

[image: cover]

 ASCOLA

 Aspect and composition languages

 2014 Project-Team Activity Report
	

 Research centre:
 Rennes - Bretagne-Atlantique

 Field: Networks, Systems and Services, Distributed Computing
Theme: Distributed programming and Software engineering

 Keywords: Software Composition, Programming Languages, Distributed Systems, Cloud Computing, Formal Methods, Energy Consumption, Security

 Project-Team Ascola

 Members

 Overall Objectives	Presentation

 Research Program	Overview
	Software Composition
	Programming languages for advanced
modularization
	Distribution and Concurrency
	Security
	Capacity Planning for Large Scale Distributed System

 Application Domains	Enterprise Information Systems and Services
	Capacity Planning in Cluster, Grid and Cloud Computing
	Pervasive Systems

 New Software and Platforms	btrCloud (and Entropy)
	EScala and JEScala
	CSLA
	SAdapt
	SimGrid/VMPlaces

 New Results	Highlights of the Year
	Programming Languages
	Software Composition
	Cloud applications and infrastructures

 Bilateral Contracts and Grants with Industry	Cooperation with SIGMA group

 Partnerships and Cooperations	Regional Initiatives
	National Initiatives
	European Initiatives
	International Initiatives
	International Research Visitors

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries

 Bibliography

 	
 Major publications

 	
 Publications of the year

 	
 References in notes

 Creation of the Project-Team: 2009 January 01
Section: Members
Research Scientists
Adrien Lebre [Inria, Researcher; under delegation from MN]
Nicolas Tabareau [Inria, Researcher]
Faculty Members
Mario Südholt [Team leader, MN, Professor, HdR]
Pierre Cointe [MN, Professor, director of
the LINA research institute, HdR]
Rémi Douence [MN, Associate Professor]
Hervé Grall [MN, Associate Professor]
Thomas Ledoux [MN, Associate Professor]
Jean-Marc Menaud [MN, Professor, HdR]
Jacques Noyé [MN, Associate Professor, dean of the
CS department of MN]
Flavien Quesnel [MN, until July 2014]
Jean-Claude Royer [MN, Professor, HdR]
Engineer
Yousri Kouki [MN, until Sep 2014]
PhD Students
Diana Allam [Polytech Nantes, until July 2014]
Walid Benghabrit [MN]
Paul Blouët [MN, co-supervision with Prof. De Meuter, VUB, Belgium]
Ronan-Alexandre Cherrueau [MN]
Frédéric Dumont [MN, CIFRE EasyVirt]
Simon Dupont [MN, CIFRE Sigma]
Alexandre Garnier [MN]
Guilhem Jaber [ENS Rennes, until July 2014]
Sabbir Hasan [Inria, co-supervision with Prof. Pazat, Myriads
team, Inria]
Yacine Hebbal [MN, CIFRE Orange, from Oct. 2014]
Mayleen Lacouture [MN, until Oct. 2014]
Yunbo Li [Inria, co-supervision with Dr. Orgerie, Myriads
team, Inria]
Florent Marchand de Kerchove de Denterghem [MN]
Jonathan Pastor [MN]
Charles Prud’homme [MN, until Feb 2014, co-supervision with Tasc team, MN]
Kevin Quirin [MN]
Jurgen Van Ham [MN, co-supervision with Prof. Mezini, TU
Darmstadt, Germany]
Post-Doctoral Fellows
Ismael Figueroa [Inria, PhD until Apr 2014]
Hemant Kumar Mehta [Inria, until Feb 2014]
Guillaume Le Louët [MN, PhD until May 2014]
Jonathan Lejeune [MN, from Oct. 2014]
Mohamed Sellami [MN, until Aug 2014]
Administrative Assistants
Anne-Claire Binétruy [Inria, part time 33%, from Sep 2014]
Cecile Derouet [Inria, part time 33%, until Sep 2014]
Other
Gustavo Soto Ridd [Inria, Master Intership, from Aug 2014 until Nov 2014]

 Overall Objectives

 	Overall Objectives	Presentation

 Section:
 Overall Objectives

 Presentation

 The research team addresses the general problem of evolving
software by developing concepts, languages, implementations and
tools for building software architectures based on components and
aspects. Its long term goal is the development of new abstractions
for the programming of software architectures, their
representation in terms of expressive programming languages and
their correct and efficient implementation.

 We pursue the following objectives:

 	
 New concepts and techniques for the compositional definition
and implementation of complex software systems, notably involving
crosscutting concerns that cannot be handled modularly using
traditional software development approaches.

 	
 New programming techniques and algorithms for resource
management in mutualized environments. We provide language
abstractions and implementation techniques for large-scale
applications in cloud- and grid-based systems, both on the level
of (service-based) applications and (virtualized)
infrastructures. We develop solutions, in particular, for the
optimization of the energy consumption in such environments (data
centers ...)

 	
 We develop new formal theories for and apply formal methods to
the correctness of software systems. We aim at developing more
powerful techniques for theorem proving and enable complex, often
dynamic, software systems to be proven correct using program
transformations and analysis techniques. We develop solutions, in
particular, for the constructive enforcement of security
properties on the level of software systems.

 Finally, we apply and validate our results based on real-world
applications from numerous domains, notably enterprise information
systems, the Cloud, and pervasive systems.

 Research Program

 	Research Program	Overview
	Software Composition
	Programming languages for advanced
modularization
	Distribution and Concurrency
	Security
	Capacity Planning for Large Scale Distributed System

 Section:
 Research Program

 Overview

 Since we mainly work on new concepts for the language-based
definition and implementation of complex software systems, we
first briefly introduce some basic notions and problems of
software components (understood in a broad sense, that is,
including modules, objects, architecture description languages and
services), aspects, and domain-specific languages. We conclude by
presenting the main issues related to distribution and
concurrency, in particular related to capacity planning issues
that are relevant to our work.

 Section:
 Research Program

 Software Composition

 Modules and services. The idea that building software
components,
i.e., composable prefabricated and parameterized software parts, was key
to create an effective software industry was realized very
early [64] . At that time, the scope of a component
was limited to a single procedure. In the seventies, the growing
complexity of software made it necessary to consider a new level of
structuring and programming and led to the notions of information
hiding, modules, and module interconnection
languages [71] , [49] . Information hiding
promotes a black-box model of program development whereby a module
implementation, basically a collection of procedures, is strongly
encapsulated behind an interface. This makes it possible to guarantee
logical invariant properties of the data managed by the
procedures and, more generally, makes modular reasoning
possible.

 In the context of today's Internet-based information society,
components and modules have given rise to software services
whose compositions are governed by explicit orchestration or
choreography specifications that support notions of global
properties of a service-oriented architecture. These horizontal
compositions have, however, to be frequently adapted
dynamically. Dynamic adaptations, in particular in the context of
software evolution processes, often conflict with a black-box
composition model either because of the need for invasive
modifications, for instance, in order to optimize resource utilization
or modifications to the vertical compositions implementing the
high-level services.

 Object-Oriented Programming. Classes and objects
provide another kind of software component, which makes it necessary
to distinguish between component types (classes) and component instances (objects). Indeed, unlike modules, objects can
be created dynamically. Although it is also possible to talk about
classes in terms of interfaces and implementations, the encapsulation
provided by classes is not as strong as the one provided by
modules. This is because, through the use of inheritance,
object-oriented languages put the emphasis on incremental
programming to the detriment of modular programming. This
introduces a white-box model of software development and more
flexibility is traded for safety as demonstrated by the fragile
base class issue [67] .

 Architecture Description Languages.
The advent of distributed applications made it necessary to consider
more sophisticated connections between the various building blocks of
a system. The software architecture [75] of a
software system describes the system as a composition of components and connectors, where the connectors capture the
interaction protocols between the components [40] . It
also describes the rationale behind such a given architecture, linking
the properties required from the system to its implementation. Architecture Description Languages (ADLs) are languages that
support architecture-based development [65] .
A number of these languages make it possible to generate executable
systems from architectural descriptions, provided implementations for
the primitive components are available. However, guaranteeing that the
implementation conforms to the architecture is an issue.

 Protocols. Today, protocols constitute a frequently used
means to precisely define, implement, and analyze contracts, notably
concerning communication and security properties, between two or more
hardware or software entities. They have been used to define
interactions between communication layers, security properties of
distributed communications, interactions between objects and
components, and business processes.

 Object interactions [69] , component
interactions [81] , [73] and service
orchestrations [50] are most frequently expressed in terms
of regular interaction protocols that enable basic properties,
such as compatibility, substitutability, and deadlocks between
components to be defined in terms of basic operations and closure
properties of finite-state automata. Furthermore, such properties may
be analyzed automatically using, e.g., model checking
techniques [47] , [56] .

 However, the limited expressive power of regular languages has led to
a number of approaches using more expressive non-regular
interaction protocols that often provide distribution-specific
abstractions, e.g., session types [58] , or context-free
or turing-complete expressiveness [74] , [45] . While
these protocol types allow conformance between components to be
defined (e.g., using unbounded counters), property verification can only
be performed manually or semi-automatically.

 Section:
 Research Program

 Programming languages for advanced
modularization

 The main driving force for the structuring means, such as components
and modules, is the quest for clean separation of
concerns [51] on the architectural and programming
levels. It has, however, early been noted that concern separation in
the presence of crosscutting functionalities requires specific
language and implementation level support. Techniques of so-called
computational reflection, for instance, Smith's 3-Lisp or
Kiczales's CLOS meta-object protocol [76] , [61] as well
as metaprogramming techniques have been developed to cope with this
problem but proven unwieldy to use and not amenable to formalization
and property analysis due to their generality. Methods and techniques
from two fields have been particularly useful in addressing such
advanced modularization problems: Aspect-Oriented Software Development
as the field concerned with the systematic handling of modularization
issues and domain-specific languages that provide declarative and
efficient means for the definition of crosscutting functionalities.

 Aspect-Oriented Software Development [60] , [38] has
emerged over the previous decade as the domain of systematic
exploration of crosscutting concerns and corresponding support
throughout the software development process. The corresponding
research efforts have resulted, in particular, in the recognition of
crosscutting as a fundamental problem of virtually any
large-scale application, and the definition and implementation of a
large number of aspect-oriented models and languages.

 However, most current aspect-oriented models, notably
AspectJ [59] ,
rely on pointcuts and advice defined in terms of individual execution
events. These models are subject to serious limitations concerning the
modularization of crosscutting functionalities in distributed
applications, the integration of aspects with other modularization
mechanisms such as components, and the provision of correctness
guarantees of the resulting AO applications. They do, in particular,
only permit the manipulation of distributed applications on a per-host
basis, that is, without direct expression of coordination properties
relating different distributed entities [77] . Similarly,
current approaches for the integration of aspects and (distributed)
components do not directly express interaction properties between sets
of components but rather seemingly unrelated modifications to
individual components [48] . Finally, current
formalizations of such aspect models are formulated in terms of
low-level semantic abstractions (see, e.g., Wand's et al semantics for
AspectJ [80]) and provide only limited support for the
analysis of fundamental aspect properties.

 Different approaches have been put forward to tackle these problems,
in particular, in the context of so-called stateful or
history-based aspect languages
[52] , [53] ,
which provide pointcut and advice languages that directly express rich
relationships between execution events. Such languages have been
proposed to directly express coordination and synchronization issues
of distributed and concurrent applications
[70] , [43] , [55] ,
provide more concise formal semantics for aspects and enable analysis
of their properties
[41] , [54] , [52] , [39] .
Furthermore, first approaches for the definition of aspects over
protocols have been proposed, as well as over regular structures
[52] and non-regular
ones [79] , [68] , which are
helpful for the modular definition and verification of protocols over
crosscutting functionalities.

 They represent, however, only first results and many important
questions concerning these fundamental issues remain open, in
particular, concerning the semantics foundations of AOP and the
analysis and enforcement of correctness properties governing its,
potentially highly invasive, modifications.

 Domain-specific languages (DSLs) represent domain knowledge
in terms of suitable basic language constructs and their compositions
at the language level. By trading generality for abstraction, they
enable complex relationships among domain concepts to be expressed
concisely and their properties to be expressed and formally
analyzed. DSLs have been applied to a large number of domains; they
have been particularly popular in the domain of software generation
and maintenance [66] , [82] .

