
Activity Report 2012

Project-Team INDES

Secure Diffuse Programming

RESEARCH CENTER
Sophia Antipolis - Méditerranée

THEME
Distributed Systems and Services

Table of contents

1. Members . 1
2. Overall Objectives . 1
3. Scientific Foundations .2

3.1. Parallelism, concurrency, and distribution 2
3.2. Web and functional programming 2
3.3. Security of diffuse programs 2

4. Application Domains .3
4.1. Web programming 3
4.2. Multimedia 3
4.3. House Automation 3

5. Software . 4
5.1. Introduction 4
5.2. Functional programming 4

5.2.1. The Bigloo compiler 4
5.2.2. The FunLoft language 4

5.3. Web programming 4
5.4. Language-based security 5

5.4.1. CFlow 5
5.4.2. FHE type-checker 5
5.4.3. Mashic compiler 5

5.5. Old software 5
5.5.1. Camloo 5
5.5.2. Skribe 6
5.5.3. Scheme2JS 6

6. New Results . 6
6.1. Security 6

6.1.1. Session types with security 6
6.1.2. Mashic Compiler: Mashup Sandboxing Based on Inter-frame Communication 6
6.1.3. A Certified Lightweight Non-Interference Java Bytecode Verifier 7

6.2. Models, semantics, and languages 7
6.2.1. Memory Models 7
6.2.2. Dynamic Synchronous Language with Memory 7
6.2.3. jthread 8

6.3. Web programming 8
6.3.1. Reasoning about Web Applications: An Operational Semantics for HOP 8
6.3.2. A CPS definition of HipHop 8

7. Bilateral Contracts and Grants with Industry . 9
7.1.1. Collaboration with Xiring 9
7.1.2. Microsoft Research and Inria Joint Lab 9

8. Partnerships and Cooperations . 9
8.1. National initiatives 9

8.1.1. ANR DEFIS ParTout 9
8.1.2. ANR DEFIS PWD 9
8.1.3. MEALS 9
8.1.4. CIRIC 10

8.2. European initiatives 10
9. Dissemination . 10

9.1. Seminars and conferences 10
9.2. Animation 11

2 Activity Report INRIA 2012

9.3. Teaching - Supervision - Juries 11
9.3.1. Teaching 11
9.3.2. Supervision 11
9.3.3. Juries 11

9.4. Popularization 11
9.5. Transfer 12

10. Bibliography .13

Project-Team INDES

Keywords: Programming Languages, Compiling, Security, Concurrency, Web

Creation of the Project-Team: January 01, 2009 , Updated into Project-Team: July 01, 2010 .

1. Members
Research Scientists

Gérard Berry [Research Director, Inria, HdR]
Gérard Boudol [Research Director, Inria, HdR]
Ilaria Castellani [Research Scientist, Inria]
Tamara Rezk [Research Scientist, Inria]
Bernard Serpette [Research Scientist, Inria]
Manuel Serrano [Team Leader, Research Director, Inria, HdR]
Frédéric Boussinot [Research Director, CEMEF, HdR]

Faculty Member
Christian Queinnec [Professor, University Pierre et Marie Curie - Paris 6, HdR]

Engineers
Vincent Prunet [Inria]
Marcela Rivera [Inria]

PhD Students
Zhengqin Luo [MENRT]
Cyprien Nicolas [Inria]
Johan Grande [Inria]
Pejman Attar [Inria]
José Santos [Inria]
Yoann Couilllec [Inria]

Administrative Assistant
Nathalie Bellesso [Inria]

2. Overall Objectives

2.1. Overall Objectives
The goal of the Indes team is to study models for diffuse computing and develop languages for secure
diffuse applications. Diffuse applications, of which Web 2.0 applications are a notable example, are the new
applications emerging from the convergence of broad network accessibility, rich personal digital environment,
and vast sources of information. Strong security guarantees are required for these applications, which
intrinsically rely on sharing private information over networks of mutually distrustful nodes connected by
unreliable media.

Diffuse computing requires an original combination of nearly all previous computing paradigms, ranging from
classical sequential computing to parallel and concurrent computing in both their synchronous / reactive and
asynchronous variants. It also benefits from the recent advances in mobile computing, since devices involved
in diffuse applications are often mobile or portable.

2 Activity Report INRIA 2012

The Indes team contributes to the whole chain of research on models and languages for diffuse computing,
going from the study of foundational models and formal semantics to the design and implementation of
new languages to be put to work on concrete applications. Emphasis is placed on correct-by-construction
mechanisms to guarantee correct, efficient and secure implementation of high-level programs. The research is
partly inspired by and built around Hop, the web programming model proposed by the former Mimosa team,
which takes the web as its execution platform and targets interactive and multimedia applications.

3. Scientific Foundations

3.1. Parallelism, concurrency, and distribution
Concurrency management is at the heart of diffuse programming. Since the execution platforms are highly het-
erogeneous, many different concurrency principles and models may be involved. Asynchronous concurrency is
the basis of shared-memory process handling within multiprocessor or multicore computers, of direct or fifo-
based message passing in distributed networks, and of fifo- or interrupt-based event handling in web-based
human-machine interaction or sensor handling. Synchronous or quasi-synchronous concurrency is the basis of
signal processing, of real-time control, and of safety-critical information acquisition and display. Interfacing
existing devices based on these different concurrency principles within HOP or other diffuse programming
languages will require better understanding of the underlying concurrency models and of the way they can
nicely cooperate, a currently ill-resolved problem.

