

[image: cover]

VERTECS
Verification models and techniques applied to testing and control of reactive systems
2012 Research Team Activity Report
	Rennes - Bretagne-Atlantique

	 Field :
	 Algorithmics, Programming, Software and Architecture

Theme :
Embedded and Real Time Systems
Presentation of the
		Project-Team

	Members
	Overall Objectives	[bookmark: uid3]Introduction
	[bookmark: uid9]Highlights of the Year

	Scientific Foundations	[bookmark: uid11]Underlying models
	[bookmark: uid16]Verification
	[bookmark: uid22]Automatic test generation
	[bookmark: uid23]Control synthesis

	Application Domains	[bookmark: uid27]Overview
	[bookmark: uid28]Telecommunication systems
	[bookmark: uid29]Software embedded systems
	[bookmark: uid30]Control-command systems

	Software	[bookmark: uid32]STG
	[bookmark: uid33]SIGALI

	New Results	[bookmark: uid35]Verification
	[bookmark: uid41]Active and passive testing
	[bookmark: uid48]Control synthesis

	Dissemination	[bookmark: uid73]Scientific Animation
	[bookmark: uid77]Teaching - Supervision - Juries
	[bookmark: uid92]Popularization

	Bibliography
		Major publications
	Publications of the year
	References in notes

Keywords: Formal Methods, Verification, Model-Checking, Program Testing, Control, Embedded SystemsSection: Members
Research Scientists
Thierry Jéron [Team Leader, Senior Researcher, Inria, HdR]
Nathalie Bertrand [Junior Researcher, Inria, on sabbatical at Liverpool University until August 2012]
Hervé Marchand [Junior Researcher, Inria]

PhD Students
Sébastien Chédor [Université de Rennes 1, since September 2009]
Paulin Fournier [ENS de Cachan, since September 2012]
Srinivas Pinisetty [Inria, since December 2011]
Amélie Stainer [Université de Rennes 1, since October 2010]

Visiting Scientists
Christophe Morvan [Assistant Professor,
Univ. de Marne-la-Vallée]
Laurie Ricker [Associate
Professor, Mount Allison University, January 2012 to June 2012]
Administrative Assistant
Lydie Mabil [TR Inria, (80%)]

 Overall Objectives

 	Overall Objectives	[bookmark: uid3]Introduction
	[bookmark: uid9]Highlights of the Year

 [bookmark: uid3] Section:
 Overall Objectives
Introduction

The VerTeCs team is focused on the use of formal methods
to assess the reliability, safety and security
of reactive software systems.
By reactive software system we mean a system
controlled by software which reacts
with its environment (human or other reactive software).
Among these, critical systems are of primary importance, as errors occurring
during their execution may have dramatic economical or human consequences.
Thus, it is essential to establish their correctness before they are deployed
in a real environment, or at least detect incorrectness during execution
and take appropriate action.
For this aim, the VerTeCs team promotes the use of formal methods,
i.e. formal specification of software and their required properties
and mathematically founded validation methods.
Our research covers several validation methods, all
oriented towards a better reliability of software systems:

	[bookmark: uid4] Verification, which is used during the analysis and design phases,
and whose aim is to establish the correctness of specifications
with respect to requirements, properties or higher level specifications.

	[bookmark: uid5] Control synthesis, which consists in “forcing”
(specifications of) systems to behave as desired by
coupling them with a supervisor.

	[bookmark: uid6] Conformance testing, which is used to check the correctness
of a real system with respect to its specification.
In this context, we are interested in model-based testing,
and in particular
automatic test generation of test cases from specifications.

	[bookmark: uid7] Diagnosis and monitoring, which are used at run time to detect
erroneous behaviour.

	[bookmark: uid8] Combinations of these techniques, both at the methodological
level (combining several techniques within formal validation
methodologies) and at the technical level (as the same set of formal
verification techniques - model checking, theorem proving and
abstract interpretation - are required for control synthesis, test
generation and diagnosis).

Our research is thus concerned with the development of formal models
for the description of software systems, the formalization of
relations between software artifacts (e.g. satisfaction, conformance
between properties, specifications, implementations), the interaction
between these artifacts (modelling of execution, composition, etc).
We develop methods and algorithms for verification, controller
synthesis, test generation and diagnosis that ensure desirable
properties (e.g. correctness, completeness, optimality, etc). We try
to be as generic as possible in terms of models and techniques in
order to cope with a wide range of application domains and
specification languages. Our research has been applied to
telecommunication systems, embedded systems, smart-cards application,
and control-command systems. We implemented prototype tools for
distribution in the academic world, or for transfer to the industry.

Our research is based on formal models and our basic tools are verification techniques such as model checking, abstract interpretation, the control theory of discrete event systems,
and their underlying models and logics. The close connection between
testing, control and verification produces a synergy between these
research topics and allows us to share theories, models, algorithms
and tools.

[bookmark: uid9] Section:
 Overall Objectives
Highlights of the Year

The article [6] entitled Probabilistic
omega-automata and co-authored by Nathalie Bertrand, together with
Christel Baier and Marcus Grösser from TU Dresden, has been
published in the Journal of the ACM. This article extends a paper
published in 2008 in the proceedings of FoSSaCS, which received the
EATCS best paper award, and already had a strong impact in the
verification community.

 Scientific Foundations

 	Scientific Foundations	[bookmark: uid11]Underlying models
	[bookmark: uid16]Verification
	[bookmark: uid22]Automatic test generation
	[bookmark: uid23]Control synthesis

 [bookmark: uid11] Section:
 Scientific Foundations
Underlying models

The formal models we use are mainly automata-like structures such as
labelled transition systems (LTS) and some of their extensions: an
LTS is a tuple M = (Q, Λ, [image: $ \rightarrow$], qo) where Q is a
non-empty set of states; qo[image: $ \in$]Q is the initial state; A is
the alphabet of actions, [image: Im1 ${\#8594 \#8838 Q×\#923 ×Q}$] is
the transition relation. These models are adapted for testing and
controller synthesis.

To model reactive systems in the testing context, we use Input/Output
labeled transition systems (IOLTS for short). In this setting, the
interactions between the system and its environment (where the tester
lies) must be partitioned into inputs (controlled by the environment),
outputs (observed by the environment), and internal (non observable)
events modeling the internal behavior of the system. The alphabet
Λ is then partitioned into [image: Im2 ${\#923 _!\#8746 \#923 _?\#8746 \#119983 }$] where Λ! is the alphabet of outputs, Λ?
the alphabet of inputs, and [image: Im3 $\#119983 $] the alphabet of internal
actions.

In the controller synthesis theory, we also distinguish between
controllable and uncontrollable events (Λ = Λc[image: $ \cup$]Λuc), observable and unobservable events ([image: Im4 ${\#923 =\#923 _O\#8746 \#119983 }$]).

In the context of verification, we also use Timed Automata. A timed
automaton is a tuple [image: Im5 ${A=(L,X,E,\#8464)}$] where L is a set of
locations, X is a set of clocks whose valuations are positive real
numbers, [image: Im6 ${E\#8838 L×\#119970 (X)×}$]2 X×L is a
finite set of edges composed of a source and a target state, a guard
given by a finite conjunction of expressions of the form [image: Im7 ${x\#8764 c}$]
where x is a clock, c is a natural number and [image: Im8 ${\#8764 \#8712 {\lt ,\#8804 ,=,\#8805 ,\gt }}$], a set of resetting clocks, and [image: Im9 ${\#8464 :\#8466 \#8594 \#119970 (\#119987)}$] assigns an invariant to each
location [22] . The semantics of a timed automaton is
given by a (infinite states) labelled transition system whose states
are composed of a location and a valuation of clocks.

Also, for verification purposes, we use graph grammars that are a
general tool to define families of graphs. Such grammars are formed by a set of rules whose left-hand sides are
hyperedges and right-hand sides are hypergraphs. For graphs with
finite degree, these grammars characterise transition graphs of
pushdown automata (the correspondence between graphs generated by
grammars and transition graphs of pushdown automata is
bijective). Graph grammars provide a simple yet powerful setting to
define and study infinite state systems.