 Many modularization techniques and tasks can be naturally expressed by
DSLs that are either specialized with respect to the type of
modularization constructs, such as a specific brand of software
component, or to the compositions that are admissible in the context
of an application domain that is targeted by a modular
implementation. Moreover, software development and evolution processes
can frequently be expressed by transformations between applications
implemented using different DSLs that represent an implementation at
different abstraction levels or different parts of one application.

 Functionalities that crosscut a component-based application, however,
complicate such a DSL-based transformational software development
process. Since such functionalities belong to another domain than that
captured by the components, different DSLs should be composed. Such
compositions (including their syntactic expression, semantics and
property analysis) have only very partially been explored until
now. Furthermore, restricted composition languages and many aspect
languages that only match execution events of a specific domain (e.g., specific file accesses in the case of security functionality) and
trigger only domain-specific actions clearly are quite similar to
DSLs but remain to be explored.

 Section:
 Research Program

 Distribution and Concurrency

 While ASCOLA does not investigate distribution and concurrency as
research domains per se (but rather from a software engineering and
modularization viewpoint), there are several specific problems and
corresponding approaches in these domains that are directly related to
its core interests that include the structuring and modularization of
large-scale distributed infrastructures and applications. These
problems include crosscutting functionalities of distributed and
concurrent systems, support for the evolution of distributed software
systems, and correctness guarantees for the resulting software systems.

 Underlying our interest in these domains is the well-known observation
that large-scale distributed applications are subject to
numerous crosscutting functionalities (such as the
transactional behavior in enterprise information systems, the
implementation of security policies, and fault recovery
strategies). These functionalities are typically partially
encapsulated in distributed infrastructures and partially handled in
an ad hoc manner by using infrastructure services at the application
level. Support for a more principled approach to the development and
evolution of distributed software systems in the presence of
crosscutting functionalities has been investigated in the field of
open adaptable middleware [44] , [63] . Open
middleware design exploits the concept of reflection to provide the
desired level of configurability and openness.
However, these approaches are subject to several fundamental
problems. One important problem is their insufficient, framework-based
support that only allows partial modularization of crosscutting
functionalities.

 There has been some criticism on the use of AspectJ-like
aspect models (which middleware aspect models like that of JBoss AOP
are an instance of) for the modularization of distribution and
concurrency related concerns, in particular, for transaction
concerns [62] and the modularization of the distribution
concern itself [77] . Both criticisms are essentially grounded
in AspectJ's inability to explicitly represent sophisticated
relationships between execution events in a distributed system: such
aspects therefore cannot capture the semantic relationships that are
essential for the corresponding concerns. History-based aspects, as
those proposed by the ASCOLA project-team provide a starting point
that is not subject to this problem.

 From a point of view of language design and implementation, aspect
languages, as well as domain specific languages for distributed and
concurrent environments share many characteristics with existing
distributed languages: for instance, event monitoring is fundamental
for pointcut matching, different synchronization strategies and
strategies for code mobility [57] may be used in actions
triggered by pointcuts. However, these relationships have only been
explored to a small degree. Similarly, the formal semantics and formal
properties of aspect languages have not been studied yet for the
distributed case and only rudimentarily for the concurrent
one [41] , [55] .

 Section:
 Research Program

 Security

 Security properties and policies over complex service-oriented and
standalone applications become ever more important in the context of
asynchronous and decentralized communicating systems. Furthermore,
they constitute prime examples of crosscutting functionalities that
can only be modularized in highly insufficient ways with existing
programming language and service models. Security properties and
related properties, such as accountability properties, are therefore
very frequently awkward to express and difficult to analyze and
enforce (provided they can be made explicit in the first place).

 Two main issues in this space are particularly problematic from a
compositional point of view. First, information flow properties of
programming languages, such as flow properties of
Javascript [42] , and service-based
systems [46] are typically specially-tailored to
specific properties, as well as difficult to express and
analyze. Second, the enforcement of security properties and security
policies, especially accountability-related
properties [72] , [78] , is only supported using ad hoc
means with rudimentary support for property verification.

 The ASCOLA team has recently started to work on providing formal
methods, language support and implementation techniques for the
modular definition and implementation of information flow properties
as well as policy enforcement in service-oriented systems as well as,
mostly object-oriented, programming languages.

 Section:
 Research Program

 Capacity Planning for Large Scale Distributed System

 Since the last decade, cloud computing has emerged as both a new
economic model for software (provision) and as flexible tools for the
management of computing capacity. Nowadays, the major cloud features
have become part of the mainstream (virtualization, storage and
software image management) and the big market players offer effective
cloud-based solutions for resource pooling. It is now possible
to deploy virtual infrastructures that involve virtual machines (VMs),
middleware, applications, and networks in such a simple manner that a
new problem has emerged over the last two years: VM sprawl (virtual
machine proliferation) that consumes valuable computing, memory,
storage and energy resources, thus menacing serious resource
shortages. Scientific approaches that address VM sprawl are both
based on classical administration techniques like the lifecycle
management of a large number of VMs as well as the arbitration and the
careful management of all resources consumed and provided by the
hosting infrastructure (energy, power, computing, memory, network
etc.).

 The ASCOLA team investigates fundamental techniques for cloud
computing and capacity planning, from infrastructures to the
application level. Capacity planning is the process of planning for,
analyzing, sizing, managing and optimizing capacity to satisfy demand
in a timely manner and at a reasonable cost. Applied to distributed
systems like clouds, a capacity planning solution must mainly provide
the minimal set of resources necessary for the proper execution of the
applications (i.e., to ensure service level agreement, SLA). The main
challenges in this context are: scalability, fault tolerance and
reactivity of the solution in a large-scale distributed system, the
analysis and optimization of resources to minimize the cost (mainly
costs related to the energy consumption of datacenters), as well as
the profiling and adaptation of applications to ensure useful levels
of quality of service (throughput, response time, availability etc.).

 Our solutions are mainly based on virtualized infrastructures that we
apply from the IaaS to the SaaS levels. We are mainly concerned by
the management and the execution of the applications by harnessing
virtualization capabilities, the investigation of alternative
solutions that aim at optimizing the trade-off between performance and
energy costs of both applications and cloud resources, as well as
arbitration policies in the cloud in the presence of
energy-constrained resources.

 Application Domains

 	Application Domains	Enterprise Information Systems and Services
	Capacity Planning in Cluster, Grid and Cloud Computing
	Pervasive Systems

 Section:
 Application Domains

 Enterprise Information Systems and Services

 Large IT infrastructures typically evolve by adding new
third-party or internally-developed components, but also
frequently by integrating already existing information systems.
Integration frequently requires the addition of glue code that
mediates between different software components and infrastructures
but may also consist in more invasive modifications to
implementations, in particular to implement crosscutting
functionalities. In more abstract terms, enterprise information
systems are subject to structuring problems involving horizontal
composition (composition of top-level functionalities) as well as
vertical composition (reuse and sharing of implementations among
several top-level functionalities). Moreover, information systems
have to be more and more dynamic.

 Service-Oriented Computing (SOC) that is frequently used for solving
some of the integration problems discussed above. Indeed,
service-oriented computing has two main advantages:

 	
 Loose-coupling: services are autonomous, in that they do not
require other services to be executed;

 	
 Ease of integration: Services communicate over standard protocols.

 Our current work is based on the following observation: similar to
other compositional structuring mechanisms, SOAs are subject to the
problem of crosscutting functionalities, that is, functionalities
that are scattered and tangled over large parts of the architecture
and the underlying implementation. Security functionalities, such as
access control and monitoring for intrusion detection, are a prime
example of such a functionality in that it is not possible to
modularize security issues in a well-separated module. Aspect-Oriented
Software Development is precisely an application-structuring method
that addresses in a systemic way the problem of the lack of
modularization facilities for crosscutting functionalities.

 We are considering solutions to secure SOAs by providing an
aspect-oriented structuring and programming model that allows security
functionalities to be modularized. Two levels of research have been
identified:

 	
 Service level: as services can be composed to build processes,
aspect weaving will deal with the orchestration and the choreography
of services.

 	
 Implementation level: as services are abstractly specified,
aspect weaving will require to extend service interfaces in order to
describe the effects of the executed services on the sensitive
resources they control.

 In 2014, we have published results on constructive mechanisms for
security and accountability properties in service-based system as well
as results on service provisioning problems, in particular, service
interoperability and mediation, see
Sec.
	6.3 . Furthermore, we take part in
the European project A4Cloud on accountability challenges, that is,
the responsible stewardship of third-party data and computations,
see Sec.
	8.3 .

 Section:
 Application Domains

 Capacity Planning in Cluster, Grid and Cloud Computing

 Cluster, Grid and more recently Cloud computing platforms aim at
delivering large capacities of computing power. These capacities can
be used to improve performance (for scientific applications) or
availability (e.g., for Internet services hosted by datacenters). These
distributed infrastructures consist of a group of coupled computers
that work together and may be spread across a LAN (cluster), across a
WAN (Grid), and across the Internet (Clouds). Due to their large
scale, these architectures require permanent adaptation, from the
application to the system level and call for automation of the corresponding
adaptation processes.
We focus on self-configuration and self-optimization functionalities
across the whole software stack: from the lower levels (systems
mechanisms such as distributed file systems for instance) to the
higher ones (i.e. the applications themselves such as J2EE clustered
servers or scientific grid applications).

 In 2014, we have proposed a mechanism to take into account locality
aspects in the DVMS proposal, a fully distributed VM
scheduler. Concretely, our mechanism leverages Vivaldi coordinates in
order to favor live migration of virtual machines between servers
belonging to the same site before performing inter-site live
migrations. By such a means, we have improved the reactivity of DVMS,
establishing it as one of the most scalable and reactive scheduler of
virtual machines for large-scale cloud computing infrastructures.
Finally, we have also provided several results on the energy efficient
management of Cloud applications and infrastructures, see
Sec.
	6.4 .

 In the energy field, we have designed a set of techniques, named
Optiplace, for cloud management with flexible power models through
constraint programming. OptiPlace supports external models, named
views. Specifically, we have developed a power view, based on generic
server models, to define and reduce the power consumption of a
datacenter's physical servers. We have shown that OptiPlace behaves at
least as good as our previous system, Entropy, requiring as low as
half the time to find a solution for the constrained-based placement
of tasks for large datacenters.

 Section:
 Application Domains

 Pervasive Systems

 Pervasive systems are another class of systems raising
interesting challenges in terms of software structuring. Such
systems are highly concurrent and distributed. Moreover, they
assume a high-level of mobility and context-aware interactions
between numerous and heterogeneous devices (laptops, PDAs,
smartphones, cameras, electronic appliances...).
Programming such systems requires proper support for handling
various interfering concerns like software customization and
evolution, security, privacy, context-awareness...
Additionally, service composition occurs spontaneously at
runtime.

 In 2014, we have extended the language EScala, which integrates
reactive programming through events with aspect-oriented and
object-oriented mechanisms, see Sec.
	6.3 .

 New Software and Platforms

 	New Software and Platforms	btrCloud (and Entropy)
	EScala and JEScala
	CSLA
	SAdapt
	SimGrid/VMPlaces

 Section:
 New Software and Platforms

 btrCloud (and Entropy)

 Participants :
	Jean-Marc Menaud [correspondent] , Guillaume Le Louët, Frédéric Dumont.

 Orchestration, virtualization, energy, autonomic system,
placement, cloud computing, cluster, data center, scheduler, grid

 btrCloud is a virtual machine manager for clusters and provides a
complete solution for the management and optimization of virtualized
data centers. btrCloud (acronym of better cloud) is composed of three
parts.

 The analysis function enables operatives and people in charge to
monitor and analyze how a data-center works — be it on a daily
basis, on the long run, or in order to predict future trends. This
feature includes boards for performance evaluation and analysis as
well as trends estimation.

 btrCloud, by the integration of btrScript, provides (semi-)automated
VM lifecycle management, including provisioning, resource pool
management, VM tracking, cost accounting, and scheduled
deprovisioning. Key features include a thin client interface,
template-based provisioning, approval workflows, and policy-based VM
placement.

