

[image: cover]

POP ART
Programming languages, Operating Systems, Parallelism, and Aspects for Real-Time
2011 Research Team Activity Report
	Grenoble - Rhône-Alpes

	 Field :
	 Algorithmics, Programming, Software and Architecture

Theme :
Embedded and Real Time Systems
Presentation of the
		Project-Team

	Members
	[bookmark: uid3]Overall Objectives
	Scientific Foundations	[bookmark: uid19]Embedded systems and their safe design
	[bookmark: uid27]Issues in Design Automation for
Complex Systems
	[bookmark: uid31]Main Research Directions

	Application Domains	[bookmark: uid39]Industrial Applications
	[bookmark: uid40]Industrial Design Tools
	[bookmark: uid44]Current Industrial Cooperations

	Software	[bookmark: uid46]NBac
	[bookmark: uid50]Prometheus
	[bookmark: uid51]Implementations of Synchronous Programs
	[bookmark: uid55]Apron and BddApron Libraries
	[bookmark: uid64]Prototypes

	New Results	[bookmark: uid86]Dependable Distributed
Real-time Embedded Systems
	[bookmark: uid94]Controller Synthesis for the Safe
Design of Embedded Systems
	[bookmark: uid98]Automatic Distribution of
Synchronous Programs
	[bookmark: uid101]New Programming Languages for
Embedded Systems
	[bookmark: uid106]Static Analysis and
Abstract Interpretation
	[bookmark: uid115]Component-Based Construction
	[bookmark: uid120]Aspect-Oriented Programming

	Contracts and Grants with Industry	[bookmark: uid128]Grants with Industry

	Partnerships and Cooperations	[bookmark: uid131]National Initiatives
	[bookmark: uid151]European Initiatives
	[bookmark: uid162]International Initiatives

	Dissemination	[bookmark: uid180]Animation of the scientific community
	[bookmark: uid186]Teaching

	Bibliography
		Major publications
	Publications of the year
	References in notes

Keywords: Aspect Oriented Programming, Embedded Systems, Fault Tolerance, Scheduling, VerificationSection: Members
Research Scientists
Alain Girault [Team Leader, DR Inria, HdR]
Pascal Fradet [CR Inria, HdR]
Gregor Goessler [CR Inria]
Bertrand Jeannet [CR Inria]
Faculty Member
Gwenaël Delaval [Associate professor, Université Joseph Fourier]
External Collaborators
Emil Dumitrescu [Associate Professor, INSA Lyon]
Xavier Nicollin [Associate Professor, Grenoble INP]

PhD Students
Vagelis Bebelis [CIFRE STMicroelectronics, since 12/2011]
Peter Schrammel [Inria, Synchronics project]
Gideon Smeding [DIGITEO grant]
Marnes Hoff [Inria grant, AutoChem project, until 05/2011]
Henri-Charles Blondeel [Inria, until 06/2011]
Lies Lakhdar-Chaouch [Inria, OpenTLM project, until 10/2011]
Post-Doctoral Fellows
Roopak Sinha [CESAR project]
Lacramioara Astefanoaei [ERCIM grant]
Petro Poplavko [Inria and PILSI/CRI, until 11/2011]
Sebti Mouelhi [Vedecy project, since 10/2011]
Pascal Sotin [Asopt project, until 09/2011]

Administrative Assistant
Diane Courtiol [Secretary Inria]

 Overall Objectives

 	
 [bookmark: uid3]Overall Objectives

 [bookmark: uid3] Section:
 Overall Objectives
Overall Objectives

We work on the problem of the safe design of real-time control
systems. This area is related to (discrete) control theory as well
as computer science. Application domains are typically
safety-critical systems, as in transportation (avionics, railways),
production, medical, or energy production systems. These application
domains require both formal methods and models for the construction
of correct systems, as well as their implementation in computer
assisted design tools, targeted to specialists of the
applications. We contribute to this research domain by offering
solutions all along the design flow, from the specification to the
implementation: we develop techniques for the specification, the
programmation and the automated generation of safe real-time
executives for control systems, as well as static analysis
techniques to check additional properties on the generated
systems. Our research themes concern:

	[bookmark: uid4] implementations of synchronous reactive programs, generated
automatically by compilation, particularly from the point of view of
automatic distribution and fault tolerance;

	[bookmark: uid5] high-level design and programming methods, with support for
automated code generation, including: the automated generation of
correct controllers using discrete control synthesis,
compositionality for the verification and construction of correct
systems; reactive programming, and aspect-oriented programming;

	[bookmark: uid6] static analysis and abstract interpretation techniques,
which are applied both to low-level synchronous models/programs
and to more general imperative or concurrent programs; this includes the
verification of general safety properties and the absence of
runtime errors.

Our applications are in embedded systems, typically in the
robotics, automotive, and telecommunications domains with a
special emphasis on dependability issues (e.g., fault tolerance,
availability). International and industrial relations feature:

	[bookmark: uid7] an IST European FP7 network of excellence:
ArtistDesign (http://www.artist-embedded.org), on
embedded real-time systems;

	[bookmark: uid9] an FP7 European STREP project:
Combest (http://www.combest.eu/home) on
component-based design;

	[bookmark: uid11] an Artemisia European project:
Cesar (http://www.cesarproject.eu) on cost-efficient
methods and processes for safety relevant embedded systems;

	[bookmark: uid13] three ANR French projects: Asopt (on static analysis),
AutoChem (on chemical programming), and Vedecy (on cyber-physical
systems);

	[bookmark: uid14] a Minalogic Pôle de Compétitivité project: OpenTLM, dedicated
to the design flow for next generation SoC and SystemC;

	[bookmark: uid15] an Inria large scale action:
Synchronics on a language platform for embedded system design;

	[bookmark: uid16] an Inria associated team with the University of Auckland (New
Zealand), called
Afmes (http://pop-art.inrialpes.fr/~girault/Projets/Afmes)
on advanced formal methods for embedded systems.

 Scientific Foundations

 	Scientific Foundations	[bookmark: uid19]Embedded systems and their safe design
	[bookmark: uid27]Issues in Design Automation for
Complex Systems
	[bookmark: uid31]Main Research Directions

 [bookmark: uid19] Section:
 Scientific Foundations
Embedded systems and their safe design

[bookmark: uid20] Safe Design of Embedded Real-time Control Systems

The context of our work is the area of embedded real-time control
systems, at the intersection between control theory and computer
science. Our contribution consists of methods and tools for their
safe design. The systems we consider are intrinsically
safety-critical because of the interaction between the embedded,
computerized controller, and a physical process having its own
dynamics. Such systems are known under various names, notably
cyberphysical systems and embedded control
systems. What is important is to design and to analyze the safe
behavior of the whole system, which introduces an inherent
complexity. This is even more crucial in the case of systems whose
malfunction can have catastrophic consequences, for example in
transport systems (avionics, railways), production, medical, or
energy production systems.

Therefore, there is a need for methods and tools for the design of
safe systems. The definition of adequate mathematical models of the
behavior of the systems allows the definition of formal calculi. They
in turn form a basis for the construction of algorithms for the
analysis, but also for the transformation of specifications towards an
implementation. They can then be implemented in software environments
made available to the users. A necessary complement is the setting-up
of software engineering, programming, modeling, and validation
methodologies. The motivation of these problems is at the origin of
significant research activity, internationally and, in particular, in
the European IST network of excellence ArtistDesign (Advanced
Real-Time Systems).

[bookmark: uid21] Models, Methods and Techniques

The state of the art upon which we base our contributions is
twofold.

From the point of view of discrete control, there is a set of
theoretical results and tools, in particular in the synchronous
approach, often founded on finite or infinite labeled transition
systems [41] , [46] . During the
past years, methodologies for the formal
verification [87] , [48] ,
control synthesis [89] and compilation, as well as
extensions to timed and hybrid systems [85] , [42]
have been developed. Asynchronous models consider the interleaving of
events or messages, and are often applied in the field of
telecommunications, in particular for the study of protocols.

From the point of view of verification, we use the methods and tools
of symbolic model-checking and of abstract interpretation. From
symbolic model-checking, we use BDD techniques [44]
for manipulating Boolean functions and sets, and their MTBDD extension
for more general functions. Abstract
interpretation [51] is used to formalize complex
static analysis, in particular when one wants to analyze the possible
values of variables and pointers of a program. Abstract interpretation
is a theory of approximate solving of fix-point equations applied to
program analysis. Most program analysis problems, among which
reachability analysis, come down to solving a fix-point equation on
the state space of the program. The exact computation of such an
equation is generally not possible for undecidability (or complexity)
reasons. The fundamental principles of abstract interpretation are:
(i) to substitute to the state-space of the program a simpler domain
and to transpose the equation accordingly (static approximation); and
(ii) to use extrapolation (widening) to force the convergence of the
iterative computation of the fix-point in a finite number of steps
(dynamic approximation). Examples of static analyses based on abstract
interpretation are linear relation analysis [52] and
shape analysis [47] .

The synchronous
approach (http://www.synalp.org) [73] , [74]
to reactive systems design gave birth to complete programming
environments, with languages like Argos,
Lustre (http://www-verimag.imag.fr/SYNCHRONE),
Esterel (http://www.inria.fr/equipes/aoste),
Signal/
Polychrony (http://www.irisa.fr/espresso/Polychrony),
Lucid Synchrone, SynDEx (http://www-rocq.inria.fr/syndex), or Mode
Automata. This approach is characterized by the fact that it considers
periodically sampled systems whose global steps can, by synchronous
composition, encompass a set of events (known as simultaneous) on the
resulting transition. Generally speaking, formal methods are often
used for analysis and verification; they are much less often
integrated into the compilation or generation of executives (in the
sense of executables of tasks combined with the host real-time
operating system). They are notoriously difficult to use by end-users,
who are usually experts in the application domain, not in formal
techniques. This is why encapsulating formal techniques into an
automated framework can dramatically improve their diffusion,
acceptance, and hence impact. Our work is precisely oriented towards
this direction.

[bookmark: uid27] Section:
 Scientific Foundations
Issues in Design Automation for
Complex Systems

[bookmark: uid28] Hard Problems

The design of safe real-time control systems is difficult due to
various issues, among them their complexity in terms of the number of
interacting components, their parallelism, the difference of the
considered time scales (continuous or discrete), and the distance
between the various theoretical concepts and results that allow the
study of different aspects of their behaviors, and the design of
controllers.

A currently very active research direction focuses on the models and
techniques that allow the automatic use of formal methods. In the
field of verification, this concerns in particular the technique of
model checking. The verification takes place after the design phase,
and requires, in case of problematic diagnostics, expensive backtracks
on the specification. We want to provide a more constructive use of
formal models, employing them to derive correct executives by formal
computation and synthesis, integrated in a compilation process. We
therefore use models throughout the design flow from specification to
implementation, in particular by automatic generation of embeddable
executives.

[bookmark: uid29] Applicative Needs

Applicative needs initially come from the fields of safety-critical
systems (avionics, energy) and complex systems (telecommunications),
embedded in an environment with which they strongly interact
(comprising aspects of computer science and control theory). Fields
with less criticality, or which support variable degrees of quality of
service, such as in the multi-media domain, can also take advantage of
methodologies that improve the quality and reliability of software,
and reduce the costs of test and correction in the design.

Industrial acceptance, the dissemination, and the deployment of the
formal techniques inevitably depend on the usability of such
techniques by specialists in the application domain — and not in
formal techniques themselves — and also on the integration in the
whole design process, which concerns very different problems and
techniques. Application domains where the actors are ready to employ
specialists in formal methods or advanced control theory are still
uncommon. Even then, design methods based on the systematic
application of these theoretical results are not ripe. In fields like
industrial control, where the use of PLC (Programmable Logic
Controller [37]) is dominant, this question can be
decisive.

Essential elements in this direction are the proposal of realistic
formal models, validated by experiments, of the usual entities in
control theory, and functionalities (i.e., algorithms) that correspond
indeed to services useful for the designer. Take, for example, the
compilation and optimization taking into account the platforms of
execution, the possible failures, or the interactions between the defined
automatic control and its implementation. A notable example for the
existence of an industrial need is the activity of the Athys company
(now belonging to Dassault Systemes) concerning the development of a
specialized programming environment, CellControl, which integrates
synchronous tools for compilation and verification, tailored to the
application domain. In these areas, there are functionalities that
commercial tools do not have yet, and to which our results contribute.

[bookmark: uid30] Our Approach

We are proposing effective trade-offs between, on the one hand,
expressiveness and formal power, and on the other hand, usability and
automation. We focus on the area of specification and construction of
correct real-time executives for discrete and continuous control,
while keeping an interest in tackling major open problems, relating to
the deployment of formal techniques in computer science, especially at
the border with control theory. Regarding the applications, we
propose new automated functionalities, to be provided to the users in
integrated design and programming environments.

[bookmark: uid31] Section:
 Scientific Foundations
Main Research Directions

The overall consistency of our approach comes from the fact that the
main research directions address, under different aspects, the
specification and generation of safe real-time control executives
based on formal models.

We explore this field by linking, on the one hand, the techniques we
use, with on the other hand, the functionalities we want to offer. We are
interested in questions related to:

	Component-Based Design.

	We investigate two main directions:
(i) compositional analysis and design techniques;
(ii) adapter synthesis and converter verification.

	Programming for embedded systems.

	Programming for embedded
real-time systems is considered within Pop Art along three axes:
(i) synchronous programming languages,
(ii) aspect-oriented programming,
(iii) static analysis (type systems, abstract interpretation, ...).

	Dependable embedded systems.

	Here we address the following
research axes:
(i) static multiprocessor scheduling for fault-tolerance,
(ii) multi-criteria scheduling for reliability,
(iii) automatic program transformations,
(iv) formal methods for fault-tolerant real-time systems.

The creation of easily usable models aims at giving the user the
role rather of a pilot than of a mechanics i.e., to offer her/him
pre-defined functionalities which respond to concrete demands, for
example in the generation of fault tolerant or distributed executives,
by the intermediary use of dedicated environments and languages.

The proposal of validated models with respect to their faithful
representation of the application domain is done through case studies
in collaboration with our partners, where the typical
multidisciplinarity of questions across control theory and computer
science is exploited.

[bookmark: uid35] Component-Based Design

Component-based construction techniques are crucial to overcome the
complexity of embedded systems design. However, two major obstacles
need to be addressed: the heterogeneous nature of the models, and the
lack of results to guarantee correction of the composed system.

The heterogeneity of embedded systems comes from the need to integrate
components using different models of computation, communication, and
execution, at different levels of abstraction and different time
scales. The BIP component framework [5] has
been designed, in cooperation with Verimag, to support this
heterogeneous nature of embedded systems.

Our work focuses on the underlying analysis and construction
algorithms, in particular compositional techniques and approaches
ensuring correctness by construction (adapter synthesis, strategy
mapping). This work is motivated by the strong need for formal,
heterogeneous component frameworks in embedded systems design.

[bookmark: uid36] Programming for Embedded Systems

Programming for embedded real-time systems is considered along three
directions:
(i) synchronous programming languages to implement real-time
systems;
(ii) aspect-oriented programming to specify non-functional properties
separately from the base program;
(iii) abstract interpretation to ensure safety properties of programs
at compile time.
We advocate the need for well defined programming languages to design
embedded real-time systems with correct-by-construction guarantees,
such as bounded time and bounded memory execution. Our original
contribution resides in programming languages inheriting features from
both synchronous languages and functional languages. We contribute to
the compiler of the Heptagon language (whose main inventor is Marc
Pouzet, ENS Uml, Parkas team), the key features of which are:
data-flow formal synchronous semantics, strong typing, modular
compilation. In particular, we are working on type systems for the
clock calculus and the spatial modular distribution.

The goal of Aspect-Oriented Programming (AOP) is to isolate aspects
(such as security, synchronization, or error handling) that cross-cut
the program basic functionality and whose implementation usually
yields tangled code. In AOP, such aspects are specified separately
and integrated into the program by an automatic transformation process
called weaving.
Although this paradigm has great practical potential, it still
lacks formalization, and undisciplined uses make reasoning on programs
very difficult. Our work on AOP addresses these issues by studying
foundational issues of AOP (semantics, analysis, verification) and by
considering domain-specific aspects (availability or fault tolerance
aspects) as formal properties.

Finally, the aim of the verification activity in Pop Art is to check
safety properties on programs, with emphasis on the analysis of the
values of data variables (numerical variables, memory heap), mainly in
the context of embedded and control-command systems that exibit
concurrency features.
The applications are not only the proof of functional properties on
programs, but also test selection and generation, program
transformation, controller synthesis, and fault-tolerance.
Our approach is based on abstract interpretation, which consists in
inferring properties of the program by solving semantic equations on
abstract domains. Much effort is spent on implementing developed
techniques in tools for experimentation and diffusion.

[bookmark: uid37] Dependable Embedded Systems

Embedded systems must often satisfy safety critical constraints. We
address this issue by providing methods and algorithms to design
embedded real-time systems with guarantees on their fault-tolerance
and/or reliability level.

A first research direction concerns static multiprocessor scheduling of an
application specification on a distributed target architecture. We
increase the fault-tolerance level of the system by replicating the
computations and the communications, and we schedule the redundant
computations according to the faults to be tolerated. We also optimize
the schedule w.r.t. several criteria, including the schedule length, the
reliability, and the power consumption.

A second research direction concerns the fault-tolerance management,
by reconfigurating the system (for instance by migrating the tasks
that were running on a processor upon the failure of this processor)
following objectives of fault-tolerance, consistent execution,
functionality fulfillment, boundedness and optimality of response
time. We base such formal methods on discrete controller synthesis.

A third research direction concerns AOP to weave fault-tolerance
aspects in programs and electronic circuits (seen as synthesizable HDL
programs) as mentioned in the previous section.

 Application Domains

 	Application Domains	[bookmark: uid39]Industrial Applications
	[bookmark: uid40]Industrial Design Tools
	[bookmark: uid44]Current Industrial Cooperations

 [bookmark: uid39] Section:
 Application Domains
Industrial Applications

Our applications are in the embedded system area, typically: robotics,
automotive, telecommunications, systems on chip (SoC). In some
areas, safety is critical, and motivates the investment in
formal methods and techniques for design.
But even in less critical contexts, like telecommunications and
multimedia, these techniques can be beneficial in improving the
efficiency and the quality of designs, as well as the cost of
the programmation and the validation processes.

Industrial acceptance of formal techniques, as well as their
deployment, goes necessarily through their usability by
specialists of the application domain, rather than of the formal
techniques themselves. Hence our orientation towards the
proposal of domain-specific (but generic) realistic models,
validated through experience (e.g., control tasks systems), based
on formal techniques with a high degree of automation (e.g., synchronous models), and tailored for concrete functionalities
(e.g., code generation).

[bookmark: uid40] Section:
 Application Domains
Industrial Design Tools

The commercially available design tools (such as UML with
real-time extensions, Matlab/ Simulink/
dSpace (http://www.dspaceinc.com)) and execution
platforms (OS such as VxWorks, QNX, real-time versions of
Linux ...) starts now to provide besides their core
functionalities design or verification methods. Some of them,
founded on models of reactive systems, come close to tools with
a formal basis, such as for example StateMate by iLogix.

Regarding the synchronous approach, commercial tools are
available:
Scade (http://www.esterel-technologies.com)
(based on Lustre), ControlBuild and
RT-Builder (based on Signal) from
Geensys (http://www.geensoft.com) (part of Dassault Systemes),
specialized environments like CellControl for industrial
automatism (by the Inria spin-off Athys– now part of
Dassault Systemes). One can observe that behind the variety of actors,
there is a real consistency of the synchronous technology, which
makes sure that the results of our work related to the
synchronous approach are not restricted to some language due to
compatibility issues.

[bookmark: uid44] Section:
 Application Domains
Current Industrial Cooperations

Regarding applications and case studies with industrial end-users of
our techniques, we cooperate with STMicroelectronics on two topics: (i)
compositional analysis and abstract interpretation for the TLM-based
System-on-Chip design flow, and (ii) dynamic data-flow models of computation
for streaming applications.

 Software

 	Software	[bookmark: uid46]NBac
	[bookmark: uid50]Prometheus
	[bookmark: uid51]Implementations of Synchronous Programs
	[bookmark: uid55]Apron and BddApron Libraries
	[bookmark: uid64]Prototypes

 [bookmark: uid46] Section:
 Software
NBac
Participant :
 Bertrand Jeannet.

NBac (Numerical and Boolean Automaton
Checker) (http://pop-art.inrialpes.fr/people/bjeannet/nbac/)
is a verification/slicing tool for reactive systems containing
combination of Boolean and numerical variables, and continuously
interacting with an external environment. NBac can also handle
the same class of hybrid systems as the HyTech tool [76] . It aims at
handling efficiently systems combining a non-trivial numerical
behaviour with a complex logical (Boolean) behaviour.

NBac is connected to two input languages: the synchronous dataflow
language Lustre, and a symbolic automaton-based language,
AutoC/Auto, where a system is defined by a set of
symbolic hybrid automata communicating via valued channels. It
can perform reachability analysis, co-reachability analysis, and
combination of the above analyses. The result of an analysis is
either a verdict to a verification problem, or a set of states
together with a necessary condition to stay in this set during an
execution. NBac is founded on the theory of abstract
interpretation.

It has been used for verification and debugging of Lustre programs [79] [61] . It is connected
to the Lustre toolset (http://www-verimag.imag.fr/Lustre-V6.html).
It has also been used for controller synthesis of infinite-state
systems. The fact that the analyses are approximated results
simply in the obtention of a possibly non-optimal controller. In
the context of conformance testing of reactive systems, it is used
by the test generator STG
(http://www.irisa.fr/prive/ployette/stg-doc/stg-web.html)
[49] [80] for selecting test
cases.

[bookmark: uid50] Section:
 Software
Prometheus
Participant :
 Gregor Goessler.

The BIP component model (Behavior, Interaction model, Priority)
[72] [5] has been
designed to support the construction of heterogeneous embedded systems
involving different models of computation, communication, and execution,
at different levels of abstraction. By separating the notions of
behavior, interaction model, and execution model, it enables both
heterogeneous modeling, and separation of concerns.

The verification and design tool Prometheus [71]
implements the BIP component framework. Prometheus is regularly
updated to implement new developments in the framework and the
analysis algorithms. It has allowed us to carry out several complex
case studies from the system-on-chip and bioinformatics domains
[11] .

[bookmark: uid51] Section:
 Software
Implementations of Synchronous Programs
Participant :
 Alain Girault.

[bookmark: uid52] Fault Tolerance

We have been cooperating for several years with the Inria team Aoste (Inria Sophia-Antipolis and Rocquencourt) on the topic of fault
tolerance and reliability of safety critical embedded systems. In
particular, we have implemented several new heuristics for fault
tolerance and reliability within their software
SynDEx (http://www-rocq.inria.fr/syndex). Our first
scheduling heuristic produces static multiprocessor schedules tolerant
to a specified number of processor and communication link
failures [64] . The basic principles upon which we
rely to make the schedules fault tolerant is, on the one hand, the
active replication of the operations [65] , and on the
other hand, the active replication of communications for
point-to-point communication links, or their passive replication
coupled with data fragmentation for multi-point communication media
(i.e., buses) [66] . Our second scheduling heuristic
is multi-criteria: it produces a static schedule multiprocessor
schedule such that the reliability is maximized, the power consumption
is minimized, and the execution time is
minimized [3] [17] . Our results on
fault tolerance are summarized in a web
page (http://pop-art.inrialpes.fr/~girault/Projets/FT).