In order to cope with models closer to practical specification
languages, we also need higher level models encompassing both control
and data aspects. We defined (input-output) symbolic transition
systems ((IO)STS), which are extensions of (IO)LTS that convey or
operate on data (i.e., program variables, communication parameters,
symbolic constants) through message passing, guards, and assignments.
Formally, an IOSTS is a tuple (V, Θ, Σ, T), where V is a
set of variables (including a counter variable encoding the control
structure), Θ is the initial condition defined by a predicate
on V, Σ is the finite alphabet of actions, where each action
has a signature (just like in IOLTS, Σ can be partitioned as
e.g. Σ?[image: $ \cup$]Σ![image: $ \cup$]Στ), T is a finite
set of symbolic transitions of the form t = (a, p, G, A) where a is an
action (possibly with a polarity reflecting its input/output/internal
nature), p is a tuple of communication parameters, G is a guard
defined by a predicate on p and V, and A is an assignment of
variables. The semantics of IOSTS is defined in terms of (IO)LTS
where states are vectors of values of variables, and transitions
between them are labelled with instantiated actions (action with
valued communication parameter). This (IO)LTS semantics allows us to
perform syntactical transformations at the (IO)STS level while
ensuring semantical properties at the (IO)LTS level. We also consider
extensions of these models with added features such as recursion, fifo
channels, etc. An alternative to IOSTS for specifying systems with
data variables is the model of synchronous dataflow equations.

Our research is based on well established theories: conformance
testing, supervisory control, abstract interpretation, and theorem
proving. Most of the algorithms that we employ take their origins in
these theories:

	[bookmark: uid12] graph traversal algorithms (breadth first, depth first, strongly
connected components, ...). We use these algorithms for
verification as well as test generation and control synthesis.

	[bookmark: uid13] BDDs (Binary Decision Diagrams) algorithms, for manipulating
Boolean formulae, and their MTBDDs (Multi-Terminal Decision
Diagrams) extension for manipulating more general functions. We use
these algorithms for verification, test generation and control.

	[bookmark: uid14] abstract interpretation algorithms, specifically in the abstract
domain of convex polyhedra (for example, Chernikova's algorithm for
the computation of dual forms). Such algorithms are used in
verification and test generation.

	[bookmark: uid15] logical decision algorithms, such as satisfiability of formulas
in Presburger arithmetics. We use these algorithms during generation
and execution of symbolic test cases.

[bookmark: uid16] Section:
 Scientific Foundations
Verification

Verification in its full generality consists in checking that a
system, which is specified by a formal model, satisfies a required
property. Verification takes place in our research in two ways: on
the one hand, a large part of our work, and in particular controller
synthesis and conformance testing, relies on the ability to solve
some verification problems. Many of these problems reduce to
reachability and coreachability questions on a formal model (a state
s is reachable from an initial state si if an execution
starting from si can lead to s; s is coreachable from a
final state sf if an execution starting from s can lead to
sf). These are important cases of verification problems, as they
correspond to the verification of safety properties.

On the other hand we investigate verification on its own in the
context of complex systems. For expressivity purposes, it is
necessary to be able to describe faithfully and to deal with complex
systems. Some particular aspects require the use of infinite state
models. For example asynchronous communications with unknown
transfer delay (and thus arbitrary large number of messages in
transit) are correctly modeled by unbounded FIFO queues, and real
time systems require the use of continuous variables which evolve
with time. Apart from these aspects requiring infinite state data
structure, systems often include uncertain or random behaviours
(such as failures, actions from the environment), which it make
sense to model through probabilities. To encompass these aspects, we
are interested in the verification of systems equipped with
infinite data structures and/or probabilistic features.

When the state space of the system is infinite, or when we try to
evaluate performances, standard model-checking techniques
(essentially graph algorithms) are not sufficient. For large or
infinite state spaces, symbolic model-checking or approximation
techniques are used. Symbolic verification is based on efficient
representations of sets of states and permits exact model-checking of
some well-formed infinite-state systems. However, for feasibility
reasons, it is often mandatory to use approximate computations,
either by computing a finite abstraction and resort to graph
algorithms, or preferably by using more sophisticated abstract
interpretation techniques. For systems with stochastic aspects, a
quantitative analysis has to be performed, in order to evaluate the
performances. Here again, either symbolic techniques (e.g. by
grouping states with similar behaviour) or approximation techniques
should be used.

We detail below verification topics we are interested in: abstract
interpretation, quantitative model-checking and analysis of systems defined by graph
grammars.

[bookmark: uid17] Abstract interpretation and data handling

Most problems in test generation or controller synthesis reduce to
state reachability and state coreachability problems which can be
solved by fixpoint computations of the form x = F(x), x[image: $ \in$]C where
C is a lattice. In the case of reachability analysis, if we denote
by S the state space of the considered program, C is the lattice
[image: $ \wp$](S) of sets of states, ordered by inclusion, and F is roughly
the “successor states” function defined by the program.

The big change induced by taking into account the data and not only
the (finite) control of the systems under study is that the fixpoints
become uncomputable. The undecidability is overcome by resorting to
approximations, using the theoretical framework of Abstract
Interpretation [24] . The fundamental principles of
Abstract Interpretation are:

	[bookmark: uid18] to substitute to the concrete domain C a simpler
abstract domain A (static approximation) and to transpose
the fixpoint equation into the abstract domain, so that one has to
solve an equation y = G(y), y[image: $ \in$]A;

	[bookmark: uid19] to use a widening operator (dynamic approximation) to
make the iterative computation of the least fixpoint of G converge
after a finite number of steps to some upper-approximation (more
precisely, a post-fixpoint).

Approximations are conservative so that the obtained result is an
upper-approximation of the exact result.
In simple cases the state space that should be
abstracted has a simple structure, but this may be more complicated
when variables belong to different data types (Booleans, numerics,
arrays) and when it is necessary to establish relations between
the values of different types.

[bookmark: uid20] Model-checking quantitative systems

Model-checking techniques for finite-state systems are now quite
developed, and a current challenge is to adapt them as much as
possible to infinite-state systems. We detail below two types of
models we are interested in: timed automata and infinite-state
probabilistic systems.

Model-checking timed automata The model of timed automata,
introduced by Alur and Dill in the 90's [22] is commonly
used to represent real-time systems. Timed automata consist of an
extension of finite automata with continuous variables, called clocks,
that evolve synchronously with time, and can be tested and reset along
an execution. Despite their uncountable state space, checking
reachability, and more generally ω-regular properties, is
decidable via the construction of a finite abstraction, the
so-called region automaton. The recent developments in model-checking
timed automata have aimed at modelling and verifying quantitative
aspects encompassing timing constraints, for example costs,
probabilities, frequencies. These quantitative questions demand
advanced techniques that go far beyond the classical methods.

Model-checking infinite state probabilistic systems
Model-checking techniques for finite state probabilistic systems are
now quite developed. Given a finite state Markov chain, for example,
one can check whether some property holds almost surely (i.e. the set
of executions violating the property is negligible), and one can even
compute (or at leat approximate as close as wanted) the probability
that some property holds. In general, these techniques cannot be
adapted to infinite state probabilistic systems, just as
model-checking algorithms for finite state systems do not carry over
to infinite state systems. For systems exhibiting complex data
structures (such as unbounded queues, continuous clocks) and
uncertainty modeled by probabilities, it can thus be hard to design
model-checking algorithms. However, in some cases, especially when
considering qualitative verification, symbolic methods can lead to
exact results. Qualitative questions aim neither at computing nore at
approximating a probability, but are only concerned with almost-sure
or non neglectible behaviours (that is events of probability either
one or non zero). In some cases, qualitative model-checking can be
derived from a combination of techniques for infinite state systems
(such as abstractions) with methods for finite state probabilistic
systems. However, when one is interested in computing (or rather
approximating) precise probability values (neither 0 nor 1), exact
methods are scarce. To deal with these questions, we either try to
restrict to classes of systems where exact computations can be made,
or look for approximation algorithms.