 Finally, several kinds of optimizations are currently available, such
as energy and load balancing. The former can help save up to around
20% of the data-center energy consumption. The latter provides
optimized quality of service properties for applications that are
hosted in the virtualized datacenters.

 btrCloud is available at
http://www.btrcloud.org .

 Section:
 New Software and Platforms

 EScala and JEScala

 Participants :
	Jacques Noyé [correspondent] , Jurgen Van Ham.

 AOP, inheritance, event-based programming, events, declarative events, asynchronous events, join operator, Scala

 EScala is an extension of the programming language Scala with support
for events as object members. EScala combines ideas of
event-driven, aspect-oriented and functional reactive programming.

 Events are natural abstractions for describing interactive behavior
as part of an object interface. In conventional object-oriented
languages, events are implemented indirectly, typically using
the Observer pattern. C# eliminates the corresponding glue code
and directly supports events as object members. However, events are
still explicitly triggered at specific locations within
the program.

 EScala goes much further. First, it also supports implicit events.
Akin to join points in aspect-oriented languages, these events are
implicitly produced at specific execution points, such as the
beginning or the end of the execution of a method. Second,
declarative events make it possible to compose events
using logical operators as well as to filter them and alter their
content.

 EScala events are fully integrated with object-oriented features. An
event is defined in the context of its owner object. Event definitions
are inherited in subclasses and event uses are late-bound. Unlike typical
aspect-oriented languages, EScala preserves object-oriented
encapsulation and modular reasoning.

 JEScala extends EScala with support for concurrent programming (see
Sec.
	6.2).
Events can be declared as asynchronous so that their handling takes place
concurrently. A new composition operator, the join operator, inspired
by the join calculus, can also be used to synchronize the concurrent
activities created by asynchronous events and communicate between them.

 This is joint work with the Software Technology Group at TU Darmstadt.

 Prototype implementations of these languages are available through
http://www.stg.tu-darmstadt.de/research .

 Section:
 New Software and Platforms

 CSLA

 Participants :
	Thomas Ledoux [correspondent] , Yousri Kouki.

 Service-level agreement, Cloud computing, elasticity

 Verifying non-functional properties like performance, dependability,
energy consumption and economical costs of Cloud is challenging today
due to ad hoc management in terms of Quality-of-Service (QoS). We
believe that a differentiating element between Cloud computing
environments will be the QoS and the Service-Level Agreement (SLA)
provided by the Cloud.

 CSLA, the Cloud Service Level Agreement language, allows the
definition of SLA properties for arbitrary Cloud services (XaaS). CSLA
addresses QoS uncertainty in unpredictable and dynamic environment and
provides a cost model of Cloud computing. Besides the standard formal
definition of contracts – comprising validity, parties, services
definition and guarantees/violations – CSLA is enriched with features,
such as QoS degradation and an advanced penalty model, thus
introducing fine-grained language support for Cloud elasticity
management [27] [26] .

 CSLA is available at http://www.emn.fr/z-info/csla .

 Section:
 New Software and Platforms

 SAdapt

 Participants :
	Ronan-Alexandre Cherrueau [correspondent] , Mario Südholt.

 Service-oriented systems, distributed programming, event-based
programming, workflow patterns

 The SAdapt tool provides an implementation of workflow adaptation
patterns and allows the transformation of service-oriented systems
implemented using Apache's CXF service infrastructure in terms of
high-level declarative service transformations. The transformations
are defined using an expressive language that supports matching of the
execution of service-based systems in terms of flexible patterns over
service compositions.

 The SAdapt tool has partially been developed and is employed in the
A4Cloud EU project (see Sec.
	8.3)
as a basis for our work on the enforcement of accountability
properties in complex cloud-based systems.

 The SAdapt tool and its application, notably to the security hardening
of service systems that use OAuth 2 for the authorization of resource
accesses is available at
http://a4cloud.gforge.inria.fr/doku.php?id=start:advservcomp .

 In 2014, we have used and extended the tool in order to investigate
accountability properties of service-based applications, see
Sec.
	6.3 .

 Section:
 New Software and Platforms

 SimGrid/VMPlaces

 Participants :
	Takahiro Hirofuchi, Adrien Lebre [correspondent] , Jonathan Pastor, Flavien Quesnel, Mario Südholt.

 Simulation, Virtualization, Cloud computing, VM placement

 SimGrid is a toolkit for the simulation of algorithms executed on
large-scale distributed systems. Developed for more than a decade, it
has been used in a large number of studies described in more than 100
publications. In 2013, ASCOLA with the support
of the SimGrid core-developers, designed and implemented additional
capabilities, in particular the Virtual Machine abstraction, enabling to address Cloud Computing related concerns.

 Developed, first, in an experimental repository, the integration of these extensions
into the master branch of SimGrid has been achieved during Summer 2014.
The principal role of ASCOLA is now to ensure the maintenance of this
portion of the code with respect to the evolutions of the SimGrid
toolkit (such as for instance the recent port of the SimGrid kernel in
C++).

 Although the virtualization extensions are recent, several projects
leveraging them have been already proposed. (The list of the
projects is available at :
http://simgrid.gforge.inria.fr/contrib/clouds-sg-doc.html)
Among them, ASCOLA is working on dedicated framework to evaluate and
compare VM placement algorithms. Entitled VMPlaces, this framework is
composed of two major components: the injector and
the VM placement algorithm. The injector is the generic part of the
framework (i.e. the one you can directly use) while the VM placement
algorithm is the part you want to study (or compare with available
algorithms). Currently, the VMPlaceS is released with three
algorithms:

 	
 Entropy, a centralized approach using a constraint programming
approach to solve the placement/reconfiguration VM problem

 	
 Snooze, a hierarchical approach where each manager of a group
invokes Entropy to solve the placement/reconfiguration VM problem.
Note that in the original implementation of Snooze, it is using a specific
heuristic to solve the placement/reconfiguration VM problem. As the
sake of simplicity, we have simply reused the entropy scheduling
code.

 	
 DVMS, a distributed approach that dynamically partitions the
system and invokes Entropy on each partition.

 SimGrid is available at http://simgrid.gforge.inria.fr .

 VMPlaces is available at http://beyondtheclouds.github.io/VMPlaceS/

 New Results

 	New Results	Highlights of the Year
	Programming Languages
	Software Composition
	Cloud applications and infrastructures

 Section:
 New Results

 Highlights of the Year

 Nicolas Tabareau was awarded a starting grant from the European
Research Council (ERC), the most prestigious type of research
projects of the European Union for young researchers. From
2015–2020 he will pursue research on “CoqHoTT: Coq for Homotopy Type
Theory.”

 Jonathan Pastor has won the joint 1st prize at the Grid5000 Scale
challenge, an international challenge for large-scale experiments on
geographically-distributed cluster environments. Jonathan has shown
with a colleague how to deploy and manage thousands of VMs in such an
environment using his approach to fully distributed virtual machine
management.

 This year we have provided major research results in two
domains. First, we have developed several new approaches for the
formal reasoning over software in the domains of theorem
proving [31] , as well as reasoning over
distributed interaction protocols [32] and
software compositions [24] . Second, we have
developed new methods supporting dynamic computations over the cloud,
both by means of more elastic cloud
applications [27] and better locality management
for the dynamic placement of virtual machines in Cloud
infrastructures [29] .

 Section:
 New Results

 Programming Languages

 Participants :
	Ronan-Alexandre Cherrueau, Rémi Douence, Hervé Grall, Thomas Ledoux, Florent Marchand de Kerchove de Denterghem, Jacques Noyé, Jean-Claude Royer, Mario Südholt.

 Formal Methods, logics and type theory

 This year we have published new results extending previous type
theories: we have introduced a notion of universe polymorphism for the
theorem prover Coq and new type-based mechanisms for the definition
and analysis of program equivalences. We have also shown how to
harness capabilities, well-known in the security domain, in the
context of the functional programming language Haskell. These results
are detailed in the current section.

 Furthermore, we have applied formal methods and typing in the context
of aspect oriented programming
([12] , [16] , [24])
and in the context of distributed programming (aspectual session
types [32]). We have also developed a
framework for the formal definition and analysis of accountability
properties based on temporal logics. These different results are
detailed in Sec.
	6.3 for details.

 Universe Polymorphism in Coq

 Universes are used in type theory to ensure consistency by checking
that definitions are well-stratified according to a certain
hierarchy.
In the case of the Coq proof assistant, based on the
predicative Calculus of Inductive Constructions (pCIC), this hierarchy
is built from an impredicative sort Prop and an infinite number of
predicative Type universes.
A cumulativity relation represents the inclusion order of universes
in the core theory. Originally, universes were thought to be floating
levels, and definitions to implicitly constrain these levels in a
consistent manner. This works well for most theories, however the
globality of levels and constraints precludes generic constructions on
universes that could work at different levels.
We have introduced universe polymorphism [31]
that extends this setup by adding local bindings of universes and
constraints, supporting generic definitions over universes, reusable
at different levels. This provides the same kind of code reuse
facilities as ML-style parametric polymorphism. However, the structure
and hierarchy of universes is more complex than bare polymorphic type
variables.

 A Logical Study of Program Equivalence

 Proving program equivalence for a functional language with references
is a notoriously difficult problem.
The goal of the thesis of Guilhem Jaber on “A Logical Study of
Program Equivalence” [G. Jaber, Mines Nantes, July 14]
was to propose a logical system in which such proofs can be
formalized, and in some cases inferred automatically.
In the first part, a generic extension method of dependent type theory
has been proposed, based on a forcing interpretation seen as a presheaf
translation of type theory.
This extension equips type theory with
guarded recursive constructions, which are subsequently used to reason
on higher-order references.
In the second part, he has defined a nominal game semantics for a
language with higher-order references. It marries the categorical
structure of game semantics with a trace representation of denotations
of programs, which can be computed operationally and thus have good
modularity properties.
Using this semantics, he has proven completeness of Kripke logical
relations defined in a direct way, using guarded recursive types,
without using biorthogonality.
The problem of contextual equivalence is then reduced to the
satisfiability of an automatically generated formula defined in this
logic, that is, to the existence of a world validating this
formula. Under some conditions, this satisfiability can be decided
using a SMT solver.

 Effect Capabilities For Haskell

 Computational effects complicate the tasks of reasoning about and
maintaining software, due to the many kinds of interferences that can
occur. While different proposals have been formulated to alleviate the
fragility and burden of dealing with specific effects, such as state
or exceptions, there is no prevalent robust mechanism that addresses
the general interference issue. Building upon the idea of
capability-based security, we have proposed effect
capabilities [25] as an effective and flexible
manner to control monadic effects and their
interferences. Capabilities can be selectively shared between modules
to establish secure effect-centric coordination. We have further
refined capabilities with type-based permission lattices to allow
fine-grained decomposition of authority. An implementation of effect
capabilities in Haskell has been done, using type classes to establish
a way to statically share capabilities between modules, as well as to
check proper access permissions to effects at compile time.

 Language Mechanisms

 In 2014, we have proposed new general language-based mechanisms for
concurrent event-based systems and sequential programming
languages. Moreover, we have investigated domain-specific languages
that support aspect-oriented programming and provide control over
propagation strategies in constraint solvers. These results are
detailed in the remainder of this section.

 Furthermore, we have proposed language support for the definition and
enforcement of security properties, in particular related to the
accountability of service-based systems,
see Sec.
	6.3 .

 Concurrent Event-Based Programming

 Advanced concurrency abstractions overcome the drawbacks of low-level
techniques such as locks and monitors, freeing programmers that
implement concurrent applications from the burden of concentrating on
low-level details. However, with current approaches the coordination
logic involved in complex coordination schemas is fragmented into
several pieces including join patterns, data emissions triggered in
different places of the application, and the application logic that
implicitly creates dependencies among communication channels, hence
indirectly among join patterns. In [33] , we have
presented JEScala, a language that captures coordination schemas in a
more expressive and modular way by leveraging a seamless integration
of an advanced event system with join abstractions. We have validated
the approach with case studies and provided a first performance
assessment.

