

[image: cover]

 ATEAMS

 Analysis and Transformation based on rEliAble tool coMpositionS

 2014 Project-Team Activity Report
	

 Research centre:
 Lille - Nord Europe

 Field: Algorithmics, Programming, Software and Architecture
Theme: Architecture, Languages and Compilation

 Keywords: Programming Languages, Formal Methods, Domain-specific Languages, Software Engineering, Meta-modeling

 Project-Team Ateams

 Members

 Overall Objectives	Presentation

 Research Program	Research method
	Software analysis
	Refactoring and Transformation
	The Rascal Meta-programming language
	Domain-specific Languages

 New Software and Platforms	MicroMachinations
	Naked Object Algebras
	Rascal
	IDE Meta-tooling Platform
	Ensō

 New Results	Highlights of the Year
	Cyclomatic complexity ≠ Lines of Code
	Language-Parametric, Capture-Avoiding Program Transformation
	Memory Efficient Hash Tries
	Reflection without Remorse
	General Parser Combinators

 Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry

 Partnerships and Cooperations	National Initiatives
	European Initiatives
	International Research Visitors

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Major publications

 	
 Publications of the year

 Creation of the Project-Team: 2009 July 01
Section: Members
Research Scientists
Jurgen Vinju [Team leader, Centrum Wiskunde & Informatica, Professor]
Paul Klint [Centrum Wiskunde & Informatica, Professor]
Tijs Van Der Storm [Centrum Wiskunde & Informatica]
Jan Van Eijck [Centrum Wiskunde & Informatica]
Engineers
Maarten Dijkema [Centrum Wiskunde & Informatica]
Bert Lisser [Centrum Wiskunde & Informatica]
Administrative Assistant
Sandrine Meilen [Inria]
Others
Ali Afroozeh [Centrum Wiskunde & Informatica]
Pablo Inostroza Valdera [Centrum Wiskunde & Informatica]
Anastasia Izmaylova [Centrum Wiskunde & Informatica]
Davy Landman [Centrum Wiskunde & Informatica]
Ashim Shahi [Centrum Wiskunde & Informatica]
Michael Steindorfer [Centrum Wiskunde & Informatica]
Jouke Stoel [Centrum Wiskunde & Informatica]
Atze Van Der Ploeg [Centrum Wiskunde & Informatica]
Riemer Van Rozen [Centrum Wiskunde & Informatica]

 Overall Objectives

 	Overall Objectives	Presentation

 Section:
 Overall Objectives

 Presentation

 Software is very complex, and it seems to become more complex every year.
Over the last decades, computer science has delivered various insights how to
organize software better. Via structured programming, modules, objects,
components and agents, these days software systems are more and more evolving
into “systems of systems” that provide services to each other. Each system is
large, uses incompatible — new, outdated or non-standard — technology and
above all, exhibits failures.

 It is becoming more and more urgent to analyze the properties of these
complicated, heterogeneous and very large software systems and to refactor and
transform them to make them simpler and to keep them up-to-date. With the
plethora of different languages and technology platforms it is becoming very
difficult and very expensive to construct tools to achieve this.

 The main challenge of ATEAMS is to address this combination of a need for all
kinds of novel analysis and transformation tools and the existence of the
diversity of programming environments. We do this by investing in a virtual
laboratory called “Rascal”. It is a domain specific programming language for
source code analysis, transformation and generation. Rascal is programming
language parametric, such that it can be used to analyze, transform or
generated source code in any language. By combining concepts from both program
analysis and transformation into this language we can efficiently experiment
with all kinds of tools and algorithms.

 We now focus on three sub-problems. Firstly, we study software analysis: to
extract information from existing software systems and to analyze it. The
extracted information is vital to construct sound abstract models that can
be used in further analysis. We apply these extraction techniques now to
analyze (large bodies of) source code: finding bugs and finding the causes
of software complexity.

 Secondly, we study refactoring: to semi-automatically improve the quality
of a software system without changing its behavior. Refactoring tools are a
combination of analysis and transformations. Implementations of refactoring
tools are complex and often broken. We study better ways of designing
refactorings and we study ways to enable new (more advanced and useful)
refactorings. We apply these refactorings now to isolate design choices in
large software systems and compare systems that are equal except a single
design choice.

 Finally, we study code generation from domain specific languages
(DSLs). Here we also find a combination of analysis and
transformation. Designing, implementing and, very importantly,
maintaining DSLs is costly. We focus on application areas such as
Computational Auditing, Game Economies, and Core Banking to experiment
with this subject. In Computational Auditing we are focusing on
modeling interactive questionnaires. The Game economies domain
involves modeling and verifying the dynamic behaviour of game
play. Core banking requires the formal modeling of financial services
and products.

 Research Program

 	Research Program	Research method
	Software analysis
	Refactoring and Transformation
	The Rascal Meta-programming language
	Domain-specific Languages

 Section:
 Research Program

 Research method

 We are inspired by formal methods and logic to construct new tools for
software analysis, transformation and generation. We try and proof the
correctness of new algorithms using any means necessary.

 Nevertheless we mainly focus on the study of existing (large) software
artifacts to validate the effectiveness of new tools. We apply the
scientific method. To (in)validate our hypothesis we often use detailed
manual source code analysis, or we use software metrics, and we have
started to use more human subjects (programmers).

 Note that we maintain ties with the CWI spinoff “Software Improvement
Group” which services most of the Dutch software industry and
government
and many European companies as well. This provides access to software
systems and information about software systems that is valuable in our
research.

 Section:
 Research Program

 Software analysis

 This research focuses on source code; to analyze it, transform it
and generate it. Each analysis or transformation begins with fact
extraction. After that we may analyze specific software systems or
large bodies of software systems. Our goal is to improve software
systems by understanding and resolving the causes of software
complexity. The approach is captured in the EASY acronym: Extract
Analyze SYnthesize. The first step is to extract facts from source
code. These facts are then enriched and refined in an analysis phase.
Finally the result is synthesized in the form of transformed or
generated source code, a metrics report, a visualization or some
other output artifact.