3.2. Web and functional programming
We are studying new paradigms for programming Web applications that rely on multi-tier functional program-
ming [4]. We have created a Web programming environment named HOP. It relies on a single formalism for
programming the server-side and the client-side of the applications as well as for configuring the execution
engine.

HOP is a functional language based on the SCHEME programming language. That is, it is a strict functional
language, fully polymorphic, supporting side effects, and dynamically type-checked. HOP is implemented as
an extension of the BIGLOO compiler that we develop [5]. In the past, we have extensively studied static
analyses (type systems and inference, abstract interpretations, as well as classical compiler optimizations) to
improve the efficiency of compilation in both space and time.

3.3. Security of diffuse programs
The main goal of our security research is to provide scalable and rigorous language-based techniques that can
be integrated into multi-tier compilers to enforce the security of diffuse programs. Research on language-based
security has been carried on before in former Inria teams [2], [1]. In particular previous research has focused
on controlling information flow to ensure confidentiality.

Typical language-based solutions to these problems are founded on static analysis, logics, provable cryptog-
raphy, and compilers that generate correct code by construction [3]. Relying on the multi-tier programming
language HOP that tames the complexity of writing and analysing secure diffuse applications, we are studying
language-based solutions to prominent web security problems such as code injection and cross-site scripting,
to name a few.

Project-Team INDES 3

4. Application Domains

4.1. Web programming
Along with games, multimedia applications, electronic commerce, and email, the web has popularized
computers in everybody’s life. The revolution is engaged and we may be at the dawn of a new era of computing
where the web is a central element. The web constitutes an infrastructure more versatile, polymorphic, and
open, in other words, more powerful, than any dedicated network previously invented. For this very reason, it
is likely that most of the computer programs we will write in the future, for professional purposes as well as
for our own needs, will extensively rely on the web.

In addition to allowing reactive and graphically pleasing interfaces, web applications are de facto distributed.
Implementing an application with a web interface makes it instantly open to the world and accessible from
much more than one computer. The web also partially solves the problem of platform compatibility because
it physically separates the rendering engine from the computation engine. Therefore, the client does not have
to make assumptions on the server hardware configuration, and vice versa. Lastly, HTML is highly durable.
While traditional graphical toolkits evolve continuously, making existing interfaces obsolete and breaking
backward compatibility, modern web browsers that render on the edge web pages are still able to correctly
display the web pages of the early 1990’s.

For these reasons, the web is arguably ready to escape the beaten track of n-tier applications, CGI scripting
and interaction based on HTML forms. However, we think that it still lacks programming abstractions that
minimize the overwhelming amount of technologies that need to be mastered when web programming is
involved. Our experience on reactive and functional programming is used for bridging this gap.

4.2. Multimedia
Electronic equipments are less and less expensive and more and more widely spread out. Nowadays, in
industrial countries, computers are almost as popular as TV sets. Today, almost everybody owns a mobile
phone. Many are equipped with a GPS or a PDA. Modem, routers, NASes and other network appliances are
also commonly used, although they are sometimes sealed under proprietary packaging such as the Livebox or
the Freebox. Most of us evolve in an electronic environment which is rich but which is also populated with
mostly isolated devices.

The first multimedia applications on the web have appeared with the Web 2.0. The most famous ones are
Flickr, YouTube, or Deezer. All these applications rely on the same principle: they allow roaming users to
access the various multimedia resources available all over the Internet via their web browser. The convergence
between our new electronic environment and the multimedia facilities offered by the web will allow engineers
to create new applications. However, since these applications are complex to implement this will not happen
until appropriate languages and tools are available. In the Indes team, we develop compilers, systems, and
libraries that address this problem.

4.3. House Automation
The web is the de facto standard of communication for heterogeneous devices. The number of devices able to
access the web is permanently increasing. Nowadays, even our mobile phones can access the web. Tomorrow it
could even be the turn of our wristwatches! The web hence constitutes a compelling architecture for developing
applications relying on the “ambient” computing facilities. However, since current programming languages do
not allow us to develop easily these applications, ambient computing is currently based on ad-hoc solutions.
Programming ambient computing via the web is still to be explored. The tools developed in the Indes team
allow us to build prototypes of a web-based home automation platform. For instance, we experiment with
controlling heaters, air-conditioners, and electronic shutters with our mobile phones using web GUIs.

4 Activity Report INRIA 2012

5. Software

5.1. Introduction
Most INDES software packages, even the older stable ones that are not described in the following sections are
freely available on the Web. In particular, some are available directly from the Inria Web site:

http://www.inria.fr/valorisation/logiciels/langages.fr.html

Most other software packages can be downloaded from the INDES Web site:

http://www-sop.inria.fr/teams/indes

5.2. Functional programming
Participants: Frédéric Boussinot [Inria], Cyprien Nicolas [Inria], Bernard Serpette [Inria], Manuel Serrano
[correspondant].

5.2.1. The Bigloo compiler
The programming environment for the Bigloo compiler [5] is available on the Inria Web site at the following
URL: http://www-sop.inria.fr/teams/indes/fp/Bigloo. The distribution contains an optimizing compiler that
delivers native code, JVM bytecode, and .NET CLR bytecode. It contains a debugger, a profiler, and various
Bigloo development tools. The distribution also contains several user libraries that enable the implementation
of realistic applications.