 Lazy imperative programming

 Laziness is a powerful concept in functional programming that permits
the reuse of general functions in a specific context, while keeping
performance close to the efficiency of dedicated definitions. Lazy
evaluation can be used in imperative programming too. Twenty years
ago, John Launchbury was already advocating for lazy imperative
programming, but the level of laziness of his framework remained
limited.
Twenty years after, the picture has not changed.

 We have proposed an Haskell framework to
specify computational effects of imperative programs as well as their
dependencies [23] .
We have presented a semantics of a call-by-need lambda-calculus
extended with imperative strict and lazy features and proved the
correctness of our approach. While originally motivated by a less
rigid use of foreign functions, we have shown that our approach is
fruitful for a simple scenario based on sorted mutable
arrays. Furthermore, we can take advantage of equations between
algebraic operations to dynamically optimize compositions of
imperative computations.

 Domain-Specific Aspect Languages

 Domain-Specific Aspect Languages (DSALs) are Domain-Specific Languages
(DSLs) designed to express crosscutting concerns. Compared to DSLs,
their aspectual nature greatly amplifies the language design space. In
the context of the Associate Team RAPIDS/REAL, we have structured this
space in order to shed light on and compare the different
domain-specific approaches to deal with crosscutting
concerns [37] . We have reported on a corpus of 36
DSALs covering the space, discussed a set of design considerations and
provided a taxonomy of DSAL implementation approaches. This work
serves as a frame of reference to DSAL and DSL researchers, enabling
further advances in the field, and to developers as a guide for DSAL
implementations.

 Controlling constraint propagation

 Constraint propagation is at the heart of constraint solvers. Two main
trends co-exist for its implementation: variable-oriented propagation
engines and constraint-oriented propagation engines. These two
approaches ensure the same level of local consistency but their
efficiency (computation time) can be quite different depending on the
problem instances to be solved. However, it is usually accepted that
there is no best approach in general, and modern constraint solvers
implement only one of them.

 In the context of Charles Prud'homme's PhD Thesis
[15] , we have gone a step further providing a
solver independent language at the modeling stage to enable the design
of propagation engines. We have validated our proposal with a
reference implementation based on the Choco solver and the MiniZinc
constraint modeling language.

 Section:
 New Results

 Software Composition

 Participants :
	Diana Allam, Walid Benghabrit, Ronan-Alexandre Cherrueau, Rémi Douence, Hervé Grall, Thomas Ledoux, Jean-Claude Royer, Mohamed Sellami, Mario Südholt.

 Constructive Security

 Nowadays we are witnessing the wide-spread use of cloud services. As
a result, more and more end-users (individuals and businesses) are
using these services for achieving their electronic transactions
(shopping, administrative procedures, B2B transactions, etc.). In such
scenarios, personal data is generally flowing between several entities
and end-users need (i) to be aware of the management, processing,
storage and retention of personal data, and (ii) to have necessary
means to hold service providers accountable for the usage of their
data. Usual preventive security mechanisms are not adequate in a
world where personal data can be exchanged on-line between different
parties and/or stored at multiple jurisdictions. Accountability
becomes a necessary principle for the trustworthiness of open computer
systems. It regards the responsibility and liability for the data
handling performed by a computer system on behalf of an organization.
In case of misconduct (e.g. security breaches, personal data leak,
etc.), accountability should imply remediation and redress actions, as
in the real life.

 In 2014, we have developed two general approaches for the definition
and enforcement of accountability properties.

 Logic-based accountability properties

 We have proposed a framework for the representation of cloud
accountability policies [19] . Such policies
offer end-users a clear view of the privacy and accountability
obligations asserted by the entities they interact with, as well as
means to represent their preferences. This framework comes with two
novel accountability policy languages; an abstract one, which is
devoted for the representation of preferences/obligations in an human
readable fashion, a concrete one for the mapping to concrete
enforceable policies. We motivate our solution with concrete use case
scenarios. [30] discusses issues related to
data privacy and big data technologies and advocate the use of the
framework to support accountability.

 We have provided an abstract language for the representation of
accountability obligations [20] . We define
its semantics using first-order temporal logic and a specific modality
for accountability is introduced. We analyze a healthcare use case to
illustrate the efficiency of our approach in representing
accountability obligations in realistic situations. The use of such
services-based applications usually implies the flow of personal data
on-line between several parties. In [21] ,
we consider this issue at the design-time of the software and we
propose some foundations for an accountable software design.
Accountability for a software is a property describing, among other
aspects, its liability to end-users for the usage of the data it has
been entrusted. We propose to enrich software's component design by
accountability clauses using an abstract accountability language
(introduced in [20]). We also define
conditions for the well-formedness of an accountable component design
and show how they can be checked using the μ-CRL model-checker.

 Defining and enforcing multi-level accountability properties

 Many accountability policies require access to all levels of the
software stack of service-based applications. Furthermore, they should
include explicit means for the definition of cross-domain policies and
provide constructive means for the implementation of a wide variety of
of accountability properties. These features, in particular,
multi-level support, are missing in existing approaches.

 We have provided an approach that addresses these objectives
explicitly through a language for the definition of expressive regular
policies over accountability predicates applicable at all levels of
the service stack [22] . Furthermore, we have
presented hierarchies of constructive schemes for the implementation
of policies for transparency and remediation properties that are
implemented in terms of our accountability policy language. Finally,
we have shown how to harness the accountability schemes to tackle
real-world violations of accountability properties arising from
security vulnerabilities of OAuth-based authorization and
authentication protocols.

 Aspect-Oriented Programming

 We have produced in 2014 a range of results enabling reasoning over
aspect languages and investigated the use of execution levels. These
results are presented in the remainder of this section.

 We have also applied ideas from aspect oriented programming in the
context of distributed programming (aspectual session
types [32]), see
Sec.
	6.4 .

 Reasoning about aspect interference using effective aspects

 Aspect-oriented programming (AOP) aims at enhancing modularity and
reusability in software systems by offering an abstraction mechanism
to deal with crosscutting concerns. But, in most general-purpose
aspect languages aspects have almost unrestricted power, eventually
conflicting with these goals. To tame aspects, we have proposed
Effective Aspects: a novel approach to embed the pointcut/advice model
of AOP in a statically-typed functional programming language like
Haskell; along two main contributions. First, we have defined a
monadic embedding of the full pointcut/advice model of
AOP [16] .

 Type soundness is guaranteed by exploiting the underlying type system,
in particular phantom types and a new anti-unification type class. In
this model aspects are first-class, can be deployed dynamically, and
the pointcut language is extensible, therefore combining the
flexibility of dynamically-typed aspect languages with the guarantees
of a static type system. Monads (which allow the definition of
sequences of computations in functional programs) enable us to
directly reason about computational effects both in aspects and base
programs using traditional monadic techniques. Using this we extend
the notion of Open Modules with effects, and also with protected
pointcut interfaces to external advising. These restrictions are
enforced statically using the type system. Also, we adapt the
techniques of EffectiveAdvice to reason about and enforce control flow
properties as well as to control effect interference. We show that the
parametricity-based approach to effect interference falls short in the
presence of multiple aspects and propose a different approach using
monad views, a novel technique for handling the monad stack, developed
by Schrijvers and Oliveira. Then, we exploit the properties of our
model to enable the modular construction of new semantics for aspect
scoping and weaving. Our second
contribution [24] builds upon a powerful model
to reason about mixin-based composition of effectful components and
their interference, based on equational reasoning, parametricity, and
algebraic laws about monadic effects. Our contribution is to show how
to reason about interference in the presence of unrestricted
quantification through pointcuts. We show that global reasoning can be
compositional, which is key for the scalability of the approach in the
face of large and evolving systems. A comprehensive version of those
two works appears in Ismael Figueroa PhD
thesis [12] .

 Execution Levels for AOP: from program design to applications

 In AOP languages, advice evaluation is usually considered as part of
the base program evaluation. This is also the case for certain
pointcuts, such as if pointcuts in AspectJ, or simply all pointcuts in
higher-order aspect languages like AspectScheme. While viewing aspects
as part of base level computation clearly distinguishes AOP from
reflection, it also comes at a price: because aspects observe base
level computation, evaluating pointcuts and advice at the base level
can trigger infinite regression. To avoid these pitfalls, aspect
languages propose ad hoc mechanisms, which increase the complexity for
programmers while being insufficient in many cases. We have proposed
to clarify the situation by introducing levels of execution in the
programming language [18] , thereby allowing
aspects to observe and run at specific, possibly different, levels. We
have adopted a defensive default that avoids infinite regression, and
gives advanced programmers the means to override this default using
level-shifting operators.

 Service provisioning

 This year, we have provided results on two fundamental problems of
service-oriented architectures: service interoperability and service
mediation.

 Service interoperability

 Web service support a document-oriented style for clients to interact
with a server and promote an environment for systems that is loosely
coupled and interoperable. Two models exist for implementing Web
services: A process-oriented Web services model, SOAP, and a
resource-oriented Web services model, RESTful. Service components are
mainly based on description interfaces. These interfaces are often
known as structural standardized interfaces like WSDL for SOAP and
WADL for RESTful. The implementation of Web services is increasingly
based on object-oriented (OO) frameworks, at the client and the server
sides. Using these frameworks, developers can transform an object code
into a Web service, or access a remote Web service, at the touch of a
button. In this context, two levels are present: an object level built
over a service level.

 Diana Allam's PhD thesis [11] has focused on two
properties of these frameworks:

 	
 The loose coupling between the two levels, which allows the
complex technical details of the service level to be hidden at the
object level and the service level to be evolved with a minimal
impact on the object level.

 	
 The interoperability induced by the substitution principle
associated to subtyping in the object level, which allows to
freely convert a value of a subtype into a value of a supertype.

 The thesis provides three contributions in this context. We propose a
unified formal model for web services based on message passing and
enabling first class channels. It is equipped with a powerful
type-checking allowing union, intersection and negation operations as
well as subtyping. The type checking algorithm relies on the semantic
approach defined by G. Castagna. This type system is also protected
against attackers. The second contribution is a concrete refinement
of the model into RESTful and SOAP frameworks as well as a unified API
for service discovery. To define such an API, we have first shown
how the details of the standard interfaces (WSDL and WADL) could be
simplified and abstracted and then we rely on subtyping in the
discovery mechanism. Finally, to solve some of the interoperability
issues between the OO level and the service level a formalization of
the binding using categorical concepts (commutative diagrams) is
proposed. Based on this an analysis of the mismatch problems has been
done and a new specification of the data binding has been formalized.
The document then discusses some variations in the implementation of
the data binding solution and a prototype for the Apache CXF
framework.

 Mayleen Lacouture's PhD thesis “A Chemical Programming Language for
Orchestrating Services - Application to Interoperability Problems”
[M. Lacouture, MN/U. Nantes, Oct. 14] proposes a framework easing
interoperability in the form of an architecture that integrates
different orchestration languages with heterogeneous service providers
around a pivot language.
The pivot language is implemented as a new orchestration language
based on the chemical programming paradigm.
Concretely, the dissertation presents a language called Criojo
that implements and extends the Heta-calculus,
an original calculus associated to a chemical abstract machine
dedicated to service-oriented computing.
The consequence of adopting this approach would be an improvement in
the interoperability of services
and orchestration languages, thus easing the development of composite
services.
The high level of abstraction of Criojo could allow developers to
write very concise orchestrations since message exchanges are
represented in a natural and intuitive way.

 Service mediation

 Service composition is a major advance service-oriented computing
brings to enable the development of distributed applications. However,
the distributed nature of services hampers their composition with data
heterogeneity problems. We address these problems with a decentralized
Mediation-as-a-Service architecture that solves data inconsistencies
occurring during the composition of business
services [17] . As an extension to our previous
work that focused on data interpretation problems, we present in this
paper a solution to solve data inconsistencies at the syntactic,
structural and semantic levels. We show how syntactic, structural and
semantic mediation techniques can be combined, and how semantic
mediation provides useful information that helps structural and
syntactic mediation. We demonstrate how our architecture enables
decentralized publication and discovery of mediation services. We
motivate our work with a concrete scenario and validate our proposal
with experiments.

