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Research Themes

The team develops constructive, function-theoretic approaches to
inverse problems arising in
modelling and design, in particular for electro-magnetic systems as well as
in the analysis of certain classes of signals.

Data typically consist of measurements or desired behaviours.
The general thread is to approximate them by families of solutions
to the equations governing the underlying system.
This leads us to consider various interpolation and approximation problems in
classes of rational and meromorphic functions,
harmonic gradients, or
solutions to more general elliptic partial differential equations (PDE).
A recurring difficulty is to control the singularities of the
approximants.

The mathematical tools pertain to complex and harmonic
analysis, approximation theory, potential theory,
system theory, differential topology, optimization and computer algebra.
Targeted applications include:


	[bookmark: uid4] identification and synthesis of
analog microwave devices (filters, amplifiers),



	[bookmark: uid5] non-destructive control from field measurements in medical engineering
(source recovery in magneto/electro-encephalography),
paleomagnetism (determining the magnetization of rock samples),
and nuclear engineering (plasma shaping in tokamaks).




In each case, the endeavour is to develop algorithms resulting in dedicated
software.
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  [bookmark: uid11] Section: 
      Scientific Foundations
Introduction

Within the extensive field of inverse problems, much of the research by APICS
deals with reconstructing solutions of classical elliptic PDEs from their
boundary behaviour. Perhaps the most basic example of such a problem is
harmonic
identification of a stable linear dynamical system: the transfer-function f
is holomorphic in the right half-pane, which means it satisfies there the
Cauchy-Riemann equation [image: Im1 ${\mover \#8706 ¯f=0}$], and in principle f can be
recovered from its values on the imaginary axis, e.g. by Cauchy formula.

Practice is not nearly as simple, for f is only measured pointwise in the
pass-band of the system which makes the problem ill-posed
[69] . Moreover, the transfer function is usually sought in
specific form,
displaying the necessary physical parameters for control and design.
For instance if f is rational of degree n, it satisfies
[image: Im2 ${\mover \#8706 ¯f=\#8721 _1^na_j\#948 _z_j}$]
where the zj are its poles, and finding the domain of holomorphy
(i.e. locating the zj) amounts to solve a (degenerate)
free-boundary inverse problem, this time on the left
half-plane.
To address these questions, the team has developed a two-step approach
as follows.


	[bookmark: uid12] To determine a complete
model, that is, one which is defined
for every frequency, in a sufficiently flexible function
class (e.g. Hardy spaces). This ill-posed issue requires
regularization, for instance constraints on the behaviour at
non-measured frequencies.



	[bookmark: uid13] To compute a reduced order model.
This typically consists of rational approximation
of the complete model obtained in step 1, or phase-shift thereof
to account for delays. Derivation of the complete model is
important to achieve stability
of the reduced one.




Step 1 makes connection with extremal
problems and analytic operator theory, see section 
	3.3.1 .
Step 2 involves optimization, and some Schur analysis
to parametrize transfer matrices of given Mc-Millan degree
when dealing with systems having several inputs and output,
see section 
	3.3.2.2 .
It also makes contact with the topology of rational functions, to count
critical points and to derive bounds, see section

	3.3.2 . Moreover, this step raises
issues in approximation theory regarding the rate of convergence and whether
the singularities of the
approximant (i.e. its poles) converge to the singularities of the
approximated function; this is where logarithmic potential theory
becomes effective, see section 
	3.3.3 .

Iterating the previous steps coupled with a sensitivity analysis
yields a tuning procedure which was first demonstrated in
[77]  on resonant microwave filters.

Similar steps can be taken to approach design problems in
frequency domain, replacing measured behaviour by
desired behaviour. However, describing achievable responses from
the design parameters at hand is generally cumbersome,
and most constructive techniques rely on rather specific criteria
adapted to the physics of the
problem.
This is especailly true of circuits and filters, whose design classically
appeals to standard polynomial extremal problems and realization
procedures from system theory [70] , [55] .
APICS is active in this field, where we introduced the use of
Zolotarev-like problems for microwave multiband filter design. We currently
favor interpolation techniques because of their
transparency with respect to parameter use,
see section 
	3.2.2 .

In another connection, the example of harmonic identification
quickly suggests a generalization
of itself. Indeed, on identifying [image: Im3 $\#8450 $] with [image: Im4 ${\#8477 }^2$], holomorphic functions
become conjugate-gradients of harmonic functions so that
harmonic identification is, after all, a special case of a classical issue:
to recover a harmonic function on a domain from partial
knowledge of the Dirichlet-Neumann data; portion of the boundary where
data are not available may be unknown, in which case we meet a free boundary
problem. This framework for 2-D non-destructive control was first
advocated in
[59]  and subsequently received considerable attention.
This framework makes it clear how to state similar problems
in higher dimensions and for more
general operators than the Laplacian, provided solutions are essentially
determined by the trace of their gradient on part of the boundary
which is the case for elliptic equations (There is a subtle difference here between dimension 2 and higher. Indeed,
a function
holomorphic on a plane domain is defined by its non-tangential limit on a
boundary subset of positive linear measure, but there are non-constant
harmonic functions in the 3-D ball, C1 up to the boundary sphere,
yet having vanishing gradient on a subset of positive measure of the
sphere)
[79] . All these questions are particular instances of the
so-called inverse potential problem, where a measure μ
has to be recovered
from knowledge of the gradient of its potential
(i.e., the field) on part of a hypersurface (a curve in 2-D)
encompassing the support of
μ. For Laplace's operator, potentials are logarithmic in 2-D and
Newtonian in higher dimensions. For elliptic operators with non constant
coefficients, the potential depends on
the form of fundamental solutions and is less manageable because
it is no longer of convolution type. In any case, by construction, the
operator applied to the potential yields back the measure.

Inverse potential problems are severely indeterminate because infinitely many
measures within an open set produce the same field outside this set
[68] . In step 1 above
we implicitly removed this indeterminacy by requiring that the measure
be supported on the boundary (because we seek a function holomorphic
throughout the right half space), and in step 2
by requiring, say, in case of rational approximation
that the measure be discrete in the left half-plane. The same discreteness
assumption prevails in 3-D inverse source problems.
To recap, the gist of our approach is to approximate boundary data by
(boundary traces of) fields arising from potentials of measures
with specific support. Note this is different from standard approaches
to inverse problems, where descent algorithms are applied to
integration schemes of the direct problem; in such methods, it is the
equation which gets approximated (in fact: discretized).

Along these lines, the team initiated the use of steps 1 and 2 above,
along with singularity
analysis, to approach issues of nondestructive control in 2 and 3-D
[41]  [6] , [2] . We are currently engaged
in two
kinds of generalization, further described in section 
	3.2.1 .
The first one deals with non-constant
conductivities, where Cauchy-Riemann equations for holomorphic functions
are replaced by conjugate Beltrami equations for pseudo-holomorphic functions;
there we seek applications to plasma confinement.
The other one lies with inverse source problems for Laplace's equation
in 3-D, where holomorphic
functions are replaced by harmonic gradients, developing applications to
EEG/MEG and inverse magnetization problems in paleomagnetism,
see section 
	4.2 

The main approximation-theoretic tools developed by APICS to get to grips with
issues mentioned so far are outlined in section 
	3.3 .
In section 
	3.2  to come, we make more precise which problems are
considered and for which applications.


[bookmark: uid15] Section: 
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Range of inverse problems
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This work is done in collaboration with Alexander Borichev (Univ. Provence).

Reconstructing Dirichlet-Neumann boundary conditions
for a function harmonic in a plane domain
when these are known on a strict subset E of the boundary, is equivalent to
recover a holomorphic function in the domain from its boundary values on E.
This is the problem raised on the half-plane in step 1 of section

	3.1 . It makes good sense in holomorphic
Hardy spaces where functions are determined by their values on
boundary subsets of positive linear measure, which
is the framework for problem (P) in section 
	3.3.1 . Such problems
naturally arise in nondestructive testing of 2-D (or cylindical) materials
from partial electrical measurements on the boundary.
Indeed, the ratio between tangential and normal
currents (so-called Robin coefficient) tells about corrosion of the material.
Solving problem (P) where ψ is chosen to be the response of
some uncorroded piece with identical shape
allows one to approach such questions, and
this was an initial application of holomorphic extremal problems
to non-destructive control [56] , [52] .

A recent application by the team deals with non-constant conductivity
over a doubly connected domain, E being the outer boundary.
Measuring Dirichlet-Neumann data on E, we wanted to check whether the
solution is constant on the inner boundary. We first had to define
and study Hardy spaces of the conjugate Beltrami equation, of which the
conductivity equation is the compatibility condition (just like Laplace's
equation is the compatibility condition of the Cauchy-Riemann system).
This was done in references [5] 
and [35] . Then, solving an obvious modification of problem (P)
allows one to numerically check what we want.
Further, the value of this
extremal problem defines a criterion on
inner boundaries, and subsequently a descent algorithm was set up
to improve the initial boundary into one where the solution is closer
to being constant, thereby trying to solve a free boundary problem..

When the domain is regarded as separating the edge of a tokamak's vessel
from the plasma (rotational symmetry makes this a 2-D problem),
the procedure just described suits plasma control from magnetic confinement.
It was successfully applied in collaboration with CEA
(the French nuclear agency) and the University of Nice (JAD Lab.)
to data from Tore Supra [58] , see section

	6.2 . This procedure is fast because no numerical integration of
the underlying PDE is needed, as an explicit basis of solutions to the
conjugate Beltrami equation was found in this case.

Three-dimensional versions of step 1 in section

	3.1  are also considered, namely to recover a harmonic function
(up to a constant) in a ball or a half-space from partial knowledge of its
gradient on the boundary. Such questions arise naturally in connection with
neurosciences and medical imaging (electroencephalography, EEG) or in
paleomagnetism (analysis of rocks magnetization)
[2]  [37] , see section 
	6.1 .
They are not yet as developed as the 2-D case where the power of complex
analysis is at work, but considerable progress was made over the last years
through methods of harmonic analysis and operator theory.

The team is also concerned with non-destructive control
problems of localizing defaults such as cracks,
sources or occlusions in a planar or 3-dimensional domain,
from boundary data (which may correspond to thermal, electrical, or
magnetic measurements).
These defaults can be expressed as a lack of analyticity
of the solution of the associated Dirichlet-Neumann problem
and we approach them using techniques of best rational or
meromorphic approximation on the boundary of the object
[4]  [16] ,
see sections 
	3.3.2  and 
	4.2 . In fact, the way
singularities of the approximant relate to the singularities
of the approximated function is an all-pervasive
theme in approximation theory, and for appropriate classes of functions
the location
of the poles of a best rational approximant
can be used as an estimator of the singularities of the approximated function
(see section 
	6.1 ). This circle of ideas is much in the spirit of
step 2 in section

	3.1 .