[bookmark: uid21] Analysis of infinite state systems defined by graph grammars

Currently, many techniques (reachability, model checking, ...) from
finite state systems have been generalised to pushdown systems, that
can be modeled by graph grammars. Several such extensions heavily
depend on the actual definition of the pushdown automata, for example,
how many top stack symbols may be read, or whether the existence of
ε-transitions (silent transitions) is allowed. Many of
these restrictions do not affect the actual structure of the graph,
and interesting properties like reachability or satisfiability (of a
formula) only depend on the structure of a graph.

Deterministic graph grammars enable us to focus on structural
properties of systems. The connection with finite graph algorithms is
often straightforward: for example reachability is obtained by
iterating the finite graph algorithm iterated on the right hand sides
of the rules. On the other hand, extending these grammars with time
or probabilities is not straightforward: qualitative values associated
to different copies (in the graph) of the same vertex (in the grammar)
may differ, introducing complex equations. Furthermore, the fact that
the left-hand sides of rules are single hyperarcs is a strong
restriction. But removing this restriction would lead to non-recursive
graphs. Identifying decidable families of graphs defined by contextual
graph grammars is also very challenging.

[bookmark: uid22] Section:
 Scientific Foundations
Automatic test generation

We are mainly interested in conformance testing, which consists in
checking whether a black box implementation under test (the real
system that is only known by its interface) behaves correctly with
respect to its specification (the reference which specifies the
intended behavior of the system). In the line of model-based testing,
we use formal specifications and their underlying models to
unambiguously define the intended behavior of the system, to formally
define conformance and to design test case generation algorithms. The
difficult problems are to generate test cases that correctly identify
faults (the oracle problem) and, as exhaustiveness is impossible to
reach in practice, to select an adequate subset of test cases that are
likely to detect faults. Hereafter we detail some elements of the
models, theories and
algorithms we use.

We use IOLTS (or IOSTS) as formal models for specifications,
implementations, test purposes, and test cases. We adapt a well
established theory of conformance testing [30] , which
formally defines conformance as a relation between formal models of
specifications and implementations. This conformance relation, called
ioco compares the visible behaviors (called suspension
traces) of the implementation I (denoted by STraces(I)) with
those of the specification S (STraces(S)). Suspension traces are
sequence of inputs, outputs or quiescence (absence of action denoted
by δ), thus abstracting away internal behaviors that cannot be
observed by testers. Intuitively, I ioco S if after a
suspension trace of the specification, the implementation I can only
show outputs and quiescences of the specification S. We
re-formulated ioco as a partial inclusion of visible behaviors as
follows:

[image: Im10 ${I~ioco~S\#8660 STraces{(I)}\#8745 [STraces{(S)}.\#923 _!^\#948 \#8726 STraces{(S)}]=\#8709 .}$]

In other words, suspension traces of I which are
suspension traces of S prolongated by an output or quiescence,
should still be suspension traces of S.

Interestingly, this characterization presents conformance with respect
to S as a safety property of suspension traces of I.
The negation of this property is charaterized by a canonical tester
Can(S) which recognizes exactly [image: Im11 ${[STraces{(S)}.\#923 _!^\#948 \#8726 STraces{(S)}]}$], the set of non-conformant suspension traces.
This canonical tester also serves as a basis for test selection.

Test cases are processes executed against implementations in order to
detect non-conformance. They are also formalized by IOLTS (or IOSTS)
with special states indicating verdicts. The execution of test
cases against implementations is formalized by a parallel composition
with synchronization on common actions. A Fail verdict means
that the implementation under test (IUT) is rejected and should
correspond to non-conformance, a Pass verdict means that the IUT
exhibited a correct behavior and some specific targeted behaviour has
been observed, while an Inconclusive verdict is given to a
correct behavior that is not targeted.

Test suites (sets of test cases) are required to exhibit some properties
relating the verdict they produce to the conformance relation.
Soundness means that only non conformant
implementations should be rejected by a test suite and
exhaustiveness means that every non conformant implementation may be rejected
by the test suite. Soundness is not difficult to obtain, but
exhaustiveness is not possible in practice and one
has to select test cases.

Test selection is often based on the coverage of some criteria
(state coverage, transition coverage, etc). But test
cases are often associated with test purposes describing some
abstract behaviors targeted by a test case.
In our framework, test purposes are specified as
IOLTS (or IOSTS) associated with marked states or dedicated variables,
giving them the
status of automata or observers accepting runs
(or sequences of actions or suspension traces).
Selection of test cases amounts to selecting traces
of the canonical tester accepted by the test purpose.
The resulting test case is then both an observer of
the negation of a safety property (non-conformance wrt. S), and an
observer of a reachability property (acceptance by the test
purpose).
Selection can be reduced to a model-checking
problem where one wants to identify states (and transitions between
them) which are both reachable from the initial state and co-reachable
from the accepting states. We have proved that these algorithms
ensure soundness. Moreover the (infinite) set of all possibly
generated test cases is also exhaustive. Apart from these
theoretical results, our algorithms are designed to be as efficient
as possible in order to be able to scale up to real applications.

Our first test generation algorithms are based on enumerative
techniques, thus adapted to IOLTS models, and optimized to fight the
state-space explosion problem. On-the-fly algorithms where designed
and implemented in the TGV tool, which consist in computing co-reachable states from a target state
during a lazy exploration of the set of reachable states in a product
of the specification and the test purpose [25] .
However, this enumerative technique suffers from some limitations
when specification models contain data.

More recently, we have explored symbolic test generation techniques
for IOSTS specifications [29] . The objective is to avoid
the state space explosion problem induced by the enumeration of
values of variables and communication parameters. The idea consists
in computing a test case under the form of an IOSTS, i.e., a
reactive program in which the operations on data are kept in a
symbolic form. Test selection is still based on test purposes (also
described as IOSTS) and involves syntactical transformations of IOSTS
models that should ensure properties of their IOLTS semantics.
However, most of the operations involved in test generation
(determinisation, reachability, and coreachability) become
undecidable. For determinisation we employ heuristics that allow us
to solve the so-called bounded observable non-determinism (i.e., the
result of an internal choice can be detected after finitely many
observable actions). The product is defined syntactically. Finally
test selection is performed as a syntactical transformation of
transitions which is based on a semantical reachability and
co-reachability analysis. As both problems are undecidable for
IOSTS, syntactical transformations are guided by over-approximations
using abstract interpretation techniques. Nevertheless, these
over-approximations still ensure soundness of test
cases [26] . These techniques are implemented in
the STG tool (see
	5.1), with an interface with NBAC
used for abstract interpretation.

[bookmark: uid23] Section:
 Scientific Foundations
Control synthesis

The supervisory control problem is concerned with ensuring
(not only checking) that a computer-operated system works correctly.
More precisely, given a system model and a required property, the
problem is to control the model's behavior, by coupling it to a
supervisor, such that the controlled system satisfies the
property [28] . The models used are LTSs and the
associated languages, where one makes a distinction between controllable and non-controllable actions and between observable and non-observable actions. Typically, the
controlled system is constrained by the supervisor, which can block
on the system's controllable actions in order to force it to behave
as specified by the property. The control synthesis problem can be
seen as a constructive verification problem: building a supervisor
that prevents the system from violating a property. Several kinds
of properties can be enforced such as reachability, invariance (i.e.
safety), attractivity, etc. Techniques adapted from model checking
are used to compute the supervisor. Optimality must be taken into
account as one often wants to obtain a supervisor
that constrains the system as few as possible.