BIGLOO was initially designed for implementing compact stand-alone applications under Unix. Nowadays, it
runs harmoniously under Linux and MacOSX. The effort initiated in 2002 for porting it to Microsoft Windows
is pursued by external contributors. In addition to the native back-ends, the BIGLOO JVM back-end has enabled
a new set of applications: Web services, Web browser plug-ins, cross platform development, etc. The new
BIGLOO .NET CLR back-end that is fully operational since release 2.6e enables a smooth integration of
Bigloo programs under the Microsoft .NET environment.

5.2.2. The FunLoft language
FunLoft (described in http://www-sop.inria.fr/teams/indes/rp/FunLoft) is a programming language in which
the focus is put on safety and multicore.

FunLoft is built on the model of FairThreads which makes concurrent programming simpler than usual
preemptive-based techniques by providing a framework with a clear and sound semantics. FunLoft is designed
with the following objectives:

• provide a safe language, in which, for example, data-races are impossible.

• control the use of resources (CPU and memory), for example, memory leaks cannot occur in FunLoft
programs, which always react in finite time.

• have an efficient implementation which can deal with large numbers of concurrent components.

• benefit from the real parallelism offered by multicore machines.

A first experimental version of the compiler is available on the Reactive Programming site http://www-sop.
inria.fr/teams/indes/rp. Several benchmarks are given, including cellular automata and simulation of colliding
particles.

5.3. Web programming
Participants: Gérard Berry [Inria], Cyprien Nicolas [Inria], Manuel Serrano [correspondant].

http://www.inria.fr/valorisation/logiciels/langages.fr.html
http://www-sop.inria.fr/teams/indes
http://www-sop.inria.fr/teams/indes/fp/Bigloo
http://www-sop.inria.fr/teams/indes/rp/FunLoft
http://www-sop.inria.fr/teams/indes/rp
http://www-sop.inria.fr/teams/indes/rp

Project-Team INDES 5

5.3.1. The HOP web programming environment
HOP is a higher-order language designed for programming interactive web applications such as web agendas,
web galleries, music players, etc. It exposes a programming model based on two computation levels. The first
one is in charge of executing the logic of an application while the second one is in charge of executing the
graphical user interface. HOP separates the logic and the graphical user interface but it packages them together
and it supports strong collaboration between the two engines. The two execution flows communicate through
function calls and event loops. Both ends can initiate communications.

The HOP programming environment consists in a web broker that intuitively combines in a single architecture
a web server and a web proxy. The broker embeds a HOP interpreter for executing server-side code and a HOP
client-side compiler for generating the code that will get executed by the client.

An important effort is devoted to providing HOP with a realistic and efficient implementation. The HOP
implementation is validated against web applications that are used on a daily-basis. In particular, we have
developed HOP applications for authoring and projecting slides, editing calendars, reading RSS streams, or
managing blogs.

HOP has won the software open source contest organized by the ACM Multimedia Conference 2007 http://
mmc36.informatik.uni-augsburg.de/acmmm2007/. It is released under the GPL license. It is available at http://
hop.inria.fr.

5.4. Language-based security
Participants: Zhengqin Luo [Inria], Tamara Rezk [correspondant].

5.4.1. CFlow
The prototype compiler “CFlow” takes as input code annotated with information flow security labels for
integrity and confidentiality and compiles to F# code that implements cryptography and protocols that satisfy
the given security specification.

Cflow has been coded in F#, developed mainly on Linux using mono (as a substitute to .NET), and partially
tested under Windows (relying on .NET and Cygwin). The code is distributed under the terms of the CeCILL-B
license http://www.msr-inria.inria.fr/projects/sec/cflow/index.html.

5.4.2. FHE type-checker
We have developed a type checker for programs that feature modern cryptographic primitives such as fully
homomorphic encryption. The type checker is thought as an extension of the “CFlow” compiler developed last
year on the same project. It is implemented in F#. The code is distributed under the terms of the CeCILL-B
license http://www.msr-inria.inria.fr/projects/sec/cflow/index.html.

5.4.3. Mashic compiler
The Mashic compiler is applied to mashups with untrusted scripts. The compiler generates mashups with
sandboxed scripts, secured by the same origin policy of the browsers. The compiler is written in Bigloo and
can be found at http://www-sop.inria.fr/indes/mashic/.

5.5. Old software
5.5.1. Camloo

Camloo is a caml-light to bigloo compiler, which was developed a few years ago to target bigloo 1.6c. New
major releases 0.4.x of camloo have been done to support bigloo 3.4 and bigloo 3.5. Camloo make it possible
for the user to develop seamlessly a multi-language project, where some files are written in caml-light, in C,
and in bigloo. Unlike the previous versions of camloo, 0.4.x versions do not need a modified bigloo compiler
to obtain good performance. Currently, the only supported backend for camloo is bigloo/C. We are currently
rewriting the runtime of camloo in bigloo to get more portability and to be able to use HOP and camloo
together.

http://mmc36.informatik.uni-augsburg.de/acmmm2007/
http://mmc36.informatik.uni-augsburg.de/acmmm2007/
http://hop.inria.fr
http://hop.inria.fr
http://www.msr-inria.inria.fr/projects/sec/cflow/index.html
http://www.msr-inria.inria.fr/projects/sec/cflow/index.html
http://www-sop.inria.fr/indes/mashic/

6 Activity Report INRIA 2012

5.5.2. Skribe
SKRIBE is a functional programming language designed for authoring documents, such as Web pages or
technical reports. It is built on top of the SCHEME programming language. Its concrete syntax is simple and
looks familiar to anyone used to markup languages. Authoring a document with SKRIBE is as simple as with
HTML or LaTeX. It is even possible to use it without noticing that it is a programming language because of
the conciseness of its original syntax: the ratio tag/text is smaller than with the other markup systems we have
tested.