[bookmark: uid55] Section:
 Software
Apron and BddApron Libraries
Participant :
 Bertrand Jeannet.

[bookmark: idp12679680] Principles

The Apron library (http://apron.cri.ensmp.fr/library/)
is dedicated to the static analysis of the numerical variables of
a program by abstract interpretation [51] . Many
abstract domains have been designed and implemented for analysing
the possible values of numerical variables during the execution of
a program (see Figure 1). However, their
API diverge largely (datatypes, signatures, ...), and this does
not ease their diffusion and experimental comparison w.r.t. efficiency and precision aspects.

The Apron library aims to provide:

	[bookmark: uid57] a uniform API for existing numerical abstract domains;

	[bookmark: uid58] a higher-level interface to the client tools, by
factorizing functionalities that are largely independent of
abstract domains.

From an abstract domain designer point of view, the benefits of the
Apron library are:

	[bookmark: uid59] the ability to focus on core, low-level functionalities;

	[bookmark: uid60] the help of generic services adding higher-level services for free.

For the client static analysis community, the benefits are a
unified, higher-level interface, which allows experimenting,
comparing, and combining abstract domains.

In 2011, the Taylor1plus domain [62] , which is the
underlying abstract domain of the tool
Fluctuat [58] has been improved. Glue code has
also been added to enable the connection of an abstract domain
implemented in OCaml to the Apron infrastructure written in C (this
requires callbacks from C to OCaml that are safe w.r.t. garbage
collection). This will enable the integration in Apron of the MaxPlus
polyhedra library written by X. Allamigeon [38] in the
context of the ANR Asopt project.

[bookmark: uid61]Figure
	1. Typical static analyser and examples of abstract domains	[image: IMG/bertrand1.png]

The BddApron library (http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/index.html)
aims at a similar goal, by adding finite-types variables and
expressions to the concrete semantics of Apron domains. It is
built upon the Apron library and provides abstract domains for
the combination of finite-type variables (Booleans, enumerated
types, bitvectors) and numerical variables (integers,
rationals, floating-point numbers). It first allows to manipulate
expressions that freely mix, using BDDs and MTBDDs, finite-type
and numerical Apron expressions and conditions. It then provides
abstract domains that combines BDDs and Apron abstract values for
representing invariants holding on both finite-type variables and
numerical variables.

[bookmark: idp12717008] Implementation and Distribution

The Apron library (Fig. 2) is written in ANSI C,
with an object-oriented and thread-safe design. Both
multi-precision and floating-point numbers are supported. A
wrapper for the Ocaml language is available, and a C++ wrapper is
on the way. It has been distributed since June 2006 under the LGPL
license and available at http://apron.cri.ensmp.fr .
Its development has still progressed much since. There are already
many external users (ProVal/Démons, LRI Orsay, France —
CEA-LIST, Saclay, France — Analysis of Computer Systems
Group, New-York University, USA — Sierum software analysis
platform, Kansas State University, USA — NEC Labs, Princeton,
USA — EADS CCR, Paris, France — IRIT, Toulouse, France) and
is currently packaged as a Redhat and Debian package.

The BddApron library is written in Ocaml, using polymorphism
features of Ocaml to make it generic. It is also thread-safe. It
provides two different implementations of the same domain, each one
presenting pros and cons depending on the application. It is
currently used by the ConcurInterproc interprocedural and
concurrent program analyzer.

[bookmark: uid63]Figure
	2. Organisation of the Apron library	[image: IMG/bertrand2.png]

[bookmark: uid64] Section:
 Software
Prototypes

[bookmark: uid65] Logical Causality
Participants :
 Lacramioara Astefanoaei, Gregor Goessler [contact person] .

We have developed LoCa, a new prototype tool written in Scala
that implements the analysis of logical causality described
in
	6.6.2 . LoCa currently supports causality
analysis in Bip. The core analysis engine is implemented as an
abstract class, such that support for other models of computation
(MOC) can be added by instantiating the class with the basic
operations of the MOC.

[bookmark: uid66] Automatic Controller Generation
Participants :
 Emil Dumitrescu, Alain Girault [contact person] .

We have developed a software tool chain to allow the specification of
models, the controller synthesis, and the execution or simulation of
the results. It is based on existing synchronous tools, and thus
consists primarily in the use and integration of
Sigali (http://www.irisa.fr/vertecs/Logiciels/sigali.html)
and Mode Automata (http://www-verimag.imag.fr). It is
the result of a collaboration with Eric Rutten from the Sardes team.

Useful component templates and relevant properties can be
materialized, on one hand by libraries of task models, and, on the
other hand, by properties and synthesis objectives.

[bookmark: uid69] Rapture
Participant :
 Bertrand Jeannet.

Rapture (http://pop-art.inrialpes.fr/people/bjeannet/rapture/rapture.html) [78] [53]
is a verification tool that was developed jointly by BRICS (Denmark)
and Inria in years 2000–2002. The tool is designed to verify
reachability properties on Markov Decision Processes (MDP), also known
as Probabilistic Transition Systems. This model can be viewed both as
an extension to classical (finite-state) transition systems extended
with probability distributions on successor states, or as an extension
of Markov Chains with non-determinism. We have developed a simple
automata language that allows the designer to describe a set of
processes communicating over a set of channels à la
CSP. Processes can also manipulate local and global variables of
finite type. Probabilistic reachability properties are specified by
defining two sets of initial and final states together with a
probability bound. The originality of the tool is to provide two
reduction techniques that limit the state space explosion problem:
automatic abstraction and refinement algorithms, and the so-called
essential states reduction.

[bookmark: uid71] The Interproc family of static analyzers
Participants :
 Bertrand Jeannet [contact person] , Pascal Sotin.

These analyzers and libraries are of general use for people
working in the static analysis and abstract interpretation
community, and serve as an experimental platform for the ANR
project ASOPT (see §
	8.1.2).

	Fixpoint (http://http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/fixpoint):

	a generic fix-point engine written in Ocaml. It allows the user to
solve systems of fix-point equations on a lattice, using a
parameterized strategy for the iteration order and the application
of widening. It also implements recent techniques for improving the
precision of analysis by alternating post-fixpoint computation with
widening and descending iterations in a sound way
[70] .

	Interproc (http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc):

	a simple interprocedural static analyzer that infers properties on
the numerical variables of programs in a toy language. It is aimed
at demonstrating the use of the previous library and the
above-described Apron library, and more generally at disseminating
the knowledge in abstract interpretation. It is also deployed
through a
web-interface (http://pop-art.inrialpes.fr/interproc/interprocweb.cgi). It
is used as the experimental platform of the Asopt ANR project.

	ConcurInterproc

	extends Interproc with concurrency, for the
analysis of multithreaded programs interacting via shared global
variables. It is also deployed through a
web-interface (http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi).

	PInterproc

	extends Interproc with pointers to local variables. It is also deployed through a
web-interface (http://pop-art.inrialpes.fr/interproc/pinterprocweb.cgi).

[bookmark: uid81] Heptagon/BZR
Participant :
 Gwenaël Delaval.

Heptagon is a dataflow synchronous language, inspired from
Lucid
Synchrone (http://www.di.ens.fr/~pouzet/lucid-synchrone). Its
compiler is meant to be simple and modular, allowing this language to
be a good support for the prototyping of compilation methods of
synchronous languages. It is developped within the Synchronics Inria large-scale action.

Heptagon has been used to built
BZR (http://bzr.inria.fr), which is an extension of the
former with contracts constructs. These contracts allow to express
dynamic temporal properties on the inputs and outputs of Heptagon node. These properties are then enforced, within the compilation of a
BZR program, by discrete controller synthesis, using the Sigali tool (http://www.irisa.fr/vertecs/Logiciels/sigali.html). The
synthesized controller is itself generated in Heptagon, allowing its
analysis and compilation towards different target languages (C, Java,
VHDL).

 New Results

 	New Results	[bookmark: uid86]Dependable Distributed
Real-time Embedded Systems
	[bookmark: uid94]Controller Synthesis for the Safe
Design of Embedded Systems
	[bookmark: uid98]Automatic Distribution of
Synchronous Programs
	[bookmark: uid101]New Programming Languages for
Embedded Systems
	[bookmark: uid106]Static Analysis and
Abstract Interpretation
	[bookmark: uid115]Component-Based Construction
	[bookmark: uid120]Aspect-Oriented Programming

 [bookmark: uid86] Section:
 New Results
Dependable Distributed
Real-time Embedded Systems
Participants :
 Pascal Fradet, Alain Girault [contact person] , Emil Dumitrescu.

[bookmark: uid87] The TSH multi-criteria scheduling heuristic

For autonomous critical real-time embedded systems (e.g., satellite),
guaranteeing a very high level of reliability is as important as
keeping the power consumption as low as possible. We have designed an
off-line scheduling heuristics which, from a given software
application graph and a given multiprocessor architecture (homogeneous
and fully connected), produces a static multiprocessor schedule that
optimizes three criteria: its length (crucial for real-time
systems), its reliability (crucial for dependable systems), and
its power consumption (crucial for autonomous systems). Our
tricriteria scheduling heuristics, TSH, uses the active
replication of the operations and the data-dependencies to increase
the reliability, and uses dynamic voltage and frequency scaling
to lower the power consumption [17] . By running TSH on a
single problem instance, we are able to provide the Pareto front
for this instance in 3D, therefore exposing the user to several
tradeoffs between the power consumption, the reliability and the
execution time. Thanks to extensive simulation results, we have shown
how TSH behaves in practice. Firstly, we have compared TSH versus an
optimal Mixed Linear Integer Program on small instances; the
experimental results show that TSH behaves very well compared to the
the ILP. Secondly, we have compared TSH versus the ECS heuristic
(Energy-Conscious Scheduling [84]); the experimental
results show that TSH performs systematically better than ECS.

This is a joint work with Ismail Assayad (U. Casablanca, Morocco) and
Hamoudi Kalla (U. Batna, Algeria), who both visit the team regularly.

[bookmark: uid88] Automating the Addition of Fault Tolerance with Discrete
Controller Synthesis

In collaboration with Emil Dumitrescu (INSA Lyon), Hervé Marchand
(Vertecs team from Rennes), and Eric Rutten (Sardes team from
Grenoble), we have defined a complete framework for the
automatic design of fault tolerant embedded systems, based on
discrete controller synthesis (DCS) [88] . Its interest
lies in the ability to obtain automatically systems satisfying by
construction formal properties specified a priori. Our aim is
to demonstrate the feasibility of this approach for fault
tolerance. We start with a fault intolerant program, modeled as the
synchronous parallel composition of finite labeled transition
systems. We specify formally a fault hypothesis, state fault tolerance
requirements and use DCS to obtain automatically a program having the
same behavior as the initial fault intolerant one in the absence of
faults, and satisfying the fault tolerance requirements under the
fault hypothesis. Our original contribution resides in the
demonstration that DCS can be elegantly used to design fault tolerant
systems, with guarantees on key properties of the obtained system,
such as the fault tolerance level, the satisfaction of quantitative
constraints, and so on. We have shown with numerous examples taken
from case studies that our method can address different kinds of
failures (crash, value, or Byzantine) affecting different kinds of
hardware components (processors, communication links, actuators, or
sensors). Besides, we have shown that our method also offers an
optimality criterion very useful to synthesize fault tolerant systems
compliant to the constraints of embedded systems, like power
consumption or execution times. In summary, our framework for fault
tolerance has the following advantages [67] :

	[bookmark: uid89] The automation, because DCS produces automatically a
fault tolerant system from an initial fault intolerant one.

	[bookmark: uid90] The separation of concerns, because the fault
intolerant system can be designed independently from the fault
tolerance requirements.

	[bookmark: uid91] The flexibility, because, once the system is entirely
modeled, it is easy to try several fault hypotheses, several
environment models, several fault tolerance goals, several degraded
modes, and so on.

	[bookmark: uid92] The safety, because, in case of positive result
obtained by DCS, the specified fault tolerance properties are
guaranteed by construction on the controlled system.

	[bookmark: uid93] The optimality when optimal synthesis is used, modulo
the potential numerical equalities (hence a non strict optimality).
We consider weights cumulated along bounded-length paths. We have
adapted our models in order to take into account the additive costs
of, e.g., execution time or power consumption, and adapting synthesis
algorithms in order to support the association of costs with
transitions, and the handling of these new cost functions in the
optimal synthesis [59] .

We therefore combine, on the one hand, guarantees on the safety of the
execution by tolerating faults, and on the other hand, guarantees on
the worst cumulated consumption of the resulting dynamically
reconfiguring fault tolerant system. Recently, we have incorporated
multi-criteria optimization results in this work, to take into account
several weight functions: for instance the execution costs of
several tasks, the execution of which must be controlled thanks to
DCS. We therefore propose several synthesis algorithms, to aggregate
the costs into a single cost function, to hierarchize the costs (e.g., to reflect the priorities of the tasks), or to compute the Pareto
front of non-dominated solutions.

[bookmark: uid94] Section:
 New Results
Controller Synthesis for the Safe
Design of Embedded Systems
Participants :
 Gwenaël Delaval [contact person] , Gregor Goessler, Sebti Mouelhi.

[bookmark: uid95] Synthesis of Switching Controllers using Approximately
Bisimilar Multiscale Abstractions

The use of discrete abstractions for continuous dynamics has become
standard in hybrid systems design (see e.g. [92] and
the references therein). The main advantage of this approach is that
it offers the possibility to leverage controller synthesis techniques
developed in the areas of supervisory control of discrete-event
systems [88] . The first attempts to compute discrete
abstractions for hybrid systems were based on traditional systems
behavioral relationships such as simulation or bisimulation, initially
proposed for discrete systems most notably in the area of formal
methods. These notions require inclusion or equivalence of observed
behaviors which is often too restrictive when dealing with systems
observed over metric spaces. For such systems, a more natural
abstraction requirement is to ask for closeness of observed
behaviors. This leads to the notions of approximate simulation and
bisimulation introduced in [63] .

These notions enabled the computation of approximately equivalent
discrete abstractions for several classes of dynamical systems,
including nonlinear control systems with or without disturbances, and
switched systems. These approaches are based on sampling of time and
space where the sampling parameters must satisfy some relation in
order to obtain abstractions of a prescribed precision. In particular,
the smaller the time sampling parameter, the finer the lattice used
for approximating the state-space; this may result in abstractions
with a very large number of states when the sampling period is small.
However, there are a number of applications where sampling has to be
fast; though this is generally necessary only on a small part of the
state-space.

In [22] we have presented a novel class of
multiscale discrete abstractions for incrementally stable switched
systems that allows us to deal with fast switching while keeping the
number of states in the abstraction at a reasonable level. We assume
that the controller of the switched system has to decide the control
input and the time period during which it will be applied before the
controller executes again. In this context, it is natural to consider
abstractions where transitions have various durations. For transitions
of longer duration, it is sufficient to consider abstract states on a
coarse lattice. For transitions of shorter duration, it becomes
necessary to use finer lattices. These finer lattices are effectively
used only on a restricted area of the state-space where the fast
switching occurs.

These abstractions allow us to use multiscale iterative approaches for
controller synthesis as follows. An initial controller is synthesized
based on the dynamics of the abstraction at the coarsest scale where
only transitions of longer duration are enabled. An analysis of this
initial controller allows us to identify regions of the state-space
where transitions of shorter duration may be useful (e.g. to improve the
performance of the controller). Then, the controller is refined by
enabling transitions of shorter duration in the identified regions. The
last two steps can be repeated until we are satisfied with the obtained
controller.

In [21] we propose a technique for the
synthesis of safety controllers for switched systems using
multi-scale abstractions. We present a synthesis algorithm that
exploits the specificities of multi-scale abstractions. The
finest scales of the abstraction are effectively explored only when
fast switching is needed, that is when the system approaches the
unsafe set. We provide experimental results that show drastic
improvements of the complexity of controller synthesis using
multi-scale abstractions instead of uniform abstractions.

[bookmark: uid96] Modular Discrete Controller Synthesis

Discrete controller synthesis (DCS) [88] allows to
design programs in a mixed imperative/declarative way. From a program
with some freedom degrees left by the programmer (e.g., free
controllable variables), and a temporal property to enforce which is
not a priori verified by the initial program, DCS tools compute
off-line automatically a controller which will constrain the
program (by e.g., giving values to controllable variables) such that,
whatever the values of inputs from the environment, the
controlled program satisfies the temporal property.

Our motivation w.r.t. DCS concerns its modular application, improving
the scalability of the technique by using contract enforcement and
abstraction of components. Moreover, our aim is to integrate DCS into
a compilation chain, and thereby improve its usability by programmers,
not experts in discrete control. This work has been implemented into
the Heptagon/BZR language and
compiler [57] . This work is done in
collaboration with Hervé Marchand (Vertecs team from Rennes) and Éric
Rutten (Sardes team from Grenoble).

The implemented tool allows the generation of the synthesized
controller under the form of an Heptagon node, which can in turn be
analyzed and compiled, together with the Heptagon source from which
it has been generated. This full integration allows this method to aim
different target languages (currently C, Java or VHDL), and its
integrated use in different contexts.

A formal semantics of BZR has been defined, taking into
account its underlying nondeterminism related to the presence of
controllable variables.

This language has been used in different contexts. In [15] ,
BZR is used for the generation of discrete handlers of real-time
continuous control tasks, in the framework of the ORCCAD (Open
Robot Controller Computer-Aided Design) tool. BZR has also been used
in a case-study of a Fractal designed HTTP
server [19] . The purpose of the synthesized controller is
to control the automatic reconfigurations of the system (e.g., start
of new components, migrations of some components from one computing
element to another), in order to preserve some properties (either
functional, e.g., exclusivity of activities of two components, or
non-functional, e.g., bounded overall load of the system).

[bookmark: uid98] Section:
 New Results
Automatic Distribution of
Synchronous Programs
Participants :
 Gwenaël Delaval [contact person] , Alain Girault, Gregor Goessler, Xavier Nicollin, Gideon Smeding.

[bookmark: uid99] Modular Distribution

Synchronous programming languages describe functionally centralized
systems, where every value, input, output, or function is always
directly available for every operation. However, most embedded systems
are nowadays composed of several computing resources. The aim of this
work is to provide a language-oriented solution to describe
functionally distributed reactive systems. This research is
conducted within the INRIA large scale action Synchronics and
is a joint work with Marc Pouzet (ENS, Parkas team from Rocquencourt)
and Xavier Nicollin (Grenoble INP, Verimag lab).

We are working on type systems to formalize, in a uniform way, both
the clock calculus and the location calculus of a synchronous
data-flow programming language (the Heptagon language, inspired from
Lucid Synchrone [45]). On one hand, the clock
calculus infers the clock of each variable in the program and checks
the clock consistency: e.g., a time-homogeneous function, like
+ , should be applied to variables with identical clocks. On
the other hand, the location calculus infers the spatial distribution
of computations and checks the spatial consistency: e.g., a
centralized operator, like + , should be applied to
variables located at the same location. Compared to the PhD
of Gwenaël Delaval [55] , [56] , the goal is to
achieve modular distribution. By modular, we mean that we want
to compile each function of the program into a single function capable
of running on any computing location. We make use of our uniform type
system to express the computing locations as first-class abstract
types, exactly like clocks, which allows us to compile a typed
variable (typed by both the clock and the location calculi) into
if ... then ... else ... structures, whose conditions will be
valuations of the clock and location variables.

We currently work on an example of software-defined radio. We have
shown on this example how to use a modified clock calculus to describe
the localisation of values as clocks, and the architecture as clocks
(for the computing resources) and their relations (for communication
links).

[bookmark: uid100] Distribution of Synchronous Programs under Real-Time
Constraints

With the objective to distribute synchronous data-flow programs (e.g.
LUSTRE) over GALS architectures, preserving only explicitly specified
properties, we have developed a quantitative clock calculus to (1)
describe timing properties of the architecture's clock domain, and (2)
describe the properties of the synchronous program to be preserved.
The clock calculus is inspired by the network
calculus [83] , with the difference that
clocks are described only with respect to one-another, not with
respect to real-time.

As a first result, we have applied our clock calculus to analyze the
properties of periodic synchronous data-flow programs executed on a
network of processors. Because our clock calculus is relational, it can
model and preserve correlated variations of streams. In particular, the
common case of a data-flow system that splits a stream for separate
treatment, and joins them afterwards, this analysis yields more precise
result than comparable methods.

We aim to extend the analysis to account for shared resources and
synchronization protocols, so as to distribute synchronous programs
preserving specified properties.

[bookmark: uid101] Section:
 New Results
New Programming Languages for
Embedded Systems
Participants :
 Alain Girault [contact person] , Pascal Fradet, Petro Poplavko, Vagelis Bebelis, Bertrand Jeannet, Peter Schrammel.

[bookmark: uid102] The DSystemJ programming language

In collaboration with Avinash Malik (IBM Watson) and Zoran Salcic
(University of Auckland), we have designed the SystemJ programming
language [9] , which implements the Globally
Asynchronous Locally Synchronous (GALS) Model of Computation (MoC)
over Java. In a nutshell, SystemJ uses the notion of clock
domains (CD) to design portions of the system that must operate at
unrelated clocks. CDs communicate with each other via asynchronous
rendez-vous. Then, a CD consists of one or several reactions,
which react synchronously in lock-step and communicate with each other
via synchronous broadcast of signals. Finally, all the data
computations are implemented in Java.

We have further extended SystemJ to allow programmers to design
dynamic GALS systems: this is the new language
DSystemJ [27] , [12] , aimed at dynamic distributed
systems that use socket based communication protocols for
communicating between components. DSystemJ allows the creation and
control at runtime of CDs, their mobility on a distributed execution
platform, as well as the runtime reconfiguration of the system’s
functionality and topology. We have defined the formal semantics of
DSystemJ, based on the Dynamic GALS MoC: it offers very safe
mechanisms for implementation of distributed systems, as well as
potential for their formal verification. The runtime support is
implemented in the SystemJ language, which can as such be considered
as a static subset of DSystemJ.

This work has been done within the Afmes associated team with the
Electric and Computer Engineering Department of the University of
Auckland.

[bookmark: uid103] The PRET-C programming language for time-predictable systems

Typical safety critical embedded applications, ranging from complex
aircraft flight controllers to embedded health devices require worst
case guarantees on their timing behavior. The problem is that
general-purpose processors, being highly speculative, are
intrinsically non-deterministic, and thus are not ideally suited for
implementing such systems: either the computed worst-case execution
time is highly pessimistic, or heroic efforts are required to
accurately model the caches, pipeline, and speculative
execution [93] . For similar reasons, using an RTOS to
guarantee the determinism of a program’s behavior, along with
temporal guarantees, is not feasible. The ability to analyze temporal
bounds is dependent on the selected programming language, compiler
tool chain, operating system, and the target hardware.

