

[image: cover]

PAREO
Formal islands: foundations and applications
2012 Research Team Activity Report
	Nancy - Grand Est

	 Field :
	 Algorithmics, Programming, Software and Architecture

Theme :
Programs, Verification and Proofs
Presentation of the
		Project-Team

	Members
	Overall Objectives	[bookmark: uid3]Overall Objectives
	[bookmark: uid7]Highlights of the Year

	Scientific Foundations	[bookmark: uid9]Introduction
	[bookmark: uid10]Rule-based programming languages
	[bookmark: uid11]Rewriting calculus

	[bookmark: uid13]Application Domains
	Software	[bookmark: uid19]ATerm
	[bookmark: uid20]Tom

	New Results	[bookmark: uid22]Model transformation
	[bookmark: uid23]Improvements of theoretical
foundations
	[bookmark: uid27]Integration of formal methods in programming languages
	[bookmark: uid30]Security policies specification and analysis

	Dissemination	[bookmark: uid37]Scientific Animation
	[bookmark: uid58]Teaching - Supervision - Juries
	[bookmark: uid80]Popularization

	Bibliography
		Major publications
	Publications of the year
	References in notes

Keywords: Programming Languages, Compiling, Formal Methods, Type Systems, Security, Proofs Of ProgramsSection: Members

Faculty Members
Horatiu Cirstea [Professor, Université de Lorraine, HdR]
Pierre-Etienne Moreau [Team Leader, Professor,
Université de Lorraine, HdR]
Sergueï Lenglet [Associate Professor, Université
de Lorraine, since September 1]
External Collaborators
Claude Kirchner [Senior Researcher, Inria, HdR]
Hélène Kirchner [Senior Researcher, Inria, HdR]
Sorin Stratulat [Associate Professor,
Université de Lorraine]

PhD Students
Jean-Christophe Bach [CORDI QUARTEFT]
Claudia Tavares [Brazil, until March 2]
Post-Doctoral Fellow
Christophe Calvès [ATER, Université de Lorraine,
since September 1]

Administrative Assistant
Laurence Benini

 Overall Objectives

 	Overall Objectives	[bookmark: uid3]Overall Objectives
	[bookmark: uid7]Highlights of the Year

 [bookmark: uid3] Section:
 Overall Objectives
Overall Objectives

The PAREO team aims at designing and implementing tools for the
specification, analysis and verification of software and systems.
At the heart of our project is therefore the will to study fundamental
aspects of programming languages (logic, semantics, algorithmic,
etc.) and to make major contributions to the design of new
programming languages. An important part of our research effort will
be dedicated to the design of new fundamental concepts and tools to
analyze existing programs and systems.
To achieve this goal we focus on:

	[bookmark: uid4] the improvement of theoretical foundations of rewriting and deduction;

	[bookmark: uid5] the integration of the corresponding formal methods in programming
and verification environments;

	[bookmark: uid6] the practical applications of the proposed formalisms.

[bookmark: uid7] Section:
 Overall Objectives
Highlights of the Year

Best Paper Award :
[14] A Unified View of Induction Reasoning for First-Order Logic in Turing-100, The Alan Turing Centenary Conference.
S. Stratulat.

 Scientific Foundations

 	Scientific Foundations	[bookmark: uid9]Introduction
	[bookmark: uid10]Rule-based programming languages
	[bookmark: uid11]Rewriting calculus

 [bookmark: uid9] Section:
 Scientific Foundations
Introduction

It is a common claim that rewriting is ubiquitous in computer
science and mathematical logic. And indeed the rewriting concept
appears from very theoretical settings to very practical
implementations. Some extreme examples are the mail system under
Unix that uses rules in order to rewrite mail addresses in canonical
forms (see the /etc/sendmail.cf file in the configuration
of the mail system) and the transition rules describing the
behaviors of tree automata. Rewriting is used in semantics in order
to describe the meaning of programming languages [28]
as well as in program transformations like, for example,
re-engineering of Cobol programs [36] . It is
used in order to compute, implicitly or explicitly as in Mathematica
or MuPAD, but also to perform deduction when describing by inference
rules a logic [24] , a theorem
prover [26] or a constraint
solver [27] . It is of course central
in systems making the notion of rule an explicit and first class
object, like expert systems, programming languages based on
equational logic, algebraic specifications, functional programming
and transition systems.

In this context, the study of the theoretical foundations of
rewriting have to be continued and effective rewrite based tools
should be developed. The extensions of first-order rewriting with
higher-order and higher-dimension features are hot topics and these
research directions naturally encompass the study of the rewriting
calculus, of polygraphs and of their interaction. The usefulness of
these concepts becomes more clear when they are implemented and a
considerable effort is thus put nowadays in the development of
expressive and efficient rewrite based programming languages.