Executing a SKRIBE program with a SKRIBE evaluator produces a target document. It can be HTML files
for Web browsers, a LaTeX file for high-quality printed documents, or a set of info pages for on-line
documentation.

5.5.3. Scheme2JS
Scm2JS is a Scheme to JavaScript compiler distributed under the GPL license. Even though much effort has
been spent on being as close as possible to R5RS, we concentrated mainly on efficiency and interoperability.
Usually Scm2JS produces JavaScript code that is comparable (in speed) to hand-written code. In order to
achieve this performance, Scm2JS is not completely R5RS compliant. In particular it lacks exact numbers.

Interoperability with existing JavaScript code is ensured by a JavaScript-like dot-notation to access JavaScript
objects and by a flexible symbol-resolution implementation.

Scm2JS is used on a daily basis within HOP, where it generates the code which is sent to the clients (web-
browsers). Scm2JS can be found at http://www-sop.inria.fr/indes/scheme2js.

6. New Results

6.1. Security
Participants: Ilaria Castellani, Zhengqin Luo, Tamara Rezk [correspondant], José Santos, Manuel Serrano.

6.1.1. Session types with security
We have pursued our work on integrating security constraints within session types, in collaboration with our
colleagues from Torino University. This resulted in the journal paper [8]. This article extends a previous
conference paper with full proofs, additional examples and further results. In particular, [8] presents new
properties of information-flow security, which is stronger and more compositional (i.e., more robust with
respect to parallel composition of processes) than that originally proposed, while being still ensured by the
same session type system.

All the work on session types was partially funded by the ANR-08- EMER-010 grant PARTOUT. It is expected
to continue within the starting COST Action BETTY.

6.1.2. Mashic Compiler: Mashup Sandboxing Based on Inter-frame Communication
Mashups are a prevailing kind of web applications integrating external gadget APIs often written in the
Javascript programming language. Writing secure mashups is a challenging task due to the heterogeneity
of existing gadget APIs, the privileges granted to gadgets during mashup executions, and Javascript’s highly
dynamic environment.

We propose a new compiler, called Mashic, for the automatic generation of secure Javascript-based mashups
from existing mashup code. The Mashic compiler can effortlessly be applied to existing mashups based on
a wide-range of gadget APIs. It offers security and correctness guarantees. Security is achieved by using the
Same Origin Policy. Correctness is ensured in the presence of benign gadgets, that satisfy confidentiality and
integrity constraints with regard to the integrator code. The compiler has been successfully applied to real
world mashups based on Google maps, Bing maps, YouTube, and Zwibbler APIs.

http://www-sop.inria.fr/indes/scheme2js

Project-Team INDES 7

This work appeared in CSF’12 [14]. See also software section.

6.1.3. A Certified Lightweight Non-Interference Java Bytecode Verifier
We propose a type system to verify the non-interference property in the Java Virtual Machine. We verify
the system in the Coq theorem prover. This work will appear in the journal of Mathematical Structures in
Computer Science [6].

6.2. Models, semantics, and languages
Participants: Pejman Attar, Gérard Berry, Gérard Boudol, Frédéric Boussinot, Ilaria Castellani, Johan
Grande, Cyprien Nicolas, Tamara Rezk, Manuel Serrano [correspondant].

6.2.1. Memory Models
As regards the theory of multithreading, we have extended our operational approach to capture more relaxed
memory models than simple write buffering. A step was made in this direction by formalizing the notion of a
speculative computation, but this was not fully satisfactory as an operational approach to the theory of memory
models: indeed, in the speculative framework one has to reject a posteriori some sequences of executions as
invalid. In [13] we have defined a truly operational semantics, by means of an abstract machine, for extremely
relaxed memory models like the one of PowerPC. In our new framework, the relaxed abstract machine features
a “temporary store” where the memory operations issued by the threads are recorded, in program order. A
memory model then specifies the conditions under which a pending operation from this sequence is allowed to
be globally performed, possibly out of order. The memory model also involves a “write grain,” accounting for
architectures where a thread may read a write that is not yet globally visible. Our model is also flexible enough
to account for a form of speculation used in PowerPC machines, namely branch prediction. To experiment with
our framework, we found it useful to design and implement a simulator that allows us to exhaustively explore
all the possible relaxed behaviors of (simple) programs. The main problem was to tame the combinatory
explosion due to the massive non-deterministic interleaving of the relaxed semantics. Introducing several
optimizations described in [13], we were able to run a large number of litmus tests successfully.

6.2.2. Dynamic Synchronous Language with Memory
We have investigated the language DSLM (Dynamic Synchronous Language with Memory), based on the
synchronous reactive model. In DSLM, systems are composed of several sites, each of which runs a number
of agents. An agent consists of a memory and a script. This script is made of several parallel components
which share the agent’s memory. A simple form of migration is provided: agents can migrate from one site to
another. Since sites have different clocks, a migrating agent resumes execution at the start of the next instant
in the destination site. Communication between a migrating agent and the agents of the destination site occurs
via (dynamically bound) events. The language uses three kinds of parallelism: 1) synchronous, cooperative
and deterministic parallelism among scripts within an agent, 2) synchronous, nondeterministic and confluent
parallelism among agents within a site, and 3) asynchronous and nondeterministic parallelism among sites.
Communication occurs via both shared memory and events in the first case, and exclusively via events in the
other two cases. Scripts may call functions or modules which are handled in a host language. Two properties
are assured by DSLM: reactivity of each agent and absence of data-races between agents. Moreover, the
language offers a way to benefit from multi-core and multi-processor architectures, by means of the notion
of synchronized scheduler which abstractly models a computing resource. Each site may be expanded and
contracted dynamically by varying its number of synchronized schedulers. In this way one can model the
load-balancing of agents over a site.