Supervisory control theory overview. Supervisory control
theory deals with control of Discrete Event Systems. In this theory,
the behavior of the system S is assumed not to be fully
satisfactory. Hence, it has to be reduced by means of a feedback
control (named Supervisor or Controller) in order to achieve a given
set of requirements [28] . Namely, if S denotes the
model of the system and Φ a safety property to be enforced on
S, the problem consists of computing a supervisor [image: Im12 $\#119966 $] such
that

[bookmark: uid24] 	[image: Im13 $\mtable{...}$]	(1)

where [image: Im14 $\#8741 $] is the classical parallel composition of LTSs.
Given S, some events of S are said to be uncontrollable
(Σuc), i.e., the occurrence of these events cannot be
prevented by a supervisor, while the others are controllable
(Σc). It means that all the supervisors satisfying
(1) are not good candidates. The behavior of the controlled
system must respect an additional condition that happens to be similar
to the ioco conformance relation previously defined
in
	3.3 . This condition is called the controllability condition and it may be stated as

[bookmark: uid25] 	[image: Im15 $\mtable{...}$]	(2)

Namely, when acting on S, a supervisor is not allowed to disable
uncontrollable events. Given a safety property Φ, that can be
modeled by an LTS AΦ, there actually exist many different
supervisors satisyfing both (1) and (2). Among all
the valid supervisors, we are interested in computing the supremal
one, ie the one that restricts the system as few as possible. It has
been shown in [28] that such a supervisor always
exists and is unique. It gives access to a behavior of the controlled
system that is called the supremal controllable sub-language of
AΦ w.r.t. S and Σuc. In some situations, it may
also be interesting to force the controlled system to be non-blocking
(See [28] for details).

The underlying techniques are similar to the ones used for Automatic
Test Generation. They consist of computing the product of the system
model and AΦ and to remove the states of the product that may
lead to subsequent states violating the property by triggering only
uncontrollable events.

 Application Domains

 	Application Domains	[bookmark: uid27]Overview
	[bookmark: uid28]Telecommunication systems
	[bookmark: uid29]Software embedded systems
	[bookmark: uid30]Control-command systems

 [bookmark: uid27] Section:
 Application Domains
Overview

The methods and tools developed by the VerTeCs project-team for
test generation and control synthesis of reactive systems are intended
to be as generic as possible. This allows us to apply them in many
application domains where the presence of software is predominant and
its correctness is essential. In particular, we apply our research in
the context of telecommunication systems, for embedded systems, for
smart-cards application, and control-command systems.

[bookmark: uid28] Section:
 Application Domains
Telecommunication systems

Our research on test generation was initially proposed for
conformance testing of telecommunication protocols. In this domain,
testing is a normalized process [21] , and formal
specification languages are widely used (SDL in particular). Our
test generation techniques have already proved useful in this
context, going up to industrial transfer. New standardized
component-based design methodologies such as UML and OMG's MDE
increase the need for formal techniques in order to ensure the
compositionality of components, by verification and testing. Our
techniques, by their genericity and adaptativity, have also proved
useful at different levels of these methodologies, from component
testing to system testing. The telecommunication industry now also
tries to provide more and more services to the users. These services
must be validated.

[bookmark: uid29] Section:
 Application Domains
Software embedded systems

In the context of transport, software embedded systems are
increasingly predominant. This is particularly important in
automotive systems, where software replaces electronics for power
train, chassis (e.g. engine control, steering, brakes) and cabin
(e.g. wiper, windows, air conditioning) or new services to
passengers are increasing (e.g. telematics, entertainment). Car
manufacturers have to integrate software components provided by many
different suppliers, according to specifications. One of the
problems is that testing is done late in the life cycle, when the
complete system is available. Faced with these problems, but also
with the complexity of systems, compositionality of components,
distribution, etc, car manufacturers now try to promote standardized
interfaces and component-based design methodologies. They also
develop virtual platforms which allow for testing components before
the system is complete. It is clear that software quality and trust
are one of the problems that have to be tackled in this context.
This is why we believe that our techniques (testing and control) can
be useful.

[bookmark: uid30] Section:
 Application Domains
Control-command systems

The main application domain for our techniques is control-command
systems. In general, such systems control costly machines (see,
e.g., robotic systems, flexible manufacturing systems), that are
connected to an environment (e.g., a human operator). Such systems
are often critical systems and errors occurring during their
execution may have dramatic economical or human consequences. In
this field, the controller synthesis methodology (CSM) is useful to
ensure by construction the interaction between 1) the different
components, and 2) the environment and the system itself. For the
first point, the CSM is often used as a safe scheduler, whereas for
the second one, the supervisor can be interpreted as a safe discrete
tele-operation system. Also in the context of the Vacsim ANR
project, we investigate the testing, monitoring and verification of
control-command systems.

 Software

 	Software	[bookmark: uid32]STG
	[bookmark: uid33]SIGALI

 [bookmark: uid32] Section:
 Software
STG
Participant :
 Thierry Jéron.

Stg (Symbolic Test Generation) is a prototype tool for the generation and execution of test cases
using symbolic techniques. It takes as input a specification and a
test purpose described as IOSTS, and generates a test case program
also in the form of IOSTS. Test generation in STG is based on a
syntactic product of the specification and test purpose IOSTS, an
extraction of the subgraph corresponding to the test purpose,
elimination of internal actions, determinisation, and simplification.
The simplification phase now relies on NBAC, which approximates
reachable and coreachable states using abstract interpretation. It is
used to eliminate unreachable states, and to strengthen the guards of
system inputs in order to eliminate some Inconclusive verdicts.
After a translation into C++ or Java, test cases can be executed on an
implementation in the corresponding language. Constraints on system
input parameters are solved on-the-fly (i.e. during execution) using a
constraint solver. The first version of STG was developed in C++,
using Omega as constraint solver during execution. This version has
been deposited at APP under number
IDDN.FR.001.510006.000.S.P.2004.000.10600.

A new version in OCaml has been developed in the last years. This
version is more generic and will serve as a library for symbolic
operations on IOSTS. Most functionalities of the C++ version have
been re-implemented. Also a new translation of abstract test cases
into Java executable tests has been developed, in which the constraint
solver is LuckyDraw (VERIMAG). This version has also
been deposited at APP and is available for download on the web as well
as its documentation and some examples.

Finally, in collaboration with ULB, we implemented a prototype SMACS, derived from STG, devoted to the control of
infinite systems modeled by STS.

[bookmark: uid33] Section:
 Software
SIGALI
Participant :
 Hervé Marchand.

Sigali is a model-checking tool that operates on ILTS (Implicit
Labeled Transition Systems, an equational representation of an
automaton), an intermediate model for discrete event systems. It
offers functionalities for verification of reactive systems and
discrete controller synthesis. It is developed jointly by the ESPRESSO and VerTeCs teams. The techniques used consist in
manipulating the system of equations instead of the set of solutions,
which avoids the enumeration of the state space. Each set of states
is uniquely characterized by a predicate and the operations on sets
can be equivalently performed on the associated predicates.
Therefore, a wide spectrum of properties, such as liveness,
invariance, reachability and attractivity, can be checked. Algorithms
for the computation of predicates on states are also
available [27] [23] . Sigali
is connected with the Polychrony environment (ESPRESSO
project-team) as well as the Matou environment (VERIMAG), thus
allowing the modeling of reactive systems by means of Signal
Specification or Mode Automata and the visualization of the
synthesized controller by an interactive simulation of the controlled
system. Sigali is registered at APP.

Sigali is also integrated as part of the compiler of the
language BZR .

 New Results

 	New Results	[bookmark: uid35]Verification
	[bookmark: uid41]Active and passive testing
	[bookmark: uid48]Control synthesis

 [bookmark: uid35] Section:
 New Results
Verification

[bookmark: uid36] Probabilistic ω-automata
Participant :
 Nathalie Bertrand.

Probabilistic ω-automata are a variant version of
nondeterministic automata over infinite words where all choices are
resolved by probabilistic distributions. Acceptance of a run for an
infinite input word can be defined using traditional acceptance
criteria for ω-automata, such as Büchi, Rabin or Streett
conditions. The accepted language of a probabilistic ω-automata
is then defined by imposing a constraint on the probability measure of
the accepting runs. Together with Christel Baier and Marcus Grösser
from TU Dresden, we studied a series of fundamental properties of
probabilistic ω-automata with three different
language-semantics: (1) the probable semantics that requires positive
acceptance probability, (2) the almost-sure semantics that requires
acceptance with probability 1, and (3) the threshold semantics that
relies on an additional parameter λ in]0,1[that specifies a
lower probability bound for the acceptance probability. We provided a
comparison of probabilistic ω-automata under these three
semantics and nondeterministic ω-automata concerning
expressiveness and efficiency. Furthermore, we addressed closure
properties under the Boolean operators union, intersection and
complementation and algorithmic aspects, such as checking emptiness or
language containment. This work was published in Journal of the
ACM [6] .