[bookmark: uid10] Section:
 Scientific Foundations
Rule-based programming languages

Programming languages are formalisms used to describe programs,
applications, or software which aim to be executed on a given
hardware. In principle, any Turing complete language is sufficient
to describe the computations we want to perform. However, in
practice the choice of the programming language is important because
it helps to be effective and to improve the quality of the
software. For instance, a web application is rarely developed using
a Turing machine or assembly language. By choosing an adequate
formalism, it becomes easier to reason about the program, to
analyze, certify, transform, optimize, or compile it. The choice of
the programming language also has an impact on the quality of the
software. By providing high-level constructs as well as static
verifications, like typing, we can have an impact on the software
design, allowing more expressiveness, more modularity, and a better
reuse of code. This also improves the productivity of the
programmer, and contributes to reducing the presence of errors.

The quality of a programming language depends on two main
factors. First, the intrinsic design, which describes the
programming model, the data model, the features provided by the
language, as well as the semantics of the constructs. The second
factor is the programmer and the application which is targeted. A
language is not necessarily good for a given application if the
concepts of the application domain cannot be easily
manipulated. Similarly, it may not be good for a given person if the
constructs provided by the language are not correctly understood by
the programmer.

In the Pareo group we target a population of programmers interested
in improving the long-term maintainability and the quality of their
software, as well as their efficiency in implementing complex
algorithms. Our privileged domain of application is large since it
concerns the development of transformations. This ranges from
the transformation of textual or structured documents such as XML,
to the analysis and the transformation of programs and models. This
also includes the development of tools such as theorem provers,
proof assistants, or model checkers, where the transformations of
proofs and the transitions between states play a crucial role.
In that context, the expressiveness of the programming
language is important. Indeed, complex encodings into low level data
structures should be avoided, in contrast to high level notions such
as abstract types and transformation rules that should be provided.

It is now well established that the notions of term
and rewrite rule are two universal abstractions well suited
to model tree based data types and the transformations that can be
done upon them. Over the last ten years we have developed a strong
experience in designing and programming with rule based
languages [29] , [20] , [18] .
We have introduced and studied the notion of
strategy [19] , which is a way to
control how the rules should be applied. This provides the
separation which is essential to isolate the logic and to make the
rules reusable in different contexts.

To improve the quality of programs, it is also essential to have a
clear description of their intended behaviors. For that, the
semantics of the programming language should be formally
specified.

There is still a lot of progress to be done in these directions. In
particular, rule based programming can be made even more expressive
by extending the existing matching algorithms to context-matching or
to new data structures such as graphs or polygraphs. New algorithms
and implementation techniques have to be found to improve the
efficiency and make the rule based programming approach effective on
large problems. Separating the rules from the control is very
important. This is done by introducing a language for describing
strategies. We still have to invent new formalisms and new strategy
primitives which are both expressive enough and theoretically well
grounded. A challenge is to find a good strategy language we can
reason about, to prove termination properties for instance.

On the static analysis side, new formalized typing algorithms are
needed to properly integrate rule based programming into already
existing host languages such as Java. The notion of traversal
strategy merits to be better studied in order to become more
flexible and still provide a guarantee that the result of a
transformation is correctly typed.

[bookmark: uid11] Section:
 Scientific Foundations
Rewriting calculus

The huge diversity of the rewriting concept is obvious and when one
wants to focus on the underlying notions, it becomes quickly clear
that several technical points should be settled. For example, what
kind of objects are rewritten? Terms, graphs, strings, sets,
multisets, others? Once we have established this, what is a rewrite
rule? What is a left-hand side, a right-hand side, a condition, a
context? And then, what is the effect of a rule application? This
leads immediately to defining more technical concepts like variables
in bound or free situations, substitutions and substitution
application, matching, replacement; all notions being specific to
the kind of objects that have to be rewritten. Once this is solved
one has to understand the meaning of the application of a set of
rules on (classes of) objects. And last but not least, depending on
the intended use of rewriting, one would like to define an induced
relation, or a logic, or a calculus.

In this very general picture, we have introduced a calculus whose main
design concept is to make all the basic ingredients of rewriting
explicit objects, in particular the notions of rule
application and result. We concentrate on
term rewriting, we introduce a very general notion of rewrite
rule and we make the rule application and result explicit
concepts. These are the basic ingredients of the rewriting-
or ρ-calculus whose originality comes from the fact that terms, rules, rule
application and application strategies are all treated
at the object level (a rule can be applied on a rule for instance).

The λ-calculus is usually put forward as the abstract
computational model underlying functional programming. However,
modern functional programming languages have pattern-matching features
which cannot be directly expressed in the λ-calculus. To
palliate this problem,
pattern-calculi [34] , [31] , [25]
have been introduced.
The rewriting calculus is also a pattern calculus that combines the
expressiveness of pure functional calculi and algebraic term
rewriting. This calculus is designed and used for logical and
semantical purposes. It could be equipped with powerful type systems
and used for expressing the semantics of rule based as well as object
oriented languages. It allows one to naturally express exception
handling mechanisms and elaborated rewriting strategies. It can be
also extended with imperative features and cyclic data structures.

The study of the rewriting calculus turns out to be extremely
successful in terms of fundamental results and of
applications [22] .
Different instances of this calculus together with their corresponding
type systems have been proposed and studied. The expressive power of
this calculus was illustrated by comparing it with similar formalisms
and in particular by giving a typed encoding of standard strategies
used in first-order rewriting and classical rewrite based languages
like ELAN and Tom.