To alleviate these problems, we have defined a synchronous variant of
C called PRET-C, together with Sidharta Andalam and Partha Roop
(University of Auckland). PRET-C offers constructs for reactive
inputs/outputs; it supports a notion of logical time, synchronous
concurrency, and preemption [40] . We have also designed
the ARPRET architecture for efficient and predictable execution of
PRET-C. ARPRET inherits from the long lasting research effort on
reactive processors conducted at the University of Auckland. Finally,
all timing constraints are precisely verified using a Worst Case
Reaction Time (WCRT) analyzer. While there has been a considerable
body of work on the timing analysis of procedural
programs [93] , such analysis for synchronous programs
has received less attention. Current state-of-the-art analyses for
synchronous programs use integer linear programming (ILP) combined
with path pruning techniques to achieve tight results. These
approaches first convert a concurrent synchronous program into a
sequential program. ILP constraints are then derived from this
sequential program to compute the longest tick length. For PRET-C, we
have proposed an alternative approach based on model
checking [16] . Unlike conventional programs, synchronous
programs are concurrent and state-space oriented, making them ideal
for model checking based analysis. Our analysis of the abstracted
state-space of the program is combined with expressive data-flow
information, to facilitate effective path pruning. We have
demonstrated through extensive experimentation that the proposed
approach is both scalable and about 67% tighter compared to the
existing approaches (namely Protothreads [60] and
SC [94]).

This overall framework provides an ideal platform for designing and
verifying precision timed real-time systems. It has been conducted
within the Afmes associated team with the Electric and Computer
Engineering Department of the University of Auckland, and is the topic
of the PhD of Sidharta Andalam.

[bookmark: uid104] Analysis and Scheduling of Parametric Data-Flow Models

Recent data-flow programming environments support applications whose
behavior is characterized by dynamic variations in resource
requirements. The high expressive power of the underlying models (e.g., Kahn Process Networks, the CAL actor language) makes it challenging to
ensure predictable behavior. In particular, checking liveness
(i.e., no part of the system will deadlock) and boundedness (i.e., the system can be executed in finite memory) is known to be hard or
even undecidable for such models. This situation is troublesome for
the design of high-quality embedded systems.

We have introduced the schedulable parametric data-flow (SPDF)
model of computation (MoC) for dynamic streaming
applications [23] , [32] , [36] , [34] , [35] . SPDF
extends the standard data flow model by allowing rates to be
parametric (e.g., of the form 2xy). SPDF was designed to be
statically analyzable while retaining sufficient expressive power. We
formulated sufficient and general static criteria for boundedness and
liveness. In SPDF, parameters can be changed dynamically even within
iterations. The safety of dynamic parameter changes can be checked and
their implementation made explicit in the graph. These different
analyses are made possible using well-defined static operations on
symbolic expressions. The same holds for quasi-static scheduling which
is the first step towards code generation for multi-core systems.

We are now considering other kinds of analyses for this new data-flow MoC.
The objective of these analyses is to generate
distributed schedules optimizing both the power consumption
and the execution time of applications. The targeted hardware is
P2012, a new embedded many-core platform designed by
STMicroelectronics consisting of several clusters (9 in the current
implementation) interconnected through a
2D mesh asynchronous NoC. Each cluster comprises 16 identical
computing cores and is equipped with a hardware mechanism for DVFS
(dynamic voltage and frequency scaling). As a first step, we have
studied energy efficient scheduling of simple data-flow graphs for
that platform [81] . The next step is to extend the
approach to SPDF.

This line of research will be followed in the PhD thesis of Vagelis
Bebelis which has just started. It will be conducted in collaboration
with STMicroelectronics.

[bookmark: uid105] Translating Hybrid Data-Flow Languages to Hybrid Automata

Hybrid systems are used to model embedded computing systems
interacting with their physical environment. There is a
conceptual mismatch between high-level hybrid system languages
like Simulink, which are used for simulation, and hybrid
automata, the most suitable representation for safety
verification. Indeed, in simulation languages the interaction
between discrete and continuous execution steps is specified using
the concept of zero-crossings, whereas hybrid automata exploit the
notion of staying conditions.

In the context of the Inria large scale action Synchronics (see
§
	8.1.4), we studied how to translate the
Zelus hydrid data-flow language [43]
developped in this project into logico-numerical hybrid automata by
carefully pointing out this issue. We investigated various
zero-crossing semantics, proposed a sound translation, and
discussed to which extent the original semantics is preserved. This work
has been accepted to the conference HSCC'2012 (Hybrid Systems:
Computation and Control).

This work is part of the PhD thesis of Peter Schrammel.

[bookmark: uid106] Section:
 New Results
Static Analysis and
Abstract Interpretation
Participants :
 Alain Girault, Bertrand Jeannet [contact person] , Lies Lakhdar-Chaouch, Peter Schrammel, Pascal Sotin.

[bookmark: uid107] Numerical and logico-numerical abstract acceleration

Acceleration methods are used for computing precisely the
effects of loops in the reachability analysis of counter machine
models. Applying these methods to synchronous data-flow programs
with Boolean and numerical variables, e.g., Lustre programs, firstly requires the enumeration of the Boolean states
in order to obtain a control graph with numerical variables
only. Secondly, acceleration methods have to deal with the
non-determinism introduced by numerical input variables.

Concerning the latter problem, we pushed further the work
presented in [90] that extended the concept of abstract
acceleration of Gonnord et al. [69] , [68] to numerical
input variables, and we wrote a journal version [13] .
The original contributions of [13] compared to
[91] is abstract backward acceleration (for
backward analysis) and a detailed comparison of the abstract
acceleration approach with the derivative closure approach of
[39] , which is related to methods based on transitive
closures of relations.

We then worked more on the first point, which is to apply
acceleration techniques to data-flow programs without resorting to
an exhaustive enumeration of Boolean states. To this end, we
introduced (1) logico-numerical abstract acceleration methods
for CFGs with Boolean and numerical variables and (2) partitioning
techniques that make logical-numerical abstract acceleration
effective. Experimental results showed that incorporating these
methods in a verification tool based on abstract interpretation
provides not only significant advantage in terms of accuracy, but
also a gain in performance in comparison to standard techniques.
This work was published in [28] .

This line of work is part of the PhD thesis of Peter Schrammel.

[bookmark: uid108] Improving dynamic approximations in static analysis

Abstract interpretation [51] formalizes two kind of
approximations that can be done in the static analysis of programs:

	[bookmark: uid109] Static approximations, defined by the choice of an abstract
domain of abstract properties (for instance, intervals or convex
polyhedra that approximates set of points in numerical spaces),
and the definition of sound approximations in this domain of
concrete operations (variable assignments, tests, ...). These
abstract properties and operations are substitutes to the
concrete properties and operations defined by the semantics of
the analyzed program. This stage results into a abstract
fixpoint equation [image: Im1 ${Y=G(Y),Y\#8712 A}$], where A is the abstract
domain. The best (least) solution of this equation can be
obtained by Kleene iteration, which consists in computing
the sequence [image: Im2 ${Y_0=\#8869 _A,Y_{n+1}=G{(Y_n)}}$], where [image: Im3 $\#8869 _A$] is
the least element of the lattice A.

	[bookmark: uid110] Dynamic approximations, that makes the Kleene iteration sequence
converge in finite time by applying an extrapolation operator called
widening and denoted with [image: Im4 $\#8711 $]. This results in a
sequence [image: Im5 ${Z_0=\#8869 _A,Z_{n+1}=Z_n\#8711 G{(Z_n)}}$] that converges to a
post-fixpoint [image: Im6 ${Z_\#8734 \#8850 G{(Z_\#8734)}}$]. For instance, for
many numerical abstract domains (like octagons [86]
or convex polyhedra [75]) the “standard”
widening [image: Im7 ${\#8711 :A×A\#8594 A}$] consists in keeping in the result [image: Im8 ${R=P\#8711 Q}$]
the numerical constraints of P that are still satisfied by Q.

The problem addressed here is that the extrapolation performed by
widening often loses crucial information for the analysis goal.

[bookmark: idp13078336] Widening with thresholds.

A classical technique for improving the precision is “widening with
thresholds”, which bounds the extrapolation. The idea is to
parameterize [image: Im4 $\#8711 $] with a finite set [image: Im9 $\#119966 $] of
threshold constraints, and to keep in the result
[image: Im10 ${R=P\#8711 _\#119966 Q}$] those constraints [image: Im11 ${c\#8712 \#119966 }$] that are
still satisfied by Q: [image: Im12 ${P\#8711 _\#119966 Q={(P\#8711 Q)}\#8851 {{c\#8712 \#119966 ~|~Q\#8871 c}}}$]. In practice, one extrapolates up
to some threshold; in the next iteration, either the threshold is
still satisfied and the result is better than with the standard
widening, or it is violated and one extrapolates up to the remaining
thresholds.

The benefit of this refinement strongly depends on the choice of
relevant thresholds. In [33] , [26] we
proposed a semantic-based technique for automatically inferring
such thresholds, which applies to any control graph, be it
intraprocedural, interprocedural or concurrent, without specific
assumptions on the abstract domain. Despite its technical
simplicity, we showed that our technique is able to infer the
relevant thresholds in many practical cases.

[bookmark: idp13105504] Policy Iteration.

Another direction we investigated for solving the fix-point equation
[image: Im1 ${Y=G(Y),Y\#8712 A}$] is the use of Policy Iteration, which is a
method for the exact solving of optimization and game theory problems,
formulated as equations on min max affine expressions. In this
context, a policy π is a strategy for the min-player, which
gives rise to a simplified equation [image: Im13 ${X=F^\#960 {(X)},F^\#960 \#8805 F,X\#8712 \#8477 ^n}$] which is easier to solve that the initial equation
[image: Im14 ${X=F{(X)},X\#8712 \#8477 ^n}$]. Policy iteration iterates on
policies rather than iterating the application of F (as in Kleene
iteration), using the property that the least fixpoint of F
corresponds to the least fixpoint of Fπ for some π.

 [50] showed that the problem of finding the least
fixpoint of semantic equations on some abstract domains can be
reduced to such equations on min max affine expressions, that can
then be solved using Policy Iteration instead of the
traditional Kleene iteration with widening described above.

We first investigated the integration of the concept of Policy
Iteration in a generic way into existing numerical abstract
domains. We implemented it in the Apron library (see
module
	5.4). This allows the applicability of Policy
Iteration in static analysis to be considerably extended.

In particular we considered the verification of programs manipulating
Boolean and numerical variables, and we provided an efficient method
to integrate the concept of policy in the logico-numerical abstract
domain BddApron that mixes Boolean and numerical properties (see
module
	5.4). This enabled the application of the policy
iteration solving method to much more complex programs, that are not
purely numerical any more.
This work was published in [30] .

[bookmark: uid111] Analysis of imperative programs

We also studied the analysis of imperative programs. Even if it is
preferable to analyze embedded systems described in higher-level
languages such as synchronous languages, it is also useful to be
able to analyze C programs. Moreover, it enables a wider diffusion
of the analysis techniques developed in the team.

[bookmark: uid112] Inferring Effective Types for Static Analysis of C Programs

This work is a step in the project of connecting the C language to
our analysis tool Interproc/ConcurInterproc (see
section
	5.5.4). The starting point is the connection made
by the industrial partner EADS-IW in the context of the ANR
project ASOPT (§
	8.1.2) from a subset of the C language to
Interproc. This translation uses the Newspeak
intermediate language promoted by EADS [77] .

[bookmark: uid113]Figure
	3. Inferring finite types in C programs	

typedef struct {

 int n;

} t;

int main()

{

 t x; t* y;

 int *p,*q;

 y = alloc(t); p = &(y->n);

 y = &x; q = &(y->n);

 *p = 1; *q = 2; *p = *p < 1;

 return *p;

}

	
typedef enum {

 l0=0,l1=1,l2=2

} e;

typedef struct {

 e n;

} t;

int main()

{

 t x; t* y;

 e *p,*q;

 y = alloc(t); p = &(y->n);

 y = &x; q = &(y->n);

 *p = l1; *q = l2; *p = (*p==l0)?l1:l0;

 return *p;

}

	Initial program.	Transformed program.

The problem addressed here is that the C language does not have a
specific Boolean type: Boolean values are encoded with integers. This
is also true for enumerated types, that may be freely and silently
cast to and from integers. On the other hand, our verification tool
Interproc that infers the possible values of variables at
each program point may benefit from the information that some
integer variables are used solely as Boolean or as enumerated type
variables, or more generally as finite type variables with a small
domain. Indeed, specialized and efficient symbolic representations
such as BDDs are used for representing properties on such variables,
whereas approximated representations like intervals and octagons are
used for larger domain integers and floating-points variables.

Driven by this motivation, we proposed in [25] a static
analysis for inferring more precise types for the variables of a C
program, corresponding to their effective use. The analysis
addresses a subset of the C99 language, including pointers,
structures and dynamic allocation. The principle of the method is
very different from type inference techniques used in functional
programming languages such as ML, where the types are inferred
from the context of use. Instead, our analysis can be seen as a
simple points-to analysis, followed by a disjunction version of a
constant propagation analysis, and terminated by a program
transformation that generates a strongly typed
program. Fig. 3 illustrates this process. On this
example, we discover that the program is a finite-state one, to
which exact analysis technique can be applied.

[bookmark: uid114] Interprocedural analysis with pointers to the stack

This work addressed the problem of interprocedural analysis when
side-effect are performed on the stack containing local
variables. Indeed, in any language with procedures calls and
pointers as parameters (C, Ada) an instruction can modify memory
locations anywhere in the call-stack. The presence of such side
effects breaks most generic interprocedural analysis methods,
which assume that only the top of the stack may be modified. In
[29] we presented a method that addresses this issue, based
on the definition of an equivalent local semantics in which
writing through pointers has a local effect on the stack. Our
second contribution in this context is an adequate representation
of summary functions that models- the effect of a procedure, not
only on the values of its scalar and pointer variables, but also
on the values contained in pointed memory locations. Our
implementation in the interprocedural analyzer PInterproc
(see §
	5.5.4) results in a verification tool that infers
relational properties on the value of Boolean, numerical, and
pointer variables.

[bookmark: uid115] Section:
 New Results
Component-Based Construction
Participants :
 Lacramioara Astefanoaei, Alain Girault, Gregor Goessler [contact person] , Roopak Sinha, Gideon Smeding.

[bookmark: uid116] Incremental converter synthesis

We have proposed and implemented a formal incremental
converter-generation algorithm for system-on-chip (SoC) designs. The
approach generates a converter, if one exists, to control the
interaction between multiple intellectual property (IP) protocols with
possible control and data mismatches, and allows pre-converted systems
to be re-converted with additional IPs in the future. IP protocols are
represented using labeled transition systems (LTS), a simple but
elegant abstraction framework which can be extracted from and
converted to standard IP description languages such as VHDL. The user
can provide control properties, each stated as an LTS with accepting
states, to describe desired aspects of the converted system, including
fairness and liveness. Furthermore, data specifications can be
provided to bound data channels between interacting IPs such that they
do not over/under flow. The approach takes into account the
uncontrollable environment of a system by allowing users to identify
signals exchanged between the SoC and the environment, which the
converter can neither suppress nor generate.

Given these inputs, the conversion algorithm first computes the
reachable state-space of a maximal non-deterministic converter
that ensures (i) the satisfaction of the given data specifications and
(ii) the trace equivalence with the given control specifications, using a
greatest fix-point computation. It then checks, using the standard
algorithm for Büchi games, whether the converter can ensure the
satisfaction of the given control specifications (reachability of
accepting states) regardless of how the environment behaves. If
this is found to be true, deterministic converters can be
automatically generated from the maximal non-deterministic
converter generated during the first step. The algorithm is proven
to be sound and complete, with a polynomial complexity in the
state-space sizes of given IP protocols and specifications. It is
also shown that it can be used for incremental design of SoCs,
where IPs and specifications are added to an SoC in
steps. Incremental design allows to constrain the combinatorial
explosion of the explored state-space in each step, and also
reduces on-chip wire congestion by decentralizing the conversion
process.

A Java implementation has been created, and experimental results
show that the algorithm can handle complex IP mismatches and
specifications in medium to large AMBA based SoC systems. Future
work involves creating a library of commonly-encountered
specifications in SoC design such as sharing of control signals
between interacting IPs using buffers, signal lifespans, and the
generation of optimal converters based on quantitative criteria
such as minimal power usage.

This work has been done within the Afmes associated team with the
Electric and Computer Engineering Department of the University of
Auckland.

[bookmark: uid117] Causality Analysis in Contract Violation

Establishing liabilities in case of litigation is generally a delicate
matter. It becomes even more challenging when IT systems are involved.
Generally speaking, a party can be declared liable for a damage if a
fault can be attributed to that party and this fault has caused the
damage. The two key issues are thus to establish convincing evidence
with respect to (1) the occurrence of the fault and (2) the causality
relation between the fault and the damage. The first issue concerns
the technique used to log the relevant events of the system and to
ensure that the logs can be produced (and have some value) in
court. The second issue is especially complex when several faults are
detected in the logs and the impact of these faults on the occurrence
of the failure has to be
assessed. In [6] we have focused
on this second issue and proposed a formal framework for reasoning
about causality. A system based on this framework could be used to
provide relevant information to the expert, the judge, or the parties
themselves (in case of amicable settlement) to analyze the origin of
the failure of an IT system.

The notion of causality has been studied for a long time in computer
science, but with very different perspectives and goals. In the
distributed systems community, causality (following Lamport's seminal
paper [82]) is seen essentially as a temporal
property. In our context, the temporal ordering contributes to the
analysis, but it is obviously not sufficient to establish the logical causality required to rule on a matter of liability: the
fact that an event e1 has occurred before an event e2 does not
imply that e1 was the cause for e2 (or that e2 would not have
occurred if e1 had not occurred).

Our formal model is based on components interacting according to well
identified interaction
models [5] . Each component is
associated with an individual contract which specifies its
expected behavior. The system itself is associated with a global
contract which is assumed to be implied by the composition of the
individual contracts.

In [6] we have defined several
variants of logical causality. The first variant, necessary
causality, characterizes cases when the global contract would not
have been violated if the local contract had been fulfilled. The
second variant, sufficient causality, characterizes cases when
the global contract would have been violated even if all the other
components had fulfilled their contracts. In other words, the
violation of its contract by a single component was sufficient to
violate the global contract.

We are currently extending to framework to other models of computation
and communication, in particular, to timed automata.

[bookmark: uid118] Realizability of Choreographies for Services Interacting
Asynchronously

Choreography specification languages describe from a global point of
view interactions among a set of services in a system to be designed.
Given a choreography specification, the goal is to obtain a
distributed implementation of the choreography as a system of
communicating peers. These peers can be given as input (e.g.,
obtained using discovery techniques) or automatically generated by
projection from the choreography. Checking whether some set of peers
implements a choreography specification is called realizability. This check is in general undecidable if asynchronous
communication is considered, that is, services interact through
message buffers.

In [24] we consider conversation protocols as a
choreography specification language, and leverage a recent
decidability result [54] to
check automatically the realizability of these specifications by a set
of peers under an asynchronous communication model with a priori
unbounded buffers.

[bookmark: uid119] A Theory of Fault Recovery for Component-Based Models

In [18] we have introduced a theory
of fault recovery for component-based models. A model is specified in
terms of a set of atomic components that are incrementally composed
and synchronized by a set of glue operators. We define what it means
for such models to provide a recovery mechanism, so that the model
converges to its normal behavior in the presence of faults. We
identify corrector (atomic or composite) components whose presence in
a model is essential to guarantee recovery after the occurrence of
faults. We also formalize component based models that effectively
separate recovery from functional concerns.

[bookmark: uid120] Section:
 New Results
Aspect-Oriented Programming
Participants :
 Henri-Charles Blondeel, Pascal Fradet [contact person] , Alain Girault, Marnes Hoff.

The goal of Aspect-Oriented Programming (AOP) is to isolate aspects
(such as security, synchronization, or error handling) which cross-cut
the program basic functionality and whose implementation usually
yields tangled code. In AOP, such aspects are specified separately
and integrated into the program by an automatic transformation process
called weaving.

Although this paradigm has great practical potential, it still lacks
formalization and undisciplined uses make reasoning on programs very
difficult. Our work on AOP addresses these issues by studying
foundational issues (semantics, analysis, verification) and by
considering domain-specific aspects (availability, fault tolerance or refinement
aspects) as formal properties.

[bookmark: uid121] Aspects Preserving Properties

Aspect Oriented Programming can arbitrarily distort the semantics of
programs. In particular, weaving can invalidate crucial safety and
liveness properties of the base program.

We have identified categories of aspects that preserve some classes of
properties [10] . Our categories of aspects comprise, among
others, observers, aborters, and confiners. For example, observers do
not modify the base program's state and control-flow (e.g., persistence,
profiling, and debugging aspects).
These categories are defined formally based on a language independent
abstract semantic framework. The classes of properties are defined as
subsets of LTL for deterministic programs and CTL* for
non-deterministic ones. We have formally proved that, for any program,
the weaving of any aspect in a category preserves any property in the
related class.

In a second step, we have designed for each aspect category a
specialized aspect language which ensures that any aspect written in
that language belongs to the corresponding category. These languages
preserve the corresponding classes of properties by construction.

This work was conducted in collaboration with Rémi Douence from the
Ascola Inria team at École des Mines de Nantes.

[bookmark: uid122] Fault Tolerance Aspects

In the recent years, we have studied the implementation of specific fault tolerance
techniques in real-time embedded systems using program
transformation [1] .
We are now investigating the use of fault-tolerance
aspects in digital circuits. To this aim, we consider
program transformations for hardware description languages (HDL).
Our goal is to design an aspect language allowing users to
specify and tune a wide range of fault tolerance techniques,
while ensuring that the woven HDL program remains
synthesizable. The advantage would be to produce fault-tolerant circuits
by specifying fault-tolerant strategies
separately from the functional specifications.

We have reviewed the different fault tolerant techniques used in
integrated circuits: concurrent error detection, error detecting and
correcting codes (Hamming, Berger codes, ...), spatial and time
redundancy. We have designed a simple hardware description language
inspired from Lustre and Lucid Synchrone. It is a core functional
language manipulating synchronous boolean streams. Faults are
represented by bit flips and we take into account all fault models of
the form “at most k faults within n clock signals”. The
language semantics as well as the fault model have been formalized in
Coq. The next step is to express standard fault tolerance techniques
as program transformations and prove that they allow to tolerate all
faults of a given model.

[bookmark: uid123] Refinement Aspects

Chemical programming describes computation in terms of a chemical
solution in which molecules (representing data) interact freely
according to reaction rules (representing the program).
Solutions are represented
by multisets of elements and reactions by rewrite rules which
consume and produce new elements according to conditions.
This paradigm makes it possible to express programs without artificial
sequentiality in a very abstract way. It bridges the gap
between specification and implementation languages.

A drawback of chemical languages is that their very high-level nature usually
leads to very inefficient programs.
We have proposed a refinement oriented approach where the basic functionality
is expressed as a chemical program whereas efficiency is achieved separately by:

	[bookmark: uid124] structuring the multiset with a data type defining neighborhood relations;

	[bookmark: uid125] describing the selection of elements according to their neighborhood;

	[bookmark: uid126] specifying the evaluation strategy (i.e., the application of rules and termination).

Using these three implementation aspects (data structure, selection and strategy),
the chemical program can then be refined automatically into an efficient low-level program.
The crucial methodological advantage is that logical issues are decoupled from efficiency issues.

This research, that takes place within the AutoChem project (see Section
	8.1.1),
is done in collaboration with Jean-Louis Giavitto (Ircam, Paris).
It is the subject matter of Marnes Hoff's PhD thesis.

 Contracts and Grants with Industry

 	Contracts and Grants with Industry	[bookmark: uid128]Grants with Industry

 [bookmark: uid128] Section:
 Contracts and Grants with Industry
Grants with Industry

	[bookmark: uid129] STMicroelectronics, starting in 12/2011: CIFRE
contract for the PhD of Vagelis Bebelis.