A genuine 3-dimensional theory of approximation by discrete potentials, though, is still in its infancy.


[bookmark: uid17] Systems, transfer and scattering
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Through initial contacts with CNES, the French space agency,
the team came to work on identification-for-tuning
of microwave electromagnetic filters used in space telecommunications
(see section 
	4.3 ). The problem was
to recover, from band-limited frequency measurements, the physical
parameters of the device under examination.
The latter consists of interconnected dual-mode resonant cavities with
negligible loss, hence its scattering matrix is modelled by a
2×2 unitary-valued matrix function on the frequency line,
say the imaginary axis to fix ideas. In the bandwidth around the
resonant frequency, a modal approximation of the Helmholtz equation in the
cavities shows that this matrix is approximately rational, of Mc-Millan degree
twice the number of cavities.

This is where system theory enters the scene, through the
so-called realization process mapping
a rational transfer function in the frequency domain
to a state-space representation of the underlying system as
a system of linear differential equations in the time domain.
Specifically, realizing the scattering matrix
allows one to construct
a virtual electrical network, equivalent to the filter,
the parameters of which mediate in between the frequency response
and the
geometric characteristics of the cavities (i.e. the tuning parameters).

Hardy spaces, and in particular the Hilbert space H2, provide a framework to transform this classical ill-posed issue into a series of well-posed analytic and meromorphic approximation problems.
The procedure sketched in section 
	3.1  now goes as follows:


	[bookmark: uid18] infer from the pointwise boundary data in the bandwidth
a stable transfer function (i.e. one which is holomorphic
in the right half-plane), that may be infinite dimensional
(numerically: of high degree). This is done by solving in the Hardy space
H2 of the right half-plane a problem analogous to (P) in section

	3.3.1 , taking into account prior knowledge on the
decay of the response outside the bandwidth, see [18] 
for details.



	[bookmark: uid19] From this stable model, a rational stable approximation of
appropriate degree is computed. For this a descent method is used
on the relatively compact manifold of inner matrices of given size and degree,
using a novel parametrization of stable transfer functions
[18] .



	[bookmark: uid20] From this rational model, realizations meeting certain constraints
imposed by the technology in use are computed
(see section 
	6.3 ). These constraints typically come
from the nature and topology of the equivalent electrical network used
to model the filter. This network is composed of
resonators, coupled to each other by some specific coupling topology.
Performing this realization step for given coupling topology can be recast,
under appropriate compatibility conditions [8] ,
as the problem of solving a zero-dimensional multivariate polynomial system.
To tackle this problem in practice, we use Groebner basis techniques as
well as continuation methods as implemented in the Dedale-HF software
(
	5.4 ).




Let us also mention that extensions of classical coupling matrix theory to
frequency-dependent (reactive) couplings have lately been carried-out
[1]  for wide-band design applications,
but further study is needed to make them effective.

Subsequently APICS started investigating issues pertaining to filter
design rather than identification.
Given the topology of the filter,
a basic problem is to find the optimal response
with respect to amplitude specifications in frequency domain
bearing on rejection, transmission and group delay of scattering parameters.
Generalizing the approach based on Tchebychev polynomials for single band
filters, we recast the problem of multi-band response synthesis
in terms of a generalization of classical Zolotarev min-max problem
[30]  to rational functions [11] .
Thanks to quasi-convexity, the latter
can be solved efficiently using iterative methods relying on linear
programming. These are implemented in the software easy-FF (see section 
	5.5 ).

Later, investigations by the team extended to design and
identification of more complex microwave devices,
like multiplexers and routers, which connect several
filters through wave guides.
Schur analysis plays an important role in such studies, which is no surprise
since scattering matrices of passive systems are of Schur type
(i.e. contractive in the stability region).
The theory originates with the work of I. Schur [76] ,
who devised a recursive test to
check for contractivity of a holomorphic function in the disk.
Generalizations thereof turned out to be very efficient to parametrize
solutions to contractive interpolation problems subject to
a well-known compatibility condition (positive definiteness of the so-called
Pick matrix) [32] .
Schur analysis became quite popular
in electrical engineering, as the Schur recursion precisely describes how
to chain two-port circuits.

Dwelling on this, members of the team contributed to
differential parametrizations (atlases of charts) of lossless
matrix functions to the theory [31] [12] , [10] .
They are of fundamental use in our rational approximation
software RARL2 (see section 
	5.1 ).
Schur analysis is also instrumental to approach de-embedding issues
considered in section 
	6.4 , and provides further
background to current studies by the team of
synthesis and adaptation problems for multiplexers.
At the heart of the latter lies a variant of contractive interpolation
with degree constraint introduced in [62] .

We also mention the role played by multipoint Schur analysis in the team's
investigation of spectral representation for certain non-stationary
discrete stochastic processes [3] , [36] .

Recently, in collaboration with UPV (Bilbao),
our attention was driven by CNES,
to questions of stability relative to high-frequency amplifiers,
see section 
	7.2 .
Contrary to previously mentioned devices, these are active components.
The amplifier can be linearized at a functioning point
and admittances of the corresponding electrical network
can be computed at various frequencies, using the so-called harmonic
balance method.
The goal is to check for stability of this linearised model.
The latter is composed of lumped electrical elements namely
inductors, capacitors, negative and positive reactors,
transmission lines, and commanded current sources.
Research so far focused on determining the algebraic structure
of admittance functions, and setting up a function-theoretic framework to
analyse them. In particular, much effort was put on realistic assumptions
under which a stable/unstable decomposition can be claimed in
[image: Im5 ${H^2\#8853 \mover H^2¯}$] (see section 
	6.5 ).
Under them, the unstable part of the elements under examination
is rational and we expect to bring valuable estimates of stability
to the designer using the general scheme in section 
	3.1 .


[bookmark: uid21] Section: 
      Scientific Foundations
Approximation of boundary data
Participants :
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The following people are collaborating with us on these topics: Bernard Hanzon (Univ. Cork, Ireland), Jean-Paul Marmorat (Centre de mathématiques appliquées (CMA), École des Mines de Paris), Jonathan Partington (Univ. Leeds, UK), Ralf Peeters (Univ. Maastricht, NL), Edward Saff (Vanderbilt University, Nashville, USA), Herbert Stahl (TFH Berlin), Maxim Yattselev (Univ. Oregon at Eugene, USA).

[bookmark: uid22] Best constrained analytic approximation

In dimension 2, the prototypical problem to be solved in step 1 of section

	3.1  may be described as:
given a domain [image: Im6 ${D\#8834 {\#8477 }^2}$], we want to recover
a holomorphic function from its values on a
subset of the boundary of D.
Using conformal mapping, it is convenient for the discussion
to normalize D.
So, in the simply connected case, we fix
D to be the unit disk with boundary the unit circle T.
We denote by Hp the Hardy space of exponent p which is
the closure of polynomials in the Lp-norm on the circle if
1[image: $ \le$]p<∞ and the space of bounded holomorphic functions in D if
p = ∞. Functions in Hp have well-defined boundary values in Lp(T),
which makes it possible to speak of (traces of) analytic functions on
the boundary.

To find an analytic function in D
approximately matching measured values f
on a sub-arc K of T, we formulate a
constrained best approximation problem as follows.

(P)  Let 1[image: $ \le$]p[image: $ \le$]∞, K a sub-arc of T,
f[image: $ \in$]Lp(K), [image: Im7 ${\#968 \#8712 L^p{(T\#8726 K)}}$] and M>0;
find a function g[image: $ \in$]Hp such that
[image: Im8 ${{\#8741 g-\#968 \#8741 }_{L^p{(T\#8726 K)}}\#8804 M}$] and g-f
is of minimal norm in Lp(K) under this constraint.

Here ψ is a reference behaviour capturing a priori
assumptions on
the behaviour of the model off K, while M is some admissible deviation
from them. The value of p reflects the type of
stability which is sought and how much one wants to smoothen the data.
The choice of Lp classes is well-adapted to handling pointwise measurements.

To fix terminology we refer to (P) as
a bounded extremal problem.
As shown in [40] , [42] ,
[47] , for 1<p[image: $ \le$]∞,
the solution to this convex
infinite-dimensional optimization problem can be obtained
upon iterating with respect to a Lagrange parameter
the solution to spectral equations for
some appropriate Hankel and Toeplitz operators.
These equations in turn involve the solution to the standard extremal problem
below best approximation
problem (P0) below [61] :

(P0)  Let 1[image: $ \le$]p[image: $ \le$]∞ and [image: Im9 ${\#981 \#8712 L^p{(T)}}$];
find a function g[image: $ \in$]Hp such that
[image: Im10 ${g-\#981 }$] is of minimal norm in Lp(T).

The case p = 1 of (P) is essentially open.

Various modifications of (P) have been studied in order to meet specific
needs.
For instance when dealing with loss-less transfer functions
(see section 
	4.3 ), one may want to express
the constraint on [image: Im11 ${T\#8726 K}$] in a pointwise manner: |g-ψ|[image: $ \le$]M a.e. on [image: Im11 ${T\#8726 K}$], see [43] . In this form, it comes close
to (but still is different from) H∞ frequency optimization
methods for control [64] , [75] .

The analog of problem (P) on an annulus,
K being now the outer boundary, can be seen as a means to regularize
a classical inverse problem occurring in nondestructive control,
namely recovering a harmonic function on
the inner boundary from Dirichlet-Neumann data on the
outer boundary (see sections 
	3.2.1 , 
	4.2 , 
	6.1.1 , 
	6.2 ). For p = 2 the solution is analysed in
[66] . It may serve as a tool to approach
Bernoulli type problems where we are given data on the outer boundary
and we seek the inner
boundary, knowing it is a level curve of the flux.
Then, the Lagrange parameter indicates
which deformation should be applied on the inner contour in order to improve
data fitting.

This is discussed in sections 
	3.2.1  and 
	6.2 
for more general equations than the Laplacian, namely
isotropic conductivity equations of the form
 div (σ[image: $ \nabla$]u) = 0 where
σ is non constant. In this case Hardy spaces in problem (P) become
those of a so-called conjugate or real Beltrami equation [65] ,
which are studied for
1<p<∞ in
[5] , [35] .
Expansions
of solutions needed to constructively handle such issues have been
carried out in  [58] .

Though originally considered in dimension 2,
problem (P) carries over naturally to higher dimensions where analytic
functions get replaced by gradients of harmonic functions.
Namely, given some open set [image: Im12 ${\#937 \#8834 {\#8477 }^n}$] and
a [image: Im13 ${\#8477 }^n$]-valued vector V field on
an open subset O of the boundary of Ω, we seek a harmonic function in
Ω whose gradient is close to V on O.