 Application Domains

 	
 [bookmark: uid13]Application Domains

 [bookmark: uid13] Section:
 Application Domains
Application Domains

Beside the theoretical transfer that can be performed via the
cooperations or the scientific publications, an important part of
the research done in the Pareo group team is published within
software. Tom is our flagship implementation. It is available
via the Inria Gforge (http://gforge.inria.fr) and is one of
the most visited and downloaded projects. The integration of
high-level constructs in a widely used programming language such as
Java may have an impact in the following areas:

	[bookmark: uid14] Teaching: when (for good or bad reasons) functional
programming is not taught nor used, Tom is an interesting
alternative to exemplify the notions of abstract data type and
pattern-matching in a Java object oriented course.

	[bookmark: uid15] Software quality: it is now well established that
functional languages such as Caml are very successful to produce
high-assurance software as well as tools used for software
certification. In the same vein, Tom is very well suited to
develop, in Java, tools such as provers, model checkers, or static
analyzers.

	[bookmark: uid16] Symbolic transformation: the use of formal anchors makes
possible the transformation of low-level data structures such as C
structures or arrays, using a high-level formalism, namely pattern
matching, including associative matching. Tom is therefore a
natural choice each time a symbolic transformation has to be
implemented in C or Java for instance. Tom has been
successfully used to implement the Rodin simplifier, for the B
formal method.

	[bookmark: uid17] Prototyping: by providing abstract data types, private
types, pattern matching, rules and strategies, Tom allows the
development of quite complex prototypes in a short time. When
using Java as the host-language, the full runtime library can be
used. Combined with the constructs provided by Tom, such as
strategies, this procures a tremendous advantage.

One of the most successful transfer is certainly the use of Tom
made by Business Objects/SAP. Indeed, after benchmarking several other
rule based languages, they decided to choose Tom to implement a
part of their software.
Tom is used in Paris, Toulouse and Vancouver. The standard
representation provided by Tom is used as an exchange format by the
teams of these sites.

 Software

 	Software	[bookmark: uid19]ATerm
	[bookmark: uid20]Tom

 [bookmark: uid19] Section:
 Software
ATerm
Participant :
 Pierre-Etienne Moreau [correspondant] .

ATerm (short for Annotated Term) is an abstract data type designed for
the exchange of tree-like data structures between distributed
applications.

The ATerm library forms a comprehensive procedural interface which
enables creation and manipulation of ATerms in C and Java. The ATerm
implementation is based on maximal subterm sharing and automatic
garbage collection.

A binary exchange format for the concise representation of ATerms
(sharing preserved) allows the fast exchange of ATerms between
applications. In a typical application—parse trees which contain
considerable redundant information—less than 2 bytes are needed to
represent a node in memory, and less than 2 bits are needed to
represent it in binary format. The implementation of ATerms scales up
to the manipulation of ATerms in the giga-byte range.

The ATerm library provides a comprehensive interface in C and Java to
handle the annotated term data-type in an efficient manner.

We are involved (with the CWI) in the implementation of the Java
version, as well as in the garbage collector of the C version. The
Java version of the ATerm library is used in particular by Tom.

The ATerm library is documented, maintained, and available at the
following address:
http://www.meta-environment.org/Meta-Environment/ATerms .

[bookmark: uid20] Section:
 Software
Tom
Participants :
 Jean-Christophe Bach, Christophe Calvès, Horatiu Cirstea, Pierre-Etienne Moreau [correspondant] , Claudia Tavares.

Since 2002, we have developed a new system called Tom
[33] , presented in
[17] , [18] . This
system consists of a pattern matching compiler which is particularly
well-suited for programming various transformations on trees/terms and
XML documents. Its design follows our experiments on the efficient
compilation of rule-based systems [30] . The
main originality of this system is to be language and data-structure
independent. This means that the Tom technology can be used in a C,
C++ or Java environment. The tool can be seen as a Yacc-like compiler
translating patterns into executable pattern matching
automata. Similarly to Yacc, when a match is found, the corresponding
semantic action (a sequence of instructions written in the chosen
underlying language) is triggered and executed. Tom supports
sophisticated matching theories such as associative matching with
neutral element (also known as list-matching). This kind of matching
theory is particularly well-suited to perform list or XML based
transformations for example.

In addition to the notion of rule, Tom offers a
sophisticated way of controlling their application: a strategy
language. Based on a clear semantics, this language allows to define
classical traversal strategies such as innermost,
outermost, etc.. Moreover, Tom provides an extension of pattern matching, called
anti-pattern matching. This corresponds to a natural way to
specify complements (i.e.what should not be there to fire a
rule). Tom also supports the definition of cyclic graph
data-structures, as well as matching algorithms and rewriting rules for
term-graphs.

Tom is documented, maintained, and available at
http://tom.loria.fr as well as at http://gforge.inria.fr/projects/tom .

