]  we consider a stochastic partial differential equation with two logarithmic nonlinearities, two reflections at 1 and -1, and a constraint of conservation of the space average. The equation, driven by the derivative in space of a space-time white noise, contains a bi-Laplacian in the drift. The lack of a maximum principle for the bi-Laplacian generates difficulties for the classical penalization method, which uses a crucial monotonicity property. Being inspired by the works of Debussche, Goudenège, and Zambotti, we obtain existence and uniqueness of a solution for initial conditions in the interval (-1, 1). Finally, we prove that the unique invariant measure is ergodic, and we give a result of exponential mixing.
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      New Results
Diffusion limit for a stochastic kinetic problem
Participants :
      Arnaud Debussche, Erwan Faou.


In [29]  we consider numerical approximations of stochastic differential equations by the Euler method. In the case where the SDE is elliptic or hypo-elliptic, we show a weak backward error analysis result in the sense that the generator associated with the numerical solution coincides with the solution of a modified Kolmogorov equation up to high order terms with respect to the stepsize. This implies that every invariant measure of the numerical scheme is close to a modified invariant measure obtained by asymptotic expansion. Moreover, we prove that, up to negligible terms, the dynamic
associated with the Euler scheme is exponentially mixing.
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      New Results
Convergence of stochastic gene networks to hybrid piecewise deterministic processes
Participant :
      Arnaud Debussche.


In [47]  we consider numerical approximations of stochastic differential equations by the Euler
method. In the case where the SDE is elliptic or hypo-elliptic, we show a weak backward error analysis result in the
sense that the generator associated with the numerical solution coincides with the solution of a modified
Kolmogorov equation up to high order terms with respect to the step-size. This implies that every invariant measure
of the numerical scheme is close to a modified invariant measure obtained by asymptotic expansion. Moreover, we
prove that, up to negligible terms, the dynamic
associated with the Euler scheme is exponentially mixing.
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      New Results
Exponential mixing of the 3D stochastic Navier-Stokes equations driven by mildly degenerate noise
Participant :
      Arnaud Debussche.


In [11]  we prove the strong Feller property and exponential mixing for
3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e.
all but finitely many Fourier modes are forced) via Kolmogorov equation approach.
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      New Results
Ergodicity results for the stochastic Navier-Stokes equations: an introduction
Participant :
      Arnaud Debussche.


In thus survey article [46] , we review recent progresses in the study of ergodicity for the stochastic Navier-Stokes equations. The first part introduces general concept, the second deals with the 2D case and the 3D case is treated in the third part.


[bookmark: uid60] Section: 
      New Results
Local Martingale and Pathwise Solutions for an Abstract Fluids Model
Participant :
      Arnaud Debussche.


In the first article [23] , we establish the existence and uniqueness of both local martingale
and local pathwise solutions of an abstract nonlinear stochastic evolution
system. The primary application of this abstract framework is to infer the
local existence of strong, pathwise solutions to the 3D primitive equations
of the oceans and atmosphere forced by a nonlinear multiplicative white
noise. In the second article [24]  global existence is obtained.
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      New Results
Geometric numerical integration and Schrödinger equations
Participant :
      Erwan Faou.


The goal of geometric numerical integration is the simulation of evolution equations by preserving their geometric
properties over long times.
This question is of particular importance in the case of Hamiltonian partial differential equations typically arising in
many application fields such
as quantum mechanics or wave propagations phenomena. This implies many important dynamical features such
as energy preservation and conservation of adiabatic invariants over long times. In this setting, a natural question is
to know how and to which extent the reproduction of such long time qualitative behavior is ensured by numerical
schemes.

Starting from numerical examples, these notes [37]  try to provide a detailed analysis in the case of the
Schrödinger equation in a simple setting (periodic boundary conditions, polynomial nonlinearities) approximated
by symplectic splitting methods. This text analyzes the possible stability and instability phenomena induced by
space and time discretization, and provides rigorous mathematical explanations for them.


[bookmark: uid62] Section: 
      New Results
On the influence of the geometry on skin effect in electromagnetism
Participant :
      Erwan Faou.


In [14] ,
we consider the equations of electromagnetism set on a domain made of
a dielectric and a conductor subdomain in a regime where the conductivity is large.
Assuming smoothness for the dielectric-conductor interface, relying on recent works
we prove that the solution of the Maxwell equations admits a multiscale asymptotic
expansion with profile terms rapidly decaying inside the conductor. This skin effect is
measured by introducing a skin depth function that turns out to depend on the mean
curvature of the boundary of the conductor. We then confirm these asymptotic results
by numerical experiments in various axisymmetric configurations. We also investigate
numerically the case of a nonsmooth interface, namely a cylindrical conductor.
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      New Results
Reconciling alternate methods for the determination of charge distributions: A probabilistic approach to high-dimensional least-squares approximations
Participant :
      Erwan Faou.