When Ω is a ball or a half-space, a convenient substitute of
holomorphic Hardy spaces is provided by Stein-Weiss Hardy spaces of
harmonic gradients [78] . Conformal maps are no longer available
in [image: Im13 ${\#8477 }^n$] for n>2 and other geometries have not
been much studied so far. On the ball, the analog
of problem (P) is

(P1)  Let 1[image: $ \le$]p[image: $ \le$]∞ and [image: Im14 ${B\#8834 {\#8477 }^n}$] the unit ball.
Fix O an open subset of the unit sphere
[image: Im15 ${S\#8834 {\#8477 }^n}$]. Let further
V[image: $ \in$]Lp(O) and [image: Im16 ${W\#8712 L^p{(S\#8726 O)}}$]
be [image: Im13 ${\#8477 }^n$]-valued vector fields, and M>0;
find a harmonic gradient G[image: $ \in$]Hp(B) such that
[image: Im17 ${{\#8741 G-W\#8741 }_{L^p{(S\#8726 O)}}\#8804 M}$] and G-V
is of minimal norm in Lp(O) under this constraint.

When p = 2,
spherical harmonics offer a reasonable substitute
to Fourier expansions and problem (P1) was solved in [2] ,
together with its natural analog on a shell.
The solution generalizes the Toeplitz
operator approach to bounded extremal problems [40] ,
and constructive
aspects of the procedure (harmonic 3-D projection, Kelvin and Riesz
transformation, spherical harmonics) were derived.
An important ingredient is a refinement of the Hodge
decomposition allowing us to
express a [image: Im13 ${\#8477 }^n$]-valued vector field in Lp(S), 1<p<∞,
as the sum of a
vector field in H(B), a vector field in [image: Im18 ${H^p{(}{\#8477 }^n\#8726 \mover B¯}$],
and a tangential divergence free vector field. If p = 1 or p = ∞,
Lp must be replaced respectively by the real Hardy space H1 and the
bounded mean oscillation space BMO, and H∞ should be modified
accordingly.
This decomposition was fully discussed in [37] 
(for the case of the half-space) where it plays a fundamental role.

Problem (P1) is still under investigation in the case p = ∞,
where even the case where O = S is pending because
a substitute of the Adamjan-Arov-Krein theory [72] 
is still to be built in dimension greater than 2.

Such problems arise in connection with
source recovery in electro/mgneto encephalography and paleomagnetism, as
discussed in sections 
	3.2.1  and 
	4.2 .


[bookmark: uid23] Best meromorphic and rational approximation

The techniques explained in this section are used to solve
step 2 in section 
	3.2  via conformal mapping
and subsequently instrumental to
approach inverse boundary value problems
for Poisson equation Δu = μ,
where μ is some (unknown) distribution.

[bookmark: uid24] Scalar meromorphic and rational approximation

Let as before D designate the unit disk, and T the unit circle.
We further put RN for the set of rational functions
with at most N poles in D, which allows us to
define the meromorphic functions
in Lp(T) as the traces of functions in Hp + RN.

A natural generalization of problem (P0) is:

(PN)  Let 1[image: $ \le$]p[image: $ \le$]∞, N[image: $ \ge$]0 an integer, and f[image: $ \in$]Lp(T);
find a function gN[image: $ \in$]Hp + RN such that
gN-f is of minimal norm in Lp(T).

Only for p = ∞ and continuous f it is known how to solve
(PN) in closed form. The unique solution is given by AAK theory (named after Adamjan, Arov and Krein),
that connects the spectral decomposition of Hankel operators with best approximation in Hankel norm  [72] .
This theory allows one to express gN in terms of the singular vectors of
the Hankel operator with symbol f. The continuity of gN as a function
of f only holds for stronger norms than uniform.

The case p = 2 is of special importance.
In particular when [image: Im19 ${f\#8712 {\mover H¯}^2}$], the Hardy space of exponent 2 of the
complement of D in the complex plane (by definition,
h(z) belongs to [image: Im20 ${\mover H¯}^p$] if, and only if h(1/z) belongs to Hp),
then
(PN) reduces to rational approximation. Moreover,
it turns out that the associated solution gN[image: $ \in$]RN has no pole outside D,
hence it is a stable rational
approximant to f. However, in contrast with the situation
when p = ∞, this approximant may not be unique.

The former Miaou project (predecessor of Apics) has designed an
adapted steepest-descent algorithm
for the case p = 2 whose convergence to a local minimum is
guaranteed; until now it seems to be the only procedure meeting this
property. Roughly speaking, it is a gradient algorithm that proceeds
recursively with respect to the order N of the approximant,
in a compact region of the parameter space [34] .
Although it has proved
effective in all applications carried out so far
(see sections 
	4.2 , 
	4.3 ),
it is not known whether the absolute minimum can
always be obtained by
choosing
initial conditions corresponding to critical points of lower degree
(as is done by the RARL2 software, section 
	5.1 ).

In order to establish global convergence results, APICS has undertook a
long-term study of the number and nature of critical points, in which
tools from differential topology and
operator theory team up with classical approximation theory.
The main discovery is that
the nature of the critical points
(e.g., local minima, saddles...)
depends on the decrease of the interpolation
error to f as N increases [44] .
Based on this, sufficient conditions
have been developed for a local minimum to be unique.
These conditions are hard to use in practice because they require
strong estimates of the approximation error. These
are often difficult to obtain for a given function, and are usually only
valid for large N.
Examples where uniqueness or asymptotic uniqueness has been proved this way
include transfer functions of relaxation
systems (i.e.
Markov functions) [48]  and more
generally Cauchy integrals over hyperbolic geodesic
arcs [50]  and certain entire functions  [46] .

An analog to AAK theory
has been carried out for 2[image: $ \le$]p<∞ [47] .
Although not
computationally as powerful, it can be used to derive lower bounds
and helps analysing the behaviour of poles.
When 1[image: $ \le$]p<2, problem (PN) is still fairly open.

A common
feature to all these problems
is that critical point equations
express non-Hermitian orthogonality relations for the denominator
of the approximant. This makes connection with interpolation theory
[51] [7]  and
is used in an essential manner to assess the
behaviour of the poles of the approximants to functions with branchpoint-type
singularities,
which is of particular interest for inverse source problems
(cf. sections 
	5.6  and 
	6.1 ).

In higher dimensions, the analog of problem (PN) is the approximation of
a vector field with gradients of
potentials generated by N point masses instead of meromorphic functions.
The issue is by no means understood at present,
and is a major endeavour of future research
problems.

Certain constrained rational approximation problems, of special interest
in identification
and design of passive systems, arise when putting additional
requirements on the approximant, for instance that it should be smaller than 1
in modulus.
Such questions have become over years an increasingly significant
part of the team's
activity (see section 
	4.3 ).
For instance, convergence properties of multipoint Schur approximants,
which are rational interpolants preserving
contractivity of a function, were analysed in
[3] . Such approximants are useful in prediction theory of
stochastic processes, but since they interpolate inside the domain of
holomorphy
they are of limited use in frequency design.

In another connection,
the generalization to several arcs
of classical Zolotarev problems [74] 
is an achievement by the team which is useful for multiband synthesis
[11] .
Still, though the modulus of the response
is the first concern in filter design, variation of the phase
must nevertheless remain under control to avoid unacceptable distortion of
the signal. This specific but important issue has less structure and was
approached using constrained optimization; a dedicated code has been
developed under contract with the CNES (see section 
	5.5 ).


[bookmark: uid25] Matrix-valued rational approximation

Matrix-valued approximation is necessary for handling systems with several
inputs and outputs, and it generates substantial additional difficulties
with respect to scalar approximation,
theoretically as well as algorithmically. In the matrix case,
the McMillan degree (i.e. the degree of a minimal realization in
the System-Theoretic sense) generalizes the degree.

The problem we want to consider reads:
Let [image: Im21 ${\#8497 \#8712 {(H^2)}^{m×l}}$] and n an
integer; find a rational matrix of size m×l without
poles in the unit disk and of McMillan degree at most n which is nearest possible
to [image: Im22 $\#8497 $] in (H2)m×l.
Here the L2 norm of a matrix is the square root of the sum of the
squares of the norms of its entries.

The scalar approximation algorithm [34] , mentioned in section

	3.3.2.1 ,
generalizes to
the matrix-valued situation [60] . The
first difficulty here consists in the parametrization
of transfer matrices of given
McMillan degree n, and the inner matrices (i.e. matrix-valued functions
that are analytic in the unit disk and unitary on the circle) of degree n. The latter
enter the picture in an essential manner as they play the role of the denominator
in a fractional representation of transfer matrices (using the so-called
Douglas-Shapiro-Shields factorization).
The set of inner matrices of given degree has the structure of a smooth manifold that allows one to use differential tools
as in the scalar case. In practice, one has to produce an atlas of charts (parametrization valid in a neighborhood of a
point), and we must handle changes of charts in the course of the algorithm. Such parametrization can be obtained from
interpolation theory and Schur type algorithms, the parameters being interpolation vectors or matrices
( [31] , [10] , [12] ). Some of
them are particularly interesting to compute
realizations and achieve filter synthesis
([10]  [12] ).
Rational approximation software codes have been developed
in the team (see sections 
	5.1 ).

Difficulties relative to multiple local minima naturally arise in
the matrix-valued case as well, and deriving criteria that
guarantee uniqueness is even
more difficult than in the scalar case. The case of rational functions
of sought degree or small perturbations thereof
(the consistency problem) was solved in
  [45] . The case of matrix-valued Markov functions, the first example beyond rational functions, was treated in [33] .

Let us stress that the algorithms mentioned above are first to
handle rational approximation in the matrix case in a way that converges to
local minima, while meeting stability constraints on the approximant.


[bookmark: uid26] Behavior of poles of meromorphic approximants
Participant :
      Laurent Baratchart.


The following people collaborate with us on this subject: Herbert Stahl (TFH Berlin), Maxim Yattselev (Univ. Oregon at Eugene, USA).

We refer here to the behaviour of poles of best
meromorphic approximants, in the Lp-sense on a closed curve,
to functions f defined as Cauchy integrals of complex
measures whose support lies inside the curve. If one
normalizes the contour to be the unit circle T,
we are back to the framework of
section 
	3.3.2.1  and to problem (PN);
invariance of the problem under conformal
mapping was established in [6] .
Research so far has focused
on functions whose singular set inside the contour is zero or one-dimensional.

Generally speaking, the
behaviour of poles is particularly important in meromorphic approximation
to obtain error rates as the degree goes large and to tackle
constructive issues like
uniqueness. As explained in section 
	3.2.1 ,
we consider this issue in connection with
approximation of the solution to a
Dirichlet-Neumann problem, so as to extract information on the
singularities. The general theme is thus how do the singularities
of the approximant reflect those of the approximated function?
This approach to inverse problem for the 2-D Laplacian turns out
to be attractive when singularities
are zero- or one-dimensional (see section 
	4.2 ). It can be used
as a computationally cheap
initialization of more precise but heavier
numerical optimizations.