 New Results

 	New Results	[bookmark: uid22]Model transformation
	[bookmark: uid23]Improvements of theoretical
foundations
	[bookmark: uid27]Integration of formal methods in programming languages
	[bookmark: uid30]Security policies specification and analysis

 [bookmark: uid22] Section:
 New Results
Model transformation
Participants :
 Jean-Christophe Bach, Pierre-Etienne Moreau.

In [10] , we have proposed a general method to
transform high level models by using Tom strategies. High-level models we
consider are EMF-ECore models that we represent by terms whose mappings
have been generated by the Tom-EMF tool. The proposed method consists in
decomposing a complex transformation into many elementary transformations
(definitions) encoded by Tom strategies. These definitions
are applied on a source model without any consideration of execution order.
Therefore, we proposed a mechanism to address the problem of dependency between
elementary transformations without introducing any scheduling between rewriting
rules. This mechanism relies on the use of temporary elements which play the
roles of the target elements until the last part of the transformation : the
Resolve phase. The goal of this phase is to find and replace all
temporary elements by real target ones, and therefore to reconnect all partial
target models obtained during elementary transformations to build the resulting
model.

In [11] , [15] , we presented a first proposal of
a high-level transformation language included in Tom which implements the
aforementioned general method. We used this language to implement an avionic
case study — AADL2Fiacre — which was proposed by Airbus for the quarteFt
project.

[bookmark: uid23] Section:
 New Results
Improvements of theoretical
foundations

[bookmark: uid24] Termination under strategies
Participants :
 Horatiu Cirstea, Pierre-Etienne Moreau.

Several approaches for proving the confluence and the termination of
term rewriting systems have been proposed [16] and the
corresponding techniques have been implemented in tools like
Aprove [23] and
TTT2 [32] . On the other hand, there are relatively few
works on the study of these properties in the context of strategic
rewriting and the corresponding results were generally obtained for
some specific strategies and not within a generic framework. It would
thus be interesting to reformulate these notions in the general
formalism we have previously
proposed [21] and to establish
confluence and termination conditions similar to the ones used in
standard rewriting.

We have first focused on the termination property and we targeted the
rewriting strategies of the Tom language. We propose a direct
approach which consists in translating Tom strategies into a
rewriting system which is not guided by a given evaluation strategy
and we show that our systematic transformation preserves the
termination. This allowed us to take advantage of the termination
proof techniques available for standard rewriting and in particular to
use existing termination tools (such as Aprove and TTT2) to prove the
termination of strategic rewriting systems. The efficiency and
scalability of these latter tool has a direct impact on the
performances of our approach especially for complex strategies for
which an important number of rewrite rules could be generated. We have
nevertheless proposed a meta-level implementation of the
automatic transformation which improves significantly the performances of the
approach.

[bookmark: uid25] Automatizing the certification of induction proofs
Participant :
 Sorin Stratulat.

Largely adopted by proof assistants, the conventional induction methods based on
explicit induction schemas are non-reductive and local, at schema level. On the
other hand, the implicit induction methods used by automated theorem provers
allow for lazy and mutual induction reasoning. In collaboration with Amira
Henaien [13] , we devised a new tactic for the Coq proof
assistant able to perform automatically implicit induction reasoning. By using
an automatic black-box approach, conjectures intended to be manually proved by
the certifying proof environment that integrates Coq are proved instead by the
Spike implicit induction theorem prover. The resulting proofs are translated
afterwards into certified Coq scripts.

As a case study, conjectures involved in the validation of a non-trivial
application [35] have been successfully and directly
certified by Coq using the Spike tactic. The proofs of more than 60%
of them have been performed completely automatically, i.e., the Coq user does
not need to provide any argument to the tactic. On the other hand, its
application is limited to Coq specifications transformable into conditional
specifications whose axioms can be oriented into rewrite rules.

[bookmark: uid26] Cyclic proofs by induction methods
Participant :
 Sorin Stratulat.

In a first-order setting, two different `proof by induction' methods are
distinguished: the conventional induction, based on explicit induction schemas,
and the implicit induction, based on reductive
procedures. In [14] , we proposed a new cycle-based
induction method that keeps their best features, i.e., performs local and
non-reductive reasoning, and naturally fits for mutual and lazy induction. The
heart of the method is a proof strategy that identifies in the proof script the
subset of formulas contributing to validate the application of induction
hypotheses. The conventional and implicit induction are particular cases of our
method.

[bookmark: uid27] Section:
 New Results
Integration of formal methods in programming languages

[bookmark: uid28] Multi-focus strategies
Participants :
 Jean-Christophe Bach, Christophe Calvès, Horatiu Cirstea, Pierre-Etienne Moreau.

Like most rewriting engines, Tom patterns combined with traversal
strategies, gives the possibility to match and rewrite at any position
in a given term. We have extended this classical approach with
multi-focus strategies which enable us to match and rewrite several
positions simultaneously. More precisely, the action performed at a
given position can depend on the other positions involved in the
corresponding strategy. This extension is particularly well-suited for
programming-language semantics specification, semantics which usually
require gathering several subterms (code, memory, input/output
channels, ...) to perform one action.