 Partnerships and Cooperations

 	Partnerships and Cooperations	[bookmark: uid131]National Initiatives
	[bookmark: uid151]European Initiatives
	[bookmark: uid162]International Initiatives

 [bookmark: uid131] Section:
 Partnerships and Cooperations
National Initiatives

[bookmark: uid132] ANR AutoChem: Chemical Programming
Participants :
 Pascal Fradet [contact person] , Marnes Hoff.

The AutoChem project aims at investigating and exploring the use of
chemical languages (see Section
	6.7.3) to program complex
computing infrastructures such as grids and real-time deeply-embedded
systems. The consortium includes Inria Rennes – Bretagne Atlantique (Paris team, Rennes),
Inria Grenoble – Rhône-Alpes (Pop Art team, Montbonnot), IBISC (CNRS/Université d'Evry)
and CEA List (Saclay). The project started at the end of 2007
and ended in November 2011.

[bookmark: uid133] ANR Asopt: Analyse Statique et OPTimisation
Participants :
 Bertrand Jeannet [contact person, coordinator] , Lies Lakhdar-Chaouch, Pascal Sotin, Peter Schrammel.

The Asopt (Analyse Statique et OPTimisation) project [end of
2008-2011] brings together static analysis (INRIA-Pop Art, VERIMAG,
CEA LMeASI), optimisation, and control/game theory experts (CEA
LMeASI, INRIA-MAXPLUS) around some program verification problems.
Pop Art is the project coordinator.

Many abstract interpretations attempt to find “good” geometric
shapes verifying certain constraints; this not only applies to
purely numerical abstractions (for numerical program variables),
but also to abstractions of data structures (arrays and more
complex shapes). This problem can often be addressed by
optimisation techniques, opening the possibility of exploiting
advanced techniques from mathematical programming.

The purpose of Asopt is to develop new abstract domains and new
resolution techniques for embedded control programs, and in the
longer run, for numerical simulation programs.

[bookmark: uid134] ANR Vedecy: Verification and Design of Cyber-physical Systems
Participants :
 Gregor Goessler [contact person] , Bertrand Jeannet, Sebti Mouelhi.

The Vedecy project brings together hybrid systems and formal methods
experts. Three partners are involved: Laboratoire Jean Kuntzmann
(LJK), INRIA Pop Art, and VERIMAG.

Vedecy aims at pursuing fundamental research towards the development
of algorithmic approaches to the verification and design of
cyber-physical systems. Cyber-physical systems result from the
integration of computations with physical processes: embedded
computers control physical processes which in return affect
computations through feedback loops. They are ubiquitous in current
technology and their impact on lives of citizens is meant to grow in
the future (autonomous vehicles, robotic surgery, energy efficient
buildings, ...).

Cyber-physical systems applications are often safety critical and
therefore reliability is a major requirement. To provide assurance of
reliability, model based approaches and formal methods are
appealing. Models of cyber-physical systems are heterogeneous by nature:
discrete dynamic systems for computations and continuous differential
equations for physical processes. The theory of hybrid systems offers a
sound modeling framework for cyber-physical systems. The purpose of
Vedecy is to develop hybrid systems techniques for the verification and
the design of cyber-physical systems.

[bookmark: uid135] INRIA Large Scale Action Synchronics: Language
Platform for Embedded System Design
Participants :
 Gwenaël Delaval, Alain Girault [contact person, co-coordinator] , Bertrand Jeannet, Xavier Nicollin, Peter Schrammel.

The Synchronics (Language Platform for Embedded System Design)
project [mid-2008 to mid-2012] gathers 9 permanent researchers on
the topic of embedded systems design: B. Caillaud (Inria Rennes – Bretagne Atlantique), A. Cohen,
L. Mandel, and M. Pouzet (INRIA-Saclay and ENS Ulm), G. Delaval,
A. Girault, and B. Jeannet (Inria Grenoble – Rhône-Alpes), E. Jahier and P. Raymond
(VERIMAG).

Synchronics capitalizes on recent extensions of data-flow synchronous
languages, as well as relaxed forms of synchronous composition or
compilation techniques for various platform, to address two main
challenges with a language-centered approach: (i) the
co-simulation of mixed discrete-continuous specifications, and
more generally the co-simulation of programs and properties
(either discrete or continuous); (ii) the ability, inside the
programming model, to account for the architecture constraints
(execution time, memory footprint, energy, power, reliability,
etc.).

[bookmark: uid136] Collaborations inside INRIA

	[bookmark: uid137] Vertecs at Inria Rennes – Bretagne Atlantique is working with us on applications
of discrete controller synthesis, and in particular on the tool
Sigali.

	[bookmark: uid138] P. Fradet cooperates with R. Douence (Ascola, École des Mines
de Nantes) on aspect-oriented programming.

	[bookmark: uid139] A. Girault cooperates with D. Trystram (Moais, Inria Grenoble – Rhône-Alpes) on
scheduling and dependability, with E. Rutten (Sardes, Inria Grenoble – Rhône-Alpes)
and H. Marchand (Vertecs, Inria Rennes – Bretagne Atlantique) on optimal discrete controller
synthesis, and with A. Benoit, F. Dufossé and Y. Robert (Graal,
Inria Grenoble – Rhône-Alpes) on multi-criteria scheduling.

	[bookmark: uid140] G. Goessler cooperates with D. Le Métayer (Licit, Inria Grenoble – Rhône-Alpes) on
logical causality and with G. Salaün (Vasy, Inria Grenoble – Rhône-Alpes) on
realizability of choreographies with asynchronous communication.

	[bookmark: uid141] B. Jeannet cooperates with A. Miné and X. Rival
(Abstraction, Inria Paris – Rocquencourt) and X. Allamigeon (MaxPlus, Inria Saclay – Île-de-France)
on static analysis and abstract interpretation.

	[bookmark: uid142] G. Delaval cooperates with H. Marchand (Vertecs, Inria Rennes – Bretagne Atlantique) and
É. Rutten (Sardes, Inria Grenoble – Rhône-Alpes) on modular controller synthesis and
its applications.

	[bookmark: uid143] G. Delaval, A. Girault and B. Jeannet collaborate with
the Parkas team of ENS Ulm (Inria Paris – Rocquencourt) on the distribution of
higher-order synchronous data-flow programs and on static analysis
of hybrid programs.

[bookmark: uid144] Cooperations with other laboratories

	[bookmark: uid145] P. Fradet cooperates with J.-L. Giavitto (CNRS/Ircam) on refinement
of chemical programs.

	[bookmark: uid146] A. Girault collaborates with P. Roop, Z. Salcic, and S. Andalam
(University of Auckland, New Zealand) and A. Malik (IBM Watson, USA)
in the context of the Afmes associated team, with H. Kalla (University of
Batna, Algeria) and I. Assayad (University of Casablanca, Morocco)
on multicriteria scheduling.

	[bookmark: uid147] G. Goessler collaborates with A. Girard (LJK, Grenoble) on
multi-scale controller synthesis, with J. Sifakis (EPFL) on
distribution under real-time constraints, with J.-B. Raclet (IRIT,
Toulouse) on modal contracts, with I. Lee and O. Sokolsky (U. of
Pennsylvania) on causality analysis for medical devices, and with
M. Bozga (Verimag) and B. Bonakdarpour (U. of Waterloo, Canada) on
fault tolerance in component-based systems.

	[bookmark: uid148] A. Girault and G. Goessler collaborate with P. Roop (University
of Auckland, New Zealand) on incremental converter synthesis.

	[bookmark: uid149] B. Jeannet collaborates with N. Halbwachs and M. Péron
(Verimag), E. Goubault and S. Putot (CEA Saclay) on static
analysis and abstract interpretation.

	[bookmark: uid150] G. Delaval and A. Girault collaborate with X. Nicollin
(Verimag) on the automatic distribution of synchronous programs.

[bookmark: uid151] Section:
 Partnerships and Cooperations
European Initiatives

[bookmark: uid152] Collaborations in European Programs, except FP7

	[bookmark: uid153] Program: Artemisia.

	[bookmark: uid154] Project acronym: Cesar (http://www.cesarproject.eu).

	[bookmark: uid156] Project title: Cost-efficient methods and processes for safety
relevant embedded systems.

	[bookmark: uid157] Duration: January 2009 – April 2012.

	[bookmark: uid158] Partners: There are 59 partners from academia and industry (both
SMEs and large companies).

	[bookmark: uid159] Abstract:
We are particularly involved in the following sub-programs:

	SP1:

	Task Force Safety 1.5.1 (State of the art survey on safety
and diagnosability for cost-efficient safety critical emebedded
systems) and 1.5.2 (Identification of requirements for comon cross
domain core safety and diagnosability techniques and methods).

	SP2:

	Requirements Engineering, along with two other Inria teams (S4 and Triskell, from Inria Rennes). We shall work on
contracts based design for traceability.

[bookmark: uid162] Section:
 Partnerships and Cooperations
International Initiatives

[bookmark: uid163] INRIA Associate Teams

[bookmark: uid164] AFMES

	[bookmark: uid165] Title: Advanced Formal Methods for Embedded Systems.

	[bookmark: uid166] INRIA principal investigator: Alain Girault.

	[bookmark: uid167] International Partner:

	[bookmark: uid168] Institution: University of Auckland (New Zealand).

	[bookmark: uid169] Laboratory: Department of Electrical and Computer Engineering.

	[bookmark: uid170] Principal investigator: Zoran Salcic.

	[bookmark: uid171] Duration: January 2010 – December 2012.

	[bookmark: uid172] See also: http://pop-art.inrialpes.fr/~girault/Projets/Afmes/

	[bookmark: uid173] Embedded systems are characterized by several constraints, such
as determinism and bounded reaction time. Accordingly, design
methods for embedded systems should, when possible, guarantee these
properties by construction. This allows the shifting of the burden
of checking these constraints from the programmer to the design
method and the associated compilers and code generation tools. In
order to achieve this, our goal is to improve the existing design
methods in several key directions: (1) Incremental converter
synthesis. (2) Programming language for adaptive computing (SystemJ
and beyond). (3) Time predictable programming language and
execution architectures. Together, these advanced methods will
provide a higher level of safety in the design of embedded systems.

[bookmark: uid174] Visits of International Scientists

	[bookmark: uid175] Hamoudi Kalla, assistant professor at University of Batna,
Algeria, September 2011.

	[bookmark: uid176] Ismail Assayad, assistant professor at University of
Casablanca, Morocco, September 2011.

[bookmark: uid177] Internship

	[bookmark: uid178] Emmanouil Komninos, 02-07/2011, co-advised by Pascal Fradet
and Alain Girault, Power consumption optimization of data-flow
applications on many-core systems, MSc at KTH, Sweden.

 Dissemination

 	Dissemination	[bookmark: uid180]Animation of the scientific community
	[bookmark: uid186]Teaching

 [bookmark: uid180] Section:
 Dissemination
Animation of the scientific community

	Gwenaël Delaval was co-organizer of the international workshop
SYNCHRON'11 (international open workshop on Synchronous
Programming).

	P. Fradet served in the external review committee of PLDI'2011
(ACM SIGPLAN conference on Programming Language Design and
Implementation). He was examiner for the PhD of Julien
Tesson (University of Orléans).

	Alain Girault served in the programme committees of the
international conferences DATE'2011, DAC'2011, MEMOCODE'2011,
LAFT'2011, MSR'2011, and APSIPA-ASC'2011. He was referee for the PhD
of Alexandru Drobila (University of Besançon) and Mohamed Fellahi
(University of Paris Sud), and examiner for the PhD of Fanny
Duffossé (ENS Lyon).

	Gregor Goessler served in the programme committees of the
international conference DATE'2012 and of the international
workshops FOCLASA'2011 and LAFT'2011.

	Bertrand Jeannet served in the programme committee of the
international conference DATE'2012. He was examiner for the PhD of
Assalé Adjé (Ecole Polytechnique) and of Khalil Gorbhal (Ecole
Polytechnique).

[bookmark: uid186] Section:
 Dissemination
Teaching

[bookmark: uid187] Advising

	PhDs:

	

	Marnes Hoff, co-advised by P. Fradet (with J.-L. Giavitto,
Université d'Evry), since 04/2008 until 05/2011, PhD in
computer science, Grenoble University.

	Henri-Charles Blondeel, co-advised by P. Fradet and A. Girault,
until 06/2011, PhD in computer science, Grenoble University.

	Peter Schrammel, co-advised by B. Jeannet and A. Girault
since 07/2009, PhD in computer science, Grenoble University.

	Gideon Smeding, co-advised by G. Goessler and J. Sifakis
since 12/2009, PhD in computer science, Grenoble University.

	Vagelis Bebelis, co-advised by P. Fradet and A. Girault,
since 12/2011, PhD in computer science, Grenoble University.

	Masters:

	

	Emmanouil Komninos, 02-07/2011, co-advised by Pascal Fradet
and Alain Girault, Power consumption optimization of data-flow
applications on many-core systems, MSc at KTH.

[bookmark: uid196] University Teaching

Gwenaël Delaval teaches algorithmics and programming at Université
Joseph Fourier (170h in 2011–2012).

 Bibliography
[bookmark: Major]Major publications by the team in recent years
	[1][bookmark: pop_art-2011-bid86]
	T. Ayav, P. Fradet, A. Girault.
Implementing Fault-Tolerance in Real-Time Programs by Automatic Program Transformations, in: ACM Trans. Embedd. Comput. Syst., July 2008, vol. 7, no 4, p. 1–43.

 	[2][bookmark: pop_art-2011-bid93]
	S. Djoko Djoko, R. Douence, P. Fradet.
Aspects Preserving Properties, in: Proc. of the ACM SIGPLAN 2008 Symposium on Partial Evaluation and Program Manipulation (PEPM'08), San Francisco, ACM, January 2008, p. 135–145.

 	[3][bookmark: pop_art-2011-bid26]
	A. Girault, H. Kalla.
A Novel Bicriteria Scheduling Heuristics Providing a Guaranteed Global System Failure Rate, in: IEEE Trans. Dependable Secure Comput., December 2009, vol. 6, no 4, p. 241–254, Research report INRIA 6319.
http://hal.inria.fr/inria-00177117

 	[4][bookmark: pop_art-2011-bid90]
	A. Girault, É. Rutten.
Automating the Addition of Fault Tolerance with Discrete Controller Synthesis, in: Formal Methods in System Design, October 2009, vol. 35, no 2, p. 190–225.
http://www.springerlink.com/content/w726262156h4822j

 	[5][bookmark: pop_art-2011-bid14]
	G. Gössler, J. Sifakis.
Composition for Component-based Modeling, in: Science of Computer Programming, 3 2005, vol. 55, no 1–3, p. 161–183.

 	[6][bookmark: pop_art-2011-bid80]
	G. Gössler, D. Le Métayer, J.-B. Raclet.
Causality Analysis in Contract Violation, in: Runtime Verification, LNCS, Springer-Verlag, 2010, p. 270-284.

 	[7][bookmark: pop_art-2011-bid92]
	B. Jeannet, A. Loginov, T. Reps, M. Sagiv.
A Relational Approach to Interprocedural Shape Analysis, in: ACM Trans. on Programming Languages and Systems, 2010, vol. 32, no 2.
http://doi.acm.org/10.1145/1667048.1667050

 	[8][bookmark: pop_art-2011-bid91]
	T. Le Gall, B. Jeannet.
Lattice Automata: A Representation of Languages over an Infinite Alphabet, and some Applications to Verification, in: Static Analysis Symposium, SAS'07, Copenhagen (Denmark), LNCS, August 2007, vol. 4634.
http://pop-art.inrialpes.fr/people/bjeannet/publications/sas07.ps

 	[9][bookmark: pop_art-2011-bid49]
	A. Malik, Z. Salcic, P. Roop, A. Girault.
SystemJ: A GALS Language for System Level Design, in: Elsevier Computer Languages, Systems and Structures, December 2010, vol. 36, no 4, p. 317–344.

[bookmark: year]Publications of the year
Articles in International Peer-Reviewed Journal
	[10][bookmark: pop_art-2011-bid85]
	S. Djoko Djoko, R. Douence, P. Fradet.
Aspects Preserving Properties, in: Science of Computer Programming, March 2012, vol. 77, no 3, p. 393-422.
http://www.sciencedirect.com/science/article/pii/S0167642311001870

 	[11][bookmark: pop_art-2011-bid22]
	G. Gössler.
Component-Based Modeling and Reachability Analysis of Genetic Networks, in: IEEE/ACM Trans. Comput. Biology Bioinform., 2011, vol. 8, no 3, p. 672–682.

 	[12][bookmark: pop_art-2011-bid51]
	A. Malik, A. Girault, Z. Salcic.
Formal Semantics, Compilation and Execution of the GALS Programming Language DSystemJ, in: IEEE Trans. Parallel and Distributed Systems, 2012, to appear.

 	[13][bookmark: pop_art-2011-bid67]
	P. Schrammel, B. Jeannet.
Applying Abstract Acceleration to (Co-)Reachability Analysis of Reactive Programs, in: Journal of Symbolic Computation – Special issue on WING2010, 2011, to appear.

 	[14][bookmark: pop_art-2011-bid87]
	A. B. Seboui, N. B. Hadj-Alouane, G. Delaval, É. Rutten, M. M. Yeddes.
An approach for the synthesis of decentralised supervisors for distributed adaptive systems, in: International Journal of Critical Computer-Based Systems, 2011, vol. 2, no 3/4, p. 246-265.

International Peer-Reviewed Conference/Proceedings
	[15][bookmark: pop_art-2011-bid43]
	S. Aboubekr, G. Delaval, R. Pissard-Gibollet, É. Rutten, D. Simon.
Automatic Generation of Discrete Handlers of Real-Time Continuous Control Tasks, in: Proceedings of the 18th IFAC World Congress, Milano, Italy, August 2011, vol. 18.

 	[16][bookmark: pop_art-2011-bid54]
	S. Andalam, P. Roop, A. Girault.
Pruning Infeasible Paths for Tight WCRT Analysis of Synchronous Programs, in: Design Automation and Test in Europe Conference, DATE'11, Grenoble, France, April 2011.

 	[17][bookmark: pop_art-2011-bid27]
	I. Assayad, A. Girault, H. Kalla.
Tradeoff Exploration between Reliability, Power Consumption, and Execution Time, in: International Conference on Computer Safety, Reliability and Security, SAFECOMP'11, Napoli, Italy, LNCS, Springer-Verlag, September 2011, vol. 6894, p. 437–451.

 	[18][bookmark: pop_art-2011-bid84]
	B. Bonakdarpour, M. Bozga, G. Gössler.
A Theory of Fault Recovery for Component-Based Models, in: Symposium on Reliable and Distributed Systems, SRDS'11, IEEE, 2011, p. 265–270.

 	[19][bookmark: pop_art-2011-bid44]
	T. Bouhadiba, Q. Sabah, G. Delaval, É. Rutten.
Synchronous Control of Reconfiguration in Fractal Component-based Systems: a Case Study, in: Proceedings of the ninth ACM international conference on Embedded software, New York, NY, USA, EMSOFT'11, ACM, 2011, p. 309–318.
http://doi.acm.org/10.1145/2038642.2038690

 	[20][bookmark: pop_art-2011-bid89]
	F. Boyer, G. Delaval, N. de Palma, O. Gruber, É. Rutten.
Case Studies in Discrete Control of Autonomic Computing Systems, in: Proc. of the Sixth International Workshop on Feedback Control Implementation and Design in Computing Systems and Networks (FeBID 2011), Karlsruhe, Germany, June 2011.

 	[21][bookmark: pop_art-2011-bid41]
	J. Cámara, A. Girard, G. Gössler.
Safety Controller Synthesis for Switched Systems Using Multi-Scale Symbolic Models, in: CDC-ECC, 2011, to appear.

 	[22][bookmark: pop_art-2011-bid40]
	J. Cámara, A. Girard, G. Gössler.
Synthesis of switching controllers using approximately bisimilar multiscale abstractions, in: Hybrid Systems Computation and Control, HSCC'11, M. Caccamo, E. Frazzoli, R. Grosu (editors), ACM, 2011, p. 191–200.

 	[23][bookmark: pop_art-2011-bid57]
	P. Fradet, A. Girault, P. Poplavko.
SPDF: A Schedulable Parametric DataFlow MoC, in: Proc. Design, Automation and Test in Europe Conference and Exhibition (DATE'12), March 2012, to appear.

 	[24][bookmark: pop_art-2011-bid82]
	G. Gössler, G. Salaün.
Realizability of Choreographies for Services Interacting Asynchronously, in: Formal Aspects of Computer Software, FACS'11, LNCS, Springer, 2012, to appear.

 	[25][bookmark: pop_art-2011-bid78]
	B. Jeannet, P. Sotin.
Inferring Effective Types for Static Analysis of C Programs, in: Int. Workshop on Numerical and Symbolic Abstract Domains, NSAD'11, Venice (Italy), ENTCS, 2011, to appear.

 	[26][bookmark: pop_art-2011-bid74]
	L. Lakhdar-Chaouch, B. Jeannet, A. Girault.
Widening with Thresholds for Programs with Complex Control Graphs, in: Automated Technology for Verification and Analysis, ATVA'11, Taipei (Taiwan), LNCS, 2011, vol. 6996, p. 492–502.

 	[27][bookmark: pop_art-2011-bid50]
	A. Malik, A. Girault, Z. Salcic.
A GALS Language for Dynamic Distributed and Reactive Programs, in: International Conference on Application of Concurrency to System Design, ACSD'11, Newcastle, UK, IEEE, June 2011.

 	[28][bookmark: pop_art-2011-bid70]
	P. Schrammel, B. Jeannet.
Logico-Numerical Abstract Acceleration and Application to the Verification of Data-Flow Programs, in: Static Analysis Symposium, SAS'11, Venice (Italy), LNCS, 2011, vol. 6887, p. 233–248.

 	[29][bookmark: pop_art-2011-bid79]
	P. Sotin, B. Jeannet.
Precise Interprocedural Analysis in the Presence of Pointers to the Stack, in: European Symposium on Programming, ESOP'11, Sarrebrück, LNCS, 2011, vol. 6602, p. 459–479.

 	[30][bookmark: pop_art-2011-bid76]
	P. Sotin, B. Jeannet, F. Védrine, É. Goubault.
Policy Iteration within Logico-Numerical Abstract Domains, in: Automated Technology for Verification and Analysis, ATVA'11, LNCS, 2011, vol. 6996, p. 290–305.

National Peer-Reviewed Conference/Proceedings
	[31][bookmark: pop_art-2011-bid88]
	G. Delaval, É. Rutten, H. Marchand.
Intégration de la synthèse de contrôleurs discrets dans un langage de programmation, in: Actes du 8ème Colloque Francophone sur la Modélisation des Systèmes Réactifs (MSR 2011), Lille, France, November 2011, p. 125–140.

Internal Reports
	[32][bookmark: pop_art-2011-bid58]
	P. Fradet, A. Girault, P. Poplavko.
SPDF: A Schedulable Parametric Dataflow Graph Model (extended version), INRIA, December 2011, no 7828.

 	[33][bookmark: pop_art-2011-bid73]
	L. Lakhdar-Chaouch, B. Jeannet, A. Girault.
Widening with Thresholds for Programs with Complex Control Graphs, INRIA, July 2011, no RR-7673.
http://hal.inria.fr/inria-00606961/en/

Other Publications
	[34][bookmark: pop_art-2011-bid60]
	P. Fradet, A. Girault, P. Poplavko.
A Statically Analyzable Dataflow Model for Dynamic Streaming, in: 5th Workshop on Mapping of Applications to MPSoCs, 2011, one-page abstract.