A secure extension of the language DSLM, called DSSLM (Dynamic Secure Synchronous Language with
Memory), is currently under investigation. This language uses the same deterministic parallel operator for
scripts as DSLM. It adds to DSLM a let operator that assigns a security level to the defined variable.
Security levels are also assigned to events and sites, to allow information flow control during interactions
and migrations. The study of different security properties (both sensitive and insensitive to the passage of the
instants) and of type systems ensuring these properties is currently under way.

8 Activity Report INRIA 2012

6.2.3. jthread
The jthread library (working name) is a Bigloo library featuring threads and mutexes and most notably a
deadlock-free locking primitive. The jthread library appears as an alternative to Bigloo’s pthread (POSIX
threads) library and relies on it for its implementation.

The locking primitive is the following: (synchronize* ml [:prelock mlp] expr1 expr2 ...) where
ml and mlp are lists of mutexes.

This primitive evaluates the expressions that constitute its body after having locked the mutexes in ml and
before unlocking them back. The meaning of the prelock argument is to be explained below.

The absence of deadlocks is guaranteed by two complementary mechanisms:
• Each mutex belongs to a region defined by the programmer. Regions form a lattice which is inferred

at runtime. A thread owning a mutex belonging to region R0 can only lock a mutex belonging to
region R1 if R1 is lower than R0 in the lattice. This rule is enforced at runtime and guarantees the
absence of deadlocks involving mutexes belonging to different regions.

• Under the previous condition, a thread owning a mutex M1 can lock a mutex M2 belonging to the
same region only provided that M2 appeared in the prelock list of the synchronize* that locked
M1. This rule is enforced at runtime and allows a deadlock-avoiding scheduling of threads based on
previous work by Gérard Boudol and on Lamport’s Bakery algorithm.

The library has been implemented. It is currently being integrated to Bigloo and benchmarked. It has not been
released yet.

6.3. Web programming
Participants: Zhengqin Luo, Cyprien Nicolas, Tamara Rezk, Bernard Serpette, Manuel Serrano [correspon-
dant].

6.3.1. Reasoning about Web Applications: An Operational Semantics for HOP
We propose a small-step operational semantics to support reasoning about web applications written in the
multi-tier language HOP. The semantics covers both server side and client side computations, as well as
their interactions, and includes creation of web services, distributed client-server communications, concurrent
evaluation of service requests at server side, elaboration of HTML documents, DOM operations, evaluation
of script nodes in HTML documents and actions from HTML pages at client side. We also model the browser
same origin policy (SOP) in the semantics. We propose a safety property by which programs do not get stuck
due to a violation of the SOP and a type system to enforce it. This work appeared in TOPLAS [7].

6.3.1.1. Hiphop

We pursued the development of the Hiphop orchestration language. The first version was written as a DSL
with very few connection to Hop. During this year, we changed Hiphop syntax to blend it better with Hop. All
Hiphop objects are now Hop values, and thus Hiphop programs can benefit from all Hop featues. The Hiphop
development has enabled us to improve Hop stability and quality in client code generation.

We have found a new use-case for Hiphop: Robotics. We are currently working with the Inria Coprin team
to pilot their robot using Hop and Hiphop. We have already used Hop to program with low-level motors API
(using the Phidget libraries). Hop enabled us to distribute the robot control application over HTTP, in order to
control the robot from a smartphone or tablet.

6.3.2. A CPS definition of HipHop
Since the Esterel model is used very dynamically in the HipHop framework, we have begun studying new
frameworks of computations. We designed a definition of a HipHop-core, which is similar to Esterel-core,
based on continuations. This approach allows a specification close to the implementation. The main problem
was to define a predicate assuring the absence of a specific signal in the current instant. For this, we have
designed a static analysis that predicts, for each program point and for each signal, the number of emissions
remaining to be done until the end of the instant. The prediction may be over-estimated but when a null value
is reached the corresponding signal can be considered as absent for the analyzed instant.

Project-Team INDES 9

Contrary to existing analyses, this prediction can be done at compile time. Nevertheless some extra compu-
tations must be inserted in the evaluator to adjust a runtime prediction. For example. this is done when one
branch of a conditional is dynamically taken, but adjusting the prediction only involves subtractions on global
counters.

The continuation based definition doesn’t prevent a space efficiency implementation. Esterel is known to be
compiled to hardware and thus able to run a program in a fixed space of silicon; in the same manner we have
implemented an evaluator than doesn’t allocate extra memories while running a program: all the continuations
can be allocated at compile time.

We have also extended the language to reach the HipHop definition. Some dynamic extensions (mappar) may
dynamically allocate some resources but we were able to tune the static analysis to insure both confluence and
constructive absence detection.

7. Bilateral Contracts and Grants with Industry

7.1. Contracts and Grants with Industry
7.1.1. Collaboration with Xiring

In 2011, Tamara Rezk collaborated with a french company based in Paris, Xiring. She visited the company
several times in 2011 to carry out this collaboration.