The multi-focus library is a conservative extension of Tom standard
strategies and provides combinators to handle multi-position
traversal, matching and rewriting. Compared to the original Tom
strategy library, the multi-focus version provides global
backtracking. The library is available at
http://gforge.inria.fr/projects/tom .

[bookmark: uid29] Formal islands grammars parsing
Participants :
 Jean-Christophe Bach, Pierre-Etienne Moreau.

Extending a language by embedding within it another language presents
significant parsing challenges, especially if the embedding is recursive. The
composite grammar is likely to be nondeterministic as a result of tokens that
are valid in both the host and the embedded language.
In [9] , we examined the challenges of embedding the
Tom language into a variety of general-purpose high level languages. The
current parser of Tom is complex and difficult to maintain. In this paper,
we described how Tom can be parsed using island grammars implemented with
the Generalised LL (GLL) parsing algorithm. The grammar is, as might be
expected, ambiguous. Extracting the correct derivation relies on a
disambiguation strategy which is based on pattern matching within the parse
forest. We described different classes of ambiguity and proposed patterns to
solve them.

[bookmark: uid30] Section:
 New Results
Security policies specification and analysis
Participants :
 Horatiu Cirstea, Hélène Kirchner, Pierre-Etienne Moreau.

Access control policies, a particular case of security policies should
guarantee that information can be accessed only by authorized users
and thus prevent all information leakage.
We proposed [12] a framework where the
security policies and the systems they are applied on are specified
separately but using a common formalism. This separation allows not
only some analysis of the policy independently of the target system
but also the application of a given policy on different systems. In
this framework, we propose a method to check properties like
confidentiality, integrity or confinement over secure systems based on
different policy specifications.

 Dissemination

 	Dissemination	[bookmark: uid37]Scientific Animation
	[bookmark: uid58]Teaching - Supervision - Juries
	[bookmark: uid80]Popularization

 [bookmark: uid37] Section:
 Dissemination
Scientific Animation

	[bookmark: uid38] Jean-Christophe Bach:

	[bookmark: uid39] Reviewer for SLE 2012 (5th International Conference on Software Language Engineering)

	[bookmark: uid40] Horatiu Cirstea:

	[bookmark: uid41] PC member of RuleML 2012 (International RuleML Symposium on Rule Interchange and Applications).

	[bookmark: uid42] Steering committee of RULE.

	[bookmark: uid43] Responsible for the Master speciality “Logiciels: Théorie, méthodes et ingénierie”.

	[bookmark: uid44] Claude Kirchner:

	[bookmark: uid45] Keynote speaker of RTA 2012 (23rd International Conference on Rewriting Techniques and Applications): “Rho-Calculi for Computation and Logic”.

	[bookmark: uid46] Sergueï Lenglet:

	[bookmark: uid47] Presentation at “Journées communes LTP - LAC - LaMHA”

	[bookmark: uid48] Pierre-Etienne Moreau:

	[bookmark: uid49] Member of the board of the Doctoral School in Computer
Science and Mathematics.

	[bookmark: uid50] Member of the GDR–GPL (CNRS Research Group on Software Engineering) board.

	[bookmark: uid51] Head of the local committee for Inria “détachements” and “délégations”.

	[bookmark: uid52] Head of the Computer Science department at Ecole des Mines de Nancy.

	[bookmark: uid53] PC member of RTA 2012 (23rd International Conference on Rewriting
Techniques and Applications), SLE 2012 (5th International Conference on
Software Language Engineering), and WRLA 2012 (9th International Workshop on
Rewriting Logic and its Applications)

	[bookmark: uid54] Sorin Stratulat:

	[bookmark: uid55] PC Member of SYNASC'12 (14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing), IAS'12 (8th International Conference on Information
Assurance and Security), and CISIS'12 (5th International Conference on
Computational Intelligence in Security for Information Systems).

	[bookmark: uid56] Invited Speaker at PAS'12 (International Seminar on Program Verification,
Automated Debugging and Symbolic Computation).

	[bookmark: uid57] Member of the LITA Laboratory Council.

[bookmark: uid58] Section:
 Dissemination
Teaching - Supervision - Juries

[bookmark: uid59] Teaching

	[bookmark: uid60] Licence : Horatiu Cirstea, Structures de données,
20h, L3, Université de Lorraine, Nancy

	[bookmark: uid61] Licence : Sergueï Lenglet, Algorithmique et strutures de données,
110h, L1, L2, IUT Charlemagne, Nancy

	[bookmark: uid62] Licence : Sergueï Lenglet, Bases de données,
60h, L1, IUT Charlemagne, Nancy

	[bookmark: uid63] Licence : Sergueï Lenglet, Analyse et conception de systèmes
d'information, 20h, L2, IUT Charlemagne, Nancy

	[bookmark: uid64] Licence : Pierre-Etienne Moreau, Tronc Commun d'Informatique, 35h, L3, École des Mines de Nancy

	[bookmark: uid65] Licence : Christophe Calvès, Certificat Informatique et Internet,
40h, L1, Université de Lorraine, Nancy

	[bookmark: uid66] Master : Horatiu Cirstea, Analyse et conception de logiciels,
100h, M1, Université de Lorraine, Nancy