 	[35][bookmark: pop_art-2011-bid61]
	P. Fradet, A. Girault, P. Poplavko.
A Statically Analyzable Dataflow Model for Dynamic Streaming, in: Platform 2012 Developers' Conference, 2011, one-page abstract.

 	[36][bookmark: pop_art-2011-bid59]
	P. Fradet, A. Girault, P. Poplavko, A.-E. Ozcan.
A Dataflow Model for Interactive Data-dependent Streaming Applications, in: Workshop on Designing for Embedded Parallel Computing Platforms: Architectures, Design Tools, and Applications, 2011, poster.

[bookmark: References]References in notes
	[37][bookmark: pop_art-2011-bid13]
	Norme Internationale – Automates programmables : Langages de programmation, CEI (Commission Électrotechnique Internationale), 1993.

 	[38][bookmark: pop_art-2011-bid30]
	X. Allamigeon, S. Gaubert, É. Goubault.
Inferring Min and Max Invariants Using Max-Plus Polyhedra, in: Static Analysis Symposium, SAS'08, LNCS, 2008, vol. 5079, p. 189–204.

 	[39][bookmark: pop_art-2011-bid69]
	C. Ancourt, F. Coelho, F. Irigoin.
A Modular Static Analysis Approach to Affine Loop Invariants Detection, in: Numerical and Symbolic Abstract Domains, ENTCS, Elsevier, 2010, vol. 267, p. 3–16.

 	[40][bookmark: pop_art-2011-bid53]
	S. Andalam, P. Roop, A. Girault.
Predictable Multithreading of Embedded Applications Using PRET-C, in: International Conference on Formal Methods and Models for Codesign, MEMOCODE'10, Grenoble, France, July 2010.

 	[41][bookmark: pop_art-2011-bid0]
	A. Arnold.
Systèmes de transitions finis et sémantique des processus communicants, Masson, 1992.

 	[42][bookmark: pop_art-2011-bid6]
	E. Asarin, O. Bournez, T. Dang, O. Maler, A. Pnueli.
Effective Synthesis of Switching Controllers for Linear Systems, in: Proceedings of the IEEE, 2000, vol. 88, no 7, p. 1011–1025.

 	[43][bookmark: pop_art-2011-bid63]
	A. Benveniste, T. Bourke, B. Caillaud, M. Pouzet.
Divide and recycle: types and compilation for a hybrid synchronous language, in: LCTES, ACM, 2011, p. 61-70.

 	[44][bookmark: pop_art-2011-bid7]
	R. Bryant.
Graph-based algorithms for boolean function manipulation, in: IEEE Trans. on Computers, 1986, vol. C-35, no 8, p. 677–692.

 	[45][bookmark: pop_art-2011-bid45]
	P. Caspi, M. Pouzet.
Synchronous Kahn Networks, in: ACM SIGPLAN International Conference on Functional Programming, ICFP'96, Philadelphia (PA), USA, ACM Press, May 1996.

 	[46][bookmark: pop_art-2011-bid1]
	C. Cassandras, S. Lafortune.
Introduction to Discrete Event Systems, Kluwer, 1999.

 	[47][bookmark: pop_art-2011-bid10]
	D. Chase, M. Wegman, F. Zadeck.
Analysis of Pointers and Structures, in: Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation, ACM Press, 1990, p. 296–310.
http://doi.acm.org/10.1145/93542.93585

 	[48][bookmark: pop_art-2011-bid3]
	E. Clarke, E. Emerson, A. Sistla.
Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications, in: ACM Trans. Programming Languages and Systems, 4 1986, vol. 8, no 2, p. 244-263, Introduction of Model-checking; impartiality, justice, fairness.

 	[49][bookmark: pop_art-2011-bid18]
	D. Clarke, T. Jéron, V. Rusu, E. Zinovieva.
STG: a Symbolic Test Generation tool, in: (Tool paper) Tools and Algorithms for the Construction and Analysis of Systems (TACAS'02), LNCS, 2002, vol. 2280.

 	[50][bookmark: pop_art-2011-bid75]
	A. Costan, S. Gaubert, É. Goubault, M. Martel, S. Putot.
A Policy Iteration Algorithm for Computing Fixed Points in Static Analysis of Programs, in: Computer Aided Verification, CAV'05, LNCS, 2005, vol. 3576, p. 462–475.

 	[51][bookmark: pop_art-2011-bid8]
	P. Cousot, R. Cousot.
Abstract Interpretation and Application to Logic Programs, in: Journal of Logic Programming, 1992, vol. 13, no 2–3, p. 103–179.

 	[52][bookmark: pop_art-2011-bid9]
	P. Cousot, N. Halbwachs.
Automatic discovery of linear restraints among variables of a program, in: 5th ACM Symposium on Principles of Programming Languages, POPL'78, Tucson (Arizona), January 1978.

 	[53][bookmark: pop_art-2011-bid32]
	P. D'Argenio, B. Jeannet, H. Jensen, K. Larsen.
Reduction and Refinement Strategies for Probabilistic Analysis, in: Process Algebra and Probabilistic Methods - Performance Modelling and Verification, PAPM-PROBMIV'02, Copenhagen (Denmark), LNCS, July 2002, vol. 2399.

 	[54][bookmark: pop_art-2011-bid83]
	P. Darondeau, B. Genest, P. Thiagarajan, S. Yang.
Quasi-static scheduling of communicating tasks, in: Inf. Comput., 2010, vol. 208, no 10, p. 1154-1168.

 	[55][bookmark: pop_art-2011-bid46]
	G. Delaval.
Répartition modulaire de programmes synchrones, INPG, INRIA Grenoble Rhône-Alpes, July 2008, PhD thesis.

 	[56][bookmark: pop_art-2011-bid47]
	G. Delaval, A. Girault, M. Pouzet.
A Type System for the Automatic Distribution of Higher-order Synchronous Dataflow Programs, in: International Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES'08, Tucson (AZ), USA, ACM, June 2008, p. 101–110.
ftp://ftp.inrialpes.fr/pub/bip/pub/girault/Publications/Lctes08/main.pdf

 	[57][bookmark: pop_art-2011-bid42]
	G. Delaval, H. Marchand, É. Rutten.
Contracts for Modular Discrete Controller Synthesis, in: ACM International Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES 2010), Stockholm, Sweden, April 2010.
http://pop-art.inrialpes.fr/people/delaval/pub/lctes2010.pdf

 	[58][bookmark: pop_art-2011-bid29]
	D. Delmas, É. Goubault, S. Putot, J. Souyris, K. Tekkal, F. Védrine.
Towards an Industrial Use of FLUCTUAT on Safety-Critical Avionics Software, in: Formal Methods for Industrial Critical Systems, FMICS'09, LNCS, 2009, vol. 5825.

 	[59][bookmark: pop_art-2011-bid37]
	E. Dumitrescu, A. Girault, H. Marchand, É. Rutten.
Multicriteria Optimal Reconfiguration of Fault-Tolerant Real-Time Tasks, in: Workshop on Discrete Event Systems, WODES'10, Berling, Germany, IFAC, New-York, September 2010.

 	[60][bookmark: pop_art-2011-bid55]
	A. Dunkels, O. Schmidt, T. Voigt, M. Ali.
Protothreads: Simplifying Event-Driven Programming of Memory-Constrained Embedded Systems, in: Conference on Embedded Networked Sensor Systems, SenSys'06, Boulder (CO), USA, ACM, November 2006.

 	[61][bookmark: pop_art-2011-bid17]
	F. Gaucher, E. Jahier, B. Jeannet, F. Maraninchi.
Automatic State Reaching for Debugging Reactive Programs, in: 5th Int. Workshop on Automated and Algorithmic Debugging, AADEBUG'03, September 2003.

 	[62][bookmark: pop_art-2011-bid28]
	K. Ghorbal, É. Goubault, S. Putot.
The Zonotope Abstract Domain Taylor1+, in: Computer Aided Verification, CAV'09, LNCS, 2009, vol. 5643.

 	[63][bookmark: pop_art-2011-bid39]
	A. Girard, G. Pappas.
Approximation metrics for discrete and continuous systems, in: IEEE Trans. on Automatic Control, 2007, vol. 52, no 5, p. 782–798.

 	[64][bookmark: pop_art-2011-bid23]
	A. Girault.
System-Level Design of Fault-Tolerant Embedded Systems, October 2006, vol. 67.

 	[65][bookmark: pop_art-2011-bid24]
	A. Girault, H. Kalla, M. Sighireanu, Y. Sorel.
An Algorithm for Automatically Obtaining Distributed and Fault-Tolerant Static Schedules, in: International Conference on Dependable Systems and Networks, DSN'03, San-Francisco (CA), USA, IEEE, June 2003.

 	[66][bookmark: pop_art-2011-bid25]
	A. Girault, H. Kalla, Y. Sorel.
Transient Processor/Bus Fault Tolerance for Embedded Systems, in: IFIP Working Conference on Distributed and Parallel Embedded Systems, DIPES'06, Braga, Portugal, Springer, October 2006, p. 135–144.

 	[67][bookmark: pop_art-2011-bid36]
	A. Girault, É. Rutten.
Automating the Addition of Fault Tolerance with Discrete Controller Synthesis, in: Formal Methods in System Design, October 2009, vol. 35, no 2, p. 190–225.
http://www.springerlink.com/content/w726262156h4822j

 	[68][bookmark: pop_art-2011-bid66]
	L. Gonnord.
Accélération abstraite pour l'amélioration de la précision en Analyse des Relations Linéaires, Université Joseph Fourier, Grenoble, October 2007.

 	[69][bookmark: pop_art-2011-bid65]
	L. Gonnord, N. Halbwachs.
Combining widening and acceleration in linear relation analysis, in: Static Analysis Symposium (SAS), Seoul, Korea, Aug 2006, p. 144–160.

 	[70][bookmark: pop_art-2011-bid33]
	D. Gopan, T. Reps.
Guided Static Analysis, in: Static Analysis Symposium, SAS'07, LNCS, August 2007, vol. 4634, p. 349–365.
http://dx.doi.org/10.1007/978-3-540-74061-2_22

 	[71][bookmark: pop_art-2011-bid21]
	G. Gössler.
Component-based Design of Heterogeneous Reactive Systems in Prometheus, INRIA, 2006, no 6057.

 	[72][bookmark: pop_art-2011-bid20]
	G. Gössler, J. Sifakis.
Priority Systems, in: Proc. FMCO'03, F. de Boer, M. Bonsangue, S. Graf, W.-P. de Roever (editors), LNCS, Springer-Verlag, 2004, vol. 3188, p. 314-329.

 	[73][bookmark: pop_art-2011-bid11]
	N. Halbwachs.
Synchronous Programming of Reactive Systems, Kluwer, 1993.

 	[74][bookmark: pop_art-2011-bid12]
	N. Halbwachs.
Synchronous Programming of Reactive Systems – a Tutorial and Commented Bibliography, in: Proc. of the Int. Conf. on Computer-Aided Verification, CAV'98, Vancouver, Canada, Springer-Verlag, 1998, LNCS Vol. 1427.

 	[75][bookmark: pop_art-2011-bid72]
	N. Halbwachs, Y. Proy, P. Roumanoff.
Verification of real-time systems using linear relation analysis, in: Formal Methods in System Design, August 1997, vol. 11, no 2.

 	[76][bookmark: pop_art-2011-bid15]
	T. Henzinger, P. Ho, H. Wong-Toï.
HyTech: The Next Generation, in: RTSS'95, 1995.

 	[77][bookmark: pop_art-2011-bid77]
	C. Hymans, O. Levillain.
Newspeak, Doubleplussimple Minilang for Goodthinkful Static Analysis of C, EADS, 2008.
http://penjili.org

 	[78][bookmark: pop_art-2011-bid31]
	B. Jeannet, P. D'Argenio, K. Larsen.
RAPTURE: A tool for verifying Markov Decision Processes, in: Tools Day, International Conference on Concurrency Theory, CONCUR'02, Brno (Czech Republic), August 2002, Technical Report, Faculty of Informatics at Masaryk University Brno.

 	[79][bookmark: pop_art-2011-bid16]
	B. Jeannet.
Dynamic Partitioning in Linear Relation Analysis. Application To The Verification Of Reactive Systems, in: Formal Methods in System Design, July 2003, vol. 23, no 1, p. 5–37.

 	[80][bookmark: pop_art-2011-bid19]
	B. Jeannet, T. Jéron, V. Rusu, E. Zinovieva.
Symbolic Test Selection based on Approximate Analysis, in: 11th Int. Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'05), Edinburgh (UK), LNCS, April 2005, vol. 3440.

 	[81][bookmark: pop_art-2011-bid62]
	E. Komninos.
Power consumption optimization of data-flow applications on many-core systems, KTH, August 2011.

 	[82][bookmark: pop_art-2011-bid81]
	L. Lamport.
Time, Clocks, and the Ordering of Events in a Distributed System, in: CACM, 1978, vol. 21, no 7, 558 565 p.

 	[83][bookmark: pop_art-2011-bid48]
	J.-Y. Le Boudec, P. Thiran.
Network Calculus: A Theory of Deterministic Queuing Systems for the Internet, Lecture Notes in Computer Science, Springer, 2001, vol. 2050.

 	[84][bookmark: pop_art-2011-bid34]
	Y. Lee, A. Zomaya.
Minimizing Energy Consumption for Precedence-Constrained Applications Using Dynamic Voltage Scaling, in: IEEE/ACM International Symposium on Cluster Computing and the Grid, SCCG'09, 2009.

 	[85][bookmark: pop_art-2011-bid5]
	O. Maler, A. Pnueli, J. Sifakis.
On the Synthesis of Discrete Controllers for Timed Systems, in: Proc. of STACS'95, LNCS, Springer Verlag, 1995, vol. 900.

 	[86][bookmark: pop_art-2011-bid71]
	A. Miné.
The Octagon Abstract Domain, in: Higher-Order and Symbolic Computation, 2006, vol. 19.
http://www.di.ens.fr/~mine/publi/article-mine-HOSC06.pdf

 	[87][bookmark: pop_art-2011-bid2]
	J.-P. Queille, J. Sifakis.
Specification and Verification of Concurrent Systems in CESAR, in: Proc. International Symposium on Programming, LNCS, Springer-Verlag, 1982, vol. 137, p. 337–351.

 	[88][bookmark: pop_art-2011-bid35]
	P. Ramadge, W. Wonham.
Supervisory Control of a Class of Discrete Event Processes, in: SIAM Journal on control and optimization, January 1987, vol. 25, no 1, p. 206–230.

 	[89][bookmark: pop_art-2011-bid4]
	P. Ramadge, W. Wonham.
The Control of Discrete Event Systems, in: Proceedings of the IEEE, 1989, vol. 77, no 1.

 	[90][bookmark: pop_art-2011-bid64]
	P. Schrammel, B. Jeannet.
Extending Abstract Acceleration to Data-Flow Programs with Numerical Inputs, in: ENTCS, 2010, vol. 267, no 1, p. 101–114.

 	[91][bookmark: pop_art-2011-bid68]
	P. Schrammel, B. Jeannet.
Extending Abstract Acceleration to Data-Flow Programs with Numerical Inputs, in: ENTCS, 2010, vol. 267, no 1, p. 101–114.

 	[92][bookmark: pop_art-2011-bid38]
	P. Tabuada.
Verification and Control of Hybrid Systems - A Symbolic Approach, Springer, 2009.

 	[93][bookmark: pop_art-2011-bid52]
	R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. P. Puschner, J. Staschulat, P. Stenström.
The Determination of Worst-Case Execution Times — Overview of the Methods and Survey of Tools, in: ACM Trans. Embedd. Comput. Syst., April 2008, vol. 7, no 3.

 	[94][bookmark: pop_art-2011-bid56]
	R. von Hanxleden.
SyncCharts in C – A Proposal for Light-Weight Deterministic Concurrency, in: International Conference on Embedded Software, EMSOFT'09, Grenoble, France, October 2009.

OEBPS/uid184.xhtml
[bookmark: uid184] Section:
 Dissemination

Animation of the scientific community

		Gwenaël Delaval was co-organizer of the international workshop
SYNCHRON'11 (international open workshop on Synchronous
Programming).

		P. Fradet served in the external review committee of PLDI'2011
(ACM SIGPLAN conference on Programming Language Design and
Implementation). He was examiner for the PhD of Julien
Tesson (University of Orléans).

		Alain Girault served in the programme committees of the
international conferences DATE'2011, DAC'2011, MEMOCODE'2011,
LAFT'2011, MSR'2011, and APSIPA-ASC'2011. He was referee for the PhD
of Alexandru Drobila (University of Besançon) and Mohamed Fellahi
(University of Paris Sud), and examiner for the PhD of Fanny
Duffossé (ENS Lyon).

		Gregor Goessler served in the programme committees of the
international conference DATE'2012 and of the international
workshops FOCLASA'2011 and LAFT'2011.

		Bertrand Jeannet served in the programme committee of the
international conference DATE'2012. He was examiner for the PhD of
Assalé Adjé (Ecole Polytechnique) and of Khalil Gorbhal (Ecole
Polytechnique).

OEBPS/uid33.xhtml
[bookmark: uid33] Section:
 Scientific Foundations

Main Research Directions

The overall consistency of our approach comes from the fact that the
main research directions address, under different aspects, the
specification and generation of safe real-time control executives
based on formal models.

We explore this field by linking, on the one hand, the techniques we
use, with on the other hand, the functionalities we want to offer. We are
interested in questions related to:

		Component-Based Design.

		We investigate two main directions:
(i) compositional analysis and design techniques;
(ii) adapter synthesis and converter verification.

		Programming for embedded systems.

		Programming for embedded
real-time systems is considered within Pop Art along three axes:
(i) synchronous programming languages,
(ii) aspect-oriented programming,
(iii) static analysis (type systems, abstract interpretation, ...).

		Dependable embedded systems.

		Here we address the following
research axes:
(i) static multiprocessor scheduling for fault-tolerance,
(ii) multi-criteria scheduling for reliability,
(iii) automatic program transformations,
(iv) formal methods for fault-tolerant real-time systems.

The creation of easily usable models aims at giving the user the
role rather of a pilot than of a mechanics i.e., to offer her/him
pre-defined functionalities which respond to concrete demands, for
example in the generation of fault tolerant or distributed executives,
by the intermediary use of dedicated environments and languages.

The proposal of validated models with respect to their faithful
representation of the application domain is done through case studies
in collaboration with our partners, where the typical
multidisciplinarity of questions across control theory and computer
science is exploited.

[bookmark: uid37] Component-Based Design

Component-based construction techniques are crucial to overcome the
complexity of embedded systems design. However, two major obstacles
need to be addressed: the heterogeneous nature of the models, and the
lack of results to guarantee correction of the composed system.

The heterogeneity of embedded systems comes from the need to integrate
components using different models of computation, communication, and
execution, at different levels of abstraction and different time
scales. The BIP component framework [5] has
been designed, in cooperation with Verimag, to support this
heterogeneous nature of embedded systems.

Our work focuses on the underlying analysis and construction
algorithms, in particular compositional techniques and approaches
ensuring correctness by construction (adapter synthesis, strategy
mapping). This work is motivated by the strong need for formal,
heterogeneous component frameworks in embedded systems design.

[bookmark: uid38] Programming for Embedded Systems

Programming for embedded real-time systems is considered along three
directions:
(i) synchronous programming languages to implement real-time
systems;
(ii) aspect-oriented programming to specify non-functional properties
separately from the base program;
(iii) abstract interpretation to ensure safety properties of programs
at compile time.
We advocate the need for well defined programming languages to design
embedded real-time systems with correct-by-construction guarantees,
such as bounded time and bounded memory execution. Our original
contribution resides in programming languages inheriting features from
both synchronous languages and functional languages. We contribute to
the compiler of the Heptagon language (whose main inventor is Marc
Pouzet, ENS Uml, Parkas team), the key features of which are:
data-flow formal synchronous semantics, strong typing, modular
compilation. In particular, we are working on type systems for the
clock calculus and the spatial modular distribution.

The goal of Aspect-Oriented Programming (AOP) is to isolate aspects
(such as security, synchronization, or error handling) that cross-cut
the program basic functionality and whose implementation usually
yields tangled code. In AOP, such aspects are specified separately
and integrated into the program by an automatic transformation process
called weaving.
Although this paradigm has great practical potential, it still
lacks formalization, and undisciplined uses make reasoning on programs
very difficult. Our work on AOP addresses these issues by studying
foundational issues of AOP (semantics, analysis, verification) and by
considering domain-specific aspects (availability or fault tolerance
aspects) as formal properties.

Finally, the aim of the verification activity in Pop Art is to check
safety properties on programs, with emphasis on the analysis of the
values of data variables (numerical variables, memory heap), mainly in
the context of embedded and control-command systems that exibit
concurrency features.
The applications are not only the proof of functional properties on
programs, but also test selection and generation, program
transformation, controller synthesis, and fault-tolerance.
Our approach is based on abstract interpretation, which consists in
inferring properties of the program by solving semantic equations on
abstract domains. Much effort is spent on implementing developed
techniques in tools for experimentation and diffusion.

[bookmark: uid39] Dependable Embedded Systems

Embedded systems must often satisfy safety critical constraints. We
address this issue by providing methods and algorithms to design
embedded real-time systems with guarantees on their fault-tolerance
and/or reliability level.

A first research direction concerns static multiprocessor scheduling of an
application specification on a distributed target architecture. We
increase the fault-tolerance level of the system by replicating the
computations and the communications, and we schedule the redundant
computations according to the faults to be tolerated. We also optimize
the schedule w.r.t. several criteria, including the schedule length, the
reliability, and the power consumption.

A second research direction concerns the fault-tolerance management,
by reconfigurating the system (for instance by migrating the tasks
that were running on a processor upon the failure of this processor)
following objectives of fault-tolerance, consistent execution,
functionality fulfillment, boundedness and optimality of response
time. We base such formal methods on discrete controller synthesis.

A third research direction concerns AOP to weave fault-tolerance
aspects in programs and electronic circuits (seen as synthesizable HDL
programs) as mentioned in the previous section.

OEBPS/uid133.xhtml
[bookmark: uid133] Section:
 Contracts and Grants with Industry

National Initiatives

[bookmark: uid134] ANR AutoChem: Chemical Programming

Participants :
 Pascal Fradet [contact person] , Marnes Hoff.

The AutoChem project aims at investigating and exploring the use of
chemical languages (see Section
	6.7.3) to program complex
computing infrastructures such as grids and real-time deeply-embedded
systems. The consortium includes Inria Rennes – Bretagne Atlantique (Paris team, Rennes),
Inria Grenoble – Rhône-Alpes (Pop Art team, Montbonnot), IBISC (CNRS/Université d'Evry)
and CEA List (Saclay). The project started at the end of 2007
and ended in November 2011.

[bookmark: uid135] ANR Asopt: Analyse Statique et OPTimisation

Participants :
 Bertrand Jeannet [contact person, coordinator] , Lies Lakhdar-Chaouch, Pascal Sotin, Peter Schrammel.

The Asopt (Analyse Statique et OPTimisation) project [end of
2008-2011] brings together static analysis (INRIA-Pop Art, VERIMAG,
CEA LMeASI), optimisation, and control/game theory experts (CEA
LMeASI, INRIA-MAXPLUS) around some program verification problems.
Pop Art is the project coordinator.