 The mother and father of fact extraction techniques are probably Lex, a
scanner generator, and AWK, a language intended for fact extraction from
textual records and report generation. Lex is intended to read a file
character-by-character and produce output when certain regular
expressions (for identifiers, floating point constants, keywords) are
recognized. AWK reads its input line-by-line and regular expression
matches are applied to each line to extract facts. User-defined actions
(in particular print statements) can be associated with each successful
match. This approach based on regular expressions is in wide use for
solving many problems such as data collection, data mining, fact
extraction, consistency checking, and system administration. This same
approach is used in languages like Perl, Python, and Ruby. Murphy and
Notkin have specialized the AWK-approach for the domain of fact
extraction from source code. The key idea is to extend the expressivity
of regular expressions by adding context information, in such a way that,
for instance, the begin and end of a procedure declaration can be
recognized. This approach has, for instance, been used for call graph
extraction but becomes cumbersome when more complex context information
has to be taken into account such as scope information, variable
qualification, or nested language constructs. This suggests using
grammar-based approaches as will be pursued in the proposed project.
Another line of research is the explicit instrumentation of existing
compilers with fact extraction capabilities. Examples are: the GNU C
compiler GCC, the CPPX C++ compiler, and the Columbus C/C++ analysis
framework. The Rigi system provides several fixed fact extractors for a
number of languages. The extracted facts are represented as tuples (see
below). The CodeSurfer source code analysis tool extracts a standard
collection of facts that can be further analyzed with built-in tools or
user-defined programs written in Scheme. In all these cases the
programming language as well as the set of extracted facts are fixed thus
limiting the range of problems that can be solved.

 The approach we are exploring is the use of syntax-related program
patterns for fact extraction. An early proposal for such a pattern-based
approach consisted of extending a fixed base language (either C or PL/1 variant)
with pattern matching primitives. In our own previous work on
RScript we have already proposed a query algebra to express direct queries
on the syntax tree. It also allows the querying of information that is
attached to the syntax tree via annotations. A unifying view is to consider
the syntax tree itself as “facts” and to represent it as a relation. This
idea is already quite old. For instance, Linton proposes to represent all
syntactic as well as semantic aspects of a program as relations and to use
SQL to query them. Due to the lack of expressiveness of SQL (notably the
lack of transitive closure) and the performance problems encountered, this
approach has not seen wider use.

 Parsing is a fundamental tool for fact extraction for source code. Our
group has longstanding contributions in the field of Generalized LR
parsing and Scannerless parsing. Such generalized parsing techniques
enable generation of parsers for a wide range of existing (legacy)
programming languages, which is highly relevant for experimental
research and validation.

 Extracted facts are often refined, enriched and queried in the
analysis phase. We propose to use a relational formalization of the
facts. That is, facts are represented as sets of tuples, which can
then be queried using relational algebra operators (e.g., domain,
transitive closure, projection, composition etc.). This relational
representation facilitates dealing with graphs, which are commonly
needed during program analysis, for instance when processing
control-flow or data-flow graphs. The Rascal language integrates a
relational sub-language by providing comprehensions over different
kinds of data types, in combination with powerful pattern matching and
built-in primitives for computing (transitive/reflexive) closures and
fixpoint computations (equation solving).

 Goals

 The main goal is to replace labour-intensive manual programming of
fact extractors by automatic generation based on concise and formal
specification. There is a wide open scientific challenge here: to
create a uniform and generic framework for fact extraction that is
superior to current more ad-hoc approaches, yet flexible enough to be
customized to the analysis case at hand. We expect to develop new
ideas and techniques for generic (language-parametric) fact extraction
from source code and other software artifacts.

 Given the advances made in fact extraction we are starting to apply our
techniques to observe source code and analyze it in detail.

 Section:
 Research Program

 Refactoring and Transformation

 The second goal, to be able to safely refactor or transform source
code can be realized in strong collaboration with extraction and
analysis.

 Software refactoring is usually understood as changing software with
the purpose of increasing its readability and maintainability rather
than changing its external behavior. Refactoring is an essential
tool in all agile software engineering methodologies. Refactoring is
usually supported by an interactive refactoring tool and consists of
the following steps:

 	
 Select a code fragment to refactor.

 	
 Select a refactoring to apply to it.

 	
 Optionally, provide extra parameter needed by the refactoring
(e.g., a new name in a renaming).

 The refactoring tool will now test whether the
preconditions for the refactoring are satisfied. Note that this
requires fact extraction from the source code. If this fails the user
is informed. The refactoring tool shows the effects of the refactoring
before effectuating them. This gives the user the opportunity to
disable the refactoring in specific cases.The refactoring tool applies
the refactoring for all enabled cases. Note that this implies a
transformation of the source code. Some refactorings can be applied to
any programming language (e.g., rename) and others are language
specific (e.g., Pull Up Method). At http://www.refactoring.com
an extensive list of refactorings can be found.

 There is hardly any general and pragmatic theory for refactoring,
since each refactoring requires different static analysis techniques
to be able to check the preconditions. Full blown semantic
specification of programming languages have turned out to be
infeasible, let alone easily adaptable to small changes in language
semantics. On the other hand, each refactoring is an instance of the
extract, analyze and transform paradigm. Software transformation
regards more general changes such as adding functionality and
improving non-functional properties like performance and reliability.
It also includes transformation from/to the same language
(source-to-source translation) and transformation between different
languages (conversion, translation). The underlying techniques for
refactoring and transformation are mostly the same. We base our source
code transformation techniques on the classical concept of term
rewriting, or aspects thereof. It offers simple but powerful pattern
matching and pattern construction features (list matching, AC
Matching), and type-safe heterogenous data-structure traversal methods
that are certainly applicable for source code transformation.