[bookmark: uid37] Petri nets reachability graphs
Participant :
 Christophe Morvan.

In the article [10] , we investigate the
decidability and complexity status of model-checking problems on
unlabelled reachability graphs of Petri nets by considering
first-order and modal languages without labels on transitions or
atomic propositions on markings. We consider several parameters to
separate decidable problems from undecidable ones. Not only are we
able to provide precise borders and a systematic analysis, but we also
demonstrate the robustness of our proof techniques.

[bookmark: uid38] Frequencies in timed automata
Participant :
 Amélie Stainer.

A quantitative semantics for infinite timed words in timed automata
based on the frequency of a run was introduced earlier by Bertrand,
Bouyer, Brihaye and Stainer. Unfortunately, most of the results are
obtained only for one-clock timed automata because the techniques do
not allow to deal with some phenomenon of convergence between
clocks. On the other hand, the notion of forgetful cycle was
introduced by Basset and Asarin, in the context of entropy of timed
languages, and seems to detect exactly these convergences. In
[20] , we investigate how the notion of
forgetfulness can help to extend the computation of the set of
frequencies to n-clock timed automata.

[bookmark: uid39] Bounded satisfiability for PCTL
Participant :
 Nathalie Bertrand.

While model checking PCTL for Markov chains is decidable in
polynomial-time, the decidability of PCTL satisfiability, as well as
its finite model property, are long standing open problems. While
general satisfiability is an intriguing challenge from a purely
theoretical point of view, we argue that general solutions would not
be of interest to practitioners: such solutions could be too big to be
implementable or even infinite. Inspired by bounded synthesis
techniques, we turn to the more applied problem of seeking models of a
bounded size: we restrict our search to implementable – and therefore
reasonably simple – models. In [14] and
together with John Fearnley and Sven Schewe from University of
Liverpool, we propose a procedure to decide whether or not a given
PCTL formula has an implementable model by reducing it to an SMT
problem. We have implemented our techniques and found that they can be
applied to the practical problem of sanity checking – a procedure
that allows a system designer to check whether their formula has an
unexpectedly small model.

[bookmark: uid40] Graph transformation systems
Participant :
 Nathalie Bertrand.

In [13] , we study decidability issues for
reachability problems in graph transformation systems, a powerful
infinite-state model. For a fixed initial configuration, we consider
reachability of an entirely specified configuration and of a
configuration that satisfies a given pattern (coverability). The
former is a fundamental problem for any computational model, the
latter is strictly related to verification of safety properties in
which the pattern specifies an infinite set of bad configurations. In
this paper we reformulate results obtained, e.g., for context-free
graph grammars and concurrency models, such as Petri nets, in the more
general setting of graph transformation systems and study new results
for classes of models obtained by adding constraints on the form of
reduction rules.

[bookmark: uid41] Section:
 New Results
Active and passive testing

[bookmark: uid42] More testable properties
Participants :
 Thierry Jéron, Hervé Marchand.

Testing remains a widely used validation technique for software
systems. However, recent needs in software development (e.g., in terms
of security concerns) may require to extend this technique to address
a larger set of properties. In [11] , we explore
the set of testable properties within the Safety-Progress
classification where testability means to establish by testing that a
relation, between the tested system and the property under scrutiny,
holds. We characterize testable properties w.r.t. several relations of
interest. For each relation, we give a sufficient condition for a
property to be testable. Then, we study and delineate a fine-grain
characterization of testable properties: for each Safety-Progress
class, we identify the subset of testable properties and their
corresponding test oracle. Furthermore, we address automatic test
generation for the proposed framework by providing a general synthesis
technique that allows to obtain canonical testers for the testable
properties in the Safety-Progress classification. Moreover, we show
how the usual notion of quiescence can be taken into account in our
general framework, and, how quiescence improves the testability
results. Then, we list some existing testing approaches that could
benefit from this work by addressing a wider set of
properties. Finally, we propose Java-PT, a prototype Java toolbox that
implements the results introduced in this article.

[bookmark: uid43] Runtime enforcement of timed properties
Participants :
 Thierry Jéron, Hervé Marchand, Srinivas Pinisetty.

Runtime enforcement is a powerful technique to ensure that a running
system respects some desired properties. Using an enforcement monitor,
an (untrusted) input execution (in the form of a sequence of events)
is modified into an output sequence that complies to a
property. Runtime enforcement has been extensively studied over the
last decade in the context of untimed properties. The
paper [19] , introduces runtime enforcement of
timed properties. We revisit the foundations of runtime enforcement
when time between events matters. We show how runtime enforcers can be
synthesized for any safety or co-safety timed property. Proposed
runtime enforcers are time retardant: to produce an output sequence,
additional delays are introduced between the events of the input
sequence to correct it. Runtime enforcers have been prototyped and our
simulation experiments validate their effectiveness.

[bookmark: uid44] Test generation for tiles systems
Participants :
 Sébastien Chédor, Thierry Jéron, Christophe Morvan.

In [17] we explore test generation for Recursive
Tile Systems (RTS) in the framework of the classical ioco testing
theory. The RTS model allows the description of reactive systems with
recursion, and is very similar to other models like Pushdown Automata,
Hyperedge Replacement Grammars or Recursive State Machines. We first
present an off-line test generation algorithm for Weighted RTS, a
determinizable sub-class of RTS, and second, an on-line test
generation algorithm for the full RTS model. Both algorithms use test
purposes to guide test selection through targeted behaviours.

[bookmark: uid45] Partially observed recursive tiles systems
Participants :
 Sébastien Chédor, Hervé Marchand, Christophe Morvan.

The analysis of discrete event systems under partial observation is an
important topic, with major applications such as the detection of
information flow and the diagnosis of faulty
behaviors. In [18] we consider recursive tile
systems, which are infinite systems generated by a finite collection
of finite tiles, a simplified variant of deterministic graph
grammars. Recursive tile systems are expressive enough to capture
classical models of recursive systems, such as the pushdown systems
and the recursive state machines. They are infinite-state in general
and therefore standard powerset constructions for monitoring do not
always apply. We exhibit computable conditions on recursive tile
systems and present non-trivial constructions that yield effective
computation of the monitors. We apply these results to the classic
problems of opacity and diagnosability.

[bookmark: uid46] Off-line test selection with test purposes for non-deterministic timed automata
Participants :
 Nathalie Bertrand, Thierry Jéron, Amélie Stainer.

The LMCS article [7] proposes novel off-line
test generation techniques from non-deterministic timed automata with
inputs and outputs (TAIOs) in the formal framework of the tioco
conformance theory. In this context, a first problem is the
determinization of TAIOs, which is necessary to foresee next enabled
actions after an observable trace, but is in general impossible
because not all timed automata are determinizable. This problem is
solved thanks to an approximate determinization using a game
approach. The algorithm performs an io-abstraction which preserves the
tioco conformance relation and thus guarantees the soundness of
generated test cases. A second problem is the selection of test cases
from a TAIO specification. The selection here relies on a precise
description of timed behaviors to be tested which is carried out by
expressive test purposes modeled by a generalization of
TAIOs. Finally, an algorithm is described which generates test cases
in the form of TAIOs equipped with verdicts, using a symbolic
co-reachability analysis guided by the test purpose. Properties of
test cases are then analyzed with respect to the precision of the
approximate determinization: when determinization is exact, which is
the case on known determinizable classes, in addition to soundness,
properties characterizing the adequacy of test cases verdicts are also
guaranteed.

[bookmark: uid47] Monitor-based statistical model checking of timed systems
Participant :
 Amélie Stainer.

In [16] , we present a novel approach and
implementation for analysing weighted timed automata (WTA) with
respect to the weighted metric temporal logic (WMTL[image: Im16 ${}_\#8804 $]). Based on
a stochastic semantics of WTAs, we apply statistical model checking
(SMC) to estimate and test probabilities of satisfaction with desired
levels of confidence. Our approach consists in the generation of
deterministic monitors for formulas in WMTL[image: Im16 ${}_\#8804 $], allowing for
efficient SMC by run-time evaluation of a given formula. By necessity,
the deterministic observers are in general approximate (over- or
under-approximations), but are most often exact and experimentally
tight. The technique is implemented in the new tool Casaal. that
we seamlessly connect to Uppaal-smc. in a tool chain. We demonstrate
the applicability of our technique and the efficiency of our
implementation through a number of case-studies.