	[bookmark: uid67] Master : Horatiu Cirstea, Génie logiciel avancé,
30h, M2, Université de Lorraine, Nancy

	[bookmark: uid68] Master : Pierre-Etienne Moreau, Software Engineering, 15h, M1, École des Mines de Nancy

	[bookmark: uid69] Master : Pierre-Etienne Moreau, Bootcamp OO Programming, 45, M1, École des Mines de Nancy

	[bookmark: uid70] Master : Pierre-Etienne Moreau, Research project, 30h, M2, École des Mines de Nancy

[bookmark: uid71] Supervision

	[bookmark: uid72] PhD : Cláudia TAVARES, "Un système de types pour la programmation par
réécriture embarquée", Université de Lorraine, March 2nd 2012, Claude Kirchner et Pierre-Etienne
Moreau

	[bookmark: uid73] PhD : Vincent DEMANGE, "Vers un calcul des constructions
pédagogiques", Université de Lorraine, December 7th 2012, Sorin
Stratulat et Loïc Colson

	[bookmark: uid74] PhD in progress : Jean-Christophe BACH, "Transformation de modèles et certification", November 1st 2010, Pierre-Etienne Moreau

[bookmark: uid75] Juries

Pierre-Etienne Moreau:

	[bookmark: uid76] PhD committee of Aurélien Monot, “Vérification de contraintes temporelles de bout-en-bout dans le contexte AutoSar”, Nancy 2012

	[bookmark: uid77] PhD committee of Luc Engelen, “From Napkin Sketches to Reliable Software”, Eindhoven 2012

	[bookmark: uid78] PhD reviewer of Pengfei Liu, “Intégration de politiques de sécurité dans des systèmes ubiquitaires”, Bordeaux 2013

	[bookmark: uid79] PhD committee of Laurent Wouters, “Multi-Domain Expert-User Modeling Infrastructure”, Paris 2013

[bookmark: uid80] Section:
 Dissemination
Popularization

Jean-Christophe Bach participated to scientific mediation by proposing several
activities to demonstrate the algorithmic thinking at the core of the
Computer Science without requiring any computer or even electric devices.
These activities are the first part of the CSIRL (Computer Science In Real
Life) project which aims to popularize computer science and to initiate
children, school students and non-scientists into this domain. These
activities were presented during the high school students welcome at LORIA and
Inria - Nancy Grand Est, and also during
APMEP (http://www.apmep.asso.fr/) days.

Jean-Christophe Bach was also involved in popularization activities with
Interstices (http://interstices.info) by writing short debunking
articles (“Idées reçues”) for non computer scientists about Church's
thesis and Turing's work.

 Bibliography
[bookmark: Major]Major publications by the team in recent years
	[1][bookmark: pareo-2012-bid29]
	E. Balland, C. Kirchner, P.-E. Moreau.
Formal Islands, in: 11th International Conference on Algebraic Methodology and Software Technology, Kuressaare, Estonia, M. Johnson, V. Vene (editors), LNCS, Springer-Verlag, jul 2006, vol. 4019, p. 51–65.
http://www.loria.fr/~moreau/Papers/BallandKM-AMAST2006.pdf

 	[2][bookmark: pareo-2012-bid30]
	G. Barthe, H. Cirstea, C. Kirchner, L. Liquori.
Pure Patterns Type Systems, in: Principles of Programming Languages - POPL2003, New Orleans, USA, ACM, Jan 2003, p. 250–261.

 	[3][bookmark: pareo-2012-bid32]
	P. Brauner, C. Houtmann, C. Kirchner.
Principles of Superdeduction, in: Twenty-Second Annual IEEE Symposium on Logic in Computer Science - LiCS 2007, Wroclaw Pologne, IEEE Computer Society, 2007.
http://dx.doi.org/10.1109/LICS.2007.37

 	[4][bookmark: pareo-2012-bid35]
	H. Cirstea, C. Kirchner.
The rewriting calculus - Part I and II, in: Logic Journal of the Interest Group in Pure and Applied Logics, May 2001, vol. 9, no 3, p. 427-498.

 	[5][bookmark: pareo-2012-bid31]
	H. Cirstea, C. Kirchner, R. Kopetz, P.-E. Moreau.
Anti-patterns for Rule-based Languages, in: Journal of Symbolic Computation, February 2010, vol. 54, no 5, p. 523-550.