 Goals

 Our goal is to integrate the techniques from program transformation
completely with relational queries. Refactoring and transformation
form the Achilles Heel of any effort to change and improve software.
Our innovation is in the strict language-parametric approach that may
yield a library of generic analyses and transformations that can be
reused across a wide range of programming and application languages.
The challenge is to make this approach scale to large bodies of source
code and rapid response times for precondition checking.

 Section:
 Research Program

 The Rascal Meta-programming language

 The Rascal Domain-Specific Language for Source code analysis and
Transformation is developed by ATeams. It is a language
specifically designed for any kind of meta programming.

 Meta programming is a large and
diverse area both conceptually and technologically. There are
plentiful libraries, tools and languages available but integrated
facilities that combine both source code analysis and source code transformation are scarce.
Both domains depend on a wide range of concepts such as grammars and
parsing, abstract syntax trees, pattern matching, generalized tree
traversal, constraint solving, type inference, high fidelity
transformations, slicing, abstract interpretation, model checking, and
abstract state machines. Examples of tools that implement some of
these concepts are ANTLR,
ASF+SDF, CodeSurfer,
Crocopat, DMS, Grok,
Stratego, TOM and
TXL. These tools either specialize in analysis or in
transformation, but not in both. As a result, combinations of
analysis and transformation tools are used to get the job done. For
instance, ASF+SDF relies on
RScript for querying and TXL
interfaces with databases or query tools. In other approaches,
analysis and transformation are implemented from scratch, as done in
the Eclipse JDT. The TOM tool adds
transformation primitives to Java, such that libraries for analysis
can be used directly. In either approach, the job of integrating
analysis with transformation has to be done over and over again for
each application and this requires a significant investment.

 We propose a more radical solution by completely merging the set of
concepts for analysis and transformation of source code into a single
language called Rascal. This language covers the range of
applications from pure analyses to pure transformations and everything
in between. Our contribution does not consist of new concepts or
language features per se, but rather the careful
collaboration, integration and cross-fertilization of existing
concepts and language features.

 Goals

 The goals of Rascal are: (a) to remove the cognitive and
computational overhead of integrating analysis and transformation
tools, (b) to provide a safe and interactive environment for
constructing and experimenting with large and complicated source code
analyses and transformations such as, for instance, needed for
refactorings, and (c) to be easily understandable by a large group of
computer programming experts. Rascal is not limited to one
particular object programming language, but is generically applicable.
Reusable, language specific, functionality is realized as libraries.
As an end-result we envision Rascal to be a one-stop shop for source
code analysis, transformation, generation and visualization.

 Section:
 Research Program

 Domain-specific Languages

 Our final goal is centered around Domain-specific languages (DSLs),
which are software languages tailored to a specific problem domain.
DSLs can provide orders of magnitude improvement in terms of
software quality and productivity. However, the implementation of
DSLs is challenging and requires not only thorough knowledge of the
problem domain (e.g., finance, digital forensics, insurance,
auditing etc.), but also knowledge of language implementation (e.g.,
parsing, compilation, type checking etc.). Tools for language
implementation have been around since the archetypical parser
generator YACC. However, many of such tools are characterized by
high learning curves, lack of integration of language implementation
facets, and lead to implementations that are hard to maintain. This
line of research focuses on two topics: improve the practice and
experience of DSL implementation, and evaluate the success of DSLs
in industrial practice.

 Language workbenches [4] are integrated
environments to facilitate the development of all aspects of DSLs. This
includes IDE support (e.g., syntax coloring, outlining, reference
resolving etc.) for the defined languages. Rascal can be seen as a
language workbench that focuses on flexibility, programmability and
modularity. DSL implementation is, in essence, an instance of source
code analysis and transformation. As a result, Rascal's features for
fact extraction, analysis, tree traversal and synthesis are an
excellent fit for this area. An important aspect in this line of
research is bringing the IDE closer to the source code. This will
involve investigation of heterogeneous representations of source code,
by integrating graphical, tabular or forms-based user interface
elements. As a result, we propose Rascal as a feature-rich workbench
for model-driven software development.

 The second component of this research is concerned with evaluating
DSLs in industrial contexts. This means that DSLs constructed using
Rascal will be applied in real-life environments so that expected
improvements in quality, performance, or productivity can be observed.
We already have experience with this in the domain of digital forensics,
computational auditing and games.

 Goals

 The goal of this research topic is to improve the practice of
DSL-based software development through language design and tool
support. A primary focus is to extend the IDE support provided by
Rascal, and to facilitate incremental, and iterative design of DSLs.
The latter is supported by new (meta-)language constructs for
extending existing language implementations. This will require
research into extensible programming and composition of compilers,
interpreters and type checkers. Finally, a DSL is never an island: it
will have to integrate with (third-party) source code, such as host
language, libraries, runtime systems etc. This leads to the vision of
multi-lingual programming environments [15] .

 New Software and Platforms

 	New Software and Platforms	MicroMachinations
	Naked Object Algebras
	Rascal
	IDE Meta-tooling Platform
	Ensō

 Section:
 New Software and Platforms

 MicroMachinations

 Participant :
	Riemer Van Rozen [correspondent] .

 	Characterization:

 	
 A-2-up3, SO-4, SM-2-up3, EM-3, SDL-3-up4, OC-DA-3-CD-3-MS-3-TPM-3.

 	WWW:

 	

 	Objective:

 	
 To create an integrated, live environment for modeling and evolving game economies.
This will allow game designers to experiment with different strategies to realize game mechanics. The environment integrates with the SPIN model checker to prove properties (reachability, liveness). A runtime system for executing game economies allows MicroMachinations models to be embedded in actual games.

 	Users:

 	
 Game designers

 	Impact:

 	
 One of the important problems in game software development is the distance between game design and implementation in software. MicroMachinations has the potential to bridge this gap by providing live design tools that directly modify or create the desired software behaviors.

 	Competition:

 	
 None.

 	Engineering:

 	
 The front-end of MicroMachinations is built using the Rascal language workbench, including visualization, model checking, debugging and standard IDE features. The runtime library is implemented in C++ and will be evaluated in the context of industrial game design.