As regards crack detection or source recovery, the approach in
question boils
down to
analysing the behaviour of best meromorphic
approximants of a function with branch points.
For piecewise analytic cracks, or in the case of sources, We were able to
prove ([6] , [38] , [14] ) that the poles of the
approximants accumulate on some extremal contour of minimum weighted energy
linkings the singular points of the crack, or the sources
[41] .
Moreover, the asymptotic density
of the poles turns out to be the Green equilibrium distribution
of this contour in D, hence puts heavy charge around the
singular points (in particular at the endpoints) which are therefore
well localized if one is able to approximate in
sufficiently high degree (this is where the method could fail).

The case of two-dimensional singularities is still an outstanding open problem.

It is interesting that inverse source problems inside
a sphere or an ellipsoid in 3-D can
be attacked with the above 2-D techniques, as applied to planar
sections (see section 
	6.1 ).


[bookmark: uid27] Miscellaneous
Participant :
      Sylvain Chevillard.


Sylvain Chevillard, joined team in November 2010. His coming
resulted in APICS hosting a research activity in certified computing,
centered around the software Sollya of which S. Chevillard is a
co-author, see section 
	5.7 . On the one hand, Sollya is an
Inria software which still requires some tuning to a growing community of
users. On the other hand, approximation-theoretic methods
at work in Sollya are potentially useful for certified solutions to
constrained analytic problems described in section 
	3.3.1 .
However, developing Solya is not a long-term objective of APICS.
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  [bookmark: uid29] Section: 
      Application Domains
Introduction

These domains are related to the problems described in sections 
	3.2.1  and 
	3.2.2 . They are handled
using the techniques described in section 
	3.3 .


[bookmark: uid30] Section: 
      Application Domains
Inverse problems
for elliptic PDE
Participants :
      Laurent Baratchart, Juliette Leblond, Ana-Maria Nicu, Dmitry Ponomarev.


This work is done in collaboration with Maureen Clerc and Théo Papadopoulo from the Athena project-team.

Solving overdetermined Cauchy problems for the Laplace equation on a
spherical layer (in 3-D) in order to extrapolate
incomplete data (see section 
	3.2.1 ) is
a necessary
ingredient of the team's approach to inverse source problems, in particular
for applications to EEG since the latter involves propagating the
initial conditions through several layers of different conductivities,
from the boundary
down to the center of the domain where the
singularities (i.e. the sources) lie.
Actually, once propagated
to the innermost sphere, it turns out that that traces of the
boundary data on 2-D cross sections (disks) coincide
with analytic functions in the slicing plane,
that has branched singularities inside the disk [4] . These
singularities are
related to the actual location of the sources (namely, they reach in turn a
maximum in modulus when the plane contains one of the sources). Hence, we are
back to the 2-D framework of section 
	3.3.3 
where approximately recovering these singularities
can be performed using best rational approximation.

Numerical experiments gave
very good results on simulated data and we are now proceeding with
real experimental magneto-encephalographic data, see
also sections 
	5.6  and 
	6.1 .
The PhD thesis of A.-M. Nicu [13]  was concerned with these
applications, see [16] ,
in collaboration with the Athena team at Inria Sophia Antipolis, and
neuroscience teams in partner-hospitals (hosp. Timone, Marseille).

Similar inverse potential problems appear naturally in
magnetic reconstruction. A particular
application, which is the object of a joint NSF project with
Vanderbilt University and MIT, is to geophysics. There, the remanent
magnetization of a rock is to be analysed
to draw information on magnetic reversals and to
reconstruct the rock history. Recently developed
scanning magnetic microscopes measure the magnetic field down to
very small scales in a “thin plate” geological
sample at the Laboratory of planetary sciences at MIT,
and the magnetization has to be recovered from the field measured on a plane
located at small distance above the slab.

Mathematically
speaking, EEG and magnetization inverse problems both amount to recover the (3-D valued) quantity m (primary current density in case of the brain
or magnetization in case of a thin slab of rock)
from measurements of the vector
potential:

[image: Im23 ${\#8747 _\#937 \mfrac {\mtext div~m{(x^')}~dx^'}{{|x-}x^'{|}}~,}$]


outside the volume Ω of the object, from Maxwell's equations.

The team is also getting engaged in
problems with variable conductivity governed by a 2-D conjugate-Beltrami
equation, see
[5] , [58] , [35] .
The application we have in mind is to plasma confinement for
thermonuclear fusion in a Tokamak, more precisely with the extrapolation of
magnetic data on the boundary of the chamber from the outer boundary of the
plasma, which is a level curve for the poloidal flux solving the original
div-grad equation. Solving this inverse problem of Bernoulli type
is of importance to determine the
appropriate boundary conditions to be applied to the chamber in order to
shape the plasma [54] .
These issues are the topics of the PhD theses of S. Chaabi and D. Ponomarev [27] , and of
a joint collaboration with the Laboratoire J.-A. Dieudonné at the Univ. of Nice-SA (and the Inria team Castor), and
the CMI-LATP at the Univ. of Aix-Marseille I (see section 
	6.2 ).


[bookmark: uid31] Section: 
      Application Domains
Identification and design of microwave devices
Participants :
      Laurent Baratchart, Sylvain Chevillard, Martine Olivi, Fabien Seyfert.


This work is done in collaboration with Stéphane Bila (XLim, Limoges) and Jean-Paul Marmorat (Centre de mathématiques appliquées (CMA), École des Mines de Paris).

One of the best training grounds for the research of the team in function
theory is the identification and design of physical systems for which the
linearity assumption works well in the considered range of frequency,
and whose
specifications are made in the frequency domain. This is the case of
electromagnetic resonant systems which are of
common use in
telecommunications.

In space telecommunications (satellite transmissions),
constraints specific to on-board technology lead to the use of filters
with resonant cavities in the microwave range.
These filters serve multiplexing purposes (before or after
amplification), and consist of a sequence of cylindrical hollow
bodies, magnetically coupled by irises (orthogonal double slits). The
electromagnetic wave that traverses the cavities satisfies the Maxwell
equations, forcing the tangent electrical field along the body of
the cavity to be zero. A deeper study (of the Helmholtz
equation) states that essentially only a discrete set of wave vectors is
selected. In the
considered range of frequency, the electrical field in each cavity can be seen
as being
decomposed along two orthogonal modes, perpendicular to the axis of the cavity
(other modes are far off in the frequency domain, and their influence can be neglected).

[bookmark: uid32]Figure
	1. Picture of a 6-cavities dual mode filter. Each cavity (except the last one) has 3 screws to couple the modes within the
cavity, so that 16 quantities must be optimized. Quantities such as the diameter and length of the cavities, or
the width of the 11 slits are fixed during the design phase.	[image: IMG/bibande11p4z.png]





Each cavity (see Figure 1 ) has three screws, horizontal, vertical and
midway (horizontal and vertical are two arbitrary directions, the third
direction makes an angle of 45 or 135 degrees, the easy case is when all
cavities show the same orientation, and when the directions of the irises are
the same, as well as the input and output slits). Since the screws are
conductors, they act more or less as capacitors; besides, the
electrical field on the surface has to be zero, which modifies the boundary conditions
of one of the two modes (for the other mode, the electrical field is zero
hence it is not influenced by the screw), the third screw acts as a coupling
between the two modes. The effect of the iris is to the contrary of a
screw: no condition is imposed where there is a hole, which results in a
coupling between two horizontal (or two vertical) modes of adjacent cavities
(in fact the iris is the union of two rectangles, the important parameter
being their width). The design of a filter consists in finding the size
of each cavity, and the width of each iris. Subsequently, the filter can be
constructed and tuned by adjusting the screws. Finally, the screws are glued.
In what follows, we shall consider a typical example, a filter designed by the
CNES in Toulouse, with four cavities near 11 Ghz.

Near the resonance frequency, a good approximation of the Maxwell equations is
given by the solution of a second order differential equation. One obtains
thus an electrical model for our filter as a sequence of electrically-coupled
resonant circuits, and each circuit will be modelled by two resonators, one
per mode, whose resonance frequency represents the frequency of a mode, and
whose resistance represent the electric losses (current on the surface).

In this way, the filter can be seen as a quadripole, with two ports, when
plugged on a resistor at one end and fed with some potential at the other end.
We are
then interested in the power which is transmitted and reflected. This leads to
defining a
scattering matrix S, that can be considered as the transfer function of a
stable causal linear dynamical system, with two inputs and two outputs. Its
diagonal terms S1, 1, S2, 2 correspond to reflections at each port,
while
S1, 2, S2, 1 correspond to transmission. These functions can be
measured at certain frequencies (on the imaginary axis).
The filter is rational of order 4 times the number of cavities
(that is 16 in the
example), and the key step consists in expressing the components of the
equivalent electrical circuit as a function of the Sij (since there are no
formulas expressing the lengths of the screws in terms of parameters of this
electrical model). This representation is also useful
to analyze the numerical simulations of the Maxwell equations, and
to check the design, particularly the
absence of higher resonant modes.

In fact, resonance is not studied via the electrical model,
but via a low-pass
equivalent circuit obtained upon linearising near the central frequency, which is no
longer
conjugate symmetric (i.e. the underlying system may not have real
coefficients) but whose degree is divided by 2 (8 in the example).

In short, the identification strategy is as follows:


	[bookmark: uid33] measuring the scattering matrix of the filter near the
optimal frequency over twice the pass band
(which is 80Mhz in the example).



	[bookmark: uid34] Solving bounded extremal problems for the transmission
and the reflection (the modulus of he response
being respectively
close to 0 and 1 outside the interval measurement, cf. section 
	3.3.1 ).
This provides us with a scattering matrix of order roughly 1/4 of the number of
data points.



	[bookmark: uid35] Approximating this scattering matrix by a rational transfer-function
of fixed degree
(8 in this example)
via the Endymion or RARL2 software (cf. section 
	3.3.2.2 ).



	[bookmark: uid36] A realization of the transfer function is thus obtained, and
some additional symmetry constraints are imposed.



	[bookmark: uid37] Finally one builds a realization of the approximant
and looks for a
change of variables that eliminates non-physical couplings.
This is obtained by
using algebraic-solvers and continuation
algorithms on the group of orthogonal complex matrices (symmetry
forces this type of transformation).




[bookmark: uid38]Figure
	2. Nyquist Diagram. Rational approximation (degree 8) and data - S22.	[image: IMG/nappratS22.png]





The final approximation is of high quality. This can be interpreted as
a validation of the linearity hypothesis for the system:
the relative L2 error is less than 10-3.
This is illustrated by a reflection diagram
(Figure 2 ). Non-physical couplings are less than 10-2.