[bookmark: uid48] Section:
 New Results
Control synthesis

[bookmark: uid49] Synthesis of opaque systems
Participant :
 Hervé Marchand.

Opacity is a security property formalizing the absence of (secret)
information leakage. We address the problem of synthesizing opaque
systems. A secret predicate S over the runs of a system G is opaque to
an external user having partial observability over G, if he can never
infer from the observation of a run of G that the run belongs to S. We
choose to control the observability of events by adding a device,
called a mask, between the system G and the users. We first
investigate the case of static partial observability where the set of
events the user can observe is fixed once and for all by a static
mask. In this context, we show that checking whether a system is
opaque is PSPACE-complete, which implies that computing an optimal
static mask ensuring opacity is also a PSPACE-complete problem. Next,
we introduce dynamic partial observability where the set of events the
user can observe changes over time and is determined by a dynamic
mask. We show how to check that a system is opaque w.r.t. to a dynamic
mask and also address the corresponding synthesis problem: given a
system G and secret states S, compute the set of dynamic masks under
which S is opaque. Our main result is that the set of such masks can
be finitely represented and can be computed in EXPTIME and that this
is a lower bound. We also address the problem of computing an optimal
mask. This work was published in FMSD [9] .

[bookmark: uid50] Symbolic Supervisory Control of Infinite Transition Systems under Partial Observation using Abstract Interpretation
Participant :
 Hervé Marchand.

In the DEDS article [12] , we propose
algorithms for the synthesis of state-feedback controllers with
partial observation of infinite state discrete event systems modelled
by Symbolic Transition Systems. We provide models of safe memoryless
controllers both for potentially deadlocking and for deadlock free
controlled systems. The termination of the algorithms solving these
problems is ensured using abstract interpretation techniques which
provide an overapproximation of the transitions to disable. We then
extend our algorithms to controllers with memory and to online
controllers. We also propose improvements in the synthesis of
controllers in the finite case which, to our knowledge, provide more
permissive solutions than previously proposed in the literature. Our
tool SMACS gives an empirical validation of our methods by
showing their feasibility, usability and efficiency.

[bookmark: uid51] Playing optimally on timed automata with random delays
Participant :
 Nathalie Bertrand.

In [15] , we marry continuous time Markov
decision processes (CTMDPs) with stochastic timed automata into a
model with joint expressive power. This extension is very natural, as
the two original models already share exponentially distributed
sojourn times in locations. It enriches CTMDPs with timing
constraints, or symmetrically, stochastic timed automata with one
conscious player. Our model maintains the existence of optimal control
known for CTMDPs. This also holds for a richer model with two players,
which extends continuous time Markov games. But we have to sacrifice
the existence of simple schedulers: polyhedral regions are
insufficient to obtain optimal control even in the single-player case.

 Dissemination

 	Dissemination	[bookmark: uid73]Scientific Animation
	[bookmark: uid77]Teaching - Supervision - Juries
	[bookmark: uid92]Popularization

 [bookmark: uid73] Section:
 Dissemination
Scientific Animation

	Nathalie Bertrand

	[bookmark: uid74] was PC member of QAPL'12, QEST'12,
Infinity'12 and SYNT'12. She is since september 2012 a Steering
Committee member of QEST. She was invited to give a talk at the
research seminar of the Quantitative Logics and Automata (QuantLA)
Doctoral School in Dresden, in December 2012. She is also a member
of the panel for the
Gilles
Kahn prize awarded each year to an excellent PhD thesis in
computer science.

	Thierry Jéron

	[bookmark: uid75] is Vice President of the Project Committee
of Inria Rennes - Bretagne Atlantique. He is member of the IFIP
Working Group 10.2 on Embedded Systems. He is a member of the
Steering Committe of the School MOVEP (held in Marseille in December
2012), and PC member of ICFEM 2012, ICST 2012, ICTSS 2012, RV 2013,
TAP 2012 and 2013. He gave a lecture at the Summer School TAROT
2012. He co-organizes the Dagstuhl Seminar 13021 on "Symbolic
Methods in Testing" in January 2013.

	Hervé Marchand

	[bookmark: uid76] is Associate Editor of the IEEE
Transactions on Automatic Control since 2009 and member of the IFAC
Technical Committees (TC 1.3 on Discrete Event and Hybrid Systems)
since 2005. He is member of the steering committee of MSR
(Modélisation de systèmes réactifs). He was PC member of
WODES'12, ICINCO'12. He is organizer of MSR 2013 in Rennes.

[bookmark: uid77] Section:
 Dissemination
Teaching - Supervision - Juries

[bookmark: uid78] Teaching

Nathalie Bertrand

	[bookmark: uid79] Master : Techniques de vérification avancées, 10h, niveau M2, ISTIC, Université de Rennes 1.

	[bookmark: uid80] Agrégation : Langages formels, 16h, niveau M2, ENS-Cachan-Antenne de Bretagne.

Sébastien Chédor

	[bookmark: uid81] Licence : Programmation Java, 20h, niveau L2, ISTIC, Université de Rennes 1.

[bookmark: uid81] APF, 20h, niveau L1, ISTIC, Université de Rennes 1.

[bookmark: uid81] Initiation LaTeX, 6h,
niveau L3, ENS-Cachan-Antenne de Bretagne.

[bookmark: uid81] Programmation, 20h,
niveau L3, ENS-Cachan-Antenne de Bretagne.

Paulin Fournier

	[bookmark: uid82] Licence : Scheme (TP), 20h, niveau L1, INSA-Rennes.

Christophe Morvan

	[bookmark: uid83] Licence : Object Oriented programming with Java, 120h, niveau L2, Université de Marne-la-Vallée.

[bookmark: uid83] Systèmes d'exploitation (Cours), 36h, niveau L3, Université de Marne-la-Vallée.

[bookmark: uid83] Compilation (Cours-TD), 60h, niveau L3, Université de Marne-la-Vallée.

Amélie Stainer

	[bookmark: uid84] Licence : Base de données (Cours-TD-TP), 28h, niveau L2, INSA-Rennes.

	[bookmark: uid85] Agrégation : Modélisation (Cours), 11h, niveau M2, ENS-Cachan-Antenne de Bretagne.

[bookmark: uid85] Oraux blancs, 12h, niveau M2, ENS-Cachan-Antenne de Bretagne.

[bookmark: uid85] Préparation de leçons d'informatique, 10h,
niveau M2, ENS-Cachan-Antenne de Bretagne.

[bookmark: uid86] Supervision

	[bookmark: uid87] PhD in progress: Sébastien Chédor, Verification and test of
systems modeled by regular graphs, started in September 2009,
supervised by Christophe Morvan and Thierry Jéron.

	[bookmark: uid88] PhD in progress: Paulin Fournier, Parameterized Verification of
probabilistic systems, started in September 2012,
supervised by Nathalie Bertrand and Thierry Jéron.

	[bookmark: uid89] PhD in progress: Srinivas Pinisetty, Runtime validation of
critical control-command systems, started in December 2011,
supervised by Hervé Marchand and Thierry Jéron.

	[bookmark: uid90] PhD in progress: Amélie Stainer, Quantitative verification of
timed automata, started in October 2010, supervised by Nathalie
Bertrand and Thierry Jéron.

[bookmark: uid91] Juries

Nathalie Bertrand was a member of the PhD defense jury of Youssouf
Oualhadj (LaBRI, Bordeaux) in december 2012.

[bookmark: uid92] Section:
 Dissemination
Popularization

Christophe Morvan has been involved in the organization of a public
talk on Turing (celebrating the centenary of his birth) by Jean
Lassègue. See the webpage .