 	Publications:

 	

 [11]

 Novelties

 	
 MMLib was finished to allow the execution of game economies
directly within games. This supports “Live programming” of the
behavior of games. The library has been used in the development of
the real-life game “Johnny Jetstream”, designed by IC3DMedia.

 Section:
 New Software and Platforms

 Naked Object Algebras

 Participant :
	Tijs Van Der Storm [correspondent] .

 	Characterization:

 	
 A5, SO-4, SM-4, EM-4, SDL-4-up5, OC-DA-3-CD-3-MS-3-TPM-3.

 	WWW:

 	

 https://github.com/cwi-swat/naked-object-algebras

 	Objective:

 	
 Supporting modular and extensible language development.

 	Users:

 	
 Programmers, language designers.

 	Impact:

 	
 Object Algebras promise a new level of modularity and extensibility in the implementation of recursive data types. The NAO framework lifts this to the implementation of software languages, including the declarative declaration of concrete syntax.

 	Competition:

 	
 Language prototyping tools.

 	Engineering:

 	
 NAO consists of a few hundred lines of Java code. It has no external dependencies, except ANTLR for parsing.

 	Publications:

 	
 [27] , [33]

 Novelties

 	
 NAO has been used to develop an extensible variant of the QL questionnaire language [33] .

 Section:
 New Software and Platforms

 Rascal

 Participants :
	Paul Klint, Jurgen Vinju [correspondent] , Tijs Van Der Storm, Pablo Inostroza Valdera, Davy Landman, Bert Lisser, Atze Van Der Ploeg, Vadim Zaytsev, Anastasia Izmaylova, Michael Steindorfer, Jouke Stoel, Ali Afroozeh, Ashim Shahi.

 	Characterization:

 	
 A5, SO-4, SM-4, EM-4, SDL-4-up5, OC-DA-3-CD-3-MS-3-TPM-3.

 	WWW:

 	

 http://www.rascal-mpl.org

 	Objective:

 	
 Provide a completely integrated programming language parametric meta programming language for the construction of any kind of meta program for any kind of programming language: analysis, transformation, generation, visualization.

 	Users:

 	
 Researchers in model driven engineering, programming languages, software engineering, software analysis, as well as practitioners that need specialized tools.

 	Impact:

 	
 Rascal is making the mechanics of meta programming into a non-issue. We can now focus on the interesting details of the particular fact extraction, model, source analysis, domain analysis as opposed to being distracted by the engineering details. Simple things are easy in Rascal and complex things are manageable, due to the integration, the general type system and high-level programming features.

 	Competition:

 	
 There is a plethora of meta programming toolboxes and frameworks available, ranging from plain parser generators to fully integrated environments. Rascal is distinguished because it is a programming language rather than a specification formalism and because it completely integrates different technical domains (syntax definition, term rewriting, relational calculus). For simple tools, Rascal competes with scripting languages and for complex tools it competes context-free general parser generators, with query engines based on relational calculus and with term rewriting and strategic programming languages.

 	Engineering:

 	
 Rascal is about 100 kLOC of Java code, designed by a core team of three and with a team of around 8 PhD students and post-docs contributing to its design, implementation and maintenance. The goal is to work towards more bootstrapping and less Java code as the project continues.

 	Publications:

 	
 [7] , [6] , [8] , [5] , [6]

 Novelties

 	
 Improvements of the language-parametric model to represent software
projects (M3) [9] .

 	
 Performance improvements of the Rascal interpreter throughout.

 	
 Further improvements to the compiler for Rascal, based on new
language construct guarded coroutines.

 	
 New language feature: keyword parameters. This will further allow simplificiation of the core language, as well as support better extensibility.

 	
 Significant improvements to the Rascal static type checker.

 	
 Further improvements to the new GLL parser (Iguana).

 	
 Design of a new DSL for describing core banking infrastructure was started (ReBEL).
Rascal was also used to develop a state machine DSL for use in embedded devices (Machino).

 Section:
 New Software and Platforms

 IDE Meta-tooling Platform

 Participants :
	Jurgen Vinju [correspondent] , Michael Steindorfer.

 IMP, the IDE meta tooling platform is an Eclipse plugin developed mainly by
the team of Robert M. Fuhrer at IBM TJ Watson Research institute. It is
both an abstract layer for Eclipse, allowing rapid development of Eclipse
based IDEs for programming languages, and a collection of meta programming
tools for generating source code analysis and transformation tools.

 	Characterization:

 	
 A5, SO-3, SM4-up5, EM-4, SDL-5, DA-2-CD-2-MS-2-TPM-2

 	WWW:

 	

 https://github.com/impulse-org/

 	Objective:

 	
 The IDE Meta Tooling Platform (IMP) provides a high-level abstraction over the Eclipse API such that programmers can extend Eclipse with new programming languages or domain specific languages in a few simple steps. IMP also provides a number of standard meta tools such as a parser generator and a domain specific language for formal specifications of configuration parameters.

 	Users:

 	
 Designers and implementers of IDEs for programming languages and domain specific languages. Also, designers and implementers of meta programming tools.

 	Impact:

 	
 IMP is a popular among meta programmers especially for it provides the right level of abstraction.

 	Competition:

 	
 IMP competes with other Eclipse plugins for meta programming (such as Model Driven Engineering tools), but its API is more general and more flexible. IMP is a programmers framework rather than a set of generators.

 	Engineering:

 	
 IMP is a long-lived project of many contributors, which
is managed as an Eclipse incubation project at eclipse.org .
Currently we are moving the project to Github to explore more different
ways of collaboration.

 	Publications:

 	

 [2]
 [29]

 Novelties

 	
 Significant performance improvements to the IMP program database. Performance is now better than equivalent data structure libraries in Scala and Clojure.

 Section:
 New Software and Platforms

 Ensō

 Participant :
	Tijs Van Der Storm [correspondent] .