Many abstract interpretations attempt to find “good” geometric
shapes verifying certain constraints; this not only applies to
purely numerical abstractions (for numerical program variables),
but also to abstractions of data structures (arrays and more
complex shapes). This problem can often be addressed by
optimisation techniques, opening the possibility of exploiting
advanced techniques from mathematical programming.

The purpose of Asopt is to develop new abstract domains and new
resolution techniques for embedded control programs, and in the
longer run, for numerical simulation programs.

[bookmark: uid136] ANR Vedecy: Verification and Design of Cyber-physical Systems

Participants :
 Gregor Goessler [contact person] , Bertrand Jeannet, Sebti Mouelhi.

The Vedecy project brings together hybrid systems and formal methods
experts. Three partners are involved: Laboratoire Jean Kuntzmann
(LJK), INRIA Pop Art, and VERIMAG.

Vedecy aims at pursuing fundamental research towards the development
of algorithmic approaches to the verification and design of
cyber-physical systems. Cyber-physical systems result from the
integration of computations with physical processes: embedded
computers control physical processes which in return affect
computations through feedback loops. They are ubiquitous in current
technology and their impact on lives of citizens is meant to grow in
the future (autonomous vehicles, robotic surgery, energy efficient
buildings, ...).

Cyber-physical systems applications are often safety critical and
therefore reliability is a major requirement. To provide assurance of
reliability, model based approaches and formal methods are
appealing. Models of cyber-physical systems are heterogeneous by nature:
discrete dynamic systems for computations and continuous differential
equations for physical processes. The theory of hybrid systems offers a
sound modeling framework for cyber-physical systems. The purpose of
Vedecy is to develop hybrid systems techniques for the verification and
the design of cyber-physical systems.

[bookmark: uid137] INRIA Large Scale Action Synchronics: Language
Platform for Embedded System Design

Participants :
 Gwenaël Delaval, Alain Girault [contact person, co-coordinator] , Bertrand Jeannet, Xavier Nicollin, Peter Schrammel.

The Synchronics (Language Platform for Embedded System Design)
project [mid-2008 to mid-2012] gathers 9 permanent researchers on
the topic of embedded systems design: B. Caillaud (Inria Rennes – Bretagne Atlantique), A. Cohen,
L. Mandel, and M. Pouzet (INRIA-Saclay and ENS Ulm), G. Delaval,
A. Girault, and B. Jeannet (Inria Grenoble – Rhône-Alpes), E. Jahier and P. Raymond
(VERIMAG).

Synchronics capitalizes on recent extensions of data-flow synchronous
languages, as well as relaxed forms of synchronous composition or
compilation techniques for various platform, to address two main
challenges with a language-centered approach: (i) the
co-simulation of mixed discrete-continuous specifications, and
more generally the co-simulation of programs and properties
(either discrete or continuous); (ii) the ability, inside the
programming model, to account for the architecture constraints
(execution time, memory footprint, energy, power, reliability,
etc.).

[bookmark: uid138] Collaborations inside INRIA

		[bookmark: uid139] Vertecs at Inria Rennes – Bretagne Atlantique is working with us on applications
of discrete controller synthesis, and in particular on the tool
Sigali.

		[bookmark: uid140] P. Fradet cooperates with R. Douence (Ascola, École des Mines
de Nantes) on aspect-oriented programming.

		[bookmark: uid141] A. Girault cooperates with D. Trystram (Moais, Inria Grenoble – Rhône-Alpes) on
scheduling and dependability, with E. Rutten (Sardes, Inria Grenoble – Rhône-Alpes)
and H. Marchand (Vertecs, Inria Rennes – Bretagne Atlantique) on optimal discrete controller
synthesis, and with A. Benoit, F. Dufossé and Y. Robert (Graal,
Inria Grenoble – Rhône-Alpes) on multi-criteria scheduling.

		[bookmark: uid142] G. Goessler cooperates with D. Le Métayer (Licit, Inria Grenoble – Rhône-Alpes) on
logical causality and with G. Salaün (Vasy, Inria Grenoble – Rhône-Alpes) on
realizability of choreographies with asynchronous communication.

		[bookmark: uid143] B. Jeannet cooperates with A. Miné and X. Rival
(Abstraction, Inria Paris – Rocquencourt) and X. Allamigeon (MaxPlus, Inria Saclay – Île-de-France)
on static analysis and abstract interpretation.

		[bookmark: uid144] G. Delaval cooperates with H. Marchand (Vertecs, Inria Rennes – Bretagne Atlantique) and
É. Rutten (Sardes, Inria Grenoble – Rhône-Alpes) on modular controller synthesis and
its applications.

		[bookmark: uid145] G. Delaval, A. Girault and B. Jeannet collaborate with
the Parkas team of ENS Ulm (Inria Paris – Rocquencourt) on the distribution of
higher-order synchronous data-flow programs and on static analysis
of hybrid programs.

[bookmark: uid146] Cooperations with other laboratories

		[bookmark: uid147] P. Fradet cooperates with J.-L. Giavitto (CNRS/Ircam) on refinement
of chemical programs.

		[bookmark: uid148] A. Girault collaborates with P. Roop, Z. Salcic, and S. Andalam
(University of Auckland, New Zealand) and A. Malik (IBM Watson, USA)
in the context of the Afmes associated team, with H. Kalla (University of
Batna, Algeria) and I. Assayad (University of Casablanca, Morocco)
on multicriteria scheduling.

		[bookmark: uid149] G. Goessler collaborates with A. Girard (LJK, Grenoble) on
multi-scale controller synthesis, with J. Sifakis (EPFL) on
distribution under real-time constraints, with J.-B. Raclet (IRIT,
Toulouse) on modal contracts, with I. Lee and O. Sokolsky (U. of
Pennsylvania) on causality analysis for medical devices, and with
M. Bozga (Verimag) and B. Bonakdarpour (U. of Waterloo, Canada) on
fault tolerance in component-based systems.

		[bookmark: uid150] A. Girault and G. Goessler collaborate with P. Roop (University
of Auckland, New Zealand) on incremental converter synthesis.

		[bookmark: uid151] B. Jeannet collaborates with N. Halbwachs and M. Péron
(Verimag), E. Goubault and S. Putot (CEA Saclay) on static
analysis and abstract interpretation.

		[bookmark: uid152] G. Delaval and A. Girault collaborate with X. Nicollin
(Verimag) on the automatic distribution of synchronous programs.

OEBPS/uid153.xhtml
[bookmark: uid153] Section:
 Contracts and Grants with Industry

European Initiatives

[bookmark: uid154] Collaborations in European Programs, except FP7

		[bookmark: uid155] Program: Artemisia.

		[bookmark: uid156] Project acronym: Cesar (http://www.cesarproject.eu).

		[bookmark: uid158] Project title: Cost-efficient methods and processes for safety
relevant embedded systems.

		[bookmark: uid159] Duration: January 2009 – April 2012.

		[bookmark: uid160] Partners: There are 59 partners from academia and industry (both
SMEs and large companies).

		[bookmark: uid161] Abstract:
We are particularly involved in the following sub-programs:

		SP1:

		Task Force Safety 1.5.1 (State of the art survey on safety
and diagnosability for cost-efficient safety critical emebedded
systems) and 1.5.2 (Identification of requirements for comon cross
domain core safety and diagnosability techniques and methods).

		SP2:

		Requirements Engineering, along with two other Inria teams (S4 and Triskell, from Inria Rennes). We shall work on
contracts based design for traceability.

OEBPS/uid190.xhtml
[bookmark: uid190] Section:
 Dissemination

Teaching

[bookmark: uid191] Advising

		PhDs:

		

		Marnes Hoff, co-advised by P. Fradet (with J.-L. Giavitto,
Université d'Evry), since 04/2008 until 05/2011, PhD in
computer science, Grenoble University.

		Henri-Charles Blondeel, co-advised by P. Fradet and A. Girault,
until 06/2011, PhD in computer science, Grenoble University.

		Peter Schrammel, co-advised by B. Jeannet and A. Girault
since 07/2009, PhD in computer science, Grenoble University.

		Gideon Smeding, co-advised by G. Goessler and J. Sifakis
since 12/2009, PhD in computer science, Grenoble University.

		Vagelis Bebelis, co-advised by P. Fradet and A. Girault,
since 12/2011, PhD in computer science, Grenoble University.

		Masters:

		

		Emmanouil Komninos, 02-07/2011, co-advised by Pascal Fradet
and Alain Girault, Power consumption optimization of data-flow
applications on many-core systems, MSc at KTH.

[bookmark: uid200] University Teaching

Gwenaël Delaval teaches algorithmics and programming at Université
Joseph Fourier (170h in 2011–2012).

OEBPS/IMG/math_image_2.png

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid20.xhtml
[bookmark: uid20] Section:
 Scientific Foundations

Embedded systems and their safe design

[bookmark: uid21] Safe Design of Embedded Real-time Control Systems

The context of our work is the area of embedded real-time control
systems, at the intersection between control theory and computer
science. Our contribution consists of methods and tools for their
safe design. The systems we consider are intrinsically
safety-critical because of the interaction between the embedded,
computerized controller, and a physical process having its own
dynamics. Such systems are known under various names, notably
cyberphysical systems and embedded control
systems. What is important is to design and to analyze the safe
behavior of the whole system, which introduces an inherent
complexity. This is even more crucial in the case of systems whose
malfunction can have catastrophic consequences, for example in
transport systems (avionics, railways), production, medical, or
energy production systems.

Therefore, there is a need for methods and tools for the design of
safe systems. The definition of adequate mathematical models of the
behavior of the systems allows the definition of formal calculi. They
in turn form a basis for the construction of algorithms for the
analysis, but also for the transformation of specifications towards an
implementation. They can then be implemented in software environments
made available to the users. A necessary complement is the setting-up
of software engineering, programming, modeling, and validation
methodologies. The motivation of these problems is at the origin of
significant research activity, internationally and, in particular, in
the European IST network of excellence ArtistDesign (Advanced
Real-Time Systems).

[bookmark: uid22] Models, Methods and Techniques

The state of the art upon which we base our contributions is
twofold.

From the point of view of discrete control, there is a set of
theoretical results and tools, in particular in the synchronous
approach, often founded on finite or infinite labeled transition
systems [41] , [46] . During the
past years, methodologies for the formal
verification [87] , [48] ,
control synthesis [89] and compilation, as well as
extensions to timed and hybrid systems [85] , [42]
have been developed. Asynchronous models consider the interleaving of
events or messages, and are often applied in the field of
telecommunications, in particular for the study of protocols.

From the point of view of verification, we use the methods and tools
of symbolic model-checking and of abstract interpretation. From
symbolic model-checking, we use BDD techniques [44]
for manipulating Boolean functions and sets, and their MTBDD extension
for more general functions. Abstract
interpretation [51] is used to formalize complex
static analysis, in particular when one wants to analyze the possible
values of variables and pointers of a program. Abstract interpretation
is a theory of approximate solving of fix-point equations applied to
program analysis. Most program analysis problems, among which
reachability analysis, come down to solving a fix-point equation on
the state space of the program. The exact computation of such an
equation is generally not possible for undecidability (or complexity)
reasons. The fundamental principles of abstract interpretation are:
(i) to substitute to the state-space of the program a simpler domain
and to transpose the equation accordingly (static approximation); and
(ii) to use extrapolation (widening) to force the convergence of the
iterative computation of the fix-point in a finite number of steps
(dynamic approximation). Examples of static analyses based on abstract
interpretation are linear relation analysis [52] and
shape analysis [47] .

The synchronous
approach (http://www.synalp.org) [73] , [74]
to reactive systems design gave birth to complete programming
environments, with languages like Argos,
Lustre (http://www-verimag.imag.fr/SYNCHRONE),
Esterel (http://www.inria.fr/recherche/equipes/aoste.en.html),
Signal/
Polychrony (http://www.irisa.fr/espresso/Polychrony),
Lucid Synchrone (http://www.lri.fr/~pouzet/lucid-synchrone/),
SynDEx (http://www-rocq.inria.fr/syndex), or Mode
Automata. This approach is characterized by the fact that it considers
periodically sampled systems whose global steps can, by synchronous
composition, encompass a set of events (known as simultaneous) on the
resulting transition. Generally speaking, formal methods are often
used for analysis and verification; they are much less often
integrated into the compilation or generation of executives (in the
sense of executables of tasks combined with the host real-time
operating system). They are notoriously difficult to use by end-users,
who are usually experts in the application domain, not in formal
techniques. This is why encapsulating formal techniques into an
automated framework can dramatically improve their diffusion,
acceptance, and hence impact. Our work is precisely oriented towards
this direction.

OEBPS/IMG/math_image_1.png

OEBPS/IMG/math_image_8.png

OEBPS/uid66.xhtml
[bookmark: uid66] Section:
 Software

Prototypes

[bookmark: uid67] Logical Causality

Participants :
 Lacramioara Astefanoaei, Gregor Goessler [contact person] .

We have developed LoCa, a new prototype tool written in Scala
that implements the analysis of logical causality described
in
	6.6.2 . LoCa currently supports causality
analysis in Bip. The core analysis engine is implemented as an
abstract class, such that support for other models of computation
(MOC) can be added by instantiating the class with the basic
operations of the MOC.

[bookmark: uid68] Automatic Controller Generation

Participants :
 Emil Dumitrescu, Alain Girault [contact person] .

We have developed a software tool chain to allow the specification of
models, the controller synthesis, and the execution or simulation of
the results. It is based on existing synchronous tools, and thus
consists primarily in the use and integration of
Sigali (http://www.irisa.fr/vertecs/Logiciels/sigali.html)
and Mode Automata (http://www-verimag.imag.fr). It is
the result of a collaboration with Eric Rutten from the Sardes team.

Useful component templates and relevant properties can be
materialized, on one hand by libraries of task models, and, on the
other hand, by properties and synthesis objectives.

[bookmark: uid71] Rapture

Participant :
 Bertrand Jeannet.

Rapture (http://pop-art.inrialpes.fr/people/bjeannet/rapture/rapture.html) [78] [53]
is a verification tool that was developed jointly by BRICS (Denmark)
and Inria in years 2000–2002. The tool is designed to verify
reachability properties on Markov Decision Processes (MDP), also known
as Probabilistic Transition Systems. This model can be viewed both as
an extension to classical (finite-state) transition systems extended
with probability distributions on successor states, or as an extension
of Markov Chains with non-determinism. We have developed a simple
automata language that allows the designer to describe a set of
processes communicating over a set of channels à la
CSP. Processes can also manipulate local and global variables of
finite type. Probabilistic reachability properties are specified by
defining two sets of initial and final states together with a
probability bound. The originality of the tool is to provide two
reduction techniques that limit the state space explosion problem:
automatic abstraction and refinement algorithms, and the so-called
essential states reduction.

[bookmark: uid73] The Interproc family of static analyzers

Participants :
 Bertrand Jeannet [contact person] , Pascal Sotin.

These analyzers and libraries are of general use for people
working in the static analysis and abstract interpretation
community, and serve as an experimental platform for the ANR
project ASOPT (see §
	7.3.2).

		Fixpoint (http://http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/fixpoint):

		a generic fix-point engine written in Ocaml. It allows the user to
solve systems of fix-point equations on a lattice, using a
parameterized strategy for the iteration order and the application
of widening. It also implements recent techniques for improving the
precision of analysis by alternating post-fixpoint computation with
widening and descending iterations in a sound way
[70] .

		Interproc (http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc):

		a simple interprocedural static analyzer that infers properties on
the numerical variables of programs in a toy language. It is aimed
at demonstrating the use of the previous library and the
above-described Apron library, and more generally at disseminating
the knowledge in abstract interpretation. It is also deployed
through a
web-interface (http://pop-art.inrialpes.fr/interproc/interprocweb.cgi). It
is used as the experimental platform of the Asopt ANR project.

		ConcurInterproc

		extends Interproc with concurrency, for the
analysis of multithreaded programs interacting via shared global
variables. It is also deployed through a
web-interface (http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi).

		PInterproc

		extends Interproc with pointers to local variables. It is also deployed through a
web-interface (http://pop-art.inrialpes.fr/interproc/pinterprocweb.cgi).

[bookmark: uid83] Heptagon/BZR

Participant :
 Gwenaël Delaval.

Heptagon is a dataflow synchronous language, inspired from
Lucid
Synchrone (http://www.di.ens.fr/~pouzet/lucid-synchrone). Its
compiler is meant to be simple and modular, allowing this language to
be a good support for the prototyping of compilation methods of
synchronous languages. It is developped within the Synchronics Inria large-scale action.

Heptagon has been used to built
BZR (http://bzr.inria.fr), which is an extension of the
former with contracts constructs. These contracts allow to express
dynamic temporal properties on the inputs and outputs of Heptagon node. These properties are then enforced, within the compilation of a
BZR program, by discrete controller synthesis, using the Sigali tool (http://www.irisa.fr/vertecs/Logiciels/sigali.html). The
synthesized controller is itself generated in Heptagon, allowing its
analysis and compilation towards different target languages (C, Java,
VHDL).

OEBPS/IMG/math_image_10.png

OEBPS/IMG/math_image_7.png

OEBPS/IMG/bertrand1.png
Prosram
i
Tront-ont

¥

Semante Eaations

ya

[

[—

bl i

| AR

Soiver] = it
= i congrence

T e sty Sorme skot et Jomes o el A, il ndered

B —

OEBPS/IMG/bertrand2.png

OEBPS/IMG/math_image_9.png

OEBPS/IMG/math_image_13.png

OEBPS/IMG/math_image_4.png

OEBPS/uid108.xhtml
[bookmark: uid108] Section:
 New Results

Static Analysis and
Abstract Interpretation

Participants :
 Alain Girault, Bertrand Jeannet [contact person] , Lies Lakhdar-Chaouch, Peter Schrammel, Pascal Sotin.

[bookmark: uid109] Numerical and logico-numerical abstract acceleration

Acceleration methods are used for computing precisely the
effects of loops in the reachability analysis of counter machine
models. Applying these methods to synchronous data-flow programs
with Boolean and numerical variables, e.g., Lustre programs, firstly requires the enumeration of the Boolean states
in order to obtain a control graph with numerical variables
only. Secondly, acceleration methods have to deal with the
non-determinism introduced by numerical input variables.

Concerning the latter problem, we pushed further the work
presented in [90] that extended the concept of abstract
acceleration of Gonnord et al. [69] , [68] to numerical
input variables, and we wrote a journal version [13] .
The original contributions of [13] compared to
[91] is abstract backward acceleration (for
backward analysis) and a detailed comparison of the abstract
acceleration approach with the derivative closure approach of
[39] , which is related to methods based on transitive
closures of relations.

We then worked more on the first point, which is to apply
acceleration techniques to data-flow programs without resorting to
an exhaustive enumeration of Boolean states. To this end, we
introduced (1) logico-numerical abstract acceleration methods
for CFGs with Boolean and numerical variables and (2) partitioning
techniques that make logical-numerical abstract acceleration
effective. Experimental results showed that incorporating these
methods in a verification tool based on abstract interpretation
provides not only significant advantage in terms of accuracy, but
also a gain in performance in comparison to standard techniques.
This work was published in [28] .

This line of work is part of the PhD thesis of Peter Schrammel.

[bookmark: uid110] Improving dynamic approximations in static analysis

Abstract interpretation [51] formalizes two kind of
approximations that can be done in the static analysis of programs:

		[bookmark: uid111] Static approximations, defined by the choice of an abstract
domain of abstract properties (for instance, intervals or convex
polyhedra that approximates set of points in numerical spaces),
and the definition of sound approximations in this domain of
concrete operations (variable assignments, tests, ...). These
abstract properties and operations are substitutes to the
concrete properties and operations defined by the semantics of
the analyzed program. This stage results into a abstract
fixpoint equation Y = G(Y), Y[image: $ \in$]A, where A is the abstract
domain. The best (least) solution of this equation can be
obtained by Kleene iteration, which consists in computing
the sequence Y0 = [image: $ \bottom$]A, Yn + 1 = G(Yn), where [image: $ \bottom$]A is
the least element of the lattice A.

		[bookmark: uid112] Dynamic approximations, that makes the Kleene iteration sequence
converge in finite time by applying an extrapolation operator called
widening and denoted with [image: $ \nabla$]. This results in a
sequence Z0 = [image: $ \bottom$]A, Zn + 1 = Zn[image: $ \nabla$]G(Zn) that converges to a
post-fixpoint [image: Im1 ${Z_\#8734 \#8850 G{(Z_\#8734)}}$]. For instance, for
many numerical abstract domains (like octagons [86]
or convex polyhedra [75]) the “standard”
widening [image: $ \nabla$]:A×A[image: $ \rightarrow$]A consists in keeping in the result R = P[image: $ \nabla$]Q
the numerical constraints of P that are still satisfied by Q.

The problem addressed here is that the extrapolation performed by
widening often loses crucial information for the analysis goal.

[bookmark: idp140344654540544] Widening with thresholds.

A classical technique for improving the precision is “widening with
thresholds”, which bounds the extrapolation. The idea is to
parameterize [image: $ \nabla$] with a finite set [image: Im2 $\#119966 $] of
threshold constraints, and to keep in the result
[image: Im3 ${R=P\#8711 _\#119966 Q}$] those constraints [image: Im4 ${c\#8712 \#119966 }$] that are
still satisfied by Q: [image: Im5 ${P\#8711 _\#119966 Q={(P\#8711 Q)}\#8851 {{c\#8712 \#119966 ~|~Q\#8871 c}}}$]. In practice, one extrapolates up
to some threshold; in the next iteration, either the threshold is
still satisfied and the result is better than with the standard
widening, or it is violated and one extrapolates up to the remaining
thresholds.

The benefit of this refinement strongly depends on the choice of
relevant thresholds. In [33] , [26] we
proposed a semantic-based technique for automatically inferring
such thresholds, which applies to any control graph, be it
intraprocedural, interprocedural or concurrent, without specific
assumptions on the abstract domain. Despite its technical
simplicity, we showed that our technique is able to infer the
relevant thresholds in many practical cases.

[bookmark: idp140344654567712] Policy Iteration.

Another direction we investigated for solving the fix-point equation
Y = G(Y), Y[image: $ \in$]A is the use of Policy Iteration, which is a
method for the exact solving of optimization and game theory problems,
formulated as equations on min max affine expressions. In this
context, a policy [image: $ \pi$] is a strategy for the min-player, which
gives rise to a simplified equation [image: Im6 ${X=F^\#960 {(X)},F^\#960 \#8805 F,X\#8712 \#8477 ^n}$] which is easier to solve that the initial equation
[image: Im7 ${X=F{(X)},X\#8712 \#8477 ^n}$]. Policy iteration iterates on
policies rather than iterating the application of F (as in Kleene
iteration), using the property that the least fixpoint of F
corresponds to the least fixpoint of [image: Im8 $F^\#960 $] for some [image: $ \pi$].

 [50] showed that the problem of finding the least
fixpoint of semantic equations on some abstract domains can be
reduced to such equations on min max affine expressions, that can
then be solved using Policy Iteration instead of the
traditional Kleene iteration with widening described above.

We first investigated the integration of the concept of Policy
Iteration in a generic way into existing numerical abstract
domains. We implemented it in the Apron library (see
module
	5.4). This allows the applicability of Policy
Iteration in static analysis to be considerably extended.