 	[6][bookmark: pareo-2012-bid33]
	C. Kirchner, R. Kopetz, P.-E. Moreau.
Anti-Pattern Matching, in: 16th European Symposium on Programming, Braga, Portugal, Lecture Notes in Computer Science, Springer, 2007, vol. 4421, p. 110–124.
http://www.loria.fr/~moreau/Papers/KirchnerKM-2007.pdf

 	[7][bookmark: pareo-2012-bid34]
	P.-E. Moreau, C. Ringeissen, M. Vittek.
A Pattern Matching Compiler for Multiple Target Languages, in: 12th Conference on Compiler Construction, Warsaw (Poland), G. Hedin (editor), LNCS, Springer-Verlag, may 2003, vol. 2622, p. 61–76.
http://www.loria.fr/~moreau/Papers/MoreauRV-CC2003.ps.gz

[bookmark: year]Publications of the year
Doctoral Dissertations and Habilitation Theses
	[8][bookmark: pareo-2012-bid28]
	C. Tavares.
Un système de types pour la programmation par réécriture embarquée, Université de Lorraine, March 2012.
http://hal.inria.fr/tel-00702301

International Peer-Reviewed Conference/Proceedings
	[9][bookmark: pareo-2012-bid26]
	A. Afroozeh, J.-C. Bach, M. Van Den Brand, A. Johnstone, M. Manders, P.-E. Moreau, E. Scott.
Island Grammar-based Parsing using GLL and Tom, in: 5th International Conference on Software Language Engineering - SLE 2012, Dresden, Germany, June 2012.
http://hal.inria.fr/hal-00722878

 	[10][bookmark: pareo-2012-bid17]
	J.-C. Bach, X. Crégut, P.-E. Moreau, M. Pantel.
Model Transformations with Tom, in: LDTA - 12th Workshop on Language Descriptions, Tools and Applications - 2012, Tallinn, Estonia, ACM, 2012.
http://hal.inria.fr/hal-00646350

 	[11][bookmark: pareo-2012-bid18]
	J.-C. Bach, P.-E. Moreau, M. Pantel.
Tom-based tools to transform EMF models in avionics context, in: ITSLE - Industrial Track of Software Language Engineering 2012, Dresden, Germany, September 2012.
http://hal.inria.fr/hal-00730738

 	[12][bookmark: pareo-2012-bid27]
	T. Bourdier, H. Cirstea, M. Jaume, H. Kirchner.
Formal Specification and Validation of Security Policies, in: Foundations & Practice of Security, Paris, France, 2012.
http://hal.inria.fr/inria-00507300

 	[13][bookmark: pareo-2012-bid24]
	A. Henaien, S. Stratulat.
Performing Implicit Induction Reasoning with Certifying Proof Environments, in: SCSS'2012 - 4th International Symposium on Symbolic Computation in Software Science, Gammarth, Tunisie, December 2012.
http://hal.inria.fr/hal-00764909

 	[14][bookmark: pareo-2012-bid0]
	S. Stratulat.
A Unified View of Induction Reasoning for First-Order Logic, in: Turing-100, The Alan Turing Centenary Conference, Manchester, Royaume-Uni, June 2012.
http://hal.inria.fr/hal-00763236

Other Publications
	[15][bookmark: pareo-2012-bid19]
	J.-C. Bach, P.-E. Moreau, M. Pantel.
EMF Models Transformations with Tom, in: 5th International Conference on Software Language Engineering - SLE 2012, Dresden, Germany, 2012, This poster gives an overview of work on models transformations by using Tom language. It was presented at SLE 2012.
http://hal.inria.fr/hal-00765091

[bookmark: References]References in notes
	[16][bookmark: pareo-2012-bid20]
	F. Baader, T. Nipkow.
Term Rewriting and All That., Cambridge University Press, 1998.

 	[17][bookmark: pareo-2012-bid15]
	J.-C. Bach, E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, A. Reilles.
Tom Manual, LORIA, 2009, 155 p.
http://hal.inria.fr/inria-00121885/en/

 	[18][bookmark: pareo-2012-bid8]
	E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, A. Reilles.
Tom: Piggybacking rewriting on java, in: 18th International Conference on Rewriting Techniques and Applications - (RTA), Paris, France, Lecture Notes in Computer Science, Jun 2007, vol. 4533, p. 36–47.

 	[19][bookmark: pareo-2012-bid9]
	P. Borovanský, C. Kirchner, H. Kirchner.
Controlling Rewriting by Rewriting, in: Proceedings of the first international workshop on rewriting logic - (WRLA), Asilomar (California), J. Meseguer (editor), Electronic Notes in Theoretical Computer Science, Sep 1996, vol. 4.

 	[20][bookmark: pareo-2012-bid7]
	P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau.
ELAN from a rewriting logic point of view, in: Theoretical Computer Science, Jul 2002, vol. 2, no 285, p. 155–185.

 	[21][bookmark: pareo-2012-bid23]
	T. Bourdier, H. Cirstea, D. Dougherty, H. Kirchner.
Extensional and Intensional Strategies, in: Electronic Proceedings in Theoretical Computer Science, 2010, vol. 15, p. 1–19.

 	[22][bookmark: pareo-2012-bid13]
	H. Cirstea.
Le calcul de réécriture, Université Nancy II, October 2010, Habilitation à Diriger des Recherches.
http://hal.inria.fr/tel-00546917/en

 	[23][bookmark: pareo-2012-bid21]
	C. Fuhs, J. Giesl, M. Parting, P. Schneider-Kamp, S. Swiderski.
Proving Termination by Dependency Pairs and Inductive Theorem Proving, in: J. Autom. Reasoning, 2011, vol. 47, no 2, p. 133–160.