7.1.2. Microsoft Research and Inria Joint Lab
Since 2007, Tamara Rezk is part of the Secure Distributed Computations and their Proofs project of the MSR-
Inria lab in Saclay. She travelled several times in 2011 to visit the lab and continue with several collaborations
concerning the project.

8. Partnerships and Cooperations

8.1. National initiatives
8.1.1. ANR DEFIS ParTout

The PARTOUT project (PARTOUT = PARallélisme parTOUT) is funded by the ANR Défis programme for 4
years, starting January 2009. The partners of this project are the teams INDES (coordinator), CNAM/CÉDRIC,
and LRI, Université d’Orsay.

8.1.2. ANR DEFIS PWD
The PWD project (for “Programmation du Web diffus”) has been funded by the ANR Défis programme for
4 years, starting November 2009. The partners of this project are the teams INDES (coordinator), LIP6 at
University Pierre et Marie Curie and PPS at University Denis Diderot.

8.1.3. MEALS
The MEALS project (Mobility between Europe and Argentina applying Logics to Systems), IRSES program,
started October 1st (2011), and will end September 30th, 2015. The project goals cover three aspects of formal
methods: specification (of both requirement properties and system behavior), verification, and synthesis. The
Indes members are involved in the task of Security and Information Flow Properties (WP3). The partners in
this task include University of Buenos Aires, University of Cordoba, Inria (together with Catuscia Palamidessi,
Kostas Chatzikokolakis, Miguel Andrés) and University of Twente.

10 Activity Report INRIA 2012

8.1.4. CIRIC
Indes participated in the proposal of the CIRIC project, a joint lab between Inria and Chile, that will start in
2012. Indes members are involved in the line: Internet Research and Development.

8.2. European initiatives
8.2.1. Collaborations in European Programs, except FP7

Program: ICT Cost Action IC1201
Program acronym: BETTY
Project title: Behavioural Types for Reliable Large-Scale Software Systems
Duration: October 2012 - October 2016
Coordinator: Simon Gay, University of Glasgow
Other partners: Several research groups, belonging to 17 european countries
Abstract: The aim of BETTY is to investigate and promote behavioural type theory as the basis for
new foundations, programming languages, and software development methods for communication-
intensive distributed systems. Behavioural type theory encompasses concepts such as interfaces,
communication protocols, contracts, and choreography.

9. Dissemination

9.1. Seminars and conferences
• Pejman Attar gave a talk about “Safe and Secure Concurrency” at Paris 6 University. In November

2012, he presented the work “A CPS definition of Esterel” by B. Serpette at the workshop Syn-
chron’12 at Le Croisic.

• Gérard Berry gave an invited talk in April 2012, at Edinburgh, “Reconciling Semantics and
Implementation”, for the Milner Symposium. He gave the talk “Informatique et art, quel avenir?” at
the Villa Medicis, Rome, in February. He gave an invited conference at IRCAM “Parler du temps,
mais de manière formelle”, in Paris in June, and “Turing et ses contemporains: machines, langages,
logiques” a talk at ENS Lyon in July.

• Ilaria Castellani participated in the workshop CoTiCo (Contracts and Behavioural Types), in Lucca,
Italy, where she presented her current work on session types for security. In October 2012, she
participated in the kick-off management committee meeting of the BETTY european Action, in
Brussels.

• Cyprien Nicolas gave a talk about Hop at a Free and Open Source Software event named Journées
Méditerranéennes du Logiciel Libre (JM2L). JM2L are a small local event, proposing around 30
conferences over two days, and targetting general public. It welcomed around 250 participants.

• José Santos gave a talk about his work on information flow in the CREST Open Workshop on
Interference and Dependence organized by the Department of Computer Science of the University
College of London in May 2012. In June 2012, he presented the article [12] in the Programming
Languages and Analysis for Security (PLAS) Workshop in Beijing, China.

• Tamara Rezk, presented the work on the Mashic compiler in the Computer Security Foundations
conference in Harvard, Boston, June 2012. In June 2012, she chaired the PLAS workshop, Beijing.
In October 2012, she was invited to the Dagstuhl Seminar Web Application Security where she also
participated to the JavaScript sessions.

• Manuel Serrano participated in a one-week seminar in Dagstuhl on Dynamic Languages, where he
gave a talk on HipHop. He also participated in a one-week IFIP seminar which took place in Austin,
Texas. He gave a talk on diffuse computing.

Project-Team INDES 11

9.2. Animation
• Gérard Berry is a member of the Académie des sciences, of the Académie des technologies, and the

Academia Europaea. He is member of the steering committee of the ANR.
• Ilaria Castellani is member of the editorial board of Technique et Science Informatiques. She was a

member of the programme committee of EXPRESS’12.
• Tamara Rezk was a member of the programme committees of Bytecode, PLAS (co-chair with

Sergio Maffeis), ARES, and LatinCrypt. She is is a member of the programme committee of
JAIIO’13. She was a reviewer for CSF’12, Crypto’12, CCS’12, and the QIF journal.

• Manuel Serrano is the coordinator of the ANR DEFIS project PWD. He served on the program
committees of the following conferences:

– TFP’12, Symposium on Trends in Functional Programming.
– COORDINATION’12, 7th International Federated Conferences on Distributed Computing

Techniques.