The above considerations are valid for a large class of filters. These
developments have also been used for the design of non-symmetric filters,
useful for the synthesis of repeating devices.

The team also investigates problems relative to the design of optimal responses for microwave devices. The resolution of a quasi-convex Zolotarev problems was for example proposed, in order to derive guaranteed optimal multi-band filter's responses subject to modulus constraints [11] . This generalizes the classical single band design techniques based on Tchebychev polynomials and elliptic functions. These techniques rely on the fact that the modulus of the scattering parameters of a filters, say |S1, 2|, admits a simple expression in terms of the filtering function D = |S1, 1|/|S1, 2| namely,

[image: Im24 ${{|}S_{1,2}{|}^2=\mfrac 1{1+D^2}.}$]


The filtering function appears to be the ratio of two polynomials p1/p2, the numerator of the reflection and transmission scattering factors, that can be chosen freely. The denominator q is obtained as the unique stable and unitary polynomial solving the classical Feldtkeller spectral equation:

qq* = p1p1* + p2p2*.


The relative simplicity of the derivation of filter's responses under modulus constraints is due to this ability to "forget" about latter spectral equation, and express all design constraints on the filtering functions D. This no longer the case when considering the synthesis N-port devices for N>3, like multiplexers, routers power dividers or when considering the synthesis of filters under matching conditions. The efficient derivation of multiplexers responses is one of the team's active recent research area, where technique based on constrained Nevanlinna-Pick interpolation problems are under study (see section 
	6.4.1 ).
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  [bookmark: uid40] Section: 
      Software
RARL2 
Participant :
      Martine Olivi [corresponding participant] .


Status: Currently under development. A stable version is maintained.

This software is developed in collaboration with Jean-Paul Marmorat (Centre de mathématiques appliquées (CMA), École des Mines de Paris).

RARL2 (Réalisation interne et Approximation Rationnelle L2) is a software for
rational approximation (see section 
	3.3.2.2 )
http://www-sop.inria.fr/apics/RARL2/rarl2-eng.html .

The software RARL2 computes, from a given matrix-valued function in [image: Im25 ${\mover H¯^2}^{m×l}$], a local best rational approximant in the L2 norm, which is stable and of prescribed McMillan degree
(see section 
	3.3.2.2 ). It was initially developed in the context of linear (discrete-time) system theory and makes an heavy use of the classical concepts in this field. The matrix-valued function to be approximated can be viewed as the transfer function of a multivariable discrete-time stable system. RARL2 takes as input either:


	[bookmark: uid41] its internal realization,



	[bookmark: uid42] its first N Fourier coefficients,



	[bookmark: uid43] discretized (uniformly distributed) values on the circle. In this case, a least-square criterion is used instead of
the L2 norm.




It thus performs model reduction in case 1) and 2) and frequency data identification in case 3). In the case of band-limited frequency data, it could be necessary to infer the behavior of the system outside the bandwidth before performing rational approximation (see 
	3.2.2 ).
An appropriate Moebius transformation allows to use the software for continuous-time systems as well.

The method is a steepest-descent algorithm. A parametrization of MIMO systems is used, which ensures that the stability constraint on the approximant is met. The implementation, in matlab, is based on state-space representations.

The number of local minima can be rather high so that the choice of an initial point for the
optimization can play a crucial role. Two methods can be used:
1) An initialization with a best Hankel approximant.
2) An iterative research strategy on the degree of the local minima, similar in
principle to that of Rarl2, increases the chance of obtaining the
absolute minimum by generating, in a
structured manner, several initial conditions.

RARL2 performs the rational approximation step in our applications
to filter identification (see section 
	4.3 ) as well as sources or cracks recovery (see section 
	4.2 ). It was released to the universities of Delft, Maastricht, Cork and Brussels.
The parametrization embodied in RARL2 was also used for a multi-objective control synthesis problem provided by ESTEC-ESA, The Netherlands. An extension of the software to the case of triple poles approximants is now available.
It provides satisfactory results in the source recovery problem and it is used by FindSources3D (see section 
	5.6 ).


[bookmark: uid44] Section: 
      Software
RGC
Participant :
      Fabien Seyfert [corresponding participant] .


Status: A stable version is maintained.

This software is developed in collaboration with Jean-Paul Marmorat (Centre de mathématiques appliquées (CMA), École des Mines de Paris).

The identification of filters modelled by an electrical
circuit that was developed by the team (see section 
	4.3 )
led us to compute the electrical parameters of the underlying
filter. This means finding a particular realization (A, B, C, D) of the model
given by the rational approximation step. This 4-tuple must satisfy constraints
that come from the geometry of the equivalent electrical network and
translate into some of the coefficients in (A, B, C, D) being zero.
Among the different geometries of coupling, there is one called
“the arrow form” [53]  which is of particular interest
since it is unique for a given transfer function and is easily
computed.
The computation of this realization is the first step of RGC. Subsequently, if
the target realization is not in arrow form, one can nevertheless show that it can be
deduced from the arrow-form by a complex- orthogonal change of basis. In this case,
RGC starts a local optimization procedure that reduces the distance between
the arrow form and the target, using successive orthogonal transformations.
This optimization problem on the group of orthogonal matrices is non-convex
and has many local and global minima. In fact, there is not even
uniqueness of the filter realization for a given geometry. Moreover,
it is often relevant to know all solutions of the problem, because the
designer is not even sure, in many cases, which one is being handled.
The assumptions on the reciprocal influence
of the resonant modes may not be equally well satisfied for all such
solutions, hence some of them should be preferred for the design.
Today, apart from the particular case where the arrow
form is the desired form (this happens frequently up to degree 6) the RGC
software provides no guarantee to obtain a single
realization that satisfies the prescribed constraints. The software Dedale-HF
(see section 
	5.4 ), which is the successor of RGC,
solves with guarantees this constraint realization problem.


[bookmark: uid45] Section: 
      Software
PRESTO-HF 
Participant :
      Fabien Seyfert [corresponding participant] .


Status: Currently under development. A stable version is maintained.

PRESTO-HF: a toolbox dedicated to lowpass parameter identification for
microwave filters
http://www-sop.inria.fr/apics/personnel/Fabien.Seyfert/Presto_web_page/presto_pres.html .
In order to allow the industrial transfer of our methods, a Matlab-based
toolbox has been developed, dedicated to the problem of identification
of low-pass microwave filter parameters. It allows one to run the
following algorithmic steps, either individually or in a single
shot:


	[bookmark: uid46] determination of delay components caused by the access
devices (automatic reference plane adjustment),



	[bookmark: uid47] automatic determination of an analytic completion, bounded in modulus
for each channel,



	[bookmark: uid48] rational approximation of fixed McMillan degree,



	[bookmark: uid49] determination of a constrained realization.




For the matrix-valued rational approximation step, Presto-HF relies on
RARL2 (see section 
	5.1 ), a rational approximation engine developed within the team.
Constrained realizations are computed by the RGC software.
As a toolbox, Presto-HF has a modular structure, which allows one
for example to
include some building blocks in an already existing software.

The delay compensation algorithm is based on the following strong assumption:
far off the passband, one can reasonably expect a good approximation of the
rational components of S11 and S22 by the first few terms of their
Taylor expansion at infinity, a small degree polynomial in 1/s. Using this
idea, a sequence of quadratic convex optimization problems are solved, in order
to obtain appropriate compensations. In order to check the previous
assumption, one has to measure the filter on a larger band, typically three
times the pass band.

This toolbox is currently used by Thales Alenia Space in Toulouse, Thales airborn systems and a license
agreement has been recently negotiated with TAS-Espagna. XLim (University
of Limoges) is
a heavy user of Presto-HF among the academic filtering community and some free
license agreements are currently being considered with the microwave
department of the University of Erlangen (Germany) and the Royal Military
College (Kingston, Canada).


[bookmark: uid50] Section: 
      Software
Dedale-HF 
Participant :
      Fabien Seyfert [corresponding participant] .


Status: Currently under development. A stable version is maintained.

Dedale-HF is a software dedicated to solve exhaustively the coupling matrix
synthesis problem in reasonable time for the users
of the filtering community. For a given coupling topology, the coupling matrix
synthesis problem (C.M. problem for short) consists in finding all possible
electromagnetic coupling values between resonators that yield a realization of
given filter characteristics (see section 
	6.3 ).
Solving the latter problem is
crucial during the design step of a filter in order to derive its physical
dimensions as well as during the tuning process where coupling values need to
be extracted from frequency measurements (see Figure 3 ).

[bookmark: uid51]Figure
	3. Overall scheme of the design and tuning process of a microwave filter.	[image: IMG/Vue_ensemble.png]





Dedale-HF consists in two parts: a database of coupling topologies as well as
a dedicated predictor-corrector code. Roughly speaking each reference file of
the database contains, for a given coupling topology, the complete solution
to the C.M. problem associated to particular filtering characteristics. The
latter is then used as a starting point for a predictor-corrector integration
method that computes the solution to the C.M. problem of the user,
i.e. the one corresponding to user-specified filter characteristics. The
reference files are computed off-line using Groebner basis techniques or
numerical techniques based on the exploration of a monodromy group. The use of
such a continuation technique combined with an efficient implementation of the
integrator produces a drastic reduction, by a factor of 20, of the computational time.

Access to the database and integrator code is done via the web on
http://www-sop.inria.fr/apics/Dedale/WebPages .
The software is free of charge for academic research purposes: a
registration is however needed in order to access full
functionality. Up to now 90 users have registered world wide (mainly:
Europe, U.S.A, Canada and China) and 4000 reference files have been
downloaded.

A license of this software has been sold end 2011, to TAS-Espagna to tune filter, with topologies with multiple solutions. The usage of Dedale-HF is here considered together with Presto-HF.


[bookmark: uid52] Section: 
      Software
easyFF 
Participant :
      Fabien Seyfert.


Status: A stable version is maintained.

This software has been developed by Vincent Lunot (Taiwan Univ.) during his Ph.d. He still continues to maintain it.

EasyFF is a software dedicated to the computation of complex, and in particular multi-band, filtering functions. The software takes as input, specifications on the modulus of the scattering matrix (transmission and rejection), the filter's order and the number of transmission zeros. The output is an "optimal" filtering characteristic in the sense that it is the solution of an associated min-max Zolotarev problem. Computations are based on a Remez-type algorithm (if transmission zeros are fixed) or on linear programming techniques if transmission zeros are part of the optimization [11] .


[bookmark: uid53] Section: 
      Software
FindSources3D 
Participant :
      Juliette Leblond [corresponding participant] .


Status: Currently under development. A stable version is maintained.