In [17] , we propose extensions and improvements of the statistical analysis of distributed multipoles
(SADM) algorithm put forth by Chipot in 1998 for the derivation of
distributed atomic multipoles from the quantum-mechanical electrostatic potential. The method is
mathematically extended to general least-squares problems and provides an alternative approximation method
in cases where the original least-squares problem is computationally not tractable, either because of its
ill-posedness or its high-dimensionality. The solution is approximated employing a Monte Carlo method
that takes the average of a random variable defined as the solutions of random small least-squares problems
drawn as subsystems of the original problem. The conditions that ensure convergence and consistency of
the method are discussed, along with an analysis of the computational cost in specific instances.


[bookmark: uid64] Section: 
      New Results
Hamiltonian interpolation of splitting approximations for nonlinear PDEs
Participant :
      Erwan Faou.


In [30] , we consider a wide class of semi linear Hamiltonian partial differential equations and their approximation by time splitting methods. We assume that the nonlinearity is polynomial, and that the numerical trajectory remains at least uniformly integrable with respect to an eigenbasis of the linear operator (typically the Fourier basis). We show the existence of a modified interpolated Hamiltonian equation whose exact solution coincides with the discrete flow at each time step over a long time.
While for standard splitting or implicit-explicit schemes, this long time depends on a cut-off condition in the high frequencies (CFL condition), we show that it can be made exponentially large with respect to the step size for a class of modified splitting schemes.


[bookmark: uid65] Section: 
      New Results
Energy cascades for NLS on the torus
Participant :
      Erwan Faou.


In the work [16] , we consider the nonlinear Schrödinger equation with cubic (focusing
or defocusing) nonlinearity on the multidimensional torus. For special small
initial data containing only five modes, we exhibit a countable set of time layers
in which arbitrarily large modes are created. The proof relies on a reduction to
multiphase weakly nonlinear geometric optics, and on the study of a particular
two-dimensional discrete dynamical system.


[bookmark: uid66] Section: 
      New Results
A Nekhoroshev type theorem for the nonlinear Schrödinger equation on the d-dimensional torus
Participant :
      Erwan Faou.


In [49]  we prove a Nekhoroshev type theorem for the nonlinear Schrödinger equation

[image: Im56 ${iu_t=-\#916 u+V\#9734 u+\#8706 _\mover u¯g{(u,\mover u¯)}~,~x\#8712 T^d,}$]


where V is a typical smooth Fourier multiplier and g is analytic in both variables. More precisely we prove that if the initial datum is analytic in a strip of width ρ>0 whose norm on this strip is equal to ϵ then, if ϵ is small enough, the solution of the nonlinear Schrödinger equation above remains analytic in a strip of width ρ/2, with norm bounded on this strip by Cϵ over a very long time interval of order ϵ-α|lnϵ|β, where 0<β<1 is arbitrary and C>0 and α>0 are positive constants depending on β and ρ.
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      New Results
Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus
Participant :
      Erwan Faou.


In [48] , it is shown that plane wave solutions to the cubic nonlinear Schrödinger equation on a torus behave orbitally stable under generic perturbations of the initial data that are small in a high-order Sobolev norm, over long times that extend to arbitrary negative powers of the smallness parameter. The perturbation stays small in the same Sobolev norm over such long times. The proof uses a Hamiltonian reduction and transformation and, alternatively, Birkhoff normal forms or modulated Fourier expansions in time.


[bookmark: uid68] Section: 
      New Results
Approximate travelling wave solutions to the 2D Euler equation on the torus
Participants :
      Erwan Faou, Nicolas Crouseilles.


In [43] , we consider the two-dimensional Euler equation with periodic boundary conditions. We construct approximate solutions of this equation made of localized travelling profiles with compact support propagating over a stationary state depending on only one variable. The direction or propagation is orthogonal to this variable, and the support is concentrated around flat points of the stationary state. Under regularity assumptions, we prove that the approximation error can be made exponentially small with respect to the width of the support of the travelling wave. We illustrate this result by numerical simulations.
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Markov chains competing for transitions : applications to large-scale distributed systems
Participant :
      François Castella.


We consider in [12]  the behavior of a stochastic system composed of several identically distributed, but non independent, discrete-time absorbing Markov chains competing at each instant for a transition.
The competition consists in determining at each instant, using a given probability distribution, the only Markov chain allowed to make a transition.
We analyze the first time at which one of the Markov chains reaches its absorbing state.
We obtain its distribution and its expectation and we propose an algorithm to compute these quantities.
We also exhibit the asymptotic behavior of the system when the number of Markov chains goes to infinity.
Actually, this problem comes from the analysis of large-scale distributed systems and we show how our results apply to this domain.
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Analysis of a large number of Markov chains competing for transitions
Participant :
      François Castella.


This text [41]  generalizes the previous one [12]  in the following sense.

In the situation on the previous article, we analyze the first time at which one of the Markov chains reaches its absorbing state.
When the number of Markov chains goes to infinity, we analyze the asymptotic behavior of the system for an arbitrary probability mass function governing the competition.
We give conditions for the existence of the asymptotic distribution and we show how these results apply to cluster-based distributed storage when the competition is handled using a geometric distribution.
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Splitting methods with complex coefficients for some classes of evolution equations
Participant :
      Philippe Chartier.