 	[24][bookmark: pareo-2012-bid3]
	J.-Y. Girard, Y. Lafont, P. Taylor.
Proofs and Types, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 1989, vol. 7.

 	[25][bookmark: pareo-2012-bid12]
	C. B. Jay, D. Kesner.
First-class patterns, in: Journal of Functional Programming, 2009, vol. 19, no 2, p. 191–225.

 	[26][bookmark: pareo-2012-bid4]
	J.-P. Jouannaud, H. Kirchner.
Completion of a set of rules modulo a set of Equations, in: SIAM J. of Computing, 1986, vol. 15, no 4, p. 1155–1194.

 	[27][bookmark: pareo-2012-bid5]
	J.-P. Jouannaud, C. Kirchner.
Solving equations in abstract algebras: a rule-based survey of unification, in: Computational Logic. Essays in honor of Alan Robinson, Cambridge (MA, USA), J.-L. Lassez, G. Plotkin (editors), The MIT press, Cambridge (MA, USA), 1991, chap. 8, p. 257–321.

 	[28][bookmark: pareo-2012-bid1]
	G. Kahn.
Natural Semantics, Inria Sophia-Antipolis, feb 1987, no 601.

 	[29][bookmark: pareo-2012-bid6]
	C. Kirchner, H. Kirchner, M. Vittek.
Designing Constraint Logic Programming Languages using Computational Systems, in: Proc. 2nd CCL Workshop, La Escala (Spain), F. Orejas (editor), Sep 1993.

 	[30][bookmark: pareo-2012-bid16]
	H. Kirchner, P.-E. Moreau.
Promoting Rewriting to a Programming Language: A Compiler for Non-Deterministic Rewrite Programs in Associative-Commutative Theories, in: Journal of Functional Programming, 2001, vol. 11, no 2, p. 207–251.
http://www.loria.fr/~moreau/Papers/jfp.ps.gz

 	[31][bookmark: pareo-2012-bid11]
	J. W. Klop, V. van Oostrom, R. de Vrijer.
Lambda calculus with patterns, in: Theor. Comput. Sci., 2008, vol. 398, no 1-3, p. 16–31.

 	[32][bookmark: pareo-2012-bid22]
	M. Korp, C. Sternagel, H. Zankl, A. Middeldorp.
Tyrolean Termination Tool 2, in: RTA, 2009, p. 295–304.

 	[33][bookmark: pareo-2012-bid14]
	P.-E. Moreau, C. Ringeissen, M. Vittek.
A Pattern Matching Compiler for Multiple Target Languages, in: 12th Conference on Compiler Construction - (CC), G. Hedin (editor), Lecture Notes in Computer Science, Springer-Verlag, MAY 2003, vol. 2622, p. 61–76.

 	[34][bookmark: pareo-2012-bid10]
	S. Peyton-Jones.
The implementation of functional programming languages, Prentice-Hall, 1987.

 	[35][bookmark: pareo-2012-bid25]
	M. Rusinowitch, S. Stratulat, F. Klay.
Mechanical Verification of an Ideal Incremental ABR Conformance Algorithm, in: J. Autom. Reasoning, 2003, vol. 30, no 2, p. 53–177.

 	[36][bookmark: pareo-2012-bid2]
	M. van den Brand, A. van Deursen, P. Klint, S. Klusener, E. A. van der Meulen.
Industrial Applications of ASF+SDF, in: AMAST '96, M. Wirsing, M. Nivat (editors), Lecture Notes in Computer Science, Springer-Verlag, 1996, vol. 1101, p. 9–18.

OEBPS/uid32.xhtml
[bookmark: uid32] Section:
 Partnerships and Cooperations

National Initiatives

We participate in the “Logic and Complexity” part of the GDR–IM (CNRS
Research Group on Mathematical Computer Science), in the projects “Logic,
Algebra and Computation” (mixing algebraic and logical systems) and “Geometry
of Computation” (using geometrical and topological methods in computer
science).

[bookmark: uid33] FRAE QUARTEFT (2009-2012)

Participants :
 Jean-Christophe Bach, Horatiu Cirstea, Pierre-Etienne Moreau.

“QUARTEFT: QUAlifiable Real TimE Fiacre Transformations” is a research
project funded by the FRAE (Fondation de Recherche pour l'Aéronautique et
l'Espace). A first goal is to develop an extension of the Fiacre intermediate
language to support real-time constructs. A second goal is to develop new model
transformation techniques to translate this extended language, Fiacre-RT, into
core Fiacre. One of the main difficulties consists in proposing transformation techniques
that could be verified in a formal way. A more detailed presentation is
available at http://quarteft.loria.fr/dokuwiki/ .

OEBPS/uid34.xhtml
[bookmark: uid34] Section:
 Partnerships and Cooperations

International Research Visitors

[bookmark: uid35] Visits of International Scientists

Cooperation with Prof. Mark van den Brand from Technical University of Eindhoven.

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/IMG/iTunesArtwork.png
Activity Report 2012
Project-Team pareo

Formal islands:
foundations and
applications

IN COLLABORATION WITH: Laboratoire lorrain de recherche en informatiaue et ses applications (LOR