This software is developed in collaboration with Maureen Clerc and Théo Papadopoulo from the Athena EPI, and with Jean-Paul Marmorat (Centre de mathématiques appliquées (CMA), École des Mines de Paris).

FindSources3D is a software dedicated to source
recovery for the inverse EEG problem, in 3-layer spherical settings, from pointwise
data (see
http://www-sop.inria.fr/apics/FindSources3D/ ). Through the
algorithm described in [16]  and section 
	4.2 , it makes use of the software RARL2
(section 
	5.1 ) for the rational approximation step in plane
sections. The data transmission preliminary step (“cortical mapping”) is
solved using boundary element methods through the software OpenMEEG (its
CorticalMapping features) developed by the Athena Team
(see http://www-sop.inria.fr/athena/software/OpenMEEG/ ).
A first release of FindSources3D is now available,
which will be demonstrated and distributed within the medical teams we are in contact with (see
Figure 4 , CeCILL license, APP version 1.0: IDDN.FR.001.45009.S.A.2009.000.10000).

[bookmark: uid54]Figure
	4. Potential values at electrodes on a sphere (scalp), recovered 2 sources (FindSources3D).	[image: IMG/clustering2.png]






[bookmark: uid55] Section: 
      Software
Sollya 
Participant :
      Sylvain Chevillard [corresponding participant] .


Status: Currently under development. A stable version is maintained.

This software is developed in collaboration with Christoph Lauter (LIP6) and Mioara Joldeş (Uppsala University, Sweden).

Sollya is an interactive tool where the developers of mathematical floating-point libraries (libm) can experiment before actually developing code. The environment is safe with respect to floating-point errors, i.e. the user precisely knows when rounding errors or approximation errors happen, and rigorous bounds are always provided for these errors.

Amongst other features, it offers a fast Remez algorithm for computing polynomial approximations of real functions and also an algorithm for finding good polynomial approximants with floating-point coefficients to any real function. It also provides algorithms for the certification of numerical codes, such as Taylor Models, interval arithmetic or certified supremum norms.

It is available as a free software under the CeCILL-C license at http://sollya.gforge.inria.fr/ .
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  [bookmark: uid57] Section: 
      New Results
Source recovery problems
Participants :
      Laurent Baratchart, Sylvain Chevillard, Juliette Leblond, Ana-Maria Nicu.


The works presented here are done in collaboration with Maureen Clerc and Théo Papadopoulo from the Athena EPI, with Doug Hardin and Edward Saff from Vanderbilt University (Nashville, USA), and with Abderrazek Karoui (Univ. Bizerte, Tunisie) and Jean-Paul Marmorat (Centre de mathématiques appliquées (CMA), École des Mines de Paris).

This section in dedicated to inverse problems for 3-D Poisson-Laplace equations.
Though the geometrical settings differ in the 2 sections below, the characterization of silent sources (that give rise to a vanishing potential at measurement points)
is a common problem to both which has been recently achieved, see [37] ,[29] ,
[39] .These are sums of (distributional) derivatives of
Sobolev functions vanishing on the boundary.

[bookmark: uid58] Application to EEG

In 3-D, functional or clinical active regions
in the cortex are often represented by pointwise sources that have to be
localized from measurements on the scalp of a potential
satisfying a Laplace equation (EEG,
electroencephalography).
In the work [4]  it was shown how
to proceed via best rational approximation on a sequence of 2-D
disks cut along the inner sphere, for the case where there are at most 2
sources. A milestone in a long-haul research on the behaviour of poles of
best rational approximants of fixed degree to functions with branch points
has been reached this year [14] , which shows that the technique carries
over to finitely many sources (see section 
	4.2 ).
In this connection, a dedicated software “FindSources3D” (see section 
	5.6 )
has been developed, in collaboration with the team Athena [16] , [26] .

Further, it appears that in the rational approximation step of these schemes, multiple poles possess a nice behaviour with respect to the branched singularities. This is due to the very basic physical assumptions on the model (for EEG data, one should consider triple poles). Though numerically observed in [16] , there is no mathematical
justification so far why these multiple poles have such strong accumulation
properties, which remains an intriguing observation.

Issues of robust interpolation on the sphere from incomplete pointwise data
are also under study in order to improve numerical accuracy of our reconstruction schemes.
Spherical harmonics, Slepian bases and related special functions are of special interest (thesis of A.-M. Nicu [13] , [67] ), while other techniques should be considered as well.

Also, magnetic data from MEG (magneto-encephalography) will soon
become available, which should enhance the accuracy of source recovery
algorithms.

It turns out that discretization issues in geophysics can also be
approached by these approximation techniques. Namely, in geodesy or
for GPS computations, one may need to get a best discrete
approximation of the gravitational potential on the Earth's surface,
from partial data collected there. This is the topic of a beginning collaboration with a physicist
colleague (IGN, LAREG, geodesy). Related geometrical issues (finding
out the geoid, level surface of the gravitational potential) are worthy of consideration as well.


[bookmark: uid59] Magnetization issues

Magnetic sources localization from observations of the field away from the
support of the magnetization is an issue under investigation in a joint effort
with
the Math. department of Vanderbilt University and the Earth Sciences
department at MIT. The goal is to recover the magnetic properties of rock
samples (e.g. meteorites or stalactites) from fine field measurements
close to the sample that
can nowadays be obtained using SQUIDs (supraconducting coil devices).

The magnetization operator
is the Riesz potential of the divergence of the magnetization.
The problem of recovering a thin plate magnetization distribution
from measurements of the field in a plane above the sample
lead us to an analysis of the kernel of this operator, which we
characterized in various function and distribution spaces
(arbitrary compactly supported distributions or derivatives of
bounded functions). For this purpose, we
introduced a generalization of the Hodge decomposition in terms of Riesz
transforms and showed that a thin plate magnetization is
“silent” (i.e. in the kernel) if
the normal component is zero and the tangential component is divergence
free.
In particular, we show that a unidirectional non-trivial magnetization with
compact support cannot be silent. The same is true for bidirectional magnetizations if at least one of the directions is nontangential.
We also proved that any
magnetization is equivalent to a unidirectional. We did introduce notions of being silent from above and silent from below, which are in general distinct.
These results have been reported in a paper to appear [37] .

We currently work on Fourier based inversion techniques
for unidirectional
magnetizations, and Figures 5 ,
6 , 7  and
8 
show an example of reconstruction.
A joint paper with our collaborators from VU and MIT
is being written on this topic.

[bookmark: uid60]Figure
	5. Inria's logo were printed on a piece of paper. The ink of the letters “In” were magnetized along a direction D1. The ink of the letters “ria” were magnetized along another direction D2 (almost orthogonal to D1).	[image: IMG/inriaVisuel.png]





[bookmark: uid61]Figure
	6. The Z-component of the magnetic field generated by the sample is measured by a SQUID microscope. The measure is performed 200µm above the sample.	[image: IMG/inriaMesureBZ.png]





[bookmark: uid62]Figure
	7. The field measured in Figure 6  is inversed, assuming that the sample is unidimensionally magnetized along the direction D1. The letters “In” are fairly well recovered while the rest of the letters is blurred (because the hypothesis about the direction of magnetization is false for “ria”).	[image: IMG/inriaRecover1.png]





[bookmark: uid63]Figure
	8. The field measured in Figure 6  is inversed, assuming that the sample is unidimensionally magnetized along the direction D2. The letters “ria” are fairly well recovered while the rest of the letters is blured (because the hypothesis about the direction of magnetization is false for “In”).	[image: IMG/inriaRecover2.png]





For more general magnetizations,
the severe ill-posedness of reconstruction challenges
discrete Fourier methods, one of the main problems being the
truncation of the observations outside the range of the SQUID measurements.
We look forward to develop extrapolation techniques in the spirit of step 1
in section 
	3.1 .


[bookmark: uid64] Section: 
      New Results
Boundary value problems, generalized Hardy classes
Participants :
      Laurent Baratchart, Slah Chaabi, Juliette Leblond, Dmitry Ponomarev.


This work has been performed in collaboration with Yannick Fischer from the Magique3D EPI (Inria Bordeaux, Pau).

In collaboration with the
CMI-LATP (University Aix-Marseille I), the team considers 2-D diffusion processes with variable conductivity.
In particular its complexified version, the so-called conjugate or
real Beltrami
equation,
was investigated.
In the case of a smooth domain, and for Lipschitz
conductivity, we analyzed the Dirichlet problem
for solutions in Sobolev and then in Hardy classes [5] .

Their traces merely lie in Lp (1<p<∞)
of the boundary, a space which is suitable for identification from
pointwise measurements.
Again these traces turn out to be dense on strict subsets of the boundary.
This allows us to state
Cauchy problems as bounded extremal issues in Lp
classes of generalized analytic
functions, in a reminiscent manner of what was done for analytic functions
as discussed in section 
	3.3.1 .

We generalized the construction to finitely connected Dini-smooth
domains and W1, q-smooth conductivities, with q>2 [35] . The case of an annular
geometry is the relevant one for the application to plasma shaping mentioned
below [58] , [35] .
The application that initially motivated this work came from free boundary
problems in plasma confinement (in tokamaks) for thermonuclear fusion.
This work was initiated in collaboration with
the Laboratoire J. Dieudonné (University of Nice).

In the transversal section of a tokamak
(which is a disk if the vessel is idealized into a torus),
the so-called poloidal flux is subject to some conductivity equation
outside the plasma volume
for some simple explicit smooth conductivity function, while the boundary of
the plasma (in the Tore Supra tokamak) is
a level line of this flux [54] . Related magnetic measurements are
available on the chamber, which furnish incomplete boundary data from
which one wants to recover the inner (plasma) boundary. This free boundary
problem (of Bernoulli type) can be handled through the solutions of a
family of bounded extremal problems in
generalized Hardy classes of solutions to real Beltrami equations, in
the annular framework [35] .

In the particular case at hand, the conductivity is 1/x and the domain
is an annulus embedded in the right half-plane.
We obtained a basis of
solutions (exponentials times Legendre functions) upon separating variables in toroidal coordinates.
This provides a computational setting to solve the extremal
problems mentioned before, and was the topic of the PhD thesis of Y. Fischer [58] , [27] .
In the most recent tokamaks, like Jet or ITER, an
interesting feature of the level curves of the poloidal flux
is the occurrence of a cusp (a saddle
point of the poloidal flux, called an X point), and it is desirable to shape the plasma
according to a level line passing through this X point for physical
reasons related to the efficiency of the energy transfer. We established
well-posedness of the Dirichlet problem in weighted Lp classes for
harmonic measure on piecewise smooth domains without cusps, thereby laying
ground for such a study. This issue is next in line, now that the present
approach has been validated numerically on Tore Supra data, and the topic of the PhD thesis of D. Ponomarev.