We are concerned in [13]  with the numerical solution obtained by splitting methods of certain parabolic partial
differential equations. Splitting schemes of order higher than two with real coefficients necessarily involve
negative coefficients. In a previous paper, Castella et al. demonstrated the possibility to overcome
this second-order barrier by considering splitting methods with complex-valued coefficients and built up
methods of orders 3 to 14 . In this paper, we reconsider the technique employed therein and show that it
is inherently bound to order 14 and largely sub-optimal with respect to error constants. As an alternative,
we solve directly the algebraic equations arising from the order conditions and construct several methods
of orders 4 , 6 , 8 and 16 that are the most accurate ones available at present time.
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Higher-order averaging, formal series and numerical integration
Participant :
      Philippe Chartier.


The paper [42]  considers non-autonomous oscillatory systems of ordinary differential equations with d = 1 non-resonant constant frequencies. Formal series like those used nowadays to analyze the properties of numerical integrators are employed to construct higher-order averaged systems and the required changes of variables. With the new approach, the averaged system and the change of variables consist of vector-valued functions that may be written down immediately and scalar coefficients that are universal in the sense that they do not depend on the specific system being averaged and may therefore be computed once and for all. The new method may be applied to obtain a variety of averaged systems. In particular we study the quasi-stroboscopic averaged system characterized
by the property that the true oscillatory solution and the averaged solution coincide at the initial time. We show
that quasi-stroboscopic averaging is a geometric procedure because it is independent of the particular choice of
co-ordinates used to write the given system. As a consequence, quasi-stroboscopic averaging of a canonical
Hamiltonian (resp. of a divergence-free) system results in a canonical (resp. in a divergence-free) averaged system.
We also study the averaging of a family of near-integrable systems where our approach may be used to construct
explicitly d formal first integrals for both the given system and its quasi-stroboscopic averaged version. As an
application we construct three first integrals of a system that arises as a nonlinear perturbation of coupled
harmonic oscillators with one slow frequency and four resonant fast frequencies.

The stroboscopic averaging method (SAM) is a technique for the integration
of highly oscillatory differential systems [image: Im57 ${\mover y\#729 =f{(y,t)}}$] with a single high frequency.
The method may be seen as a purely numerical way of implementing the
analytical technique of stroboscopic averaging which constructs an averaged differential
system [image: Im58 ${\mover Y\#729 =F{(Y)}}$] whose solutions Y interpolate the sought highly
oscillatory solutions y. SAM integrates numerically the averaged system without
using the analytic expression of F; all information on F required by the algorithm
is gathered on the fly by numerically integrating the originally given system in
small time windows. SAM may be easily implemented in combination with standard
software and may be applied with variable step sizes. Furthermore it may also
be used successfully to integrate oscillatory DAEs. The paper [15]  provides an analytic
and experimental study of SAM and two related techniques: the LISP algorithms
of Kirchgraber and multirevolution methods.
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[bookmark: uid75] Contract with CEA Bruyères-Le-Châtel: Determination of the numerical diffusion in a Lagrange-Projection type scheme with a slope limiter, using the associated equivalent equation
Participant :
      Nicolas Crouseilles.


Other participants (outside IPSO) are D. Bouche, J.P. Braeunig, Ch. Steiner, M. Mehrenberger.
The main goal of this contract is to determine equivalent equations
for standard numerical schemes dedicated to advection equations.
In particular, the first term arising in these equivalent equation concerns
the numerical diffusion. These computations enable to quantify in a
analytical way the numerical diffusion.
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[bookmark: uid78] ANR Programme blanc (BLAN) MEGAS: 2009-2012
Participants :
      François Castella, Philippe Chartier, Arnaud Debussche, Erwan Faou.


Geometric methods and sampling: application to molecular simulation. The project is financed for
3 years, coordinated by Tony Lelièvre and gathers the following teams and persons:


	[bookmark: uid79] Team of Eric Cancès at CERMICS



	[bookmark: uid80] Team IPSO



	[bookmark: uid81] Mathias Rousset from INRIA Lille



	[bookmark: uid82] Christophe Chipot, from the CNRS in Nancy.




P. Chartier is the coordinator for IPSO.


[bookmark: uid83] ANR GYPSI (leader P. Beyer)
Participant :
      Nicolas Crouseilles.


The full description is available at https://sites.google.com/site/anrgypsi/ 


[bookmark: uid84] INRIA Large scale initiative FUSION
Participant :
      Nicolas Crouseilles.


Leader E. Sonnedrücker. The full description is available at
http://www-math.u-strasbg.fr/ae_fusion 
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(France)
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	[bookmark: uid93] Abstract: The goal is to develop new numerical methods for the approximation of evolution equations possessing strong geometric properties such as Hamiltonian systems or stochastic differential equations. Use intensive numerical simulations to discover and analyze new nonlinear phenomena.
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