 Software product line architectures

 Software product lines were designed from the product line tested out
by H. Ford at the beginning of the 20th century, which led to
the success of his automotive production. For 15 years, these methods
have been visible in several software application fields: telephony at
Nokia, televisions at Philips, print software at HP and flight
applications at Boeing, among others. The concept of architecture is
crucial for classic software applications, and this concept is even
more important at the level of domain engineering in product lines.
In a product line, the so-called reference architecture generically
describes the architectures of all the products in the family. The
chapter [34] describes the technical means and
methods for defining a reference architecture for a software product
line. It also presents the methods for operating this architecture
through, for example, techniques emerging from model and software
component engineering, or aspect-oriented programming. These concepts
and techniques are illustrated using a case study.

 Section:
 New Results

 Cloud applications and infrastructures

 Participants :
	Adrien Lebre, Thomas Ledoux, Yousri Kouki, Guillaume Le Louët, Jean-Marc Menaud, Jonathan Pastor, Flavien Quesnel, Mario Südholt.

 In 2014, we have provided solutions for Cloud-based and distributed
programming, virtual environments and data centers, in particular
concerning energy-optimal Cloud applications.

 Cloud and distributed programming

 This year we have published results on a broker that provides better
guarantees on service-level agreements in the Cloud. Furthermore, we
have extended a class of formally-defined protocols, session types.

 Service-level agreement for the Cloud

 Elasticity is the intrinsic element that differentiates Cloud
Computing from traditional computing paradigms, since it allows
service providers to rapidly adjust their needs for resources to
absorb the demand and hence guarantee a minimum level of Quality of
Service (QoS) that respects the Service Level Agreements (SLAs)
previously defined with their clients. However, due to non-negligible
resource initiation time, network fluctuations or unpredictable
workload, it becomes hard to guarantee QoS levels and SLA violations
may occur.

 We propose a language support for Cloud elasticity management that
relies on CSLA (Cloud Service Level
Agreement) [27] . CSLA offers new features such as
QoS/functionality degradation and an advanced penalty model that allow
providers to finely express contracts so that services self-adaptation
capabilities are improved and SLA violations minimized. The approach
was evaluated with a real infrastructure and application
testbed. Experimental results show that the use of CSLA makes Cloud
services capable of absorbing more peaks and oscillations by
trading-off the QoS levels and costs due to penalties.

 AO session types for distributed protocols

 Multiparty session types allow the definition of distributed processes
with strong communication safety properties. A global type is a
choreographic specification of the interactions between peers, which
is then projected locally in each peer. Well-typed processes behave
accordingly to the global protocol specification. Multiparty session
types are however monolithic entities that are not amenable to modular
extensions. Also, session types impose conservative requirements to
prevent any race condition, which prohibit the uniform application of
extensions at different points in a protocol. We have proposed a means
to support modular extensions with aspectual session
types [32] , a static pointcut/advice mechanism
at the session type level. To support the modular definition of
crosscutting concerns, we have augmented the expressivity of session types
to allow harmless race conditions. As a
result, aspectual session types make multiparty session types more
flexible, modular, and extensible.

 Virtualization and data centers

 In 2014, we have produced a variety of results on a new model for
utility computing that addresses fundamental shortcomings of today's
Cloud computing model. Furthermore, we have provided more powerful
techniques for the virtualization of computations and the management of
cluster-based environments, such as data centers.

 Next generation utility computing

 To accommodate the ever-increasing demand for Utility Computing (UC)
resources while taking into account both energy and economical issues,
the current trend consists in building larger and larger data centers
in a few strategic locations. Although such an approach enables to
cope with the actual demand while continuing to operate UC resources
through centralized software system, it is far from delivering
sustainable and efficient UC infrastructures. Throughout the Discovery
initiative (http://beyondtheclouds.github.io),
we investigate how UC resources can be managed differently,
considering locality as a primary concern. Concretely, we study how it
can be possible to leverage any facilities available through the
Internet in order to deliver widely distributed UC platforms that can
better match the geographical dispersal of users as well as the
unending resource demand. Critical to the emergence of such
locality-based UC (LUC) platforms is the availability of appropriate
operating mechanisms. We presented a prospective vision of a unified
system driving the use of resources at an unprecedented scale by
turning a complex and diverse infra structure into a collection of
abstracted computing facilities that is both easy to operate and
reliable [35] . By deploying and using such a LUC
Operating System on backbones, our ultimate vision is to make possible
to host/operate a large part of the Internet by its internal structure
itself: A scalable and nearly infinite set of resources delivered by
any computing facilities forming the Internet, starting from the
larger hubs operated by ISPs, governments and academic institutions to
any idle resources that may be provided by end-users. We highlight
that this work is conducted through a collaboration between the ASAP,
ASCOLA, AVALON and MYRIADS Inria Project-teams.

 Adding locality capabilities to virtual machine schedulers

 Through the DVMS proposal, we showed in 2013 the benefit of leveraging
peer-to-peer algorithms to design and implement virtual machines (VMs)
scheduling algorithms. Although P2P based proposals considerably
improve the scalability, leading to the management of hundreds of
thousands of VMs over thousands of physical machines (PMs), they do
not consider the network overhead introduced by multi-site
infrastructures. This over- head can have a dramatic impact on the
performance if there is no mechanism favoring intra-site v.s.
inter-site manipulations. This year, we extended our DVMS mechanism
with a new building block designed on top of the Vivaldi coordinates
mechanism. We showed its benefits by discussing several experiments
performed on four distinct sites of the Grid’5000 testbed. With our
proposal and without changing the scheduling decision algorithm, the
number of inter-site operations has been reduced by 72% [29] . This result
provides a glimpse of the promising future of using locality
properties to improve the performance of massive distributed Cloud
platforms.
We highlight that this work has been performed in collaboration with
the ASAP, ASCOLA, AVALON and MYRIADS Inria Project-teams.

 WAN-wide elasticity capabilities for distributed file systems

 Applications dealing with huge amounts of data suffer significant
performance impacts when they are deployed on top of an hybrid
platform (i.e the extension of a local infrastructure with external
cloud resources). More precisely, through a set of preliminary
experiments we shew that mechanisms which enable on demand extensions
of current Distributed File Systems (DFSes) are required. These
mechanisms should be able to leverage external storage resources while
taking into account the performance constraints imposed by the
physical network topology used to interconnect the different sites.
To address such a challenge we presented the premises of the Group
Based File System, a glue providing the elasticity capability for
storage resources by federating on demand any POSIX file
systems [28] .

 Energy optimization

 Demand for Green services is increasing considerably as people are
getting more environmental conscious to build a sustainable society.
Therefore, enterprise and clients want to shift their workloads
towards green Cloud environment offered by the
Infrastructure-as-a-Service (IaaS) provider. The main challenge for
an IaaS provider is to determine the best trade-off between its profit
while using renewable energy and customers satisfaction. In order to
address this issue, we propose a Cloud energy
broker [26] , which can adjust the availability
and price combination to buy Green energy dynamically from the market
to make datacenter green. Our energy broker tries to maximize of using
renewable energy under strict budget constraint whereas it also tries
to minimize the use of brown energy by capping the limit of overall
energy consumption of datacenter. The energy broker was evaluated
with a real workload traced by PlanetLab. Experimental results show
that our energy broker successfully enables meeting the best
trade-off.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	Cooperation with SIGMA group

 Section:
 Bilateral Contracts and Grants with Industry

 Cooperation with SIGMA group

 Participants :
	Thomas Ledoux [correspondent] , Simon Dupont.

 In 2012, we have started a cooperation with Sigma Group
(http://www.sigma.fr), a software editor and consulting
enterprise. The cooperation consists in a joint (a so-called Cifre)
PhD on eco-elasticity of software for the Cloud and the sponsorship of
several engineering students at the MSc-level.

 As a direct consequence of the increasing popularity of Cloud
computing solutions, data centers are rapidly growing in number and
size and have to urgently face with energy consumption issues. The aim
of Simon Dupont's PhD, started in November 2012, is to explore the
software elasticity capability in Software-as-a-Service (SaaS)
development to promote the management of SaaS applications that are
more flexible, more reactive to environment changes and therefore
self-adaptive for a wider range of contexts. As a result, SaaS
applications become more elastic and by transitivity more susceptible
to energy constraints and optimization issues.

 In 2014, we have performed real world evaluations within Sigma's data
centers that validated the results on new techniques for the
management of elasticity within Cloud
applications [27] . We have also presented our
current work at
(GreenTouch
@ Nantes Digital Week).

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific events organisation

 General chair, scientific chair

 	
 A. Lebre and M. Sellami organized cloudDays@Nantes.
Supported by the ASR System consortium and the Inria Large
Scale Initiative Hemera, this two day national event gathered
25 researchers and phd students to discuss about latest
results in Virtualization and Cloud
Computing (CloudDays@Nantes,
2014 .).

 	
 A. Lebre was local chair of the 2014 Simgrid Users Days
(30 participants).

 	
 J.-C. Royer and M. Sellami were co-chair of the first
PACS track (Privacy and Accountability for Software and Cloud
Services) at WETICE 2014.

 Member of the organizing committee

 	
 Green Lab Center: T. Ledoux and J.-M. Menaud are members
of the board of the Green Lab Center association. This
association promotes and disseminates Green IT practices and
research prototypes to the world of education, research and
companies (Green
Lab Center).

 	
 M. Südholt has been a member of the steering committee
of the international conference Modularity.

 Scientific events selection

 Member of the conference program committee

 	
 A. Lebre was member of the program committees of
IEEE IC2E 2014, SCRAMBL 2014, IEEE BigData 2014, IEEE CloudCom 2014,
and IEEE BDCLoud 2014.

 	
 T. Ledoux was member of the program committees of the following conferences:
the 29th Symposium On Applied Computing (SAC'14) - track Software Engineering Aspects of Green Computing,
the 3rd International Conference on Eco-friendly Computing and Communication Systems (ICECCS'14),
the 13th Workshop on Adaptive and Reflective Middleware (ARM'14) @ Middleware,
the workshop CrossCloud'14 @ INFOCOM, the workshop CrossCloud Brokers'14 @ Middleware,
the 3nd International Workshop on Green and Sustainable Software (GREENS'14) @ ICSE.

 	
 J.-M. Menaud has served on the program committee of the
third SMARTGREENS 2014, IEEE ICC SAC,The Fifth CLOUD
COMPUTING 2014, the third CAGing 2014, the IEEE Globecom
2014, the 5th IEEE ICICS, the first SDS, VHPC'14 and
CFSE-10.

 	
 J. Noyé has been a member of the program committee of
Modularity '14.

 	
 J.-C. Royer was a member of the program committes of
WETICE 2014, CAL 2014, CIEL 2014, ICIS 2014, and JLDP 2014.
He participated in the evaluation of a project for the Israel
Science Foundation.

 Journal

 Member of the editorial board

 	
 M. Südholt has been a member of the editorial board of
the Springer journal “Transactions of Aspect-Oriented
Software Development” (TAOSD).

 Reviewer

 	
 A. Lebre has been a reviewer for the JPDC and the Cluster
Computing Journals.

 	
 J. Noyé has been a reviewer for “Transactions on
Aspect-Oriented Software Development”, “Software: Practice and
Experience” and “Science of Computer Programming”.

 	
 M. Südholt has been a reviewer for IEEE “Transactions in
Software Engineering” (TSE) and the Springer journal “Transactions on
Aspect-Oriented Software Development” (TOASD).

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 The team is involved in the following undergraduate and graduate-level
programs at Mines Nantes and University of Nantes (the institutions
all of eaching staff belongs to):

 	
 The team is a main contributor to the engineering
program of EMN.

 	
 Within this engineering program, the team is steering,
chairing and the main contributor to a two-year
graduate-level informatics specialization. H. Grall is
managing this program.

 	
 Since 2009 our team has defined and set up a new three-year
engineering program on software engineering. T. Ledoux
is managing this program.

 The team has also been involved in the following MSc programs that
have been carried out with partners from French and foreign
universities:

 	
 The team participates in the MSc program “Alma” on
software architecture and distributed systems, a joint program
steered by colleagues from University of Nantes. In this context,
we are responsible for a 48-hour module on advanced software
composition and take part in the program's governing board. M. Südholt is managing the participation of Mines Nantes in this
program.