The PhD work of S. Chaabi is devoted to further aspects of Dirichlet
problems for the
conjugate Beltrami equation. On the one hand, a
method based on Foka's
approach to boundary value problems, which uses Lax pairs and
solves for a Riemann-Hilbert problem, has been devised to
compute in semi explicit form solutions to Dirichlet and Neumann problems for
the conductivity equation satisfied by the poloidal flux.
Also, for more general conductivities, namely bounded below and
lying in W1, s with s[image: $ \ge$]2,
parameterization of solutions to Dirichlet problems on the disk
by Hardy function was achieved through
Bers-Nirenberg factorization. Note the conductivity may be unbounded when
s = 2, which is completely new.
Two papers are being prepared reporting on these topics.

Finally, note that the conductivity equation can be expressed like a static Schrödinger equation, for smooth enough conductivity coefficients. This provides a link with the following results recently set up by D. Ponomarev, who recently join the team for his PhD.
A description of laser beam propagation in photopolymers can be crudely approximated by a stationary two-dimensional model of wave propagation in a medium with negligible change of refractive index. In such setting, Helmholtz equation is approximated by a linear Schrödinger equation with one of spatial coordinates being an evolutionary variable. Explicit comparison of the solutions in the whole half-space allows to establish global justification of the Schrodinger model for sufficiently smooth pulses [73] .
This phenomenon can also be described by a nonstationary model that relies on the spatial nonlinear Schrödinger (NLS) equation with the time-dependent refractive index. A toy problem is considered in [71] , when the rate of change of refractive index is proportional to the squared amplitude of the electric field and the
spatial domain is a plane. The NLS approximation is derived from a 2-D quasi-linear wave equation,
for small time intervals and smooth initial data. Numerical simulations illustrate the approximation result in the 1-D case.


[bookmark: uid65] Section: 
      New Results
Circuit realisations of filter responses: determination of canonical forms and exhaustive computations of constrained realisations
Participant :
      Fabien Seyfert.


This work has been done in collaboration with Smain Amari (Royal Military College, Kingston, Canada), Jean Charles Faugère (SALSA EPI, Inria Rocquencourt), Giuseppe Macchiarella (Politecnico di Milano, Milan, Italy), Uwe Rosenberg (Design and Project Engineering, Osterholz-Scharmbeck, Germany) and Matteo Oldoni (Politecnico di Milano, Milan, Italy).

We continued our work on the circuit realizations of filters'
responses with mixed type (inductive or capacitive) coupling elements
and constrained topologies [1] . For inline circuits,
methods
based on sequential extractions of electrical elements are best suited
due to their computational simplicity. On the other hand, for circuits with no
inline topology ,such methods are inefficient while algebraic methods
(based on a Groebner basis)
can be used, but at high computational cost.
In order to tackle large order circuits, our approach is to decompose
them into connected inline sections, which can be directly realized by
extraction techniques, and into
complex sections, where algebraic methods are needed for realization.
In order to do this, we
started studying the synthesis of filter responses by means of circuits
with reactive non-resonating nodes (dangling resonators)
[22] . Links of this topic with Potapov's factorization of J-inner functions are currently being investigated.

In this connection, sensitivity analysis of the electrical response of a filter with respect to the electrical parameters of the underlying circuit has been published in collaboration with the University of Cartagena and ESA [20] . We essentially proved that the total electrical sensitivity of a filters' response does not depend on the coupling topology of the underlying circuit: the latter however controls the distribution
of this sensitivity within each resonator.


[bookmark: uid66] Section: 
      New Results
Synthesis of compact multiplexers and de-embedding of multiplexers
Participants :
      Martine Olivi, Sanda Lefteriu, Fabien Seyfert.


This work has been done in collaboration with
Stéphane Bila (Xlim, Limoges, France),
Hussein Ezzedin (Xlim, Limoges, France),
Damien Pacaud (Thales Alenia Space, Toulouse, France),
Giuseppe Macchiarella (Politecnico di Milano, Milan, Italy, and
Matteo Oldoni (Politecnico di Milano, Milan, Italy).

[bookmark: uid67] Synthesis of compact multiplexers

We focused our research on multiplexer with a star topology. These are
comprised of a central N-port junction, and of filters plugged on all but
common ports (see Figure 9 ). A possible approach to synthesis of the multiplexer's response is to postulate that each filter channel has to match the multiplexer at nk frequencies (nk being the order of the filter) while rejecting the energy at mk other frequencies (mk being the order the transmission polynomial of the filter). The desired synthesis can then be cast into computing of a collection of filter's responses matching
the energy as prescribed and rejecting it at specified frequencies
when plugged simultaneously on the junction. Whether such a collection exists
is one of the main open issues facing
co-integration of systems in electronics. Investigating the latter
led us to consider the simpler problem of matching a filter,
on a frequency-varying load, while rejecting energy at fixed specified
frequencies. If the order of the filter is n this amounts to fix
a given transmission polynomial r and to solve for a unitary polynomial
p meeting interpolation conditions of the form:

[image: Im26 $\mtable{...}$]


where q is the unique monic Hurwitz polynomial satisfying the Feldtkeller equation

qq* = pp* + rr*.


This problem can be seen as an extended Nevanlinna-Pick interpolation problem, which was considered in [62]  when the interpolation
frequencies lie in the open left half-plane.
We conjecture that existence and uniqueness of the solution still holds
in our case, where interpolation takes place on the boundary,
provided r has no roots on the imaginary axis. Numerical experiments based on continuation techniques tend to corroborate our belief: efforts now
focus on a mathematical proof. The derived numerical tools have already been used to successfully to design multiplexer's responses in collaboration with CNES and Xlim, thereby initiating a collaboration with Xlim on co-integration of filters and antennas.


[bookmark: uid68] De-embedding of multiplexers

Let S be the measured scattering matrix of a
multiplexer composed of a N-port junction with response T and N-1
filters with responses [image: Im27 ${F_1,\#8943 F_{N-1}}$] as plotted on Figure
9 . The de-embedding question we raise is the following: given
S and T, is it possible to retrieve the Fk's ? The answer to this
question depends of course of the admissible class of filters.
For the simplest case where no assumption is made (except reciprocity), we showed that
the problem has a unique solution for N>3 and for generic T,
while for N = 2 the solution space at each frequency point
has real dimension 2. This redundancy can be explained by the existence of "ghost" or "silent" components that can hide behind the junction:
when being chained to the junction these components do not affect
its response. We also experienced that the generic behaviour for N>3 is
rather theoretical, as usual junctions are often made of chained T-junctions:
in this non generic case (which is rather generic in practice !) some
"silent" component still exists for N>3. Additional hypotheses,
such as rationality with prescribed degree for Fk, are currently
being studied
and already yielded results for the case N = 3 [21] .

This work is pursued in collaboration with Thales Alenia Space, Politecnico di Milano, Xlim and CNES in particular within the contract CNES-Inria on compact N-port synthesis (see section 
	7.1 ).

[bookmark: uid69]Figure
	9. Multiplexer made of a junction T and filtering devices [image: Im28 ${F_1,F_2\#8943 F_N}$]	[image: IMG/Multiplexer.png]






[bookmark: uid70] Section: 
      New Results
Detection of the instability of amplifiers
Participants :
      Laurent Baratchart, Sylvain Chevillard, Martine Olivi, Fabien Seyfert.


This work is conducted in collaboration with Jean-Baptiste Pomet from the
McTao team.
It is a continuation of a collaboration with CNES and the University of Bilbao.The goal is to help developing amplifiers, in particular to detect
instability at an early stage of the design.

Currently, Electrical Engineers from the University of Bilbao, under contract with CNES (the French Space Agency), use heuristics to diagnose instability before the circuit is physically implemented. We intend to set up a rigorously founded algorithm, based on properties of transfer functions of such amplifiers which belong to particular classes of analytic functions.

In non-degenerate cases, non-linear electrical components can be replaced
by their first order approximation when studying stability
to small perturbations. Using this approximation, diodes appear as perfect negative resistors and transistors as perfect current sources controlled by the voltages at certain points of the circuit.

In 2011, we had proved that the class of transfer functions which
can be realized with such ideal components and
standard passive components (resistors, selfs, capacitors and transmission
lines) is rather large since it contains all rational functions in the
variable and in the exponentials thereof.

In 2012, we focused on the kind of instabilities that these ideal systems can exhibit. We showed that a circuit can be unstable, although it has no pole in the right half-plane. This remains true even if a high resistor is put in parallel of the circuit, which is rather unusual. This pathological example is unrealistic, though, because it assumes that non-linear elements continue to provide gain even at very high frequencies. In practice, small capacitive and inductive effects (negligible at moderate frequencies) make these components passive for very high frequencies. Under this simple assumption, we proved that the class of transfer functions of realistic circuits is much smaller than
in previous situation. In fact, a realistic circuit is unstable if and only if it has poles in the right half-plane.
Moreover, there can only be finitely many of them.
An article is currently being written on the subject.


[bookmark: uid71] Section: 
      New Results
Best constrained analytic approximation
Participants :
      Laurent Baratchart, Sylvain Chevillard, Juliette Leblond, Dmitry Ponomarev, Elodie Pozzi.


This work is performed in collaboration
with Jonathan Partington (Univ. Leeds, UK).

Continuing effort is being paid by the team to
carry over the solution to bounded extremal problems of section 
	3.3.1 
to various settings.
We mentioned already in section 
	6.2 
the extension to 2-D diffusion equations with variable
conductivity for the determination of free boundaries in
plasma control and the development of
a generalized Hardy class theory.
We also investigate the ordinary Laplacian in [image: Im29 ${\#8477 }^3$], where
targeted applications are to
data transmission step for source detection in
electro/magneto-encephalography (EEG/MEG, see section 
	6.1 ).

Still, questions about the behaviour of solutions to the
standard bounded extremal problems (P) of section 
	3.3.1 
deserve attention.
We realized this year that Slepian functions are eigenfunctions of
truncated Toeplitz operators in 2-D. This can be used to quantify
robustness properties of our resolution schemes in H2 and to establish
error estimates, see [25] .
Moreover we considered additional interpolation constraints [28] , as a simplified but already interesting issue, before getting at
extremal problems for generalized analytic functions in annular non-smooth
domains. The latter arise in the context of plasma shaping in tokamaks like
ITER,
and will be the subject of the PhD thesis of D. Ponomarev.

In another connection, weighted composition operators on Lebesgue,
Sobolev, and Hardy spaces appear in changes of variables
while expressing conformal equivalence of plane domains.
A universality property related to the existence of invariant subspaces for
these important classes of operators
has been established in [19] . Additional density properties also
allow one to handle some of their dynamical aspects (like cyclicity).