 	Characterization:

 	
 A5, SO-4, SM-3-up-4, EM-2-up-4, SDL-4, OC-DA-4-CD-4-MS-4-TPM-4

 	WWW:

 	

 http://www.enso-lang.org

 	Objective:

 	
 Together with Prof. Dr. William R. Cook of the University of Texas at
Austin, and Alex Loh, Tijs van der Storm has been designing and implementing a new programming
system, called Ensō. Ensō is theoretically sound and practical
reformulation of model-based development. It is based on
model-interpretation as opposed to model transformation and code
generation. Currently, the system already supports models for schemas
(data models), web applications, context-free grammars, diagram
editors and security.

 	Users:

 	
 All programmers.

 	Impact:

 	
 Ensō has the potential to revolutionize the activity of programming. By looking at model driven engineering from a completely fresh perspective, with as key ingredients interpreters and partial evaluation, it may make higher level (domain level) program construction and maintenance as effective as normal programming.

 	Competition:

 	
 Ensō competes as a programming paradigm with model driven engineering tools and generic programming and languages that provide syntax macros and language extensions.

 	Engineering:

 	
 Ensō is a completely self-hosted system in 7000 lines of code.

 	Publications:

 	
 [14] ,
[16] , [13]

 New Results

 	New Results	Highlights of the Year
	Cyclomatic complexity ≠ Lines of Code
	Language-Parametric, Capture-Avoiding Program Transformation
	Memory Efficient Hash Tries
	Reflection without Remorse
	General Parser Combinators

 Section:
 New Results

 Highlights of the Year

 	
 Davy Landman, Jurgen Vinju received a Best paper award nomination, for their paper “Empirical analysis of the relationship between CC and SLOC in a large corpus of Java methods”(ICSM'14).

 Section:
 New Results

 Cyclomatic complexity ≠ Lines of Code

 It has long been believed that cyclomatic complexity of source code correlates linearly with lines of code (SLOC). After extensive study of a large corpus of Java source code, Davy Landman and Jurgen Vinju refuted this belief [34] . This provides a new landmark in how to assess and measure the quality of software. In short: cyclomatic complexity measures something different than lines of code.

 Section:
 New Results

 Language-Parametric, Capture-Avoiding Program Transformation

 Hygienic transformations are well-studied in the area of programming languages that feature (syntax) macros. For instance, in Scheme, macro expansion is guaranteed to not involuntarily capture existing bindings, or allow new bindings to be captured. Together with Sebastian Erdweg and Yi Dai, Tijs van der Storm designed a technique, “name-fix”, that can be used to ensure hygiene in arbitrary program transformations, even when source and target language are completely different [24] .

 Section:
 New Results

 Memory Efficient Hash Tries

 The hash trie data structure is a common part in standard collection libraries of JVM programming languages such as Clojure and Scala. It enables fast immutable implementations of maps, sets, and vectors, but it requires considerably more memory than an equivalent array-based data structure. Michael Steindorfer designed a product family of hash tries to generate specialized Java source code [29] . A preliminary experiment on the implementation of sets and maps shows that this technique leads to a median decrease of 55% in memory footprint for maps and 78% for sets.

 Section:
 New Results

 Reflection without Remorse

 A series of list appends or monadic binds for many monads performs algorithmically worse when it is left-associated. Continuation-passing style (CPS) is well-known to cure this severe dependence of performance on the association pattern. The advantage of CPS dwindles or disappears if we have to examine or modify the intermediate result of a series of appends or binds, before continuing the series. Such examination is frequently needed, for example, to control search in non-determinism monads. Atze van der Ploeg (together with Oleg Kiselyov) developed an alternative approach that is just as general as CPS but more robust: it makes series of binds and other such operations efficient regardless of the association pattern [30] . This solution solves previously undocumented, severe performance problems in iteratees, LogicT transformers, free monads and extensible effects.

 Section:
 New Results

 General Parser Combinators

 Parser combinators are a well-known approach to parsing where grammars are represented using (higher-order) functions. Unfortunately, parser combinators are commonly implemented using recursive descent parsing as the underlying algorithm. As a result, most parser combinators frameworks do not support left-recursive rules, and may exhibit exponential runtime performance due to backtracking. Anastasia Izmaylova and Ali Afroozeh developed “general parser combinators” (GPC) which do not suffer from these problems: all context-free grammars are supported (even ambiguous ones) and performance is worst-case cubic. As result, GPC combines the expressiveness and performance guarantees of general parsing algorithms like GLL and GLR with the flexibility and extensibility of parser combinators.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry

 Section:
 Bilateral Contracts and Grants with Industry

 Bilateral Contracts with Industry

 	
 ING co-financed one PhD position in the context of CWI public-private collaboration program.
The goal is to apply domain-specific language technology to revitalize core banking infrastructure.

 	
 AimValley won the CWI research voucher for developing a DSL
for state machines in the context of embedded devices. Davy Landman performed the
research and development.

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific events organisation

 General chair, scientific chair

 	
 Jurgen Vinju: General Chair, The 7th International
Conference on Software Language Engineering (SLE), Steering
committee member SLE.

 Member of the organizing committee

 	
 Davy Landman: Web chair, The 7th International
Conference on Software Language Engineering (SLE).

 	
 Tijs van der Storm: Social Media Chair, The 7th International
Conference on Software Language Engineering (SLE); co-organizer
Belgium Netherlands Seminar on Software Evolution (BENEVOL'14),
co-organizer Software Development Automation'14 (SDA'14).

 Scientific events selection

 Member of the conference program committee

 	
 Paul Klint: WCRE/CSMR ERA 2014.

 	
 Tijs van der Storm: SLE'14, DSLDI'14, SEMS'14, FTJP'14, TTC'14.

 	
 Jurgen Vinju: WCRE/CSMR Tool track.

 Reviewer

 	
 Tijs van der Storm: PLDI'14.

 Journal

 Member of the editorial board

 	
 Jan van Eijck: Editor of the Journal of Logics and their Applications.

 	
 Paul Klint: Editor Science of Computer Programming, editor Springer LNCS Series on Services Science.