In particular we considered the verification of programs manipulating
Boolean and numerical variables, and we provided an efficient method
to integrate the concept of policy in the logico-numerical abstract
domain BddApron that mixes Boolean and numerical properties (see
module
	5.4). This enabled the application of the policy
iteration solving method to much more complex programs, that are not
purely numerical any more.
This work was published in [30] .

[bookmark: uid113] Analysis of imperative programs

We also studied the analysis of imperative programs. Even if it is
preferable to analyze embedded systems described in higher-level
languages such as synchronous languages, it is also useful to be
able to analyze C programs. Moreover, it enables a wider diffusion
of the analysis techniques developed in the team.

[bookmark: uid114] Inferring Effective Types for Static Analysis of C Programs

This work is a step in the project of connecting the C language to
our analysis tool Interproc/ConcurInterproc (see
section
	5.5.4). The starting point is the connection made
by the industrial partner EADS-IW in the context of the ANR
project ASOPT (§
	7.3.2) from a subset of the C language to
Interproc. This translation uses the Newspeak
intermediate language promoted by EADS [77] .

[bookmark: uid115]Figure
	3. Inferring finite types in C programs

		

typedef struct {

 int n;

} t;

int main()

{

 t x; t* y;

 int *p,*q;

 y = alloc(t); p = &(y->n);

 y = &x; q = &(y->n);

 *p = 1; *q = 2; *p = *p < 1;

 return *p;

}

		
typedef enum {

 l0=0,l1=1,l2=2

} e;

typedef struct {

 e n;

} t;

int main()

{

 t x; t* y;

 e *p,*q;

 y = alloc(t); p = &(y->n);

 y = &x; q = &(y->n);

 *p = l1; *q = l2; *p = (*p==l0)?l1:l0;

 return *p;

}

		Initial program.		Transformed program.

The problem addressed here is that the C language does not have a
specific Boolean type: Boolean values are encoded with integers. This
is also true for enumerated types, that may be freely and silently
cast to and from integers. On the other hand, our verification tool
Interproc that infers the possible values of variables at
each program point may benefit from the information that some
integer variables are used solely as Boolean or as enumerated type
variables, or more generally as finite type variables with a small
domain. Indeed, specialized and efficient symbolic representations
such as BDDs are used for representing properties on such variables,
whereas approximated representations like intervals and octagons are
used for larger domain integers and floating-points variables.

Driven by this motivation, we proposed in [25] a static
analysis for inferring more precise types for the variables of a C
program, corresponding to their effective use. The analysis
addresses a subset of the C99 language, including pointers,
structures and dynamic allocation. The principle of the method is
very different from type inference techniques used in functional
programming languages such as ML, where the types are inferred
from the context of use. Instead, our analysis can be seen as a
simple points-to analysis, followed by a disjunction version of a
constant propagation analysis, and terminated by a program
transformation that generates a strongly typed
program. Fig. 3 illustrates this process. On this
example, we discover that the program is a finite-state one, to
which exact analysis technique can be applied.

[bookmark: uid116] Interprocedural analysis with pointers to the stack

This work addressed the problem of interprocedural analysis when
side-effect are performed on the stack containing local
variables. Indeed, in any language with procedures calls and
pointers as parameters (C, Ada) an instruction can modify memory
locations anywhere in the call-stack. The presence of such side
effects breaks most generic interprocedural analysis methods,
which assume that only the top of the stack may be modified. In
[29] we presented a method that addresses this issue, based
on the definition of an equivalent local semantics in which
writing through pointers has a local effect on the stack. Our
second contribution in this context is an adequate representation
of summary functions that models- the effect of a procedure, not
only on the values of its scalar and pointer variables, but also
on the values contained in pointed memory locations. Our
implementation in the interprocedural analyzer PInterproc
(see §
	5.5.4) results in a verification tool that infers
relational properties on the value of Boolean, numerical, and
pointer variables.

OEBPS/IMG/math_image_14.png

OEBPS/IMG/math_image_3.png

OEBPS/uid29.xhtml
[bookmark: uid29] Section:
 Scientific Foundations

Issues in Design Automation for
Complex Systems

[bookmark: uid30] Hard Problems

The design of safe real-time control systems is difficult due to
various issues, among them their complexity in terms of the number of
interacting components, their parallelism, the difference of the
considered time scales (continuous or discrete), and the distance
between the various theoretical concepts and results that allow the
study of different aspects of their behaviors, and the design of
controllers.

A currently very active research direction focuses on the models and
techniques that allow the automatic use of formal methods. In the
field of verification, this concerns in particular the technique of
model checking. The verification takes place after the design phase,
and requires, in case of problematic diagnostics, expensive backtracks
on the specification. We want to provide a more constructive use of
formal models, employing them to derive correct executives by formal
computation and synthesis, integrated in a compilation process. We
therefore use models throughout the design flow from specification to
implementation, in particular by automatic generation of embeddable
executives.

[bookmark: uid31] Applicative Needs

Applicative needs initially come from the fields of safety-critical
systems (avionics, energy) and complex systems (telecommunications),
embedded in an environment with which they strongly interact
(comprising aspects of computer science and control theory). Fields
with less criticality, or which support variable degrees of quality of
service, such as in the multi-media domain, can also take advantage of
methodologies that improve the quality and reliability of software,
and reduce the costs of test and correction in the design.

Industrial acceptance, the dissemination, and the deployment of the
formal techniques inevitably depend on the usability of such
techniques by specialists in the application domain — and not in
formal techniques themselves — and also on the integration in the
whole design process, which concerns very different problems and
techniques. Application domains where the actors are ready to employ
specialists in formal methods or advanced control theory are still
uncommon. Even then, design methods based on the systematic
application of these theoretical results are not ripe. In fields like
industrial control, where the use of PLC (Programmable Logic
Controller [37]) is dominant, this question can be
decisive.

Essential elements in this direction are the proposal of realistic
formal models, validated by experiments, of the usual entities in
control theory, and functionalities (i.e., algorithms) that correspond
indeed to services useful for the designer. Take, for example, the
compilation and optimization taking into account the platforms of
execution, the possible failures, or the interactions between the defined
automatic control and its implementation. A notable example for the
existence of an industrial need is the activity of the Athys company
(now belonging to Dassault Systemes) concerning the development of a
specialized programming environment, CellControl, which integrates
synchronous tools for compilation and verification, tailored to the
application domain. In these areas, there are functionalities that
commercial tools do not have yet, and to which our results contribute.

[bookmark: uid32] Our Approach

We are proposing effective trade-offs between, on the one hand,
expressiveness and formal power, and on the other hand, usability and
automation. We focus on the area of specification and construction of
correct real-time executives for discrete and continuous control,
while keeping an interest in tackling major open problems, relating to
the deployment of formal techniques in computer science, especially at
the border with control theory. Regarding the applications, we
propose new automated functionalities, to be provided to the users in
integrated design and programming environments.

OEBPS/IMG/math_image_11.png

OEBPS/IMG/math_image_6.png

OEBPS/IMG/math_image_12.png

OEBPS/IMG/math_image_5.png

OEBPS/uid103.xhtml
[bookmark: uid103] Section:
 New Results

New Programming Languages for
Embedded Systems

Participants :
 Alain Girault [contact person] , Pascal Fradet, Petro Poplavko, Vagelis Bebelis, Bertrand Jeannet, Peter Schrammel.

[bookmark: uid104] The DSystemJ programming language

In collaboration with Avinash Malik (IBM Watson) and Zoran Salcic
(University of Auckland), we have designed the SystemJ programming
language [9] , which implements the Globally
Asynchronous Locally Synchronous (GALS) Model of Computation (MoC)
over Java. In a nutshell, SystemJ uses the notion of clock
domains (CD) to design portions of the system that must operate at
unrelated clocks. CDs communicate with each other via asynchronous
rendez-vous. Then, a CD consists of one or several reactions,
which react synchronously in lock-step and communicate with each other
via synchronous broadcast of signals. Finally, all the data
computations are implemented in Java.

We have further extended SystemJ to allow programmers to design
dynamic GALS systems: this is the new language
DSystemJ [27] , [12] , aimed at dynamic distributed
systems that use socket based communication protocols for
communicating between components. DSystemJ allows the creation and
control at runtime of CDs, their mobility on a distributed execution
platform, as well as the runtime reconfiguration of the system’s
functionality and topology. We have defined the formal semantics of
DSystemJ, based on the Dynamic GALS MoC: it offers very safe
mechanisms for implementation of distributed systems, as well as
potential for their formal verification. The runtime support is
implemented in the SystemJ language, which can as such be considered
as a static subset of DSystemJ.

This work has been done within the Afmes associated team with the
Electric and Computer Engineering Department of the University of
Auckland.

[bookmark: uid105] The PRET-C programming language for time-predictable systems

Typical safety critical embedded applications, ranging from complex
aircraft flight controllers to embedded health devices require worst
case guarantees on their timing behavior. The problem is that
general-purpose processors, being highly speculative, are
intrinsically non-deterministic, and thus are not ideally suited for
implementing such systems: either the computed worst-case execution
time is highly pessimistic, or heroic efforts are required to
accurately model the caches, pipeline, and speculative
execution [93] . For similar reasons, using an RTOS to
guarantee the determinism of a program’s behavior, along with
temporal guarantees, is not feasible. The ability to analyze temporal
bounds is dependent on the selected programming language, compiler
tool chain, operating system, and the target hardware.

To alleviate these problems, we have defined a synchronous variant of
C called PRET-C, together with Sidharta Andalam and Partha Roop
(University of Auckland). PRET-C offers constructs for reactive
inputs/outputs; it supports a notion of logical time, synchronous
concurrency, and preemption [40] . We have also designed
the ARPRET architecture for efficient and predictable execution of
PRET-C. ARPRET inherits from the long lasting research effort on
reactive processors conducted at the University of Auckland. Finally,
all timing constraints are precisely verified using a Worst Case
Reaction Time (WCRT) analyzer. While there has been a considerable
body of work on the timing analysis of procedural
programs [93] , such analysis for synchronous programs
has received less attention. Current state-of-the-art analyses for
synchronous programs use integer linear programming (ILP) combined
with path pruning techniques to achieve tight results. These
approaches first convert a concurrent synchronous program into a
sequential program. ILP constraints are then derived from this
sequential program to compute the longest tick length. For PRET-C, we
have proposed an alternative approach based on model
checking [16] . Unlike conventional programs, synchronous
programs are concurrent and state-space oriented, making them ideal
for model checking based analysis. Our analysis of the abstracted
state-space of the program is combined with expressive data-flow
information, to facilitate effective path pruning. We have
demonstrated through extensive experimentation that the proposed
approach is both scalable and about 67% tighter compared to the
existing approaches (namely Protothreads [60] and
SC [94]).

This overall framework provides an ideal platform for designing and
verifying precision timed real-time systems. It has been conducted
within the Afmes associated team with the Electric and Computer
Engineering Department of the University of Auckland, and is the topic
of the PhD of Sidharta Andalam.

[bookmark: uid106] Analysis and Scheduling of Parametric Data-Flow Models

Recent data-flow programming environments support applications whose
behavior is characterized by dynamic variations in resource
requirements. The high expressive power of the underlying models (e.g., Kahn Process Networks, the CAL actor language) makes it challenging to
ensure predictable behavior. In particular, checking liveness
(i.e., no part of the system will deadlock) and boundedness (i.e., the system can be executed in finite memory) is known to be hard or
even undecidable for such models. This situation is troublesome for
the design of high-quality embedded systems.

We have introduced the schedulable parametric data-flow (SPDF)
model of computation (MoC) for dynamic streaming
applications [23] , [32] , [36] , [34] , [35] . SPDF
extends the standard data flow model by allowing rates to be
parametric (e.g., of the form 2xy). SPDF was designed to be
statically analyzable while retaining sufficient expressive power. We
formulated sufficient and general static criteria for boundedness and
liveness. In SPDF, parameters can be changed dynamically even within
iterations. The safety of dynamic parameter changes can be checked and
their implementation made explicit in the graph. These different
analyses are made possible using well-defined static operations on
symbolic expressions. The same holds for quasi-static scheduling which
is the first step towards code generation for multi-core systems.

We are now considering other kinds of analyses for this new data-flow MoC.
The objective of these analyses is to generate
distributed schedules optimizing both the power consumption
and the execution time of applications. The targeted hardware is
P2012, a new embedded many-core platform designed by
STMicroelectronics consisting of several clusters (9 in the current
implementation) interconnected through a
2D mesh asynchronous NoC. Each cluster comprises 16 identical
computing cores and is equipped with a hardware mechanism for DVFS
(dynamic voltage and frequency scaling). As a first step, we have
studied energy efficient scheduling of simple data-flow graphs for
that platform [81] . The next step is to extend the
approach to SPDF.

This line of research will be followed in the PhD thesis of Vagelis
Bebelis which has just started. It will be conducted in collaboration
with STMicroelectronics.

[bookmark: uid107] Translating Hybrid Data-Flow Languages to Hybrid Automata

Hybrid systems are used to model embedded computing systems
interacting with their physical environment. There is a
conceptual mismatch between high-level hybrid system languages
like Simulink, which are used for simulation, and hybrid
automata, the most suitable representation for safety
verification. Indeed, in simulation languages the interaction
between discrete and continuous execution steps is specified using
the concept of zero-crossings, whereas hybrid automata exploit the
notion of staying conditions.

In the context of the Inria large scale action Synchronics (see
§
	7.3.4), we studied how to translate the
Zelus hydrid data-flow language [43]
developped in this project into logico-numerical hybrid automata by
carefully pointing out this issue. We investigated various
zero-crossing semantics, proposed a sound translation, and
discussed to which extent the original semantics is preserved. This work
has been accepted to the conference HSCC'2012 (Hybrid Systems:
Computation and Control).

This work is part of the PhD thesis of Peter Schrammel.

OEBPS/uid100.xhtml
[bookmark: uid100] Section:
 New Results

Automatic Distribution of
Synchronous Programs

Participants :
 Gwenaël Delaval [contact person] , Alain Girault, Gregor Goessler, Xavier Nicollin, Gideon Smeding.

[bookmark: uid101] Modular Distribution

Synchronous programming languages describe functionally centralized
systems, where every value, input, output, or function is always
directly available for every operation. However, most embedded systems
are nowadays composed of several computing resources. The aim of this
work is to provide a language-oriented solution to describe
functionally distributed reactive systems. This research is
conducted within the INRIA large scale action Synchronics and
is a joint work with Marc Pouzet (ENS, Parkas team from Rocquencourt)
and Xavier Nicollin (Grenoble INP, Verimag lab).

We are working on type systems to formalize, in a uniform way, both
the clock calculus and the location calculus of a synchronous
data-flow programming language (the Heptagon language, inspired from
Lucid Synchrone [45]). On one hand, the clock
calculus infers the clock of each variable in the program and checks
the clock consistency: e.g., a time-homogeneous function, like
+ , should be applied to variables with identical clocks. On
the other hand, the location calculus infers the spatial distribution
of computations and checks the spatial consistency: e.g., a
centralized operator, like + , should be applied to
variables located at the same location. Compared to the PhD
of Gwenaël Delaval [55] , [56] , the goal is to
achieve modular distribution. By modular, we mean that we want
to compile each function of the program into a single function capable
of running on any computing location. We make use of our uniform type
system to express the computing locations as first-class abstract
types, exactly like clocks, which allows us to compile a typed
variable (typed by both the clock and the location calculi) into
if ... then ... else ... structures, whose conditions will be
valuations of the clock and location variables.

We currently work on an example of software-defined radio. We have
shown on this example how to use a modified clock calculus to describe
the localisation of values as clocks, and the architecture as clocks
(for the computing resources) and their relations (for communication
links).

[bookmark: uid102] Distribution of Synchronous Programs under Real-Time
Constraints

With the objective to distribute synchronous data-flow programs (e.g.
LUSTRE) over GALS architectures, preserving only explicitly specified
properties, we have developed a quantitative clock calculus to (1)
describe timing properties of the architecture's clock domain, and (2)
describe the properties of the synchronous program to be preserved.
The clock calculus is inspired by the network
calculus [83] , with the difference that
clocks are described only with respect to one-another, not with
respect to real-time.

As a first result, we have applied our clock calculus to analyze the
properties of periodic synchronous data-flow programs executed on a
network of processors. Because our clock calculus is relational, it can
model and preserve correlated variations of streams. In particular, the
common case of a data-flow system that splits a stream for separate
treatment, and joins them afterwards, this analysis yields more precise
result than comparable methods.

We aim to extend the analysis to account for shared resources and
synchronization protocols, so as to distribute synchronous programs
preserving specified properties.

OEBPS/uid164.xhtml
[bookmark: uid164] Section:
 Contracts and Grants with Industry

International Initiatives

[bookmark: uid165] INRIA Associate Teams

[bookmark: uid166] AFMES

		[bookmark: uid167] Title: Advanced Formal Methods for Embedded Systems.

		[bookmark: uid168] INRIA principal investigator: Alain Girault.

		[bookmark: uid169] International Partner:

		[bookmark: uid170] Institution: University of Auckland (New Zealand).

		[bookmark: uid171] Laboratory: Department of Electrical and Computer Engineering.

		[bookmark: uid172] Principal investigator: Zoran Salcic.

		[bookmark: uid173] Duration: January 2010 – December 2012.

		[bookmark: uid174] See also: http://pop-art.inrialpes.fr/~girault/Projets/Afmes/

		[bookmark: uid175] Embedded systems are characterized by several constraints, such
as determinism and bounded reaction time. Accordingly, design
methods for embedded systems should, when possible, guarantee these
properties by construction. This allows the shifting of the burden
of checking these constraints from the programmer to the design
method and the associated compilers and code generation tools. In
order to achieve this, our goal is to improve the existing design
methods in several key directions: (1) Incremental converter
synthesis. (2) Programming language for adaptive computing (SystemJ
and beyond). (3) Time predictable programming language and
execution architectures. Together, these advanced methods will
provide a higher level of safety in the design of embedded systems.

[bookmark: uid176] INRIA International Partners

[bookmark: uid177] Visits of International Scientists

		[bookmark: uid178] Hamoudi Kalla, assistant professor at University of Batna,
Algeria, September 2011.

		[bookmark: uid179] Ismail Assayad, assistant professor at University of
Casablanca, Morocco, September 2011.

[bookmark: uid180] Internship

		[bookmark: uid181] Emmanouil Komninos, 02-07/2011, co-advised by Pascal Fradet
and Alain Girault, Power consumption optimization of data-flow
applications on many-core systems, MSc at KTH, Sweden.

[bookmark: uid182] Participation In International Programs

OEBPS/uid52.xhtml
[bookmark: uid52] Section:
 Software

Prometheus

Participant :
 Gregor Goessler.

The BIP component model (Behavior, Interaction model, Priority)
[72] [5] has been
designed to support the construction of heterogeneous embedded systems
involving different models of computation, communication, and execution,
at different levels of abstraction. By separating the notions of
behavior, interaction model, and execution model, it enables both
heterogeneous modeling, and separation of concerns.

The verification and design tool Prometheus [71]
implements the BIP component framework. Prometheus is regularly
updated to implement new developments in the framework and the
analysis algorithms. It has allowed us to carry out several complex
case studies from the system-on-chip and bioinformatics domains
[11] .

OEBPS/uid96.xhtml
[bookmark: uid96] Section:
 New Results

Controller Synthesis for the Safe
Design of Embedded Systems

Participants :
 Gwenaël Delaval [contact person] , Gregor Goessler, Sebti Mouelhi.

[bookmark: uid97] Synthesis of Switching Controllers using Approximately
Bisimilar Multiscale Abstractions

The use of discrete abstractions for continuous dynamics has become
standard in hybrid systems design (see e.g. [92] and
the references therein). The main advantage of this approach is that
it offers the possibility to leverage controller synthesis techniques
developed in the areas of supervisory control of discrete-event
systems [88] . The first attempts to compute discrete
abstractions for hybrid systems were based on traditional systems
behavioral relationships such as simulation or bisimulation, initially
proposed for discrete systems most notably in the area of formal
methods. These notions require inclusion or equivalence of observed
behaviors which is often too restrictive when dealing with systems
observed over metric spaces. For such systems, a more natural
abstraction requirement is to ask for closeness of observed
behaviors. This leads to the notions of approximate simulation and
bisimulation introduced in [63] .

These notions enabled the computation of approximately equivalent
discrete abstractions for several classes of dynamical systems,
including nonlinear control systems with or without disturbances, and
switched systems. These approaches are based on sampling of time and
space where the sampling parameters must satisfy some relation in
order to obtain abstractions of a prescribed precision. In particular,
the smaller the time sampling parameter, the finer the lattice used
for approximating the state-space; this may result in abstractions
with a very large number of states when the sampling period is small.
However, there are a number of applications where sampling has to be
fast; though this is generally necessary only on a small part of the
state-space.

In [22] we have presented a novel class of
multiscale discrete abstractions for incrementally stable switched
systems that allows us to deal with fast switching while keeping the
number of states in the abstraction at a reasonable level. We assume
that the controller of the switched system has to decide the control
input and the time period during which it will be applied before the
controller executes again. In this context, it is natural to consider
abstractions where transitions have various durations. For transitions
of longer duration, it is sufficient to consider abstract states on a
coarse lattice. For transitions of shorter duration, it becomes
necessary to use finer lattices. These finer lattices are effectively
used only on a restricted area of the state-space where the fast
switching occurs.

These abstractions allow us to use multiscale iterative approaches for
controller synthesis as follows. An initial controller is synthesized
based on the dynamics of the abstraction at the coarsest scale where
only transitions of longer duration are enabled. An analysis of this
initial controller allows us to identify regions of the state-space
where transitions of shorter duration may be useful (e.g. to improve the
performance of the controller). Then, the controller is refined by
enabling transitions of shorter duration in the identified regions. The
last two steps can be repeated until we are satisfied with the obtained
controller.

In [21] we propose a technique for the
synthesis of safety controllers for switched systems using
multi-scale abstractions. We present a synthesis algorithm that
exploits the specificities of multi-scale abstractions. The
finest scales of the abstraction are effectively explored only when
fast switching is needed, that is when the system approaches the
unsafe set. We provide experimental results that show drastic
improvements of the complexity of controller synthesis using
multi-scale abstractions instead of uniform abstractions.

[bookmark: uid98] Modular Discrete Controller Synthesis

Discrete controller synthesis (DCS) [88] allows to
design programs in a mixed imperative/declarative way. From a program
with some freedom degrees left by the programmer (e.g., free
controllable variables), and a temporal property to enforce which is
not a priori verified by the initial program, DCS tools compute
off-line automatically a controller which will constrain the
program (by e.g., giving values to controllable variables) such that,
whatever the values of inputs from the environment, the
controlled program satisfies the temporal property.

Our motivation w.r.t. DCS concerns its modular application, improving
the scalability of the technique by using contract enforcement and
abstraction of components. Moreover, our aim is to integrate DCS into
a compilation chain, and thereby improve its usability by programmers,
not experts in discrete control. This work has been implemented into
the Heptagon/BZR language and
compiler [57] . This work is done in
collaboration with Hervé Marchand (Vertecs team from Rennes) and Éric
Rutten (Sardes team from Grenoble).

The implemented tool allows the generation of the synthesized
controller under the form of an Heptagon node, which can in turn be
analyzed and compiled, together with the Heptagon source from which
it has been generated. This full integration allows this method to aim
different target languages (currently C, Java or VHDL), and its
integrated use in different contexts.