[bookmark: uid72] Section: 
      New Results
Rational Approximation for fitting Non-Negative EPT densities
Participants :
      Martine Olivi, Fabien Seyfert.


This work has been done in collaboration with Bernard Hanzon and Conor Sexton from Univ. Cork.

The problem is to fit a probability density function on a large set of financial data. The model class is the set of non-negative EPT (Exponential-Polynomials-Trigonometric) functions which provides a useful framework for probabilistic calculation as illustrated in the link
http://www.2-ept.com/2-ept-literature.html .
Moreover, an EPT function can alternatively be interpreted as the impulse response of a continuous time stable system whose Laplace transform is a rational transfer function. This interpretation allows us to approach this problem using approximation tools developed by the team. The very context brings
up a classical, as yet essentially unsolved difficulty in rational
approximation, namely
preservation of positivity. This is known to be a hard issue.
Our work, initiated in 2011, resulted this year in an improved
approach for checking non-negativity of an EPT function.
These results have been presented at the 16th IFAC Conference on
System Identification [23] .
The proposed method was demonstrated on the positive daily Dow Jones Industrial Average (DJIA) log returns over 80 years.


[bookmark: uid73] Section: 
      New Results
Rational and meromorphic approximation
Participant :
      Laurent Baratchart.


This work has been done in collaboration with Herbert Stahl (TFH Berlin) and Maxim Yattselev (Univ. Oregon at Eugene, USA).

We completed and published this year the proof of an important result in
approximation theory, namely the counting measure of
poles of best H2 approximants
(more generally: of critical points) of degree n to a function analytically
continuable, except over finitely many branchpoints lying outside the unit
disk, converges to the Green
equilibrium distribution of the compact set of minimal Green capacity
outside of which the function is single valued [14] . The proof requires
showing existence and uniqueness of a compact set of minimal
weighted logarithmic capacity in a field, outside of which the function is
single-valued. Structure of this contour,
along with error estimates, also come out of the proof. The result is in fact valid for functions that are Cauchy integrals of
Dini-smooth functions on such a contour.
We rely in addition on asymptotic interpolation estimates from [63] .

This result warrants source recovery techniques used in section

	6.1.1 .

We also studied partial realizations, or equivalently Padé approximants
to transfer functions with branchpoints. Identification techniques
based on partial realizations of a stable infinite-dimensional
transfer function are known to often provide unstable models,
but the question as to whether this is due to noise or to intrinsic
instability was not clear.
In the case of 4 branchpoints, expressing the computation of
Padé approximants in terms of
the solution to a Riemann-Hilbert problem on the Riemann surface of the
function, we proved that the pole behaviour generically shows deterministic
chaos [49] .


[bookmark: uid74] Section: 
      New Results
Tools for numerically guaranteed computations
Participant :
      Sylvain Chevillard.


The overall and long-term goal is to enhance the quality of numerical computations. The progress made during year 2012 is the following:


	[bookmark: uid75] Publication of a work about the implementation of functions erf and erfc in multiple precision and with correct rounding [15] . It corresponds to a work initially begun in the Arénaire team and finished in the Caramel team. The goal of this work is to show on a representative example the different steps of the rigorous implementation of a function in multiple precision arithmetic (choice of a series approximating the function, choice of the truncation rank and working precision used for the computation, roundoff analysis, etc.). The steps are described in such a way that they can easily be reproduced by someone who would like to implement another function. Moreover, it is showed that the process is very regular, which suggests that it (or at least large parts of it) could be automated.



	[bookmark: uid76] In the same field of multiple precision arithmetic, and with Marc Mezzarobba (Aric team), we proposed an algorithm for the efficient evaluation of the Airy [image: Im30 ${\mtext Ai(x)}$] function when x is moderately large  [57] . Again, this work deals with a representative example, with the idea of trying to automate the process as a future work. The Taylor series of the Airy Ai function (as many others such as, e.g., Bessel functions or erf) is ill-conditioned when x is not small. To overcome this difficulty, we extend a method by Gawronski, Müller and Reinhard, known to solve the issue in the case of the error function erf. We rewrite [image: Im30 ${\mtext Ai(x)}$] as G(x)/F(x) where F and G are two functions with well-conditioned series. However, the coefficients of G turn out to obey a three-terms ill-conditioned recurrence. We evaluate this recurrence using Miller's backward algorithm with a rigorous error analysis.



	[bookmark: uid77] Finally, a more general endeavor is to develop a tool that helps developers of libms in their task. This is performed by the software Sollya (http://sollya.gforge.inria.fr/ ), developed in collaboration with C. Lauter (Université Pierre et Marie Curie) and M. Joldeş (Uppsala University). During year 2012, a large effort has been made in view of the release of version 4.0 (to come in 2013). This effort (of about 400 commits in the svn repository of the project) is mainly intended to provide a library version of Sollya, as well as a robust test suite for the tool. As a matter of course, it allowed us to detect and fix a dozen of bugs.
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      Bilateral Contracts and Grants with Industry
Contract CNES-Inria-Xlim

Contract (reference Inria: 7066, CNES: 127 197/00)
involving CNES, XLim and Inria, focuses on the development
of synthesis procedures for N-ports microwave devices. The objective
is here to derive analytical procedures for the design of multiplexers and
routers as opposed to the classical "black box optimization" which is usually
employed in this field (for N[image: $ \ge$]3).
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      Bilateral Contracts and Grants with Industry
Contract CNES-Inria-UPV/EHU

Contract (reference CNES: RS10/TG-0001-019)
involving CNES, University of Bilbao (UPV/EHU) and Inria
whose objective
is to set up a methodology for testing the stability of amplifying devices.
The work at Inria concerns the design of frequency optimization techniques
to identify the linearized response and analyze the linear periodic components.
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L. Baratchart, S. Chevillard and J. Leblond gave communications at the Workshop on Inverse Magnetization Problems, Nashville, USA (Apr.).

L. Baratchart and J. Leblond gave communications at PICOF, Conference Problèmes Inverses, Contrôle et Optimisation de Formes, Palaiseau, France (Apr.).

L. Baratchart gave invited talks at the
Workshop on Potential Theory and Applications, Szeged,
Hungary (June), and at SIGMA 2012, CIRM-Luminy (Nov). He gave a talk at the Conférence en l'honneur de Gauthier Sallet,
Saint Louis du Sénégal (Dec.).
He was a colloquim speaker at the State University of New York, Albany, USA
(October) and at the University of Oregon, USA (Oct.).

S. Chevillard gave a talk at the ERNSI 2012 conference in Maastricht (Netherlands). He reviewed an article for the Journal of Symbolic Computation.

J. Leblond was invited to give a talk at the following conferences: Conference Control & Inverse Problems for PDE (CIPPDE), Santiago, Chili (Jan.), Workshop Control of Fluid-Structure Systems & Inverse Problems, Toulouse, France (Jun.), International Conference on Constructive Complex Approximation, Lille, France (Jun.), Joint Congress of the French & Vietnamese Math. Soc. (VMS-SMF), Hué, Vietnam (Aug.), Congress on Numerical MEthods & MOdelisation (MEMO), Tunis, Tunisie (Dec.). She also gave communications at the seminars of the School of Mathematics, Univ. Leeds, U.K. (Feb.), of the Institut de Mathématiques de Bordeaux (IMB, Univ. Bordeaux, Mar.), of the Department of Math. & Geosciences, Univ. Trieste, Italy (Oct.), and at the 2nd Nice Physical Day (“Journées de la Physique de Nice”), Nice (Dec.).

M. Olivi was co-organizer (with B. Hanzon and R. Peeters) of an invited session “model reduction/approximation” at the 16th IFAC Symposium on System Identification, Brussels, July 2012.

D. Ponomarev presented a poster [27]  at the 2nd PhD Event in Fusion Science and Engineering, Pont-a-Mousson (Oct.).

E. Pozzi gave several communications at seminars at Univ. of Besançon, Grenoble (Jan.), Bordeaux, Orléans (Mar.), Marseille, Lille (Apr.)

F. Seyfert was invited to give a talk at the European Microwave Week 2012, Workshop on Advances of N-port networks for Space Application, Amsterdam, Netherlands.
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	[bookmark: uid125] Licence: E. Pozzi, Numerical algorithmics, 26h ETD (from Sep.), L3, Computer Sciences, Polytech'Nice, Univ. Nice Sopia Antipolis, France.
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	[bookmark: uid127] PhD: A.-M. Nicu, Approximation et représentation des fonctions sur la sphère.
Applications aux problèmes inverses de la géodésie et l'imagerie médicale [13] . Univ. Nice Sophia Antipolis, ED STIC, Feb. 2012 (advisor: J. Leblond).



	[bookmark: uid128] PhD in progress: S. Chaabi, Boundary value problems for
pseudo-holomorphic functions, since Nov. 2008 (advisors: L. Baratchart and A. Borichev).



	[bookmark: uid129] PhD in progress: D. Ponomarev, Inverse problems for planar conductivity and Schrödinger PDEs, since Nov. 2012 (advisors: J. Leblond, L. Baratchart).
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	[bookmark: uid131] J. Leblond (advisor) and M. Olivi (examinator) were members of the PhD jury of A.-M. Nicu (Univ. Nice Sophia Antipolis, Feb.) [13] .



	[bookmark: uid132] J. Leblond was a member (reviewer) of the PhD jury of N. Chaulet (Ecole Polytechnique, Nov.).



	[bookmark: uid133] L. Baratchart was the head of the PhD jury of
Matteo Santacesaria
(Ecole Polytechnique, Dec.).
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	[bookmark: uid135] M. Olivi is co-president with I. Castellani of the Committee MASTIC (Commission d'Animation, de Médiation et d'Animation Scientifique) https://project.inria.fr/mastic/ . She is responsible for Scientific Mediation.



	[bookmark: uid136] J. Leblond and E. Pozzi are members of this committee.



	[bookmark: uid137] E. Pozzi participated to the “Filles et mathématiques” day, Avignon, Nov.
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L. Baratchart is a member of the Editorial Boards of
Constructive Methods
and Function Theory and Complex Analysis and Operator Theory.
He is Inria's representative at the « conseil scientifique » of the Univ. Provence (Aix-Marseille).

S. Chevillard is representative at the « comité de centre » and at the « comité des projets » (Research Center Inria-Sophia).

J. Leblond is an elected member of the “Conseil Scientifique” of Inria. Together with C. Calvet from Human Resources, she is in charge of the mission “Conseil et soutien aux chercheurs” within the Research Centre, and she participated to the working group BEAT (“Bien Être Au Travail”).

M. Olivi is a member of the CSD (Comité de Suivi Doctoral) of the Research Center. She is responsible for scientific mediation.

F. Seyfert is a member of CUMIR at InRIA Sophia-Antipolis-Méditerrannée.
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