 	
 Jurgen Vinju: co-editor ERCIM news, special issue on Software Quality.

 Reviewer

 	
 Jan van Eijck: Reviewer for ESSLLI, Journal of Semantics,
Journal of Logic and Computation, Fundamenta Informaticae, Synthese,
Journal of Philosophical Logic, Journal of Logic, Language and
Information, Cambridge University Press.

 	
 Tijs van der Storm: Journal of Software & Systems Modeling,
Science of Computer Programming, Computer Languages, Computer
Languages, Systems and Structures, Automated Softare Engineering.

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Master : Jan van Eijck, “Software Testing”, 6 EC, Master
Programme Software Engineering, Universiteit van Amsterdam, The
Netherlands.

 	
 Master: Jan van Eijck, “Functional Specification of
Algorithms”, 6 EC, Master Programme Logic, Universiteit van
Amsterdam, The Netherlands.

 	
 Master : Tijs van der Storm, “Software Construction”, 6 EC,
Universiteit van Amsterdam, The Netherlands.

 Supervision

 	
 PhD : Jeroen van den Bos, “Gathering Evidence: Model-Driven Software Engineering in Automated Digital Forensics”, Universiteit van Amsterdam, January, 9th, 2014, Paul Klint, Tijs van der Storm.

 	
 PhD in progress : Ali Afroozeh, “Advances in GLL Parsing” , 2012, Paul Klint, Jurgen Vinju.

 	
 PhD in progress : Pablo Inostroza Valdera, “Modularity in DSL development”, 2013, Paul Klint, Tijs van der Storm.

 	
 PhD in progress : Anastasia Izmaylova, “Language Parametric Refactoring”, 2011, Paul Klint, Jurgen Vinju.

 	
 PhD in progress : Atze van der Ploeg, “Efficient Abstractions for Visualization and Interaction”, 2011, Paul Klint, Tijs van der Storm.

 	
 PhD in progress : Riemer van Rozen, “Model-Driven Game Development”, 2013, Paul Klint, Tijs van der Storm.

 	
 PhD in progress : Michael Steindorfer, “Efficient Data Structures for Meta Programming”, 2012, Paul Klint, Jurgen Vinju.

 	
 PhD in progress : Jouke Stoel, “Model Driven Infrastructure for Core Banking”, 2014, Jurgen Vinju, Tijs van der Storm.

 Juries

 Jurgen Vinju acted as reading committee member of the PhD of Maartje de Jonge, at TU Delft.

 Section:
 Dissemination

 Popularization

 Paul Klint:

 	
 De Softwarerevolutie, Valedictory lecture.

 	
 Nemo, Hoe ontstond de eerste computer?

 	
 Nemo/Klokhuis, Hoe ontstond de eerste computer?

 	
 BYOM: Bring Your Own Metrics (EQUA Symposium).

 	
 The Revenge of the Coroutines (SEN Symposium).

 Tijs van der Storm:

 	
 Who's afraid of Object Algebras?, Joy of Coding 2014.

 	
 Hack your DSL with Rascal, CodeGeneration 2014.

 	
 The Rascal Language Workbench, NSPyre, 2014.

 	
 I am plain text, – resistance is futile, Sioux, 2014.

 	
 Rascal: functional programming for source code analysis and transformation, guest lecture at Hogeschool van Arnhem en Nijmegen (HAN).

 Jurgen Vinju:

 	
 De allereerste computerprogrammeur Ada Lovelace (1815 - 1852), Kennis van NU (radio appearance).

 	
 Complexe Software, Eindhovens Dagblad.

 	
 De eerste programmeur, VPRO Gids.

 Jan van Eijck is member of the Advisory Board (`Raad van Advies') of
the Artificial Intelligence Curriculum, University of Groningen (since
Summer 2013). Paul Klint acts as treasurer of the EAPLS and was
directory of the Master Software Engineering at Universiteit van
Amsterdam (UvA) until September 1, 2014. He is also board member of
the Instituut voor Programmatuur en Algoritmiek (IPA). Tijs van der
Storm is head of the internship committee at CWI, co-organizer of the
CWI Scientific Meeting and secretary of the CWI works council.

 Bibliography

 Major publications by the team in recent years

 	[1]

 	B. Basten.
Tracking Down the Origins of Ambiguity in Context-Free Grammars, in: Seventh International Colloquium on Theoretical Aspects of Computing (ICTAC 2010), A. Cavalcanti, D. Deharbe, M.-C. Gaudel, J. Woodcock (editors), Springer, September 2010, vol. 6255, pp. 76-90.

 	[2]

 	P. Charles, R. M. Fuhrer, S. M. Sutton Jr, E. Duesterwald, J. Vinju.
Accelerating the Creation of Customized, Language-Specific IDEs in Eclipse, in: Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2009, S. Arora, G. T. Leavens (editors), 2009.

 	[3]

 	Jan van. Eijck, C. Unger.
Computational Semantics with Functional Programming, Cambridge University Press, September 2010.

 	[4]

 	S. Erdweg, T. Storm Van Der, M. Voelter, M. Boersma, R. Bosman, W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat, P. J. Molina, M. Patatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. Vergu, K. B. van der Vlist, G. Wachsmuth, J. M. van der Woning.
The State Of The Art In Language Workbenches. Conclusions From The Language Workbench Challenge, in: Proceedings of the International Conference on Software Language Engineering (SLE, 2013), Indianapolis, USA, 2013.
http://hal.inria.fr/hal-00923386

 	[5]

 	M. Hills, P. Klint, J. Vinju.
Meta-Language Support For Type-Safe Access To External Resources, in: Pre-Proceedings of the 5th International Conference on Software Language Engineering, Dresden, Netherlands, K. Czarnecki, G. Hedin (editors), Fakultät Informatik, Technische Universität Dresden, 2012, pp. 370 - 389.
http://hal.inria.fr/hal-00756878

 	[6]