 Bibliography
[bookmark: Major]Major publications by the team in recent years
	[1][bookmark: vertecs-2012-bid25]
	C. Baier, N. Bertrand, M. Groesser.
Probabilistic omega-automata, in: Journal of the Association for Computing Machinery, 2012, vol. 59, no 1, p. 1:1-1:52. [
DOI : 10.1145/2108242.2108243]
http://hal.inria.fr/hal-00743907

 	[2][bookmark: vertecs-2012-bid29]
	N. Bertrand, T. Jéron, A. Stainer, M. Krichen.
Off-line Test Selection with Test Purposes for Non-Deterministic Timed Automata, in: Logical Methods in Computer Science, October 2012, vol. 8, no 4:8, p. 1-33.
http://hal.inria.fr/hal-00744074

 	[3][bookmark: vertecs-2012-bid27]
	C. Constant, T. Jéron, H. Marchand, V. Rusu.
Integrating formal verification and conformance testing for reactive systems, in: IEEE Transactions on Software Engineering, August 2007, vol. 33, no 8, p. 558-574.

 	[4][bookmark: vertecs-2012-bid28]
	J. Dubreil, P. Darondeau, H. Marchand.
Supervisory Control for Opacity, in: IEEE Transactions on Automatic Control, May 2010, vol. 55, no 5, p. 1089-1100. [
DOI : 10.1109/TAC.2010.2042008]
http://hal.inria.fr/inria-00483891

 	[5][bookmark: vertecs-2012-bid26]
	B. Gaudin, H. Marchand.
An Efficient Modular Method for the Control of Concurrent Discrete Event Systems: A Language-Based Approach, in: Discrete Event Dynamic System, 2007, vol. 17, no 2, p. 179-209.

[bookmark: year]Publications of the year
Articles in International Peer-Reviewed Journal
	[6][bookmark: vertecs-2012-bid0]
	C. Baier, N. Bertrand, M. Groesser.
Probabilistic omega-automata, in: Journal of the Association for Computing Machinery, 2012, vol. 59, no 1, 1:52 p. [
DOI : 10.1145/2108242.2108243]
http://hal.inria.fr/hal-00743907

 	[7][bookmark: vertecs-2012-bid19]
	N. Bertrand, T. Jéron, A. Stainer, M. Krichen.
Off-line Test Selection with Test Purposes for Non-Deterministic Timed Automata, in: Logical Methods in Computer Science, October 2012, vol. 8, no 4:8, p. 1-33.
http://hal.inria.fr/hal-00744074

 	[8][bookmark: vertecs-2012-bid24]
	N. Bertrand, A. Legay, S. Pinchinat, J.-B. Raclet.
Modal event-clock specifications for timed component-based design, in: Science of Computer Programming, 2012, no 77, p. 1212-1234. [
DOI : 10.1016/j.scico.2011.01.007]
http://hal.inria.fr/hal-00752449

 	[9][bookmark: vertecs-2012-bid21]
	F. Cassez, J. Dubreil, H. Marchand.
Synthesis of opaque systems with static and dynamic masks, in: Formal Methods in System Design, 2012, vol. 40, no 1, p. 88-115. [
DOI : 10.1007/s10703-012-0141-9]
http://hal.inria.fr/hal-00662539

 	[10][bookmark: vertecs-2012-bid11]
	P. Darondeau, S. Demri, R. Meyer, C. Morvan.
Petri Net Reachability Graphs: Decidability Status of First Order Properties, in: Logical Methods in Computer Science, October 2012, vol. 8, no 4:9, p. 1-28. [
DOI : 10.2168/LMCS-8(4:9)2012]
http://hal.inria.fr/hal-00743935

 	[11][bookmark: vertecs-2012-bid15]
	Y. Falcone, J.-C. Fernandez, T. Jéron, H. Marchand, L. Mounier.
More testable properties, in: International Journal on Software Tools for Technology Transfer, 2012, vol. 14, no 4, p. 407-437. [
DOI : 10.1007/s10009-011-0220-z]
http://hal.inria.fr/hal-00743981

 	[12][bookmark: vertecs-2012-bid22]
	G. Kalyon, T. Le Gall, H. Marchand, T. Massart.
Symbolic Supervisory Control of Infinite Transition Systems under Partial Observation using Abstract Interpretation, in: Discrete Event Dynamic Systems, 2012, vol. 22, no 2, p. 121-161. [
DOI : 10.1007/s10626-011-0101-3]
http://hal.inria.fr/inria-00586169

International Peer-Reviewed Conference/Proceedings
	[13][bookmark: vertecs-2012-bid14]
	N. Bertrand, G. Delzanno, B. König, A. Sangnier, J. Stückrath.
On the Decidability Status of Reachability and Coverability in Graph Transformation Systems, in: RTA - 23rd International Conference on Rewriting Techniques and Applications - 2012, Nagoya, Japan, LIPIcs, 2012, vol. 15, p. 101-116. [
DOI : 10.4230/LIPIcs.RTA.2012.101]
http://hal.inria.fr/hal-00752446

 	[14][bookmark: vertecs-2012-bid13]
	N. Bertrand, J. Fearnley, S. Schewe.
Bounded Satisfiability for PCTL, in: CSL - 21st EACSL Annual Conferences on Computer Science Logic - 2012, Fontainebleau, France, 2012, vol. 16, p. 92-106. [
DOI : 10.4230/LIPIcs.CSL.2012.92]
http://hal.inria.fr/hal-00752445

 	[15][bookmark: vertecs-2012-bid23]
	N. Bertrand, S. Schewe.
Playing Optimally on Timed Automata with Random Delays, in: Formats - 10th International Conference on Formal Modeling and Analysis of Timed Systems - 2012, London, United Kingdom, Lecture Notes in Computer Science, September 2012, vol. 7595, p. 43-58. [
DOI : 10.1007/978-3-642-33365-1_5]
http://hal.inria.fr/hal-00752440

 	[16][bookmark: vertecs-2012-bid20]
	P. Bulychev, A. David, K. G. Larsen, A. Legay, G. Li, D. Bogsten Poulsen, A. Stainer.
Monitor-Based Statistical Model Checking for Weighted Metric Temporal Logic, in: Logic for Programming, Artificial Intelligence, and Reasoning, Merida, Venezuela, A. V. Nikolaj Bjørner (editor), Lecture Notes in Computer Science, Springer, 2012, vol. 7180, p. 168-182.
http://hal.inria.fr/hal-00744100

 	[17][bookmark: vertecs-2012-bid17]
	S. Chédor, T. Jéron, C. Morvan.
Test generation from recursive tiles systems, in: TAP - 6th International Conference on Tests & Proofs - 2012, Prague, Czech Republic, A. D. Brucker, J. Julliand (editors), LNCS, Springer, May 2012, vol. 7305, p. 99-114.
http://hal.inria.fr/hal-00743941

 	[18][bookmark: vertecs-2012-bid18]
	S. Chédor, C. Morvan, S. Pinchinat, H. Marchand.
Analysis of partially observed recursive tile systems, in: 11th Int. Workshop on Discrete Event Systems, Guadalajara, Mexico, October 2012, p. 265-271.
http://hal.inria.fr/hal-00743196

 	[19][bookmark: vertecs-2012-bid16]
	S. Pinisetty, Y. Falcone, T. Jéron, H. Marchand, A. Rollet, O. L. Nguena Timo.
Runtime Enforcement of Timed Properties, in: 3rd International Conference on Runtime Verification, Istanbul, Turkey, October 2012.
http://hal.inria.fr/hal-00743270

 	[20][bookmark: vertecs-2012-bid12]
	A. Stainer.
Frequencies in Forgetful Timed Automata, in: Formal Modeling and Analysis of Timed Systems, London, United Kingdom, M. Jurdzinski, D. Nickovic (editors), Lecture notes in computer science, Springer, September 2012, vol. 7595, p. 236-251.
http://hal.inria.fr/hal-00744081

[bookmark: References]References in notes
	[21][bookmark: vertecs-2012-bid8]
	Information Technology - Open Systems Interconnection Conformance Testing Methodology and Framework - Part 1 : General Concept - Part 2 : Abstract Test Suite Specification - Part 3 : The Tree and Tabular Combined Notation (TTCN), 1992, no International Standard ISO/IEC 9646-1/2/3.