 	
 Members of the team have taught different courses at
different study levels in Rennes mainly organized by University
of Rennes and the research institutes IRISA and Inria.

 ASCOLA members have taught for about 210 hours on average in 2014
(hours of presence in front of students). Hereby, we have taken into
account that researchers and some professors have not taught at
times. In addition, another significant part of the program is taught
by temporary and external staff, whose participation is managed by
ASCOLA members.

 In addition, J. Noyé was deputy for teaching of the Computer
Department until March, 31.

 Supervision

 The team has been supervising 18 PhD thesis in 2014, of which six have
been co-supervised with external partners (three with foreign partners
from U. Chile; TU Darmstadt, Germany; VU Brussel, Belgium), two with
another Inria team (Myriads from Rennes) and one with the French TASC
team from Mines Nantes.

 Six PhD theses have been defended this year. Mayleen Lacouture on
chemical programming for the web; Guilhem Jaber on the extension of
logics for theorem provers using forcing; Diana Allam on service
interoperability and securing service compositions; Guillaume Le Louët
on energy management in data centers; Ismaël Figueroa on formal
approaches for correct software composition; Charles Prud'homme on the
structuring of constraint solvers.

 Two members of the team have been preparing an HDR in 2014 for a
defense in 2014.

 Juries

 	
 J.-C. Royer was a member of the PhD committees of Cosmin
Dumitrescu (Université Paris I), Hamzeih Eyal Salman (Université
de Montpellier II), Diana Allam (Mines de Nantes), Ahmad Kheir
(Université de Nantes and Université Libanaise), and Hamza Samih
(Université de Rennes I).

 	
 A. Lebre was a member of the PhD committee of Alexandre Lissy,
“Utilisation de méthodes formelles pour garantir des propriétés de
logiciels au sein d'une distribution : exemple du noyau Linux”,
University of Tours, March 2014.

 	
 J.-M. Menaud was a reviewer of the PhD of : Gueérout Tom
(Dec. 5, 2014 on “Ordonnancement sous contraintes de Qualité de
Service dans les Clouds” in Toulouse), Sébastien Schinella (Dec. 2, 2014 on “Contribution à l'étude de l'Efficacité énergétique
des Services TIC” in Paris), Aurélien Wailly (Sep. 15, 2014 on
“Architecture de sécurité de bout-en-bout pour les environnements
cloud” in Paris), Djawida Dib (Jul. 7, 2014 on “Optimizing PaaS
Provider Profit under Service Level Agreement Constraints” in
Rennes), Tran Giang Son (Jun. 4, 2014 on “Cooperative Resource
Management in the Cloud” in Grenoble), Amit Sangroya (Apr. 24,
2014 on “Towards Dependability and Performance Benchmarking for
Cloud Computing Services” in Grenoble).

 	
 M. Südholt has served as reporting member of the
examination committee of Mohamed Aly at TU Darmstadt, Germany, in
Nov. 2014.

 Bibliography

 Major publications by the team in recent years

 	[1]

 	B. De Fraine, E. Ernst, M. Südholt.
Essential AOP: The A Calculus, in: ACM Transactions on Programming Languages and Systems (TOPLAS), December 2012.
http://hal.inria.fr/hal-00676082

 	[2]

 	I. Figueroa, T. Schrijvers, N. Tabareau, É. Tanter.
Compositional Reasoning About Aspect Interference, in: Modularity'14: 13th International Conference on Modularity, Lugano, Switzerland, April 2014.
https://hal.inria.fr/hal-00919935

 	[3]

 	G. Jaber, N. Tabareau, M. Sozeau.
Extending Type Theory with Forcing, in: LICS'12 : Logic In Computer Science, Dubrovnik, Croatia, June 2012.
http://hal.inria.fr/hal-00685150

 	[4]

 	Y. Kouki, F. Alvares De Oliveira Jr., S. Dupont, T. Ledoux.
A Language Support for Cloud Elasticity Management, in: CCGrid'14: IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Chicago, United States, May 2014, pp. 1-8.
https://hal.archives-ouvertes.fr/hal-00941945

 	[5]

 	J. Pastor, M. Bertier, F. Desprez, A. Lebre, F. Quesnel, C. Tedeschi.
Locality-aware Cooperation for VM Scheduling in Distributed Clouds, in: Euro-Par'14, Porto, Portugal, August 2014.
https://hal.inria.fr/hal-00991530

 	[6]

 	F. Quesnel, A. Lebre, M. Südholt.
Cooperative and Reactive Scheduling in Large-Scale Virtualized Platforms with DVMS, in: Concurrency and Computation: Practice and Experience, December 2012.
http://hal.inria.fr/hal-00675315

 	[7]

 	M. Sozeau, N. Tabareau.
Universe Polymorphism in Coq, in: ITP'14: Interactive Theorem Proving, Vienna, Austria, July 2014.
https://hal.inria.fr/hal-00974721

 	[8]

 	N. Tabareau, M. Südholt, É. Tanter.
Aspectual Session Types, in: Modularity'14 - 13th International Conference on Modularity, Lugano, Switzerland, April 2014.
https://hal.inria.fr/hal-00872791

 	[9]

 	R. Toledo, A. Núñez, É. Tanter, J. Noyé.
Aspectizing Java Access Control, in: IEEE Transactions on Software Engineering, January 2011.
http://hal.inria.fr/inria-00567489/en

 	[10]

 	J. Van Ham, G. Salvaneschi, M. Mezini, J. Noyé.
JEScala: Modular Coordination with Declarative Events and Joins, in: Modularity'14 - 13th International Conference on Modularity, Lugano, Switzerland, E. Ernst (editor), April 2014.
https://hal.inria.fr/hal-00862332

 Publications of the year

 Doctoral Dissertations and Habilitation Theses

 	[11]

 	D. Allam.
Loose coupling and substitution principle in objet-oriented frameworks for web services, Ecole des Mines de Nantes, July 2014.
https://tel.archives-ouvertes.fr/tel-01083286

 	[12]

 	I. Figueroa.
Effective aspects : A typed monadic model to control and reason about aspect interference, Ecole des Mines de Nantes ; Universidad de Chile. Facultad de ciencias físicas y matemáticas, April 2014.
https://tel.archives-ouvertes.fr/tel-01067730

 	[13]

 	M. Lacouture.
A Chemical Programming Language for Orchestrating Services, Mines de Nantes, October 2014.
https://tel.archives-ouvertes.fr/tel-01109582

 	[14]

 	G. Le Louët.
Power management in virtualized data centers : Form a load scenario to the optimization of the tasks placement, Ecole des Mines de Nantes, May 2014.
https://tel.archives-ouvertes.fr/tel-01044650

 	[15]

 	C. Prud'Homme.
Controlling propagation and search within a constraint solver, Ecole des Mines de Nantes, February 2014.
https://tel.archives-ouvertes.fr/tel-01060921

 Articles in International Peer-Reviewed Journals

 	[16]

 	I. Figueroa, N. Tabareau, É. Tanter.
Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice, in: Transactions on Aspect-Oriented Software Development, 2014.
https://hal.inria.fr/hal-00872782

 	[17]

 	M. Sellami, P. De Vettor, M. Mrissa, D. Benslimane, B. Defude.
DMaaS : Syntactic, Structural and Semantic Mediation for Service Composition, in: International Journal of Autonomous and Adaptive Communications Systems, 2014.
https://hal.inria.fr/hal-00937178

 	[18]

 	É. Tanter, I. Figueroa, N. Tabareau.
Execution Levels for Aspect-Oriented Programming: Design, Semantics, Implementations and Applications, in: Science of Computer Programming, February 2014, vol. 80, no 1, pp. 311-342. [
DOI : 10.1016/j.scico.2013.09.002]
https://hal.inria.fr/hal-00872786

 International Conferences with Proceedings

 	[19]

 	W. Benghabrit, H. Grall, J.-C. Royer, M. Sellami, M. Azraoui, K. Elkhiyaoui, M. Önen, A. Santana De Oliveira, K. Bernsmed.
A Cloud Accountability Policy Representation Framework, in: CLOSER - 4th International Conference on Cloud Computing and Services Science, Barcelone, Spain, April 2014.
https://hal.inria.fr/hal-00941872

 	[20]

 	W. Benghabrit, H. Grall, J.-C. Royer, M. Sellami, K. Bernsmed, A. Santana De Oliveira.
Abstract Accountability Language, in: IFIPTM - 8th IFIP WG 11.11 International Conference on Trust Management, Singapore, Trust Management VIII - 8th IFIP WG 11.11 International Conference, July 2014, vol. 430, pp. 229–236.
https://hal.inria.fr/hal-00973399

 	[21]

 	W. Benghabrit, H. Grall, J.-C. Royer, M. Sellami.
Accountability for Abstract Component Design, in: EUROMICRO DSD/SEAA 2014, Verona, Italy, August 2014.
https://hal.inria.fr/hal-00987165

 	[22]

 	R.-A. Cherrueau, M. Südholt.
Enforcing Expressive Accountability Policies, in: WETICE - IEEE International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises, Parma, Italy, Sumitra Reddy, June 2014, pp. 333–338. [
DOI : 10.1109/WETICE.2014.71]
https://hal.inria.fr/hal-00967398

 	[23]

 	R. Douence, N. Tabareau.
Lazier Imperative Programming, in: Principles and Practice of Declarative Programming (PPDP), Canterbury, United Kingdom, September 2014.
https://hal.inria.fr/hal-01016565

 	[24]

 	I. Figueroa, T. Schrijvers, N. Tabareau, É. Tanter.
Compositional Reasoning About Aspect Interference, in: 13th International Conference on Modularity (Modularity'14), Lugano, Switzerland, April 2014.
https://hal.inria.fr/hal-00919935

 	[25]

 	I. Figueroa, N. Tabareau, É. Tanter.
Effect Capabilities For Haskell, in: Brazilian Symposium on Programming Languages (SBLP), Maceio, Brazil, September 2014.
https://hal.inria.fr/hal-01038053

 	[26]

 	M. S. Hasan, Y. Kouki, T. Ledoux, J.-L. Pazat.
Cloud Energy Broker: Towards SLA-driven Green Energy Planning for IaaS Providers, in: HPCC - IEEE Internatonal Conference on High Performance Computing and Communications, France, August 2014, pp. 1-8.
https://hal.archives-ouvertes.fr/hal-01015811

 	[27]

 	Y. Kouki, F. Alvares De Oliveira Jr., S. Dupont, T. Ledoux.
A Language Support for Cloud Elasticity Management, in: CCGrid - IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Chicago, United States, May 2014, pp. 1-8.
https://hal.archives-ouvertes.fr/hal-00941945

 	[28]

 	A. Lebre, G. Bervian Brand.
GBFS: Efficient Data-Sharing on Hybrid Platforms. Towards adding WAN-Wide elasticity to DFSes. , in: WPBA Workshop in Proceedings of 26th International Symposium on Computer Architecture and High Performance Computing, Paris, France, IEEE, October 2014.
https://hal.inria.fr/hal-01085233

 	[29]

 	J. Pastor, M. Bertier, F. Desprez, A. Lèbre, F. Quesnel, C. Tedeschi.
Locality-aware Cooperation for VM Scheduling in Distributed Clouds, in: Euro-Par 2014, Porto, Portugal, August 2014.
https://hal.inria.fr/hal-00991530

 	[30]

 	M. Sellami, J.-C. Royer, W. Benghabrit.
Accountability for Data Protection, in: International Workshop on Computational Intelligence for Multimedia Understanding, Paris, France, November 2014.
https://hal.archives-ouvertes.fr/hal-01084890

 	[31]

 	M. Sozeau, N. Tabareau.
Universe Polymorphism in Coq, in: Interactive Theorem Proving, Vienna, Austria, July 2014.
https://hal.inria.fr/hal-00974721

 	[32]

 	N. Tabareau, M. Südholt, É. Tanter.
Aspectual Session Types, in: Modularity - 13th International Conference on Modularity, Lugano, Switzerland, April 2014. [
DOI : 10.1145/2577080.2577085]
https://hal.inria.fr/hal-00872791