A formal semantics of BZR has been defined, taking into
account its underlying nondeterminism related to the presence of
controllable variables.

This language has been used in different contexts. In [15] ,
BZR is used for the generation of discrete handlers of real-time
continuous control tasks, in the framework of the ORCCAD (Open
Robot Controller Computer-Aided Design) tool. BZR has also been used
in a case-study of a Fractal designed HTTP
server [19] . The purpose of the synthesized controller is
to control the automatic reconfigurations of the system (e.g., start
of new components, migrations of some components from one computing
element to another), in order to preserve some properties (either
functional, e.g., exclusivity of activities of two components, or
non-functional, e.g., bounded overall load of the system).

OEBPS/uid53.xhtml
[bookmark: uid53] Section:
 Software

Implementations of Synchronous Programs

Participant :
 Alain Girault.

[bookmark: uid54] Fault Tolerance

We have been cooperating for several years with the Inria team Aoste (Inria Sophia-Antipolis and Rocquencourt) on the topic of fault
tolerance and reliability of safety critical embedded systems. In
particular, we have implemented several new heuristics for fault
tolerance and reliability within their software
SynDEx (http://www-rocq.inria.fr/syndex). Our first
scheduling heuristic produces static multiprocessor schedules tolerant
to a specified number of processor and communication link
failures [64] . The basic principles upon which we
rely to make the schedules fault tolerant is, on the one hand, the
active replication of the operations [65] , and on the
other hand, the active replication of communications for
point-to-point communication links, or their passive replication
coupled with data fragmentation for multi-point communication media
(i.e., buses) [66] . Our second scheduling heuristic
is multi-criteria: it produces a static schedule multiprocessor
schedule such that the reliability is maximized, the power consumption
is minimized, and the execution time is
minimized [3] [17] . Our results on
fault tolerance are summarized in a web
page (http://pop-art.inrialpes.fr/~girault/Projets/FT).

OEBPS/uid57.xhtml
[bookmark: uid57] Section:
 Software

Apron and BddApron Libraries

Participant :
 Bertrand Jeannet.

[bookmark: idp140344654143600] Principles

The Apron library (http://apron.cri.ensmp.fr/library/)
is dedicated to the static analysis of the numerical variables of
a program by abstract interpretation [51] . Many
abstract domains have been designed and implemented for analysing
the possible values of numerical variables during the execution of
a program (see Figure 1). However, their
API diverge largely (datatypes, signatures, ...), and this does
not ease their diffusion and experimental comparison w.r.t. efficiency and precision aspects.

The Apron library aims to provide:

		[bookmark: uid59] a uniform API for existing numerical abstract domains;

		[bookmark: uid60] a higher-level interface to the client tools, by
factorizing functionalities that are largely independent of
abstract domains.

From an abstract domain designer point of view, the benefits of the
Apron library are:

		[bookmark: uid61] the ability to focus on core, low-level functionalities;

		[bookmark: uid62] the help of generic services adding higher-level services for free.

For the client static analysis community, the benefits are a
unified, higher-level interface, which allows experimenting,
comparing, and combining abstract domains.

In 2011, the Taylor1plus domain [62] , which is the
underlying abstract domain of the tool
Fluctuat [58] has been improved. Glue code has
also been added to enable the connection of an abstract domain
implemented in OCaml to the Apron infrastructure written in C (this
requires callbacks from C to OCaml that are safe w.r.t. garbage
collection). This will enable the integration in Apron of the MaxPlus
polyhedra library written by X. Allamigeon [38] in the
context of the ANR Asopt project.

[bookmark: uid63]Figure
	1. Typical static analyser and examples of abstract domains		[image: IMG/bertrand1.png]

The BddApron library (http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/index.html)
aims at a similar goal, by adding finite-types variables and
expressions to the concrete semantics of Apron domains. It is
built upon the Apron library and provides abstract domains for
the combination of finite-type variables (Booleans, enumerated
types, bitvectors) and numerical variables (integers,
rationals, floating-point numbers). It first allows to manipulate
expressions that freely mix, using BDDs and MTBDDs, finite-type
and numerical Apron expressions and conditions. It then provides
abstract domains that combines BDDs and Apron abstract values for
representing invariants holding on both finite-type variables and
numerical variables.

[bookmark: idp140344654180576] Implementation and Distribution

The Apron library (Fig. 2) is written in ANSI C,
with an object-oriented and thread-safe design. Both
multi-precision and floating-point numbers are supported. A
wrapper for the Ocaml language is available, and a C++ wrapper is
on the way. It has been distributed since June 2006 under the LGPL
license and available at http://apron.cri.ensmp.fr .
Its development has still progressed much since. There are already
many external users (ProVal/Démons, LRI Orsay, France —
CEA-LIST, Saclay, France — Analysis of Computer Systems
Group, New-York University, USA — Sierum software analysis
platform, Kansas State University, USA — NEC Labs, Princeton,
USA — EADS CCR, Paris, France — IRIT, Toulouse, France) and
is currently packaged as a Redhat and Debian package.

The BddApron library is written in Ocaml, using polymorphism
features of Ocaml to make it generic. It is also thread-safe. It
provides two different implementations of the same domain, each one
presenting pros and cons depending on the application. It is
currently used by the ConcurInterproc interprocedural and
concurrent program analyzer.

[bookmark: uid65]Figure
	2. Organisation of the Apron library		[image: IMG/bertrand2.png]

OEBPS/uid117.xhtml
[bookmark: uid117] Section:
 New Results

Component-Based Construction

Participants :
 Lacramioara Astefanoaei, Alain Girault, Gregor Goessler [contact person] , Roopak Sinha, Gideon Smeding.

[bookmark: uid118] Incremental converter synthesis

We have proposed and implemented a formal incremental
converter-generation algorithm for system-on-chip (SoC) designs. The
approach generates a converter, if one exists, to control the
interaction between multiple intellectual property (IP) protocols with
possible control and data mismatches, and allows pre-converted systems
to be re-converted with additional IPs in the future. IP protocols are
represented using labeled transition systems (LTS), a simple but
elegant abstraction framework which can be extracted from and
converted to standard IP description languages such as VHDL. The user
can provide control properties, each stated as an LTS with accepting
states, to describe desired aspects of the converted system, including
fairness and liveness. Furthermore, data specifications can be
provided to bound data channels between interacting IPs such that they
do not over/under flow. The approach takes into account the
uncontrollable environment of a system by allowing users to identify
signals exchanged between the SoC and the environment, which the
converter can neither suppress nor generate.

Given these inputs, the conversion algorithm first computes the
reachable state-space of a maximal non-deterministic converter
that ensures (i) the satisfaction of the given data specifications and
(ii) the trace equivalence with the given control specifications, using a
greatest fix-point computation. It then checks, using the standard
algorithm for Büchi games, whether the converter can ensure the
satisfaction of the given control specifications (reachability of
accepting states) regardless of how the environment behaves. If
this is found to be true, deterministic converters can be
automatically generated from the maximal non-deterministic
converter generated during the first step. The algorithm is proven
to be sound and complete, with a polynomial complexity in the
state-space sizes of given IP protocols and specifications. It is
also shown that it can be used for incremental design of SoCs,
where IPs and specifications are added to an SoC in
steps. Incremental design allows to constrain the combinatorial
explosion of the explored state-space in each step, and also
reduces on-chip wire congestion by decentralizing the conversion
process.

A Java implementation has been created, and experimental results
show that the algorithm can handle complex IP mismatches and
specifications in medium to large AMBA based SoC systems. Future
work involves creating a library of commonly-encountered
specifications in SoC design such as sharing of control signals
between interacting IPs using buffers, signal lifespans, and the
generation of optimal converters based on quantitative criteria
such as minimal power usage.

This work has been done within the Afmes associated team with the
Electric and Computer Engineering Department of the University of
Auckland.

[bookmark: uid119] Causality Analysis in Contract Violation

Establishing liabilities in case of litigation is generally a delicate
matter. It becomes even more challenging when IT systems are involved.
Generally speaking, a party can be declared liable for a damage if a
fault can be attributed to that party and this fault has caused the
damage. The two key issues are thus to establish convincing evidence
with respect to (1) the occurrence of the fault and (2) the causality
relation between the fault and the damage. The first issue concerns
the technique used to log the relevant events of the system and to
ensure that the logs can be produced (and have some value) in
court. The second issue is especially complex when several faults are
detected in the logs and the impact of these faults on the occurrence
of the failure has to be
assessed. In [6] we have focused
on this second issue and proposed a formal framework for reasoning
about causality. A system based on this framework could be used to
provide relevant information to the expert, the judge, or the parties
themselves (in case of amicable settlement) to analyze the origin of
the failure of an IT system.

The notion of causality has been studied for a long time in computer
science, but with very different perspectives and goals. In the
distributed systems community, causality (following Lamport's seminal
paper [82]) is seen essentially as a temporal
property. In our context, the temporal ordering contributes to the
analysis, but it is obviously not sufficient to establish the logical causality required to rule on a matter of liability: the
fact that an event e1 has occurred before an event e2 does not
imply that e1 was the cause for e2 (or that e2 would not have
occurred if e1 had not occurred).

Our formal model is based on components interacting according to well
identified interaction
models [5] . Each component is
associated with an individual contract which specifies its
expected behavior. The system itself is associated with a global
contract which is assumed to be implied by the composition of the
individual contracts.

In [6] we have defined several
variants of logical causality. The first variant, necessary
causality, characterizes cases when the global contract would not
have been violated if the local contract had been fulfilled. The
second variant, sufficient causality, characterizes cases when
the global contract would have been violated even if all the other
components had fulfilled their contracts. In other words, the
violation of its contract by a single component was sufficient to
violate the global contract.

We are currently extending to framework to other models of computation
and communication, in particular, to timed automata.

[bookmark: uid120] Realizability of Choreographies for Services Interacting
Asynchronously

Choreography specification languages describe from a global point of
view interactions among a set of services in a system to be designed.
Given a choreography specification, the goal is to obtain a
distributed implementation of the choreography as a system of
communicating peers. These peers can be given as input (e.g.,
obtained using discovery techniques) or automatically generated by
projection from the choreography. Checking whether some set of peers
implements a choreography specification is called realizability. This check is in general undecidable if asynchronous
communication is considered, that is, services interact through
message buffers.

In [24] we consider conversation protocols as a
choreography specification language, and leverage a recent
decidability result [54] to
check automatically the realizability of these specifications by a set
of peers under an asynchronous communication model with a priori
unbounded buffers.

[bookmark: uid121] A Theory of Fault Recovery for Component-Based Models

In [18] we have introduced a theory
of fault recovery for component-based models. A model is specified in
terms of a set of atomic components that are incrementally composed
and synchronized by a set of glue operators. We define what it means
for such models to provide a recovery mechanism, so that the model
converges to its normal behavior in the presence of faults. We
identify corrector (atomic or composite) components whose presence in
a model is essential to guarantee recovery after the occurrence of
faults. We also formalize component based models that effectively
separate recovery from functional concerns.

OEBPS/uid130.xhtml
[bookmark: uid130] Section:
 Contracts and Grants with Industry

Contracts with Industry

OEBPS/uid41.xhtml
[bookmark: uid41] Section:
 Application Domains

Industrial Applications

Our applications are in the embedded system area, typically: robotics,
automotive, telecommunications, systems on chip (SoC). In some
areas, safety is critical, and motivates the investment in
formal methods and techniques for design.
But even in less critical contexts, like telecommunications and
multimedia, these techniques can be beneficial in improving the
efficiency and the quality of designs, as well as the cost of
the programmation and the validation processes.

Industrial acceptance of formal techniques, as well as their
deployment, goes necessarily through their usability by
specialists of the application domain, rather than of the formal
techniques themselves. Hence our orientation towards the
proposal of domain-specific (but generic) realistic models,
validated through experience (e.g., control tasks systems), based
on formal techniques with a high degree of automation (e.g., synchronous models), and tailored for concrete functionalities
(e.g., code generation).

OEBPS/uid42.xhtml
[bookmark: uid42] Section:
 Application Domains

Industrial Design Tools

The commercially available design tools (such as UML with
real-time extensions, Matlab/ Simulink/
dSpace (http://www.dspaceinc.com)) and execution
platforms (OS such as VxWorks, QNX, real-time versions of
Linux ...) starts now to provide besides their core
functionalities design or verification methods. Some of them,
founded on models of reactive systems, come close to tools with
a formal basis, such as for example StateMate by iLogix.

Regarding the synchronous approach, commercial tools are
available:
Scade (http://www.esterel-technologies.com)
(based on Lustre), ControlBuild and
RT-Builder (based on Signal) from
Geensys (http://www.geensoft.com) (part of Dassault Systemes),
specialized environments like CellControl for industrial
automatism (by the Inria spin-off Athys– now part of
Dassault Systemes). One can observe that behind the variety of actors,
there is a real consistency of the synchronous technology, which
makes sure that the results of our work related to the
synchronous approach are not restricted to some language due to
compatibility issues.

OEBPS/uid88.xhtml
[bookmark: uid88] Section:
 New Results

Dependable Distributed
Real-time Embedded Systems

Participants :
 Pascal Fradet, Alain Girault [contact person] , Emil Dumitrescu.

[bookmark: uid89] The TSH multi-criteria scheduling heuristic

For autonomous critical real-time embedded systems (e.g., satellite),
guaranteeing a very high level of reliability is as important as
keeping the power consumption as low as possible. We have designed an
off-line scheduling heuristics which, from a given software
application graph and a given multiprocessor architecture (homogeneous
and fully connected), produces a static multiprocessor schedule that
optimizes three criteria: its length (crucial for real-time
systems), its reliability (crucial for dependable systems), and
its power consumption (crucial for autonomous systems). Our
tricriteria scheduling heuristics, TSH, uses the active
replication of the operations and the data-dependencies to increase
the reliability, and uses dynamic voltage and frequency scaling
to lower the power consumption [17] . By running TSH on a
single problem instance, we are able to provide the Pareto front
for this instance in 3D, therefore exposing the user to several
tradeoffs between the power consumption, the reliability and the
execution time. Thanks to extensive simulation results, we have shown
how TSH behaves in practice. Firstly, we have compared TSH versus an
optimal Mixed Linear Integer Program on small instances; the
experimental results show that TSH behaves very well compared to the
the ILP. Secondly, we have compared TSH versus the ECS heuristic
(Energy-Conscious Scheduling [84]); the experimental
results show that TSH performs systematically better than ECS.

This is a joint work with Ismail Assayad (U. Casablanca, Morocco) and
Hamoudi Kalla (U. Batna, Algeria), who both visit the team regularly.

[bookmark: uid90] Automating the Addition of Fault Tolerance with Discrete
Controller Synthesis

In collaboration with Emil Dumitrescu (INSA Lyon), Hervé Marchand
(Vertecs team from Rennes), and Eric Rutten (Sardes team from
Grenoble), we have defined a complete framework for the
automatic design of fault tolerant embedded systems, based on
discrete controller synthesis (DCS) [88] . Its interest
lies in the ability to obtain automatically systems satisfying by
construction formal properties specified a priori. Our aim is
to demonstrate the feasibility of this approach for fault
tolerance. We start with a fault intolerant program, modeled as the
synchronous parallel composition of finite labeled transition
systems. We specify formally a fault hypothesis, state fault tolerance
requirements and use DCS to obtain automatically a program having the
same behavior as the initial fault intolerant one in the absence of
faults, and satisfying the fault tolerance requirements under the
fault hypothesis. Our original contribution resides in the
demonstration that DCS can be elegantly used to design fault tolerant
systems, with guarantees on key properties of the obtained system,
such as the fault tolerance level, the satisfaction of quantitative
constraints, and so on. We have shown with numerous examples taken
from case studies that our method can address different kinds of
failures (crash, value, or Byzantine) affecting different kinds of
hardware components (processors, communication links, actuators, or
sensors). Besides, we have shown that our method also offers an
optimality criterion very useful to synthesize fault tolerant systems
compliant to the constraints of embedded systems, like power
consumption or execution times. In summary, our framework for fault
tolerance has the following advantages [67] :

		[bookmark: uid91] The automation, because DCS produces automatically a
fault tolerant system from an initial fault intolerant one.

		[bookmark: uid92] The separation of concerns, because the fault
intolerant system can be designed independently from the fault
tolerance requirements.

		[bookmark: uid93] The flexibility, because, once the system is entirely
modeled, it is easy to try several fault hypotheses, several
environment models, several fault tolerance goals, several degraded
modes, and so on.

		[bookmark: uid94] The safety, because, in case of positive result
obtained by DCS, the specified fault tolerance properties are
guaranteed by construction on the controlled system.

		[bookmark: uid95] The optimality when optimal synthesis is used, modulo
the potential numerical equalities (hence a non strict optimality).
We consider weights cumulated along bounded-length paths. We have
adapted our models in order to take into account the additive costs
of, e.g., execution time or power consumption, and adapting synthesis
algorithms in order to support the association of costs with
transitions, and the handling of these new cost functions in the
optimal synthesis [59] .

We therefore combine, on the one hand, guarantees on the safety of the
execution by tolerating faults, and on the other hand, guarantees on
the worst cumulated consumption of the resulting dynamically
reconfiguring fault tolerant system. Recently, we have incorporated
multi-criteria optimization results in this work, to take into account
several weight functions: for instance the execution costs of
several tasks, the execution of which must be controlled thanks to
DCS. We therefore propose several synthesis algorithms, to aggregate
the costs into a single cost function, to hierarchize the costs (e.g., to reflect the priorities of the tasks), or to compute the Pareto
front of non-dominated solutions.

OEBPS/uid48.xhtml
[bookmark: uid48] Section:
 Software

NBac

Participant :
 Bertrand Jeannet.

NBac (Numerical and Boolean Automaton
Checker) (http://pop-art.inrialpes.fr/people/bjeannet/nbac/)
is a verification/slicing tool for reactive systems containing
combination of Boolean and numerical variables, and continuously
interacting with an external environment. NBac can also handle
the same class of hybrid systems as the HyTech tool [76] . It aims at
handling efficiently systems combining a non-trivial numerical
behaviour with a complex logical (Boolean) behaviour.

NBac is connected to two input languages: the synchronous dataflow
language Lustre, and a symbolic automaton-based language,
AutoC/Auto, where a system is defined by a set of
symbolic hybrid automata communicating via valued channels. It
can perform reachability analysis, co-reachability analysis, and
combination of the above analyses. The result of an analysis is
either a verdict to a verification problem, or a set of states
together with a necessary condition to stay in this set during an
execution. NBac is founded on the theory of abstract
interpretation.

It has been used for verification and debugging of Lustre programs [79] [61] . It is connected
to the Lustre toolset (http://www-verimag.imag.fr/Lustre-V6.html).
It has also been used for controller synthesis of infinite-state
systems. The fact that the analyses are approximated results
simply in the obtention of a possibly non-optimal controller. In
the context of conformance testing of reactive systems, it is used
by the test generator STG
(http://www.irisa.fr/prive/ployette/stg-doc/stg-web.html)
[49] [80] for selecting test
cases.

OEBPS/IMG/iTunesArtwork.png
Activity Report 2011
Project-Team pop_art

Programming languages,
Operating Systems,
Parallelism, and

Aspects for Real-Time

IN COLLABORATION WITH: Laboratoire d'nformatiaue de Grenoble (LIG)

OEBPS/uid122.xhtml
[bookmark: uid122] Section:
 New Results

Aspect-Oriented Programming

Participants :
 Henri-Charles Blondeel, Pascal Fradet [contact person] , Alain Girault, Marnes Hoff.

The goal of Aspect-Oriented Programming (AOP) is to isolate aspects
(such as security, synchronization, or error handling) which cross-cut
the program basic functionality and whose implementation usually
yields tangled code. In AOP, such aspects are specified separately
and integrated into the program by an automatic transformation process
called weaving.

Although this paradigm has great practical potential, it still lacks
formalization and undisciplined uses make reasoning on programs very
difficult. Our work on AOP addresses these issues by studying
foundational issues (semantics, analysis, verification) and by
considering domain-specific aspects (availability, fault tolerance or refinement
aspects) as formal properties.

[bookmark: uid123] Aspects Preserving Properties

Aspect Oriented Programming can arbitrarily distort the semantics of
programs. In particular, weaving can invalidate crucial safety and
liveness properties of the base program.

We have identified categories of aspects that preserve some classes of
properties [10] . Our categories of aspects comprise, among
others, observers, aborters, and confiners. For example, observers do
not modify the base program's state and control-flow (e.g., persistence,
profiling, and debugging aspects).
These categories are defined formally based on a language independent
abstract semantic framework. The classes of properties are defined as
subsets of LTL for deterministic programs and CTL* for
non-deterministic ones. We have formally proved that, for any program,
the weaving of any aspect in a category preserves any property in the
related class.

In a second step, we have designed for each aspect category a
specialized aspect language which ensures that any aspect written in
that language belongs to the corresponding category. These languages
preserve the corresponding classes of properties by construction.

This work was conducted in collaboration with Rémi Douence from the
Ascola Inria team at École des Mines de Nantes.

[bookmark: uid124] Fault Tolerance Aspects

In the recent years, we have studied the implementation of specific fault tolerance
techniques in real-time embedded systems using program
transformation [1] .
We are now investigating the use of fault-tolerance
aspects in digital circuits. To this aim, we consider
program transformations for hardware description languages (HDL).
Our goal is to design an aspect language allowing users to
specify and tune a wide range of fault tolerance techniques,
while ensuring that the woven HDL program remains
synthesizable. The advantage would be to produce fault-tolerant circuits
by specifying fault-tolerant strategies
separately from the functional specifications.

We have reviewed the different fault tolerant techniques used in
integrated circuits: concurrent error detection, error detecting and
correcting codes (Hamming, Berger codes, ...), spatial and time
redundancy. We have designed a simple hardware description language
inspired from Lustre and Lucid Synchrone. It is a core functional
language manipulating synchronous boolean streams. Faults are
represented by bit flips and we take into account all fault models of
the form “at most k faults within n clock signals”. The
language semantics as well as the fault model have been formalized in
Coq. The next step is to express standard fault tolerance techniques
as program transformations and prove that they allow to tolerate all
faults of a given model.

[bookmark: uid125] Refinement Aspects

Chemical programming describes computation in terms of a chemical
solution in which molecules (representing data) interact freely
according to reaction rules (representing the program).
Solutions are represented
by multisets of elements and reactions by rewrite rules which
consume and produce new elements according to conditions.
This paradigm makes it possible to express programs without artificial
sequentiality in a very abstract way. It bridges the gap
between specification and implementation languages.

A drawback of chemical languages is that their very high-level nature usually
leads to very inefficient programs.
We have proposed a refinement oriented approach where the basic functionality
is expressed as a chemical program whereas efficiency is achieved separately by:

		[bookmark: uid126] structuring the multiset with a data type defining neighborhood relations;

		[bookmark: uid127] describing the selection of elements according to their neighborhood;

		[bookmark: uid128] specifying the evaluation strategy (i.e., the application of rules and termination).

Using these three implementation aspects (data structure, selection and strategy),
the chemical program can then be refined automatically into an efficient low-level program.
The crucial methodological advantage is that logical issues are decoupled from efficiency issues.

This research, that takes place within the AutoChem project (see Section
	7.3.1),
is done in collaboration with Jean-Louis Giavitto (Ircam, Paris).
It is the subject matter of Marnes Hoff's PhD thesis.