 	M. Hills, P. Klint, J. Vinju.
Program Analysis Scenarios In Rascal, in: Proceedings of the International Workshop on Rewriting Logic and its Applications (WRLA, 2012), Talinn, Estonia, F. Durán (editor), Springer, 2012, vol. 7571, pp. 10 - 30, An invited paper for WRLA 2012, describing our work on program analysis and comparing our approach to approaches based on rewriting logic semantics.
http://hal.inria.fr/hal-00756880

 	[7]

 	M. Hills, P. Klint, J. Vinju.
Scripting A Refactoring With Rascal And Eclipse, in: Proceedings of the 5th Workshop on Refactoring Tools 2012, Rapperswil, Switzerland, P. Sommerlad (editor), ACM, 2012, pp. 40 - 49.
http://hal.inria.fr/hal-00756879

 	[8]

 	M. Hills, P. Klint, T. Van Der Storm, J. Vinju.
A One-Stop Shop For Software Evolution Tool Construction, in: ERCIM News, 2012, no 88, pp. 11 - 12.
http://hal.inria.fr/hal-00756876

 	[9]

 	A. Izmaylova, P. Klint, A. Shahi, J. Vinju.
M3: An Open Model For Measuring Code Artifacts, 2013, no arXiv-1312.1188, pp. 1-2.
https://hal.inria.fr/hal-00923379

 	[10]

 	P. Klint, T. Van Der Storm, J. Vinju.
EASY Meta-programming with Rascal, in: Generative and Transformational Techniques in Software Engineering III, J. Fernandes, R. Lämmel, J. Visser, J. Saraiva (editors), Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2011, vol. 6491, pp. 222-289.
http://dx.doi.org/10.1007/978-3-642-18023-1_6

 	[11]

 	P. Klint, R. Van Rozen.
Micro-Machinations: A DSL For Game Economies, in: Proceedings of the International Conference on Software Language Engineering (SLE, 2013), Unknown, M. Erwig, R. F. Paige, E. van Wyk (editors), Lecture Notes in Computer Science, Springer, 2013, vol. 8225, pp. 36 - 55.
https://hal.inria.fr/hal-00923383

 	[12]

 	P. Klint, T. Van Der Storm, J. Vinju.
RASCAL: A Domain Specific Language for Source Code Analysis and Manipulation, in: IEEE International Workshop on Source Code Analysis and Manipulation (SCAM'09), Los Alamitos, CA, USA, 2009, pp. 168-177.
http://doi.ieeecomputersociety.org/10.1109/SCAM.2009.28

 	[13]

 	A. Loh, T. Van Der Storm, W. R. Cook.
Managed Data: Modular Strategies For Data Abstraction, in: Proceedings of the ACM international symposium on New ideas, new paradigms, and reflections on programming and software 2012, Tucson, United States, ACM, 2012, pp. 179 - 194.
http://hal.inria.fr/hal-00756886

 	[14]

 	B. C. d. S. Oliveira, T. Van Der Storm, A. Loh, W. R. Cook.
Feature-Oriented Programming With Object Algebras, in: Proceedings of the European Conference on Object-Oriented Programming (ECOOP), 2013.
http://hal.inria.fr/hal-00923387

 	[15]

 	T. Van Der Storm, J. Vinju.
Towards Multilingual Programming Environments, in: Science of Computer Programming, 2013.
https://hal.inria.fr/hal-00923385

 	[16]

 	T. Van Der Storm, W. R. Cook, A. Loh.
Object Grammars: Compositional & Bidirectional Mapping Between Text and Graphs, in: Software Language Engineering, Dresden, Germany, K. Czarnecki, G. Hedin (editors), September 2012.
http://hal.inria.fr/hal-00758627

 	[17]

 	J. Vinju, M. W. Godfrey.
What does control flow really look like? Eyeballing the Cyclomatic Complexity Metric, in: Ninth IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM'12), IEEE Computer Society, 2012.

 	[18]

 	J. van den Bos, T. Van Der Storm.
Bringing Domain-Specific Languages to Digital Forensics, in: Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, Honolulu, United States, ACM, 2011, pp. 671-680.
http://hal.inria.fr/hal-00644687/en

 	[19]

 	J. van den Bos, T. Van Der Storm.
Domain-Specific Languages For Better Forensic Software, in: ERCIM News, 2012, vol. 2012, no 90.
http://hal.inria.fr/hal-00756885

 	[20]

 	J. van den Bos, T. Van Der Storm.
Domain-Specific Optimization In Digital Forensics, in: Proceedings of the International Conference on Model Transformation (ICMT, 2012), Prague, Czech Republic, Z. Hu, J. de Lara (editors), Springer, 2012, vol. 7307, pp. 121 - 136.
http://hal.inria.fr/hal-00756891

 Publications of the year

 Articles in International Peer-Reviewed Journals

 	[21]

 	M. Bruntink, J. Vinju.
Looking Towards A Future Where Software Is Controlled By The Public and Not The Other Way Round, in: ERCIM News, 2014, vol. 99, 1 p.
https://hal.inria.fr/hal-01110831

 	[22]

 	A. Cleve, J. Vinju.
Software Quality, in: ERCIM News, 2014, 1 p.
https://hal.inria.fr/hal-01110830

 	[23]

 	T. Van Der Storm, W. J. Cook, A. Loh.
The design and implementation of Object Grammars, in: Science of Computer Programming, 2014, vol. 96, pp. 460 - 487. [
DOI : 10.1016/j.scico.2014.02.023]
https://hal.inria.fr/hal-01110829

 International Conferences with Proceedings

 	[24]

 	S. Erdweg, T. Van Der Storm, Y. Dai.
Capture-Avoiding and Hygienic Program Transformations, in: ECOOP 2014 - Proceedings of European Conference on Object-Oriented Programming, Uppsala, Sweden, Springer, July 2014, pp. 489 - 514.
https://hal.inria.fr/hal-01110895

 	[25]