 	[33]

 	J. Van Ham, G. Salvaneschi, M. Mezini, J. Noyé.
JEScala: Modular Coordination with Declarative Events and Joins, in: Modularity '14 - 13th International Conference on Modularity, Lugano, Switzerland, E. Ernst (editor), April 2014.
https://hal.inria.fr/hal-00862332

 Scientific Books (or Scientific Book chapters)

 	[34]

 	H. Arboleda, R. Casallas, J. Chavarriaga, J.-C. Royer.
Software Architecture for Product Lines, in: Software Architecture 1, M. Oussalah (editor), Wiley-ISTE, April 2014, pp. 171-210.
https://hal.archives-ouvertes.fr/hal-00997673

 	[35]

 	A. Lèbre, J. Pastor, M. Bertier, F. Desprez, J. Rouzaud-Cornabas, C. Tedeschi, A.-C. Orgerie, F. Quesnel, G. Fedak.
Beyond The Clouds, How Should Next Generation Utility Computing Infrastructures Be Designed?, in: Cloud Computing: Challenges, Limitations and R&D Solutions, Z. Mahmood (editor), Springer, November 2014.
https://hal.inria.fr/hal-01067888

 Internal Reports

 	[36]

 	R. Douence, N. Tabareau.
Lazier Imperative Programming, July 2014, no RR-8569.
https://hal.inria.fr/hal-01025633

 Other Publications

 	[37]

 	J. Fabry, T. Dinkelaker, J. Noyé, É. Tanter.
A Taxonomy of Domain-Specific Aspect Languages, October 2014, Accepted for publication in ACM Computing Surveys.
https://hal.inria.fr/hal-01085063

 References in notes

 	[38]

 	M. Akşit, S. Clarke, T. Elrad, R. E. Filman (editors)
Aspect-Oriented Software Development, Addison-Wesley Professional, September 2004.

 	[39]

 	C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, J. Tibble.
Adding trace matching with free variables to AspectJ, in: ACM Conference on Object-Oriented Programming, Systems and Languages (OOPSLA), R. P. Gabriel (editor), ACM Press, 2005.

 	[40]

 	R. Allen, D. Garlan.
A Formal Basis for Architectural Connection, in: ACM Transactions on Software Engineering and Methodology, July 1997, vol. 6, no 3, pp. 213–49.

 	[41]

 	J. H. Andrews.
Process-Algebraic Foundations of Aspect-Oriented Programming, in: Proceedings of the 3rd International Conference on Metalevel Architectures and Separation of Crosscutting Concerns, Lecture Notes in Computer Science, 2001, vol. 2192, pp. 187–209.

 	[42]

 	T. H. Austin, C. Flanagan.
Multiple facets for dynamic information flow, in: Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, New York, USA, POPL '12, ACM, 2012, pp. 165–178.
http://doi.acm.org/10.1145/2103656.2103677

 	[43]

 	L. D. Benavides Navarro, M. Südholt, W. Vanderperren, B. De Fraine, D. Suvée.
Explicitly distributed AOP using AWED, in: Aspect-Oriented Software Development (AOSD), ACM Press, March 2006, pp. 51-62.

 	[44]

 	G. S. Blair, G. Coulson, P. Robin, M. Papathomas.
An architecture for next generation middleware, in: Proceedings of the IFIP International Conference on Distributed Systems Platforms and Open Distributed Processing, Springer-Verlag, 1998.

 	[45]

 	A. Braccialia, A. Brogi, C. Canal.
A formal approach to component adaptation, in: Journal of Systems and Software, 2005.

 	[46]

 	S. Capecchi, I. Castellani, M. Dezani-Ciancaglini, T. Rezk.
Session Types for Access and Information Flow Control, in: CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings, P. Gastin, F. Laroussinie (editors), Lecture Notes in Computer Science, Springer, 2010, vol. 6269, pp. 237–252.
http://dx.doi.org/10.1007/978-3-642-15375-4_17

 	[47]

 	E. M. Clarke, O. Grumberg, D. A. Peled.
Model Checking, The MIT Press, Cambridge, Massachusetts, 1999.

 	[48]

 	A. Colyer, A. Clement.
Large-scale AOSD for Middleware, in: Proceedings of the 3rd ACM Int. Conf. on Aspect-Oriented Software Development (AOSD), Lancaster, K. Lieberherr (editor), ACM Press, 2004, pp. 56–65.

 	[49]

 	F. DeRemer, H. H. Kron.
Programming-in-the-large versus programming-in-the-small, in: IEEE Transactions on Software Engineering, 1976, vol. SE-2, no 2, pp. 80-86.

 	[50]

 	G. Decker, O. Kopp, F. Leymann, M. Weske.
BPEL4Chor: Extending BPEL for Modeling Choreographies, in: IEEE International Conference on Web Services (ICWS 2007), IEEE Computer Society, 2007, pp. 296–303.

 	[51]

 	E. W. Dijkstra.
On the role of scientific thought, in: Selected Writings on Computing: A Personal Perspective, Springer-Verlag, 1974, pp. 60–66, Published in 1982.

 	[52]

 	R. Douence, P. Fradet, M. Südholt.
A framework for the detection and resolution of aspect interactions, in: Proceedings of the ACM SIGPLAN/SIGSOFT Conference on Generative Programming and Component Engineering (GPCE'02), Lecture Notes in Computer Science, Springer-Verlag, October 2002, vol. 2487, pp. 173–188.
http://hal.inria.fr/inria-00072153

 	[53]

 	R. Douence, P. Fradet, M. Südholt.
Trace-Based Aspects, in: Aspect-Oriented Software Development, M. Akşit, S. Clarke, T. Elrad, R. E. Filman (editors), Addison-Wesley, 2004, pp. 201-218.

 	[54]

 	R. Douence, O. Motelet, M. Südholt.
A formal definition of crosscuts, in: Proceedings of the 3rd International Conference on Metalevel Architectures and Separation of Crosscutting Concerns, Lecture Notes in Computer Science, Springer-Verlag, 2001, vol. 2192, pp. 170–186.

 	[55]

 	R. Douence, D. Le Botlan, J. Noyé, M. Südholt.
Concurrent Aspects, in: Proc. of the Int. ACM Conf. on Generative Programming and Component Engineering (GPCE), ACM Press, October 2006, pp. 79-88.

 	[56]

 	H. Foster, S. Uchitel, J. Magee, J. Kramer.
Model-based Verification of Web Service Compositions, in: Proceedings of the 18th IEEE Int. Conf. on Automated Software Engineering (ASE'03), IEEE Computer Society, 2003, pp. 152–163.

 	[57]

 	A. Fuggetta, G. P. Picco, G. Vigna.
Understanding Code Mobility, in: IEEE Transactions on Software Engineering, May 1998, vol. 24, no 5, pp. 342–361.

 	[58]

 	K. Honda, N. Yoshida, M. Carbone.
Multiparty asynchronous session types, in: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008, G. C. Necula, P. Wadler (editors), ACM, 2008, pp. 273–284.
http://www.doc.ic.ac.uk/~yoshida/multiparty/multiparty.pdf

 	[59]

 	G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold.
An Overview of AspectJ, in: ECOOP 2001 — Object-Oriented Programming 15th European Conference, Budapest Hungary, Berlin, J. L. Knudsen (editor), Lecture Notes in Computer Science, Springer-Verlag, June 2001, vol. 2072, pp. 327–353.
http://www.eclipse.org/aspectj/

 	[60]

 	G. Kiczales.
Aspect Oriented Programming, in: Proc. of the Int. Workshop on Composability Issues in Object-Orientation (CIOO'96) at ECOOP, July 1996, Selected paper published by dpunkt press, Heidelberg, Germany.

 	[61]

 	G. Kiczales, J. des Rivieres, Daniel G. Bobrow.
The Art of the Meta-Object Protocol, MIT Press, Cambridge (MA), USA, 1991.

 	[62]

 	J. Kienzle, R. Guerraoui.
AOP - Does It Make Sense? The Case of Concurrency and Failures, in: 16th European Conference on Object-Oriented Programming (ECOOP'2002), Malaga, Spain, B. Magnusson (editor), Lecture Notes in Computer Science, Springer-Verlag, 2002.

 	[63]

 	T. Ledoux.
OpenCorba: a Reflective Open Broker, in: ACM Meta-Level Architectures and Reflection, Second International Conference, Reflection'99, Saint-Malo, France, P. Cointe (editor), Lecture Notes in Computer Science, Springer-Verlag, July 1999, vol. 1616, pp. 197–214.

 	[64]

 	M. McIlroy.
Mass produced software components, in: Mass produced software components, Garmish, Germany, P. Naur, B. Randell (editors), NATO Science Committee, October 1968, pp. 138-155.

 	[65]

 	N. Medvidovic, R. N. Taylor.
A Classification and Comparison Framework for Software Architecture Description Languages, in: IEEE Transactions on Software Engineering, January 2000, vol. 26, no 1, pp. 70-93.

 	[66]

 	M. Mernik, J. Heering, A. M. Sloane.
When and How to Develop Domain-Specific Languages, in: ACM Computing Surveys, December 2005, vol. 37, no 4, pp. 316-344.

 	[67]

 	L. Mikhajlov, E. Sekerinski.
A study of the fragile base class, in: A study of the fragile base class, Brussels, Belgium, E. Jul (editor), Lecture Notes in Computer Science, July 1998, vol. 1445, pp. 355-382.

 	[68]

 	D. H. Nguyen, M. Südholt.
VPA-based aspects: better support for AOP over protocols, in: 4th IEEE International Conference on Software Engineering and Formal Methods (SEFM'06), IEEE Computer Society Press, September 2006.

 	[69]

 	O. Nierstrasz.
Regular Types for Active Objects, in: Object-Oriented Software Composition, O. Nierstrasz, D. Tsichritzis (editors), Prentice Hall, 1995, chap. 4, pp. 99–121.

 	[70]

 	M. Nishizawa, S. Chiba, M. Tatsubori.
Remote Pointcut - A Language Construct for Distributed AOP, in: Proceedings of the 3rd ACM Int. Conf. on Aspect-Oriented Software Development (AOSD), Lancaster, ACM Press, 2004.

 	[71]

 	D. L. Parnas.
On the criteria for decomposing systems into modules, in: Communications of the ACM, December 1972, vol. 15, no 12, pp. 1053-1058.

 	[72]

 	S. Pearson.
Toward Accountability in the Cloud, in: Internet Computing, IEEE, July-Aug. 2011, vol. 15, no 4, pp. 64-69.
http://dx.doi.org/10.1109/MIC.2011.98

 	[73]

 	F. Plasil, S. Visnovsky.
Behavior Protocols for Software Components, in: Transactions on Software Engineering, January 2002, vol. 28, no 9.

 	[74]

 	F. Puntigam.
Coordination Requirements Expressed in Types for Active Objects, in: ECOOP'97—Object-Oriented Programming, M. Akşit, S. Matsuoka (editors), Lecture Notes in Computer Science, Springer-Verlag, 1997, vol. 1241, pp. 367–388.

 	[75]

 	M. Shaw, D. Garlan.
Software Architecture: Perspectives on an Emerging Discipline, Prentice-Hall, 1996.

 	[76]

 	B. C. Smith.
Reflection and Semantics in LISP, Xerox Palto Alto Research Center, Palo Alto, 1984, no P84-00030.

 	[77]

 	S. Soares, E. Laureano, P. Borba.
Implementing distribution and persistence aspects with AspectJ , in: Proceedings of the 17th ACM conference on Object-oriented programming, systems, languages, and applications (OOPSLA-02), C. Norris, J. J. B. Fenwick (editors), ACM SIGPLAN Notices, ACM Press, November 4–8 2002, vol. 37, 11, pp. 174–190.

 	[78]

 	S. Sundareswaran.
Ensuring Distributed Accountability for Data Sharing in the Cloud, in: Dependable and Secure Computing, 2012, vol. 9.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6165313

 	[79]

 	R. J. Walker, K. Viggers.
Implementing Protocols via Declarative Event Patterns, in: Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE-12), ACM Press, 2004, pp. 159 - 169.