9.3. Teaching - Supervision - Juries
9.3.1. Teaching

Licence: Johan Grande, Structures de données et programmation, 6 ETD, L1, University of Nice.
Vincent Prunet, Algorithms and Data Structures, 42 ETD, L2, Lycée International de Valbonne (24
hours in 2012), (Inria action to promote early CS courses in all scientific curricula).
Master: Ilaria Castellani, Programmation et sécurité des applications du web, 13.5 ETD, M2,
University of Nice Sophia Antipolis. Tamara Rezk, Programmation et sécurité des applications
du web, M2, University of Nice. Programming the Diffuse Web, 13.5 ETD, M2, University Paris 6
(UPMC), France. Manuel Serrano, Programming the Diffuse Web, 13.5 ETD, M2, University Paris
6 (UPMC), France.
PhD: Pejman Attar gave a 3 hour open course for PhD students on “Multi- core Languages and
their problems” at the University of Eindhoven, Netherlands.

9.3.2. Supervision
PhD in progress: Pejman Attar, Safe and secure reactive programming for multicore architectures,
University of Nice, 1/10/2010, Frédéric Boussinot and Ilaria Castellani.
PhD in progress: Cyprien Nicolas, Orchestrating multi-tier programming languages, University of
Nice, 1/09/2010, Gérard Berry and Manuel Serrano.
PhD in progress: Johan Grande, Conception et implantation d’un langage de programmation
concurrente modulaire, University of Nice, 1/10/2010, Gérard Boudol and Manuel Serrano.
PhD in progress: Yoann Couillec, Langages de programmation et données ouvertes, University of
Nice, 1/10/2012, Manuel Serrano and Patrick Valduriez.
PhD in progress: José Santos, Language based approach for information flow analysis in distributed
mobile code, University of Nice, 1/12/2010, Gérard Boudol and Tamara Rezk.

9.3.3. Juries
Manuel Serrano was a member of the jury of the PhD Thesis of Luca Saiu (Universities Paris 13).
He was a member of the selection committee of PPS (Paris 6).

9.4. Popularization
The Web is becoming the richest platform on which to create computer applications. Its power comes from
three elements: modern Web browsers enable highly sophisticated graphical user interfaces (GUIs) with 3D,
multimedia, fancy typesetting, among others; calling existing services through Web APIs makes it possible
to develop sophisticated applications from independently available components; and open-data availability
allows access to a wide set of information that was unreachable or that simply did not exist before. The
combination of these three elements has already given birth to revolutionary applications such as GoogleMaps,
radio podcasts, and social networks.

12 Activity Report INRIA 2012

The next step is likely to be incorporating the physical environment into the Web. Recent electronic devices are
equipped with various sensors (GPS, cameras, microphones, metal detectors, speech commands, thermome-
ters, motion detection, and so on) and communication means (IP stack, telephony, SMS, Bluetooth), which
enable applications to interact with the real world. Web browsers integrate these features one after the other,
making the Web runtime environment richer every day. The future is appealing, but one difficulty remains:
current programming methods and languages are not ideally suited for implementing rich Web applications.
This is not surprising as most have been invented in the 20th century, before the Web became what it is now.

Traditional programming languages have trouble dealing with the asymmetric client-server architecture of
Web applications. Ensuring the semantic coherence of distributed client-server execution is challenging,
and traditional languages have no transparent support for physical distribution. Thus, programmers need to
master a complex gymnastics for handling distributed applications, most often using different languages for
clients and servers. JavaScript is the dominant Web language but was conceived as a browser only client
language. Servers are usually programmed with quite different languages such as Java, PHP, Ruby, etc. Recent
experiments such as Node.js propose using JavaScript on the server, which makes the development more
coherent; however, harmonious composition of independent components is still not ensured.

In 2006, three different projects, namely, GWT from Google, Links from the University of Edinburgh, and HOP
from Inria (http://www.inria.fr) [4], offered alternative methods for programming Web applications.
They all proposed that a Web application should be programmed as a single code for the server and client,
written in a single unified language. This principle is known as multitier programming.

Links is an experimental languages in which the server holds no state and functions can be symmetrically
called from both sides, allowing them to be declared on either the server or the client. These features are
definitely interesting for exploring new programming ideas, but they are difficult to implement efficiently,
making the platform difficult to use for realistic applications.

GWT is more pragmatic. It maps traditional Java programming into the Web. A GWT program looks like a
traditional Java/Swing program compiled to Java bytecode for the server side and to JavaScript for the client
side. Java cannot be considered as the unique language of GWT, however. Calling external APIs relies on
Javascipt inclusion in Java extensions. GUIs are based on static components declared in external HTML files
and on dynamic parts generated by the client-side execution. Thus, at least Java, Javascript, and HTML are
directly involved.

The HOP language takes another path relying on a different idea: incorporating all the required Web-
related features into a single language with a single homogeneous development and execution platform, thus
uniformly covering all the aspects of a Web application: client-side, server-side, communication, and access to
third-party resources. HOP embodies and generalizes both HTML and JavaScript functionalities in a Scheme-
based platform that also provides the user with a fully general algorithmic language. Web services and APIs
can be used as easily as standard library functions, whether on the server side or client side.

In order to popularize HOP, we have written a paper for targeting engineers which presents on overview of
the HOP language and its development environment. It has been simultaneously published in ACM Queue and
Communications of the ACM [16]. We have also given several demonstrations of the system. In particular,
Cyprien Nicolas has co-developed application software for an educational cable robot (Coprin) presented at
the Fête de la Science, in November. The demo consisted in a Cable bot built by a Coprin student and piloted
by Hop, the software being written by a Indes student. The demo took place in front of four classes of High
School students.