 	M. Hills, P. Klint, J. Vinju.
Static, lightweight includes resolution for PHP, in: ASE 29 Proceedings of International Conference on Automated Software Engineering 2014, Vasteras, Sweden, September 2014, pp. 503 - 514. [
DOI : 10.1145/2642937.2643017]
https://hal.inria.fr/hal-01110903

 	[26]

 	P. Inostroza, T. Van Der Storm, S. Erdweg.
Tracing Program Transformations with String Origins, in: ICMT - Proceedings of International Conference on Model Transformation, York, United Kingdom, 2014, pp. 154 - 169. [
DOI : 10.1007/978-3-319-08789-4_12]
https://hal.inria.fr/hal-01110885

 	[27]

 	P. Inostroza, T. Van Der Storm.
Evolving Languages with Object Algebras, in: BENEVOL 2014 - Proceedings of the Belgian-Netherlands Evoluation Workshop, Amsterdam, Netherlands, 2014, 2 p.
https://hal.inria.fr/hal-01110869

 	[28]

 	P. Inostroza, T. Van Der Storm.
The TTC 2014 Movie Database Case: Rascal Solution *, in: Transformation Tool Contest, L'Aquila, Italy, Proceedings of Transformation Tool Contest 2014 (TTC'14), CEUR, 2014, pp. 155 - 159.
https://hal.inria.fr/hal-01110851

 	[29]

 	M. J. Steindorfer, J. Vinju.
Code Specialization for Memory Efficient Hash Tries (Short Paper), in: GPCE - Proceedings of ACM International Conference on Generative Programming and Component Engineering 2014, Vasteras, Sweden, ACM, September 2014, 4 p.
https://hal.inria.fr/hal-01111004

 	[30]

 	A. Van Der Ploeg, O. Kiselyov.
Reflection without Remorse: Revealing a hidden sequence to speed up monadic reflection, in: Haskell '14 - Proceedings of the 2014 ACM SIGPLAN symposium on Haskell, Gothenburg, Sweden, ACM, September 2014, pp. 133-144. [
DOI : 10.1145/2633357.2633360]
https://hal.inria.fr/hal-01110936

 	[31]

 	R. Van Rozen, J. Dormans.
Adapting Game Mechanics with Micro-Machinations, in: Foundations of Digital Games, Aboard Royal Caribbean Liberty of the Seas, sailing from Ford Lauderdale, Florida, United States, Proceedings of the 9th International Conference on the Foundations of Digital Games, Society for the Advancement of the Science of Digital Games, April 2014.
https://hal.inria.fr/hal-01110847

 	[32]

 	R. Van Rozen, T. Van Der Storm.
Model Differencing for Textual DSLs, in: BENEVOL 2014 - Proceedings of the Belgian-Netherlands Evoluation Workshop, Amsterdam, Netherlands, 2014.
https://hal.inria.fr/hal-01110856

 Conferences without Proceedings

 	[33]

 	M. Gouseti, C. Peters, T. Van Der Storm.
Extensible language implementation with object algebras (short paper), in: GPE 2014 - International Conference on Generative Programming: Concepts and Experiences, Västerås, Sweden, Proceedings of the International Conference on Generative Programming: Concepts and Experiences (GPCE, 2014), 2014, pp. 25 - 28. [
DOI : 10.1145/2658761.2658765]
https://hal.inria.fr/hal-01110872

 	[34]

 	D. Landman, A. Serebrenik, J. Vinju.
Empirical analysis of the relationship between CC and SLOC in a large corpus of Java methods, in: IEEE International Conference on Software Maintenance and Evolution 2014, Victoria, Canada, L. M. F. Moonen, L. Pollock (editors), IEEE Computer Society, September 2014, pp. 221 - 230.
https://hal.inria.fr/hal-01110843

 Books or Proceedings Editing

 	[35]

 	B. Combemale, D. J. Pearce, O. Barais, J. J. Vinju (editors)
Software Language Engineering, Springer, Västerås, Sweden, 2014, no 8706, 353 p.
https://hal.inria.fr/hal-01110914

 OEBPS/uid90.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 Master Software Engineering

 ATEAMS is the core partner in the Master Software Engineering at
Universiteit van Amsterdam. This master is a collaboration between
SWAT/ATEAMS, Universiteit van Amsterdam, Vrije Universiteit and Hogeschool
van Amsterdam.

 Early Quality Assurance in Software Production

 The EQUA project is a collaboration among Hogeschool van Amsterdam (main
partner) Centrum Wiskunde & Informatica (CWI), Technisch Universiteit
Delft, Laboratory for Quality of Software (LaQuSo), Info Support, Software
Improvement Group (SIG), and Fontys Hogeschool Eindhoven.

 Next Generation Auditing: Data-assurance as a service

 This is a collaboration between Centrum Wiskunde & Informatic (CWI)
PriceWaterhouseCoopers (PWC), Belastingdienst (National Tax Office), and
Computational Auditing, is to enable research in the field of computational
auditing.

OEBPS/uid94.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 FP7 & H2020 Projects

 		
 Program: FP7 STREP

 		
 Project acronym: OSSMeter

 		
 Project title: Automated Measurement and Analysis of Open Source Software

 		
 Duration: 30 months (2012-10-01 – 2015-03-31)

 		
 Coordinator: Scott Hansen

 		
 Other partners: CWI, SOFTEAM (France), Tecnalia Research
and Innovation (Spain), The Open Group (Belgium), University
of L’Aquila (Italy), UNINOVA (Portugal), National Centre for
Text Mining University of Manchester (UK), University of
York (UK), Unparallel Innovation (Portugal).

OEBPS/international.html

OEBPS/domaine.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/IMG/iTunesArtwork.png
Activity Report 2014
Project-Team Ateams

Analysis and
Transformation based on
rEliAble tool
coMpositionS

OEBPS/uid102.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits of International Scientists

 Internships

 		
 Cleverton Hentz, PhD Candidate at the Department of Informatics and Applied Mathematics (Dimap) at Federal University of Rio Grande do Norte (UFRN).