 	[80]

 	M. Wand, G. Kiczales, C. Dutchyn.
A Semantics for Advice and Dynamic Join Points in Aspect-Oriented Programming, in: ACM Transactions on Programming Languages and Systems (TOPLAS), 2004, vol. 26, no 5, pp. 890–910.

 	[81]

 	D. M. Yellin, R. E. Strom.
Protocol specifications and component adaptors, in: ACM Transactions of Programming Languages and Systems, March 1997, vol. 19, no 2, pp. 292–333.

 	[82]

 	A. van Deursen, P. Klint, J. Visser.
Domain-Specific Languages: An Annotated Bibliography, in: ACM SIGPLAN Notices, June 2000, vol. 35, no 6, pp. 26-36.

 OEBPS/uid90.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Inria Associate Teams

 REAL

 		
 Title: Reasoning about Aspect-oriented Programs and security In Distributed Systems

 		
 International Partner (Institution - Laboratory - Researcher):

 		
 Universidad de Chile (CHILI)

 		
 Duration: 2010-2016

 		
 See also: http://real.gforge.inria.fr

 		
 While Aspect-Oriented Programming offers promising mechanisms for enhancing the modularity of software, this increased modularity raises new challenges for systematic reasoning. This project studies means to address fundamental and practical issues in understanding distributed aspect-oriented programs by focusing on the issue of security. To this end, the project tackles three complementary lines of work:
1. Designing a core calculus to model distributed aspect-oriented programming languages and reason about programs written in these languages.
2. Studying how aspects can be used to enforce security properties in a distributed system, based upon guarantees provided by the underlying aspect infrastructure.
3. Designing and developing languages, analyses and runtime systems for distributed aspects based on the proposed calculus, therefore enabling systematic reasoning about security.
These lines of work are interconnected and confluent. A concrete outcome of RAPIDS will be prototypes for two concrete distributed aspect-oriented extensions of languages increasingly used by current practitioners: Javascript and Java/Scala.

 Inria International Partners

 Informal International Partners

 Apart from the Inria associate team rapids with the Pleiad group
(Prof. Éric Tanter) at U. Chile, the Ascola team has formalized
cooperations, notably in the context of co-financed and co-supervised
PhD theses with the PROG group (Prof. Wofgang de Meuter) at VU
Brussel, Belgium, and the Software Technology group (Prof. Mira
Mezini) at TU Darmstadt, Germany.

 Furthermore, the Ascola team has long-term cooperations that resulted
in common results in 2014, typically joint publications or common
software artifacts, with partners from the AIST research institute
(Dr. Takahiro Hirofuchi) and U. of Bogota, Colombia (Prof. Rubby
Casallas).

OEBPS/uid71.html

 Section:
 Partnerships and Cooperations

 Regional Initiatives

 Competitiveness cluster Images-et-Reseaux

 EcoCloud

 Participant :
	Jean-Marc Menaud.

 The project EcoCloud is a cooperative research project running for 2
years. Three other partners collaborate within the project that is
coordinated by the company EasyVirt: the Ascola team and another
company Pentasonic. The partners aim at developing an
economically-valid and ecologic cloud platform in the context of micro
and mono-site data centers (all resources are in the same physical
location). A high SLA level must be provided with a specific focus on
high availability satisfying strong redundancy and placement
constraints.

OEBPS/uid74.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 CominLabs laboratory of excellence

 EPOC

 Participants :
	Jean-Marc Menaud [coordinator] , Thomas Ledoux.

 The project EPOC (Energy Proportional and Opportunistic Computing
system) is an (academic) Labex CominLabs project running for 4
years. Four other partners collaborate within the project that is
coordinated by ASCOLA: Myriads team, and the three institutions ENIB,
ENSTB and University of Nantes. In this project, the partners focus
on energy-aware task execution from the hardware to application's
components in the context of a mono-site data center (all
resources are in the same physical location) which is connected to the
regular electric Grid and to renewable energy sources (such as
windmills or solar cells). Three major challenges are addressed in
this context: Optimize the energy consumption of distributed
infrastructures and service compositions in the presence of ever more
dynamic service applications and ever more stringent availability
requirements for services; Design a clever cloud's resource management
which takes advantage of renewable energy availability to perform
opportunistic tasks, then exploring the trade-off between energy
saving and performance aspects in large-scale distributed system;
Investigate energy-aware optical ultra high-speed interconnection
networks to exchange large volumes of data (VM memory and storage)
over very short periods of time.

 One of the strengths of the project is to provide a systematic approach, and use a single model for the system (from hard to soft) by mixing constraint programming and behavioral models to manage energy consumption in data centers.

 This year, we have proposed a Cloud energy broker [26] , which can adjust the availability and price combination to buy Green energy dynamically from the market to make datacenter green.

 SecCloud

 Participants :
	Jacques Noyé [coordinator] , Florent Marchand de Kerchove de Denterghem, Mario Südholt.

 The high-level objective of the 3-year SecCloud (Secure Scripting for
the Cloud) project is to enhance the security of devices on which web
applications can be downloaded, i.e. to enhance client-side security
in the context of the Cloud. In order to do so, the project relies on
a language-based approach, focusing on three related issues:

 		
 The definition of security policies for web architectures,
especially on the client-side.

 		
 Formally-proven analyses of web programming languages.

 		
 Multi-level enforcement mechanisms for the security policies (based on
static and dynamic analysis encompassing application-level and
system-level software).

 ASCOLA members are mainly interested in JavaScript as a programming
language as well as the use of aspects as a seamless path from the
definition of security policies and their composition to their
implementation.

 This year we have investigated how to extend real-world Javascript
environments, such as Narcissus in a modular way.

 ANR

 MyCloud (ANR/ARPEGE)

 Participants :
	Thomas Ledoux [coordinator] , Jean-Marc Menaud, Yousri Kouki.

 The MyCloud project is an ANR/ARPEGE project running for 42 months,
starting in Nov. 2010. It was accepted in Jul. 2010 for funding
amounting to 190 KEUR (ASCOLA only). MyCloud involves a consortium
with three academic partners (Inria, LIP6, EMN) and one industrial
partner (We Are Cloud).

 Cloud Computing provides a convenient means of remote on-demand and
pay-per-use access to computing resources. However, its ad-hoc
management of quality-of-service (QoS) and SLA poses significant
challenges to the performance, dependability and costs of online cloud
services.

 The objective of MyCloud
(http://mycloud.inrialpes.fr)
is to define and implement a novel cloud model: SLAaaS (SLA as a
Service). The SLAaaS model enriches the general paradigm of Cloud
Computing and enables systematic and transparent integration of SLA to
the cloud. From the cloud provider's point of view, MyCloud proposes
autonomic SLA management to handle performance, availability, energy
and cost issues in the cloud. From the cloud customer's point of view,
MyCloud provides SLA governance allowing cloud customers to be part of
the loop and to be automatically notified about the state of the
cloud, such as SLA violation and cloud energy consumption.

 The project ended in April 2014. This year, our main contribution is a
new system for the specification of service-level agreements in the
Cloud presented at the IEEE/ACM CCGrid
conference [27] .

 SONGS (ANR/INFRA)

 Participants :
	Adrien Lebre [coordinator] , Flavien Quesnel, Jonathan Pastor.

 The SONGS project (Simulation of Next Generation Systems) is an
ANR/INFRA project running for 48 months (starting in January 2012 with
an allocated budget of 1.8MEuro, 95KEuro for ASCOLA).

 The consortium is composed of 11 academic partners from Nancy (AlGorille,
coordinator), Grenoble (MESCAL), Villeurbanne (IN2P3 Computing Center,
GRAAL/Avalon - LIP), Bordeaux (CEPAGE, HiePACS, RUNTIME), Strasbourg (ICPS -
LSIIT), Nantes (ASCOLA), Nice (MASCOTTE, MODALIS).

 The goal of the SONGS project
(http://infra-songs.gforge.inria.fr)
is to extend the applicability of the SimGrid simulation framework
from Grids and Peer-to-Peer systems to Clouds and High Performance
Computation systems.

 FSN

 OpenCloudware (FSN)

 Participants :
	Jean-Marc Menaud [coordinator] , Thomas Ledoux, Yousri Kouki.

 The OpenCloudware project is coordinated by France Telecom, funded by the French Fonds National pour la Société Numérique (FSN, call Cloud n°1) and endorsed by competitiveness clusters Minalogic, Systematic and SCS. OpenCloudware is developed by a consortium of 18 partners
bringing together industry and academic leaders, innovative
technology start-ups and open source community expertise. Duration: 36 months - 2012–2014.

 The OpenCloudware project aims at building an open software
engineering platform, for the collaborative development of distributed
applications to be deployed on multiple Cloud infrastructures. It will
be available through a self-service portal. We target virtualized
multi-tier applications such as JavaEE - OSGi. The results of
OpenCloudware will contain a set of software components to manage the
lifecycle of such applications, from modelling(Think), developing and
building images (Build), to a multi-IaaS compliant PaaS platform
(Run).

 The ASCOLA project-team is mainly involved in the sub-projects
"Think" (SLA model across Cloud layers) and "Run" (virtual machine
manager for datacenters and placement constraints). In 2013, the team
has developed btrCloudStack, a private cloud based on the OpenSource
CloudStack and integrating the work on placement rules and energy
optimization.

OEBPS/international.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid86.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 FP7 & H2020 Projects

 ERC Starting Grant: The CoqHoTT project

 Participant :
	Nicolas Tabareau [coordinator] .

 CoqHoTT stands for Coq for Homotopy Type Theory. The goal of this project is to go further in the correspondence between proofs and programs which has allowed in the last 20 years the development of useful proof assistants, such as Coq (developed by Inria). This project starts from the recent discovery by field medal Vladimir Voevosdky, of the strong link between homotopy theory (which studies the notion of continuous deformation in topology) and type theory (which is at the heart of the Coq proof assistant). The main goal of the CoqHoTT project is to provide a new generation of proof assistants based on this fascinating connection.

 The CoqHoTT project should starts on March 2015 with a budget of 1,5M€.

 A4Cloud (IP)

 Participants :
	Mario Südholt [coordinator] , Walid Benghabrit, Ronan-Alexandre Cherrueau, Rémi Douence, Hervé Grall, Jean-Claude Royer, Mohamed Sellami.

 The integrated project “Accountability for the Cloud” (A4Cloud) is
coordinated by HP Labs, UK, and fosters cooperation of a consortium of
five industrial and eight academic partners. It has been started in
Oct. 2012 for a duration of 42 months.

 A4Cloud focuses on accountability properties for the cloud and other
future internet services as the most critical prerequisite for
effective governance and control of corporate and private data
processed by cloud- based IT services. The research being conducted in
the project will increase trust in cloud computing by devising methods
and tools, through which cloud stakeholders can be made accountable
for the privacy and confidentiality of information held in the
cloud. These methods and tools will combine risk analysis, policy
enforcement, monitoring and compliance auditing. They will contribute
to the governance of cloud activities, providing transparency and
assisting legal, regulatory and socio-economic policy enforcement. For
further information, see http://www.a4cloud.eu . ASCOLA, whose
financial support consists of 550 K€, is mainly involved in the
sub-projects on the enforcement of accountability and security
policies, as well as tool validation efforts.

 This year we have proposed new logic-based and language-level means
for the formal specification and implementation of accountability
properties (see
	6.3).

OEBPS/IMG/iTunesArtwork.png
Activity Report 2014
Project-Team Ascola

Aspect and composition
languages

IN COLLABORATION WITH: Laboratoire dinformatique de Nantes Atiantique (LINA)

OEBPS/uid101.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits of International Scientists

 Internships

 Gustavo Soto Ridd has done an Inria master internship advised by
Nicolas Tabareau from August to November 2014. The goal of the
internship was to go beyond the work on aspectual session
types
	6.4 .

 Researchers

 Dr. Takahiro Hirofuchi, Researcher at AIST (Japan) spent one week in
June 2014 to prepare a journal submission related to the
Virtualization extensions we made in 2013 in Simgrid. The article is
under review.