9.5. Transfer
9.5.1. Diffuse Robotics

Dissemination of the HOP technology has become a priority for the team now that HOP is actually used to
develop large projects. In 2012, a further step was taken with the allocation of dedicated resources missioned to
develop and transfer the application portfolio to the industry. The team has focused on bringing web awareness

http://www.inria.fr

Project-Team INDES 13

to personal assistance robots developed by the Coprin team, also at Inria CRISAM, in line with one of the top
strategic orientations of Inria. Using web protocols as a native framework greatly simplifies the integration of
the robot as a web entity, and the use of remote web services to manage, monitor or extend the features of the
robot. The behavior of a HOP robot is specified in HOP and orchestrated within diffuse HOP run time agents
embedded within the robot elements, in charge of handling communication and control between platforms and
with remote web services. The project, code-named Diffuse Robotics, builds on the experience gained in using
HOP for home automation over the recent years, adding in 2012 the support of versatile robotic computing
platforms and associated mechanics and sensor hardware and a state of the art plug and play framework for
automatic device and service discovery. Among the direct benefits of relying on a web framework are the
ability to use any web enabled device such as a smartphone or tablet to drive the robot. Also, it is much
simpler to put in place remote diagnostic and monitoring services by leveraging on existing robot sensors and
the HOP framework.

10. Bibliography
Major publications by the team in recent years

[1] G. BARTHE, T. REZK, A. RUSSO, A. SABELFELD. Security of Multithreaded Programs by Compilation, in
"ESORICS", 2007, p. 2-18.

[2] G. BOUDOL, I. CASTELLANI. Noninterference for Concurrent Programs and Thread Systems, in "Theoretical
Computer Science", 2002, vol. 281, no 1, p. 109-130.

[3] C. FOURNET, T. REZK. Cryptographically sound implementations for typed information-flow security, in
"Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12, 2008", 2008, p. 323-335.

[4] M. SERRANO, E. GALLESIO, F. LOITSCH. HOP, a language for programming the Web 2.0, in "Proceedings
of the First Dynamic Languages Symposium", Portland, Oregon, USA, October 2006.

[5] M. SERRANO. Bee: an Integrated Development Environment for the Scheme Programming Language, in
"Journal of Functional Programming", May 2000, vol. 10, no 2, p. 1–43.

Publications of the year
Articles in International Peer-Reviewed Journals

[6] G. BARTHE, D. PICHARDIE, T. REZK. A Certified Lightweight Non-Interference Java Bytecode Verifier, in
"Mathematical Structures in Computer Science", 2012, to appear.

[7] G. BOUDOL, Z. LUO, T. REZK, M. SERRANO. Reasoning about Web Applications: An Operational Semantics
for HOP, in "ACM Transactions on Programming Languages and Systems", 2012, vol. 34, no 2.

[8] S. CAPECCHI, I. CASTELLANI, M. DEZANI-CIANCAGLINI. Typing Access Control and Secure Information
Flow in Sessions, in "Information and Computation, special issue on Security and Rewriting Techniques",
2012, to appear.

[9] M. MENDLER, T. SHIPLE, G. BERRY. Constructive Boolean Circuits and the Exactness of Timed Ternary
Simulation, in "Formal Methods for Systems Design", 2012, no 3, p. 283–329.

14 Activity Report INRIA 2012

[10] M. SERRANO, C. QUEINNEC. A multi-tier semantics for Hop, in "Higher Order and Symbolic Computation
(HOSC)", 2012, vol. 23, no 4, p. 409-431.

Articles in Non Peer-Reviewed Journals

[11] G. BARTHE, D. PICHARDIE, T. REZK. A Certified Lightweight Non-Interference Java Bytecode Verifier, in
"Journal of Mathematical Structures in Computer Science", 2012.

International Conferences with Proceedings

[12] A. ALMEIDA-MATOS, J. FRAGOSO SANTOS. Typing Illegal Information Flow as Program Effects, in
"Proceedings of the 7th ACM SIGPLAN Workshop on Programming Languages and Analysis for Security",
2012.

[13] G. BOUDOL, G. PETRI, B. SERPETTE. Relaxed Operational Semantics of Concurrent Programming Lan-
guages, in "Expressiveness in Concurrency/Structural Operational Semantics (EXPRESS/SOS)", EPTCS,
2012, vol. 89, p. 19-33.

[14] Z. LUO, T. REZK. The Mashic Compiler: Mashup Sandboxing using Inter-frame Communication, in "Com-
puter Security Foundations (CSF)", 2012.

National Conferences with Proceeding

[15] E. CHAILLOUX, B. SERPETTE. Séparation des couleurs dans un lambda-calcul bichrome, in "Actes des
journées JFLA", Carnac, France, 2012.

Scientific Popularization

[16] M. SERRANO, G. BERRY. Multitier Programming in Hop - A first step toward programming
21st-century applications, in "Communications of the ACM", Aug 2012, vol. 55, no 8, p. 53–59
[DOI : 10.1145/2240236.2240253], http://cacm.acm.org/magazines/2012/8/153796-multitier-
programming-in-hop/abstract.

http://cacm.acm.org/magazines/2012/8/153796-multitier-programming-in-hop/abstract
http://cacm.acm.org/magazines/2012/8/153796-multitier-programming-in-hop/abstract