 	[22][bookmark: vertecs-2012-bid1]
	R. Alur, D. L. Dill.
A Theory of Timed Automata, in: Theor. Comput. Sci., 1994, vol. 126, no 2, p. 183-235.

 	[23][bookmark: vertecs-2012-bid10]
	L. Besnard, H. Marchand, É. Rutten.
The Sigali Tool Box Environment, in: Workshop on Discrete Event Systems, WODES'06 (Tool Paper), Ann-Arbor (MI, USA), July 2006, p. 465-466.

 	[24][bookmark: vertecs-2012-bid2]
	P. Cousot, R. Cousot.
Abstract intrepretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints, in: Conference Record of the 4th ACM Symposium on Principles of Programming Languages, Los Angeles (CA, USA), January 1977, p. 238-252.

 	[25][bookmark: vertecs-2012-bid4]
	C. Jard, T. Jéron.
TGV: theory, principles and algorithms, A tool for the automatic synthesis of conformance test cases for non-deterministic reactive systems, in: Software Tools for Technology Transfer (STTT), October 2004, vol. 6.

 	[26][bookmark: vertecs-2012-bid6]
	B. Jeannet, T. Jéron, V. Rusu, E. Zinovieva.
Symbolic Test Selection based on Approximate Analysis, in: 11th Int. Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'05), Volume 3440 of LNCS, Edinburgh (Scottland), April 2005, p. 349-364.
http://www.irisa.fr/vertecs/Publis/Ps/tacas05.pdf

 	[27][bookmark: vertecs-2012-bid9]
	H. Marchand, P. Bournai, M. Le Borgne, P. Le Guernic.
Synthesis of Discrete-Event Controllers based on the Signal Environment, in: Discrete Event Dynamic System : Theory and Applications, Octobre 2000, vol. 10, no 4, p. 347-368.
http://www.irisa.fr/vertecs/Publis/Ps/2000-J-DEDS.pdf

 	[28][bookmark: vertecs-2012-bid7]
	P. J. Ramadge, W. M. Wonham.
The Control of Discrete Event Systems, in: Proceedings of the IEEE; Special issue on Dynamics of Discrete Event Systems, 1989, vol. 77, no 1, p. 81-98.

 	[29][bookmark: vertecs-2012-bid5]
	V. Rusu, L. du Bousquet, T. Jéron.
An approach to symbolic test generation, in: International Conference on Integrating Formal Methods (IFM'00), Lecture Notes in Computer Science, 2000, vol. 1945, p. 338-357.

 	[30][bookmark: vertecs-2012-bid3]
	J. Tretmans.
Test Generation with Inputs, Outputs and Repetitive Quiescence, in: Software - Concepts and Tools, 1996, vol. 17, no 3, p. 103-120.

OEBPS/IMG/math_image_12.png

OEBPS/IMG/math_image_7.png

OEBPS/IMG/math_image_6.png

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/IMG/math_image_3.png

OEBPS/IMG/math_image_2.png

OEBPS/uid69.xhtml
[bookmark: uid69] Section:
 Partnerships and Cooperations

International Research Visitors

[bookmark: uid70] Visits of International Scientists

Laurie Ricker, associate professor at the Mathematics & Computer
Science department of Mount Allison University (Canada) has visited
Vertecs for 6 months, from January 2012 to June 2012. We collaborate
on control of discrete event systems for distributed and decentralized
systems.

[bookmark: uid71] Visits to International Teams

Nathalie Bertrand spent 9 months at University of Liverpool, from
November 1st 2011 to July 31st 2012. Her visit was supported by the
Leverhulme Trust and the Sabbatical program of Inria, which also
permitted Paulin Fournier to spend 5 months at University of Liverpool
for his Master thesis.

OEBPS/IMG/math_image_5.png

OEBPS/IMG/math_image_4.png

OEBPS/IMG/math_image_10.png

OEBPS/IMG/math_image_14.png

OEBPS/IMG/math_image_11.png

OEBPS/IMG/math_image_13.png

OEBPS/IMG/math_image_16.png

OEBPS/IMG/math_image_1.png

OEBPS/IMG/math_image_15.png

OEBPS/uid53.xhtml
[bookmark: uid53] Section:
 Partnerships and Cooperations

National initiatives

[bookmark: uid54] ANR VACSIM: Validation of critical control-command systems by coupling simulation and formal analysis

Participants :
 Nathalie Bertrand, Thierry Jéron, Hervé Marchand.

The Vacsim project (2011-2014) is a 3-year project with EDF R&D,
Dassault Systèmes, LURPA Cachan, I3S Nice and Labri Bordeaux. The
project aims at developping both methodological and formal
contributions for the simulation and validation of control-command
systems. The role of the Vertecs team will be to contribute to the
advance of validation techniques for timed systems, including
quantitative analysis and its application to testing, monitoring of
timed systems, and verification of communicating timed automata. The
VACSIM project funds the PhD thesis of Srinivas Pinisetty.

[bookmark: uid55] ANR Ctrl-Green (Autonomic management of green data centers)

Participant :
 Hervé Marchand.

The project Ctrl-Green (2011-2014) is a 3-year project with UJF/LIG,
INPT/IRIT, Inria, EOLAS, Scalagent. This project aims at developing
techniques for the automatic optimal management of reconfigurable
systems in the context of data centers using discrete controller
synthesis methodology applied in the synchronous paradigm. The role of
the Vertecs team will be to contribute to the development of new
controller synthesis methodology for symbolic synchronous systems
handling variables and to its application to the autonomic management
of data centers.

OEBPS/uid56.xhtml
[bookmark: uid56] Section:
 Partnerships and Cooperations

European Initiatives

[bookmark: uid57] Artist design network of excellence

Participants :
 Nathalie Bertrand, Thierry Jéron, Hervé Marchand.

		[bookmark: uid58] Program: FP7

		[bookmark: uid59] Project acronym: Artist Design

		[bookmark: uid60] Project title: Artist - European Network of Excellence on Embedded System Design

		[bookmark: uid61] Duration: 01/08 - 03/12

		[bookmark: uid62] Coordinator: VERIMAG

		[bookmark: uid63] Abstract: The central objective for
ArtistDesign
is to build on existing structures and links forged in
Artist2, to become a virtual Center of Excellence in
Embedded Systems Design. This will be mainly achieved
through tight integration between the central players of the
European research community. Also, the consortium is
smaller, and integrates several new partners. These teams
have already established a long-term vision for embedded
systems in Europe, which advances the emergence of Embedded
Systems as a mature
discipline.

[bookmark: uid63] The research effort aims at integrating topics, teams, and
competencies, grouped into 4 Thematic Clusters: “Modelling
and Validation”, “Software Synthesis, Code Generation, and
Timing Analysis”, “Operating Systems and Networks”,
“Platforms and MPSoC”. “Transversal Integration”
covering both industrial
applications and design issues aims for integration between clusters.

[bookmark: uid63] The Vertecs EPI is a partner of the “Validation” activity
of the “Modeling and Validation” cluster. This year, the
Vertecs EPI has contributed to quantitative verification of
timed automata [20] , test generation
from nondeterministic timed
automata [7] , and control
sysnthesis using abstract interpretation for infinite state
systems [12] .

[bookmark: uid64] Major European Organizations with which the Team has followed Collaborations

		[bookmark: uid65] Université Libre Bruxelles (Belgium), Prof. Thierry Massart,
Testing and control of symbolic transitions systems.

		[bookmark: uid66] University of Kaiserslautern (Germany), Roland Meyer,
Petri nets.

		[bookmark: uid67] University of Dresden (Germany), Prof. Christel Baier,
Probabilistic automata over infinite words.

		[bookmark: uid68] University of Mons (Belgium), Prof. Thomas Brihaye,
Stochastic timed automata.

OEBPS/IMG/math_image_9.png

OEBPS/IMG/math_image_8.png

OEBPS/IMG/iTunesArtwork.png
Activity Report 2012
Project-Team vertecs

Verification models and
techniques applied to
testing and control of
reactive systems

